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Four methods for the simulation of the Wiener process with constant drift and variance are described.
These four methods are (1) approximating the diffusion process by a random walk with very small time
steps; (2) drawing directly from the joint density of responses and reaction time by means of a (possi-
bly) repeated application of a rejection algorithm; (3) using a discrete approximation to the stochastic
differential equation describing the diffusion process; and (4) a probability integral transform method
approximating the inverse of the cumulative distribution function of the diffusion process. The four meth-
ods for simulating response probabilities and response times are compared on two criteria: simulation
speed and accuracy of the simulation. It is concluded that the rejection-based and probability integral
transform method perform best on both criteria, and that the stochastic differential approximation is
worst. An important drawback of the rejection method is that it is applicable only to the Wiener process,
whereas the probability integral transform method is more general.

The diffusion process has become quite popularin cog-
nitive psychology during the last two decades (Hanes &
Schall, 1996; Luce, 1986; Ratcliff, 1978; Ratcliff & Rouder,
1998; Ratcliff, Van Zandt, & McKoon, 1999). In the study
of complicated stochastic models such as the diffusion
process, simulations of the model play an important part for
three reasons; they enable one to (1) understand the basic
characteristics of the model, (2) generate data in order to
evaluate estimation techniques for the model parameters,
and (3) derive predictions to test the performance of the
model.

The problem with simulating the diffusion process is that
it is a stochastic process with a continuous state and time
space. Roughly, we can distinguish two classes of simula-
tion methods on the basis of accuracy of approximation of
the continuous diffusion process. First, there are methods
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in which a discretization of the continuous state and/or
time space of the diffusion model is needed. In a second class
of methods, no discretizationis made, and the accuracy of
the approximationof the continuous state and time space is
limited only by the precision of the floating-point imple-
mentation. A method from the second class is expected to
give always more exact results than any method from the
first class. Therefore, it can be used as a benchmark to eval-
uate the accuracy of methods from the first class.

Apart from differences in accuracy, simulation methods
may also differ with respect to their simulation speed. If a
huge number of simulations of the model is needed, as, for
instance, in Markov chain Monte Carlo applications (Tan-
ner, 1996), speed becomes an important issue.

The aim of this paperis to present an overview and eval-
uation of techniques to simulate the diffusion process with
constant drift rate and variance, and two absorbing bound-
aries (Cox & Miller, 1970). Such a process is also called a
Wiener process with absorbing boundaries, or a Brownian
motion with drift rate and absorbing boundaries. Hence, if
we speak of a diffusion process, we mean the Wiener process.
In a separate section, we will indicate whether or not, and if
s0, how the proposed simulation methods can be adapted to
simulate other types of diffusion processes, but our major
focus is on the Wiener process.

Copyright 2001 Psychonomic Society, Inc.
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Four methods for simulating the diffusion process are
studied here. The first method, used most commonly, is
based on the approximation of the diffusion process by a
random walk. The second method is built on a rejection al-
gorithm for drawing directly from the first-passage time
densities of the diffusion process. The third method is
based on simulating a stochastic differential equation
characterizing the diffusion process. The fourth method
uses the probability integral transform.

These methods have been described in other places before.
The theory for the first method is described in almost any
textbook on stochastic models (e.g., Feller, 1968). The refer-
ence to the second method (Lichters, Fricke, & Schnaken-
berg, 1995), however, is not readily accessible to psychol-
ogists. Moreover, the method is described only for the case
with zero drift rate, and as a consequence, it is not directly
applicable to the most common diffusion process used in
psychology. We therefore present an elaborated and adapted
version of the original algorithm. The third method can be
derived in a straightforward manner from the definition of
the diffusion process and is elaborated in, for instance,
Bouleau and Lépingle (1994) and Fahrmeir (1976) (these
references contain only information about the case without
absorbing boundaries). The fourth method can be found in
almost any textbook on statistics (see, e.g., Mood, Graybill,
& Boes, 1974).

The structure of the remainder of this paper is as fol-
lows. First, a short overview is given of the type of diffu-
sion process that is considered here. Second, the four sim-
ulation methods will be presented. Third, these methods will
be evaluated with respect to speed and accuracy of simu-
lation. Fourth, the generality of the methods will be dis-
cussed, and finally, some conclusions will be presented.

