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Some years ago, Beem (1993, 1995) described a program for fitting two regression lines with an un-
known change point (Segcurve). He suggested that such models are useful for the analysis of a variety of
phenomena and gave an example of an application to the study of strategy shifts in a mental rotation
task. This technique has also proven to be very fruitful for investigating strategy use and strategy shifts
in other cognitive tasks. Recently, Beem (1999) developed SegcurvN, which fits n regression lines with
(n—1) unknown change points. In the present article we present this new technique and demonstrate
the usefulness of a three-phase segmented linear regression model for the identification of strategies
and strategy shifts in cognitive tasks by applying it to data from a numerosity judgment experiment.
The advantages and shortcomings of this technique are evaluated.

One of the major methodological problems in develop-
mental psychology and the study of individual differences
is to determine the strategy used by a subject for a partic-
ular range of items in a given task. The determination of
strategy use is important, because in most current theories
of strategic competence, like the one of Lemaire and Siegler
(1995), task performance is a function not only of the ef-
ficiency with which the available strategies are executed,
but also of (developmental) changes in strategy use and of
the frequency and the adaptiveness with which the avail-
able strategies are executed. The tasks may come from a
variety of domains, such as simple addition (Siegler &
Robinson, 1982) or subtraction (Siegler, 1987), serial recall
(McGilly & Siegler, 1990), spelling (Marsh, Friedman,
Welch, & Desberg, 1980), mental rotation (Ippel & Beem,
1987), and others.

Thus there is a great need for techniques of data gath-
ering and for statistical models that allow a fine-grained
analysis of what strategy a subject has applied on different
items of the same task. In some studies retrospective re-
ports have been used as the primary source of data about
strategy use. However, in many cases it is not possible or
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warranted to rely (exclusively)on that kind of data, and al-
ternative (or additional) data-gathering techniques, like
eye-fixation records, accuracy measures, and response
times, are required to get (complementary) information about
the strategies underlying subjects’ task performance.

A typical characteristic of these latter kinds of data is
that, although they yield some information about the man-
ner in which a subject has approached a particular item,
this information does not lead unambiguously and directly
to the identification of the underlying strategy. Neverthe-
less, the pattern in the data (e.g., number of eye fixations,
deviation from the correct answer, response time) over the
whole range of items may provide valuable information
about what strategies a subject has used for the task as a
whole, how the use of different strategies is related to cer-
tain item characteristics, and, last but not least, where strat-
egy shifts occur.

In this article we will describe and evaluate the applica-
tion of segmented linear regression models to investigate
phenomena of strategy use and strategy shifts in data pat-
terns in which there is a linear relationship between a task
parameter (e.g., numerosity or angle of rotation) and a de-
pendent variable (e.g., response time or a measure of ac-
curacy). The models are implemented in a computer pro-
gram called SegcurvN (Beem, 1999), which fits segmented
linear regression models with an arbitrary number of seg-
ments to individuals’ response-time or error-rate patterns.
The linearity is a limitation of the program not of seg-
mented curve models in general. SegcurvN is an elabora-
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tion of an earlier program, Segcurve (Beem, 1993, 1995),
which fits two-phase segmented linear regression models
to a subject’s data pattern. To set the stage, the next sec-
tion discusses some alternative methods that have been
previously used to analyze and detect strategy shifts.

ALTERNATIVE METHODS FOR
ANALYZING AND DETECTING
STRATEGY SHIFTS

As noted, the identification of strategies and strategy
shifts in a cognitive task has proven to be a difficultissue.
We will briefly describe two ways in which strategies were
identified in previous research. The first procedure con-
sists of dividing the range of the independent variable into
different segments and comparing the means of the de-
pendent measures in each segment for distinct groups of
subjects. In the second—more advanced—technique, a re-
gression model of which the different segments identify
the different strategies is fitted on subjects’ response-time
or error-rate patterns.

The first technique was applied by Newman and Berger
(1984)in a study of children’ strategy development for es-
timating ordinal numbers. Children of different age groups
(kindergarten, first, and third grade) played a game of
darts on a computer. The screen showed a vertical number
line of which only the beginning (1) and the end point (23)
were shown. At each trial, a randomly presented balloon
appeared somewhere along the number line and the child
had to guess the ordinal number represented by the bal-
loon’s position. After the guess was entered into the com-
puter, a dart was sent horizontally across the screen, pro-
viding feedback about the accuracy of the child’s guess.
The children had to keep on sending darts until the guess
was correct. After completion of the game, children were
asked to explain briefly how they had handled the task.

On the basis of the assumption that children of differ-
ent ages would differ in terms of the kinds of strategies
applied for different kinds of items, Newman and Berger
(1984) compared the estimation accuracy of the three age
groups for small (2-8), medium (9-15), and large (16-23)
target positions. Accuracy was measured in two ways: (1) the
number of misses before hitting the target and (2) the mean
absolute deviation of the initial estimate from the target.
This comparison showed for both measures that both
younger groups were more accurate in the small range rel-
ative to the medium and large range, whereas the third
graders were more accurate at either of the two extremes
relative to the medium range. Second, the verbal reports of
children’s strategy use revealed a clear development to-
ward a greater flexibility in strategy use. The majority of
kindergartners always reported countingup from 1 in each
of the different ranges. First graders indicated counting up
from 1 in the small range and counting down from 23 in
the large range, and used one of both strategies in the
medium range. The oldest children reported applying the
same strategies in the small and large range as the first
graders, but they started to count up from the middle (i.e.,
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10 or 15) in the medium range. Children’s explanations of
strategy use were related to estimation accuracy.

For the data analysis, the number of segments in which
the range of the independent variable is divided was cho-
senin an arbitrary way. As a consequence, the results of this
technique can vary according to this a priori decision
made by the researchers. Moreover, Newman and Berger’s
(1984) analysis did not allow a precise identification of
the values of the independent variable (i.e., the size of the
target) at which subjects shifted from the counting-up to
the counting-down strategy. Instead, they assumed that the
location of this change point was the same for all subjects.

A second and more advanced technique for identifying
a subject’s strategy use is fitting a regression model to the
subject’s response times or error rates. Kyllonen, Lohman,
and Woltz (1984) fitted regression models to a subject’s
response times and error rates to study strategy shifts on
different items of the same spatial task as a function of
item characteristics. For each item in the task, three steps
needed to be completed. First, during the encoding step,
subjects were presented a geometrical figure which was re-
ferred to as the A figure. Next, during the synthesis step, the
A figure was removed, and subjects were presented one or
two other figures, the B and C figures, which they had to
combine mentally with the A figure. Finally, during the com-
parison step, the B and C figures were removed and a test
probe was presented. Subjects had to indicate whether the
image that was mentally formed during the synthesis step
was the same as the test probe. Three item characteristics
were manipulated: (1) the number of figures to be com-
bined with the A figure, (2) synthesis from the left or the
rightside of the B and C figures, and (3) test probe the same
as the constructed image for half of the items and differ-
ent for the other half. Each fitted regression model postu-
lated different processes underlying performance, and
some models postulated strategy shifts (of different kinds).
The strategy-shift models were fitted with a few different
change points that were fixed a priori and that were the
same for all subjects, rather than being estimated from
each subject’s data separately. The best fitting process
model for each subject was determined by comparing ad-
justed R? statistics from the different models. The results
suggested not only that different subjects use different
strategies, but also that the same subjects may use differ-
ent strategies on different items of the same task, as well
as that different subjects differ in the point at which they
switch from one strategy to another.

Although Newman and Berger (1984) and Kyllonenet al.
(1984) were able to identify different strategies that were
used by the different subjects, the change points in both
studies had to be determined a priori by the researcher. More-
over, the location of these change points was the same for
all subjects.

In order to estimate the position of the change point for
each individual separately, a regression model must in-
corporate the location of change as a parameter and estimate
the parameter from the observed data of each subject.
Such regression models are variously called segmented
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curve models (Hudson, 1966) or switching regressions
with unknown change or break points (Judge, Griffiths,
Hill, Liitkepohl, & Lee, 1985). More generally, detectingand
estimating the location or time of (abrupt) structural changes
in (seemingly) nondeterministic systems is also referred
to as change point analysis (Chen & Gupta, 2000; Csorgd
& Horvith, 1997; Quandt, 1958). In the next section we will
give a brief description of a two-phase segmented linear
regression model followed by an applicationof this model
on the data of a numerosity judgment task.