OVERVIEW OF THE DIFFUSION PROCESS

In this section, we provide a brief overview of the basic
features of the diffusion process and introduce some nota-
tion. A more technical and complete description of the
model and its mathematical properties can be found in
specializedreferences such as Cox and Miller (1970), Karlin
and Taylor (1981), or Ross (1996).

The diffusion process is a stochastic process that de-
velops through time, and it can be represented by a con-
tinuous random variable X(7) (f = 0), denoting the position
of the process in the state space at time #(f = 0; ¢ is also
continuous). In case of a diffusion process with absorbing
boundaries 0 and a, the state space is restricted to the in-
terval [0, a]. The central part of a stochastic process is the
transition probability density function p(x,, #,; x, ), which
is the density for X(7) = x given that the process was at time
point £, (¢, < f) at position x;, and that the process did not
reach one of the boundaries by time .

Assume that the diffusion process starts at z (0 < z < a)
at time 0. The transition probability density function p(z,
0; x, t) should then satisfy the Kolmogorov equations, also
called the forward and backward differential equations
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(Cox & Miller, 1970). Derivations of the Kolmogorov
equations are presented in Cox and Miller and in Ross
(1996), and their method of solution is explained in Cox
and Miller. The forward equation is

1529 @00 LA EXI R IEAVEN)

2 x> dx a

1)

which has to be solved for p(z, 0; x, f) subject to the con-
ditions

p(z,0;x,0)=0(x—2)
p(z,0;a,t)=0
p(z,0,0,1)=0. 2)

The first condition is an initial value condition, which
means that, at time 0, all mass of the transition probability
density functionis concentrated at the starting pointz. The
function 6(x — z) is the Dirac delta function, a degenerate
probability density with all its mass concentrated at 0. The
last two conditionsare boundary conditions, which impose
the restriction that the density equals zero at the boundaries,
so that terminated processes disappear from the transition
density. The stochastic process described by Equations 1
and 2 is called a diffusion process with constant drift rate,
constant variance, and absorbing boundaries, or a Wiener
process with absorbing boundaries. Since the exact form
of the transition probability density function is not needed
in this paper, it will not be presented here.

The parameters i and 62 are the infinitesimal mean and
variance of the process: U is the mean displacement and
02 the variance of the displacement of X(¢) given that
X(t — 7) = x, where Tapproaches to 0. The parameter [ is
called the drift rate of the diffusion process.

Two important events and corresponding random vari-
ables originating from the diffusion process {X(¢); t = 0}
are of particular interest for simulating the diffusion
process in the context of psychological research. First,
there is the event that absorption occurs at the upper
boundary. A random variable Y takes the value 1 if absorp-
tion occurs at the upper boundary and value 0 if absorp-
tion occurs at the lower boundary. The second important
eventis [T < t|Y = 1], which is the event that the absorp-
tion time 7 is smaller than some value ¢, given that ab-
sorption happensin the upper boundary. We will consider
also the event [T <¢|Y =0].

In psychological applications, it is impossible to ob-
serve the full sample path {X(¢); t = 0} from start until ab-
sorption. Only the boundary of absorption (i.e., the choice
response) and the time that it takes until absorption (i.e.,
the choice response time) are observed. Therefore, itis not
required that a simulation algorithm return a complete
sample path. Thus, for the simulation, we focus on the ran-
dom variables Y and [T <?|Y =1].

Next, the density functions for the random variables de-
fined above will be given. First, the probability of hitting
the upper boundary equals
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From the fact that the probability of absorption is a sure
event, it follows that Pr(Y = 0) equals 1 — Pr(Y = 1). The
probability of hitting the lower boundary can also be ob-
tained from Equation 3 by replacing yt by —ftand z by (a — z).
This operation interchanges the role of the two absorbing
boundaries but yields an otherwise identical diffusion
process.

For the random variable T, we will not consider the
probability Pr(T < t|Y = 1), but only present the condi-
tional density of first-passage times at the upper boundary:
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where f(t|Y = 1) is defined for all # > 0. The other condi-
tional density of first-passage times, f(¢ | ¥ = 0), can be ob-
tained from Equation 4 by replacing i by — t and z by
(a- 2).

Typically, the diffusion process is applied to data from
a two-alternative forced choice (2AFC) paradigm. How-
ever, the response time that is observed consists of more than
just the decision time. It is often assumed that two com-
ponents contribute to the response time: one that involves
the decision process, which can be modeled by the diffusion
process, and another that involves all the other processes
(encoding, response preparation, and execution). A com-
plete model for response times in a 2AFC paradigm should
also take into account the second component. For sim-
plicity, it is often assumed that all processes that are unre-
lated to the decision process consume a constant time T,,.
If this constant time is added to the decision times, the
total response time RT becomes

RT=T+T,. (5)

Under the assumption of a constant 7, Equation4 can be
easily adapted: In particular, ¢ should be replaced by the
difference (t — T,,). Equation 3 does not change, of course.

If we would make the more realistic approach that 7, is
arandom variable (see, e.g., Ratcliff & Tuerlinckx,2001),
then there are no explicit formulas for the conditional den-
sities, not even for simple choices of densities for T, (e.g.,
uniform, normal, or exponential). However, once we have
a simulation method for the diffusion process, the simula-
tion of a model with arandom T, poses no additional prob-
lems. For simplicity, in the remainder of the paper it will
be assumed that T, is 0.
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In some applications of the diffusion process (Ratcliff,
1978; Ratcliff et al., 1999), it is assumed that the drift rate
M and the starting point z show some trial-to-trial variabil-
ity. The trial-to-trial variability is needed to limit accuracy
(otherwise it grows toward 1 if boundary separation in-
creases) and to fit the error response times (Ratcliff &
Rouder, 1998). The simulation of such a process can be ac-
complished by drawing the drift rate and starting point from
the appropriate distributions and then simulating the dif-
fusion process with the drawn values. In the following, we
will assume that ¢ and z are both constant, unless speci-
fied otherwise.

FOUR METHODS FOR SIMULATING
THE DIFFUSION PROCESS

In this section, the four methods are explained and an
algorithm for each of them is outlined.

A Random Walk Approximation

In many texts on stochastic processes, the diffusion
process with constant drift rate and absorbing boundaries
is considered as the continuous version of the random
walk process with absorbing states (see, e.g., Cox & Miller,
1970; Feller, 1968). The diffusion process can be derived
mathematically by constructing a random walk with very
small displacements and small time intervals and by let-
ting the length of both steps and time intervals approach
zero. This limiting property is useful for the simulation of
the diffusion process. In particular, it shows that a simu-
lation from the diffusion process can be obtained by sim-
ulating a random walk with small time intervals and dis-
placements.

Assume a random walk with state space {0, A, 2A, .. .,
z—=A z z+ A, ..., a},inwhich 0 and a are the absorbing
states and z is the starting point. At every time interval 7,
a change occurs: a displacement A with probability p and
adisplacement—A with probability g = 1 — p. Assume fur-
thermore that the following equalities hold:
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Under these conditions, if Tconverges to zero, the random
walk converges to a diffusion process with drift rate 1 and
variance 02. From a given triplet (i, G, 1), atriplet(p, g, A)
can be computed from Equation 6, and a random walk ap-
proximation is easily obtained.

The accuracy of the algorithm depends on the value of
7, which will be denoted as precision in the following. If T
is large, the approximation of the diffusion model will not
be very accurate, but the simulation will be fast. On the
other hand, if 7is small, the discrete approximation of the
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concrete process will be accurate, but the simulation time
may take too long to be of practical interest. A good value
for 7should return an accurate approximation and the sim-
ulation should not take too much time.

To investigate how the simulation time depends on the
value of 7, results from the theory of the random walk can
be used. For a random walk with time interval T and state
space {0, A, 2A, ...,z —A z z+ A, ..., a}, the expected
number of steps before absorption, E(N), in either of the
boundaries is equal to (Feller, 1968)

. a
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X (A Aj if £=0.
With the use of the equality A = V7, it is easy to show that
for the case 4 =0, if Tis divided by a factor K, E(N) is mul-
tiplied by the same factor K. Stated differently, E(N) is of
order O(t~1). If u# 0, this is more difficult to prove, but
it can easily be checked numerically. These results show
that if the simulation is more accurate, it is also expected
to take more time.