THE TWO-PHASE SEGMENTED LINEAR
REGRESSION MODEL

The most simple segmented linear regression model
contains one change point. Beem (1993, 1995) presented
a program, Segcurve, by which such models can be fitted
for each subject. More specifically, the program estimates
two regression equations that hold for different ranges of
the independent variable and estimates the change point
for each subject separately. The data of all subjects can be
fitted in one run of the program. In other words, this pro-
gramisideally suited for the study of subjects’ strategy shifts
in cognitive tasks with one unknown change point. The
model fitted by the program can be formally described as
follows:

y=a,+bx+e forx<s (1)
y=a,+b,x+e forx>s )

where x is the independentand y is the dependent variable,
the parameters ¢; and b,(i = 1,2) denote respectively the in-
tercept and the slope of the regression lines, and e is the
error term. The parameter s is called the change point or
break point. For values of the independent variable up to
s the first regression equation s fitted, whereas for values
larger than s the second equation—with a different inter-
cept and slope—holds. The program simultaneously esti-
mates the regression parameters and change pointusing a
least squares algorithm that always finds the optimal so-
lution.

Two variants of the model can be distinguished: the join
model and the jump model. The join model is continuous
in s. This means that the value of y at s is the same for both
regression equations. When the model is not continuousin
s, itis called a jump model. The variable x may be continu-
ous, as in mental rotation, or it may be essentially discrete,
as in numerosity judgments. Beem (1995) discussed some
consequences of this distinction for the definition and es-
timation of a jump model and a join model. A more detailed
description of the program’s properties and the various sta-
tistics that it computes can be found in Beem (1993, 1995).

Ippel and Beem (1987) and Alderton and Larson (1994)
applied this model to a mental rotation task. In a mental ro-
tation task, subjects must decide whether two figures are
the same in shape or are mirror images. The figures can
differ in orientation. Latencies typically suggest that sub-
jects mentally rotate one of the figures into congruence
with the other. Either a clockwise or a counterclockwise
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routine can achieve the rotation. Depending on the angu-
lar disparity of the figures and a subject’s speed of clock-
wise and counterclockwise routine, one of these strategies
is the most efficient. Ippel and Beem proposed that strat-
egy shifts have as primary purpose reducing mental effort.

The model was also successfully applied in a study
about the development of strategies for judging (cardinal)
numerosities by Verschaffel, De Corte, Lamote, and Dhert
(1998). In that study, subjects of three different age groups
(i.e., university students, sixth graders, and second graders)
had to determine the numerosity of 100 different amounts
of colored square blocks presented in a 10 X 10 grid,
whereby each trial was presented for at most 20 sec. As in
the study of Newman and Berger (1984), it was assumed
that this task allowed for the use of two different kinds of
strategies, with each strategy leading to a predictably dif-
ferent course of response times for the range of items for
which they were applied. First, in an addition strategy, the
subject divides the given quantity of blocks into a number
of groups, determines the number of blocks in each group,
and adds this result to a running total. This strategy was
assumed to result in linearly increasing response times
with a growing number of blocks. Second, in a subtraction
strategy, the numerosity of blocks is determined by sub-
tracting the number of empty squares from the total num-
ber of squares in the grid (i.e., from 100). It was assumed
that this strategy would elicit linearly decreasing response
times with a growing number of blocks.

To identify subjects’ strategy use, Verschaffel etal. (1998)
fitted a one-phase and a two-phase regression model to
the patterns of response times on all trials. The indepen-
dent variable was the number of blocks in a trial, running
from 1 to 100. The one-phase model corresponds to a hy-
pothetical model wherein all items are solved exclusively
by means of the addition strategy. The two-phase model
corresponds to a hypothetical model wherein small and
large numerosities are solved, respectively, by means of
an addition and a subtraction strategy. Verschaffel et al.
used the jump model for their analyses, since their ratio-
nal task analysis does not necessarily suggest continuity at
the change point.

Results provided support for the hypothesized develop-
mental trend toward the greater (adaptive) use of the more
efficient subtraction strategy: The fit of the two-phase seg-
mented linear regression model increased with age,
whereas the fit of the one-phase model decreased with
age. Moreover, a strong and positive relationship was found
between the (adaptive) use of the subtraction strategy (as
evidenced by a high fit of subjects’ response-time patterns
to the two-phase segmented linear regression model), on
the one hand, and their numerosity judgment accuracy (as
indicated by the mean absolute deviation of the answer
from the given numerosity in the 100 trials), on the other
hand.

However, for a number of subjects in each age group
the fit of the two-phase segmented linear regression model
was rather low, due to the fact that the response times for
the items in the middle region were not a continuation of
those for the items with small or large numerosities. An
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Figure 1. Example of a response-time pattern in which a third strategy was used for the trials in the middle

range.

example of such an individual response-time pattern is
givenin Figure 1. A visual inspection of the response-time
data of these subjects, in combination with their patterns
of error rates, suggested that these subjects had used a
third—unanticipated—strategy, the so-called estimation
strategy. The basic characteristics of this estimation strat-
egy are that it is relatively quick, that it leads to rather im-
precise answers, and that its duration does not seem to be
seriously affected by the numerosity to be determined.
The assumed occurrence of this estimation strategy for
the items in the middle region of the independent variable
jeopardized the use of the two-phase segmented linear re-
gression model, which can identify only one shift between
two strategies in a set of data points. As noted by Beem
(1995, p. 393), segmented linear regression models can, in
principle, be formulated for any number of strategies. In
order to fit models with more than one change point, the
program has been extended so that it can fit models with
an arbitrary number of change points in any combination
of joins and jumps for the change points. In the next sec-
tion we will briefly describe this extension, thereby fo-
cusing on those aspects of the model that make it new in
comparison with the previous one. For more (technical) in-
formation see the Appendix (see also Beem, 1999).

THE THREE-PHASE SEGMENTED
LINEAR REGRESSION MODEL

The three-phase model is an extension of the two-phase
model in which an additional change point and regression

equation, with additional parameters, is added to the two-
phase model to account for a third solution strategy or
type of behavior. The three-phase segmented linear re-
gression model can be described as follows:

y=a,+bx+e forx<s, 3)
y=a,+b,x+e fors <x<s, “)
y=az+byx+e ,forx>s, 5)

The relationship between the dependent and indepen-
dent variable is described by three regression equations,
which hold for different ranges of the independent vari-
able. Equation 3 is fitted to all data points smaller than or
equal to the first change points,, Equation4 is fitted to all
data points larger than s, but smaller than or equal to s,,
and Equation 5 is fitted to all data points larger than s,.
The program fits the model under the assumption that the
two change points s, and s, are unknown and thus must be
estimated. Extension to an arbitrary number of change
points and regression equations is straightforward. It
merely requires adding more equations and change points
to the model.

Whereas the two-phase segmented linear regression
model has two variants, a jump and a join model, the three-
phase model consists of four variants, a join—join, join—jump,
Jjump—join, and jump—jump model, depending on whether
the model is continuous or discontinuous in each of the
change points.

We will illustrate the application of the three-phase
segmented linear regression model by means of a study of
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Figure 2. Hypothetical response-time patterns with (a) application of the ad-
dition strategy, (b) use of the addition and estimation strategy, (c) execution of
the addition and subtraction strategy, and (d) application of the addition, esti-

mation, and subtraction strategy.

Luwel, Verschaffel, Onghena, and De Corte (2001). This
study deals with the same theoretical questions and uses
the same methodology as the aforementioned study of
Verschaffel et al. (1998). More specifically, subjects of
two different age groups (i.e., second and sixth graders)
were asked to judge numerosities of blocks that were pre-
sented in grids of three different sizes (i.e., 7 X 7,8 X 8,
and 9 X 9) for at most 20 sec. Luwel et al. (2001) hypoth-
esized that subjects would use three instead of two strate-
gies to solve this task—namely, an addition strategy, a
subtraction strategy, and an estimation strategy. Since they
had access to the version of the program that can fit seg-
mented linear regression models with an arbitrary number
of change points (Beem, 1999), they were able to take into
account the response times produced by the estimation
strategy. On the basis of an elaboration of the (partially
empirically supported) rational task analysis of Verschaf-
fel et al., on the one hand, and the assumed connection be-
tween the use of a particular strategy on a particular item
and the time needed to solve that item, on the other hand,
four hypothetical response-time patterns were generated
(Figure 2). Graphs a and b describe, respectively, the pat-
tern of the response times for subjects who use the addi-
tion strategy solely (Pattern 1) and for those who use it in
combination with the estimation strategy (Pattern 2).

Graphs ¢ and d show, respectively, the response-time pat-
tern for subjects who use the addition and subtraction
strategy (Pattern 3) and for persons who adaptively use the
three numerosity judgment strategies involved in our ra-
tional task analysis (Pattern 4). For a detailed discussion
of the hypotheses concerning the effect of different task
and subject variables on the response-time patterns, we
refer to Luwel et al. Hereafter we will describe in greater
detail how we used the segmented linear regression models
to identify the presence of the hypothetical data patterns in
subjects’ response-time patterns.

Defining the four hypothetical response-time patterns
from Figure 2 in terms of the different parameters of the
statistical models presented above leads to the following
characterization of each pattern:

1. Pattern 1 (always addition): no change point, and the
only b parameter is positive.

2. Pattern 2 (first addition, then estimation): one change
point, a positive b, parameter, and a b, parameter with a
value close to zero.

3. Pattern 3 (first addition, then subtraction): one
change point, a positive b, parameter and a negative b, pa-
rameter.

4. Pattern 4 (first addition, then estimation, and finally
subtraction): two change points, a positive b; parameter, a
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b, parameter with a value close to zero, and a negative b,
parameter.

Since Luwel et al.’s (2001) rational task analysis did not
necessarily suggest continuity at the change point(s), they
fitted the two-phase jump model and the three-phase
jump—jump model to the individual response-time data.

In all analyses the independent variable (i.e., the number
of blocks actually presented in the grid) was considered
discrete. We started by fitting the three-phase jump—jump
model on the response-time data of all subjects that were
selected for the analysis. Next, the data were tested for the
presence of two change points following the cusums method
(Brown, Durbin, & Evans, 1975; Schweder, 1976), ex-
plained in the Appendix. When the cusum test yielded a
change pointin both parts of the splitdata pattern, the pres-
ence of a three-phase model was confirmed in that partic-
ular response-time pattern.

When the cusum test did not reveal two change points
in the response-time data pattern of a given subject, a two-
phase segmented jump model was fitted to these data.
Next, a cusum test for a single change point was executed.
If this test revealed the presence of a single change point,
the particular data pattern consisted of two phases. When
the cusum test for the two-phase jump model did not yield
any evidence for a change point, we decided that the data
fitted Pattern 1.

Subjects for whom the cusum test yielded two change
points in their data pattern were further tested for Pat-
tern 4. For this pattern, three distinct criteria needed to be
met: b, = significantly positive, b, = close to zero, and b; =
significantly negative. For each criterion, the null hypoth-
esis Hy: b = 0 was tested by running the analysis again, but
this time for a restricted three-phase jump—jump model in
which the value of the b parameter under consideration was
set to 0. Next, for each of the three criteria, H, was com-
pared with H, using the F-type statistic (see Appendix or
Beem, 1993, 1999). If the null hypothesis was rejected, the
value of the estimated b parameter in the unrestricted
model was accepted. If this null hypothesis was not rejected,
the b parameter was assumed not to differ significantly
from 0.!

The data patterns for which the cusum test yielded one
change point were tested for Patterns 2 and 3. For both pat-
terns, we tested whether the b, parameter was positive by
following the same logic as explainedin the previous para-
graph. Next, we distinguished between both patterns by
comparing a restricted two-phase jump model in which
the value of the b, parameter was set to zero with the un-
restricted two-phase jump model. When the null hypoth-
esis of the restricted model was not rejected, we assumed
that the estimation strategy was applied for that segment
and thus that the data fitted Pattern 2. When the null hy-
pothesis of b, = 0 was rejected, we looked at the value of
the estimated b, parameter in the unrestricted model. If
this value was negative, we concluded that the data fitted
Pattern 3.

All response-time data patterns that did not fit the hy-
pothetical data patterns were inspected for ceiling effects

475

or for outliers that could have a strong but artificial influ-
ence on the estimated b parameters. With respect to the ceil-
ing effects, all trials with a response time of 20 sec were
deleted to rule out their disturbing influence. With respect
to the outliers, we used the Cook’s D statistic (Myers, 1990;
Neter, Kutner, Nachtsheim, & Wasserman, 1996) in order
to determine the extent of their influence. More specifi-
cally, if the Cook’s D value of the outlier was the only value
that differed relatively strongly from the Cook’s D values
of the other observations within the same segment, it was
considered as an influential outlier and therefore it was re-
moved from the data set. Next, the aforementioned analy-
sis was carried out again on the adapted data sets.

Averaged over the different grid sizes, 68% of the sec-
ond graders and 85% of the sixth graders fitted one of the
four hypothetical patterns. The analysis with the segmented
linear regression models of these response-time patterns
revealed that all of them fitted with Pattern 3 or 4. So, not
only the response-time patterns of the sixth-graders but
also those of the second graders showed clear evidence of
the (adaptive) use of the sophisticated subtraction strategy.

Second, the results showed a clear interaction between
age and grid size. Whereas the majority of the second
graders fitted Pattern 4 for all three grid sizes, the distrib-
ution of the patterns of the sixth graders was heavily af-
fected by grid size in the sense that the percentage of fits
with Pattern 4 increased and the percentage of fits with
Pattern 3 decreased with growing grid size. This indicates
that whereas the second graders felt back on the faster but
less accurate estimation strategy for all three grid sizes,
the sixth graders resorted to this strategy only for the
largest grid size.

Third, the segmented linear regression models allowed
us to also test several hypotheses concerning the location
of the change points in the response-time patterns. For in-
stance, we found that for both Patterns 3 and 4 and for
both age groups, the first segment was larger than the last
one, indicating that, in line with our rational task analysis,
the (simpler) additionstrategy was applied on a larger num-
ber of trials than the (more complex) subtraction strategy.
Moreover, we found that for Type 4 patterns, the length of

Table 1
Proportion of Second and Sixth Graders With
Response-Time Patterns Corresponding to the Hypothetical
Patterns of Each of the Grid Sizes

Pattern

Grid Size % n % n % n % n

Second Graders

7 X717 0.00 0 0.00 0 0.23 3 0.77 10

8 X8 0.00 0 0.06 1 0.13 2 0.81 13

9 X9 0.08 1 0.00 0 0.08 1 0.84 10
Sixth Graders

7 X7 0.00 0 0.00 0 0.71 10 0.29 4

8 X8 0.00 0 0.00 0 0.50 9 0.50 9

9 X9 0.00 0 0.00 0 0.26 5 0.74 14
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the first and the last segments remained stable whereas (only)
the length of the middle segment increased with increas-
ing grid size. This suggested that the estimation strategy
is indeed a coping strategy, which is resorted to when the
task demands no longer allow the use of more accurate but
also more demanding strategies.

Finally, the segmented linear regression models also al-
lowed an investigation of the relation between the use of
the three kinds of strategies and their accuracies by com-
puting the mean error rates for each segment of the response-
time pattern. The analysis of the response-time patterns
that fitted Pattern 3 or 4 showed that there was no signif-
icant difference in mean error rates produced by the addi-
tion strategy, on the one hand, and the subtraction strat-
egy, on the other, although the former strategy was applied
on the smallest numerosities and the latter strategy was ap-
plied on the largest numerosities from the item set. This was
in line with the rational task analysis. Moreover, for the
subjects with a response-time pattern fitting Pattern 4, the
mean error rates for the judgments from the middle seg-
ment were, as expected, much larger than the error rates
for the judgments for the first and the last segments, indi-
cating that the estimation strategy was indeed a rather im-
precise strategy.

DISCUSSION

Some years ago, Beem (1995) proposed segmented lin-
ear regression models as a versatile general class of mod-
els for investigating strategy use and strategy shifts in cog-
nitive tasks. Ippel and Beem (1987) and Verschaffel et al.
(1998) successfully applied a two-phase segmented linear
regression model to a mental rotation and a numerosity
judgmenttask, respectively. The study described here demon-
strates that a three-phase model can be useful for investi-
gating the development of children’s strategies for nu-
merosity judgment in square grids.

We have argued that segmented linear regression mod-
els are more appropriate and more informative for study-
ing strategy shifts in cognitive tasks than other kinds of
analytic techniques. First, these models seem far more ap-
propriate than the approach followed by Newman and
Berger (1984) in their investigation of young children’s
strategies for determining ordinal numbers. As we already
mentioned, they arbitrarily divided the number range into
three segments. Their approach has the inherentrisk that the
outcome of the analyses depends on the number (and the
boundaries) of segments in which the range of the inde-
pendent variable is divided. Moreover, it is assumed that
the location of the change points is the same for all subjects.

These problems are avoided when segmented linear re-
gression models are used for which the change points are
estimated for each subject separately instead of assuming
a priori some specific change points at a certain location
in the range. The method of Newman and Berger (1984)
may artificially suggest abrupt developmental changes for
age groups or for subjects measured at different points in
time. In contrast, the present method would reveal how
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much variation exists in each age group, which can obvi-
ously be relevant for the description of developmental
processes.

Second, segmented linear regression models are also
more appropriate and more informative for studying strat-
egy shifts in cognitive tasks than quadratic or cubic mod-
els (Myers, 1990; Neter et al., 1996). The change points in
these latter models are represented by the one or two “top”
values that are computed by the models. However, the use
of these models is restricted to situations in which the
strategy shift is assumed to be continuous in the change
point. The segmented linear regression models have a
broader applicability relative to the quadratic and cubic
models, since the join and jump variants allow the detec-
tion of strategy changes that are continuous as well as dis-
continuousin the change points. The model parameters are
also more easily related to psychological processes such
as the speed of counting. Notwithstanding this advantage,
further research in which (the results of) both types of
models are systematically compared might be interesting.
An interesting question in this respect would be whether
both types of models compute, respectively, the same
number of top values or change points for a given data pat-
tern, and whether the location of these top values and
change points would be the same.

The reported study shows that the three-phase model
allowed us to identify, characterize, and delineate—besides
the addition and subtraction strategy already identified by
Verschaffel et al. (1998)—a third, qualitatively different,
strategy for numerosity judgment, the so-called estima-
tion strategy. Moreover, the three-phase model also al-
lowed a statistical analysis of subjects’ use of and shift to-
ward the subtraction strategy in response-time patterns
fitting Pattern 4, which was impossible to realize with the
two-phase segmented linear regression model.

Some problems were also apparent in the application of
the model. First, when the number of observations within
aparticular segment was small, the statistical power of the
statistics for testing linear hypotheses about the regression
parameters was too small. For instance, when a specific
segment with a large value of the b parameter consists of
merely 10 data points, the tests may not reject the null hy-
pothesis that b = 0. However, this is not so much a prop-
erty of the test as due to the inherent noise in reaction
times of children. The most obvious remedy is obtaining
more observations.

Second, detecting strategy shifts by formal significance
tests can be quite difficultif the shift occurs early in the be-
ginning or near the end of the data pattern. Verschaffel
et al. (1998) and Luwel et al. (2001) confirmed this well-
known problem in change point analysis. Their visual in-
spection of subjects’ response times and error rates strongly
suggested use of the subtraction strategy on at least some
of the items with the largest numerosities. However, the
statistical analysis did not identify this subject as a user of
the subtraction strategy (= Pattern 3 or 4 in Figure 2).

The cusum procedure has some advantages for the de-
tection of change points becauseit is also a graphical method
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and comparatively model free. However, a relatively re-
cent growing interest in change point analysis has resulted
in an improved theoretical understanding of other change
point testing methods. Csorgd and Horvath (1997) have
presented the asymptotic distribution theory of several test
statistics in considerable detail. Among these is the log
likelihood ratio (LR) test. The log LR test may be partic-
ularly relevant when strategies are qualitatively different
because it can be used to formally test whether the vari-
ances of the disturbances e in Equations 3-5 are different
for different strategies. Bai (1999) has also discussed the
log likelihood ratio test and provided some Monte Carlo
results. Chen and Gupta (2000) have advocated information
theoretic procedures. Many of these statistics can be com-
puted from the output that SegcurvN can write to a file for
use by other programs.

As noted by Beem (1995), the analysis of strategy shift-
ing by segmented linear regression models also provides
an opportunity to assess, in a quite general sense, the op-
timality or “adaptiveness” (Lemaire & Siegler, 1995) of a
subject’s performance, given the resources available to the
subject. Newell (1990) has proposed that the degree of op-
timality (or adaptiveness) given available resources may
be used as a definition of intelligent task performance. For
mental rotation, optimal performance given a subject’s
proficiency in clockwise and counterclockwise rotation
implies a join model. A join model can provide a better fit
than a jump model for a continuousindependentvariable.
This is not true for a discrete independent variable. In that
case, the degree of optimality can be measured as the dif-
ference between the estimated expected response times
under the two strategies at the point where the subject’s
strategy shift occurs. When strategies are qualitatively dif-
ferent, as in the numerosity judgment task, optimality may
be investigated by evaluating some function of speed and
accuracy for different shift points given the estimated pa-
rameters for the different strategies.

Program Availability

The compiled program, the source code, and a manual
are available from A.L.B. by e-mail at al.beem@psy.vu.nl
or by regular mail at Department of Biological Psychol-
ogy, Free University, Van der Boechorststraat 1, 1081 BT
Amsterdam, The Netherlands.
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APPENDIX

The computer program SegcurvN is written in Turbo Pascal
and runs on an MS-DOS IBM-compatible computer. The pro-
gram’s characteristics and options are largely the same as those
of Segcurve, described by Beem (1995). Therefore, the reader
should consult Beem (1995) or the program manual (Beem,
1999) for details. The main differenceis that the user must spec-
ify the number of change points and whether they are joins or
jumps. Several combinations of join and jump models can be es-
timated in one run of the program.
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Testing Linear Hypotheses
About the Parameters

The program can fit the models subject to any linear restric-
tion on the parameters that the user may wish to make. Since the
program’s output contains various measures of fit (among them
the models’ error sum of squares, or SSE), hypothesescan be in-
vestigated by comparing the measures of fit under various re-
strictions on the parameters. Alternatively, the hypotheses can
be tested formally by computing significance tests. If SSE(H,)
and SSE(H,)) are the error sum of squares under hypotheses H;
and H,, where H; is nested in H, (i.e., H, is the least, and H, the
most, restrictive hypothesis,and Hy is a special case of H), then
the statistics are of the F type,

n[SSE(HO) — SSE(H, )]
SSE(H,)

>

and the log likelihoodratio statistic:

n(ln[SSE(HO) x SSE(H, )])

Here n is the number of observations. The statistics are both
distributed asymptoticallyas 2 on g degrees of freedom, where
g equals the number of linearly independent restrictions under
H, minus the number of linearly independentrestrictions under
H,. The program can write all the computed statistics and para-
meters to a file that is readable by other programs. Therefore,
the user can subsequently perform such analyses with other pro-
grams, such as spreadsheets.

Testing for Two Change Points

The program can be instructed to compute recursive residuals
and cumulative sums (or cusums) of recursiveresiduals in order
to test for a change point. Cusums form the basis for statistics
that can be used to test for the constancy of a regression equa-
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tion over a range of values of the independentvariable x (Brown
etal., 1975; Schweder, 1976). The program computes the differ-
ent statistics,including the cusums and the boundary values, that
are needed to test for a change point. If the cusums exceed these
boundary values, the null hypothesis of no change point is re-
jected. The probability that the cusums exceed one of these bounds
is equal to the predetermined o level. To guarantee a sufficiently
large power, Beem (1993, 1999) suggested an o level of .10 for
this test.

Showing that more than one change point occurs by more than
one crossing of the boundaries of the cusums requires a large
number of observations and many different values of the inde-
pendent variable. The occurrence of two change points in a spe-
cific data pattern can, however, be tested with more power by di-
viding each subject’s data pattern into two parts, but at the cost
of conditioning on change points that have been estimated. The
first part, then, contains all data points that were included in the
first and second segments of the regression model, whereas the
second part consists of all data points of the second and third
segments. Now, both parts can be considered as separate two-
phase models and thus they can both be tested for the presence
of one change point. When the cusum test yields a change point
in both models, the presence of a three-phase model is con-
firmed in that particular data pattern.

NOTE

1. However, because this statistical test was too stringent according to
our definition of the different patterns—b, needed to have a value close
to zero, not equal to zero in Patterns 2 and 4—all b, parameters that lay
within the range of [—200, 200] were also considered as evidence for the
use of the estimation strategy.

(Manuscript received December 27, 2000;
revision accepted for publication June 2, 2001.)