To summarize: In the random walk approximation, the
continuous time line is divided into small time intervals,
and the position of the process at each time point is simu-
lated. The magnitude of the displacement A of the process
is a monotonic increasing function of magnitude of the
time intervals (A = ov7). Thus, smaller time intervals lead
to smaller displacements. A drawback of the random walk

approximation is that the expected simulation time in-
creases with the accuracy of the approximation.
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A Rejection-Based Algorithm

The second method differs from the first in that there is
no attempt to simulate the sample path {X(?); = 0}. In-
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stead, the second method directly simulates the time that
it would take for the process to travel a fixed distance R
from its starting point. This idea was developed by Lichters
et al. (1995). They described an algorithm for the zero
drift rate case, and this algorithm will be extended here to
the case in which U can take any real value.

The algorithm of Lichters et al. (1995) makes use of a
rejection algorithm for simulating a symmetric diffusion
process (i.e., z = a/2) with absorbing boundaries. With this
algorithm, it is possible to obtain an exact draw from the
first-passage density, given absorption at one of the bound-
aries. This rejection algorithm is then used as a compo-
nent of a more general algorithm for the simulation from
an asymmetric diffusion process (z # a/2).

The algorithm to simulate a diffusion process will be
described in two parts. First, we will discuss the rejection
algorithm for the symmetric diffusion process. Second, we
will give an outline of a simulation algorithm for the more
general asymmetric case.

Part 1: Rejection Method for the Symmetric
Wiener Process

In the special case of a symmetric Wiener process, the
conditional response time density in Equation 4 simpli-
fies remarkably. See Equation 8 below.

Thus, for a symmetric Wiener process, the conditional
first-passage time distributions are the same. This equa-
tion can be simplified further by noting that

I ifm=1+4d
sin[”—m]= 0 ifm=2d ©)
2
1 ifm=3+4d,

where d is a positive integer. Equation 8 can now be
rewritten as seen in Equation 10 below.

For Equation 10, it is shown in Appendix A that the fol-
lowing inequality holds:
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Since the inequality in Equation 11 holds for any ¢, it may
be used for a rejection algorithm for simulating from
Jry @Y =0) or fr|y(t|Y = 1). The rejection algorithm is
explainedin Appendix B (see also Press, Flannery, Teukol-
sky, & Vetterling, 1986; Tanner, 1996).

In the sampling algorithm for a symmetric diffusion
process, it is first decided whether a realization from
le y&|Y=1) orfTI y(#]Y = 0) has to be simulated. Next, a
realization is drawn from f7,y (t|Y = 1) or fr|y (1] Y = 0),
dependent on the value for Y. Assume for simplicity that
the outcome of the first step of the algorithmis 1 (i.e., Y =
1). However, notice that the algorithm is the same for the
case ¥'=0, since fr|y(t| Y =1) =fp y (| Y =0).

A rejection algorithm is initiated by sampling from a
candidate-generating distribution. In our case, this is the
exponentialdistribution with parameter A as defined in Equa-
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tion 13. Sampling a realization #* from an exponential dis-
tribution involves the following computation:
1
t*=—=|In(1-u) (14)
a1 I I
where u is a uniform random number from U(0,1) and 4
is defined as in Equation 13. The draw #* from the expo-

nential distribution s a candidate draw from f y(f| Y = 1)
and is accepted as a draw from that distribution if

Jry (*|Y =1)
p———F——
MAexp(—At*)

where v is another random number from U(0, 1), and M is
defined as in Equation 12. After some rewriting, the con-
dition in Equation 15 becomes

s)

v<1+(1-uw) Y en+)(=1)"( —wyF e’ (16)
n=1
where
ot

n’ot+ u*a®
Convergence of the infinite sum in Equation 16 is fast.
The number of terms will typically be lower than 15. Con-
vergence is worst if u is close to zero.
Since the presented algorithm is a rejection algorithm,
the acceptancerate is equal to 1/M. The acceptance rate is
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Figure 1. The acceptance rate as a function of drift rate for three values of a. The solid line repre-
sents the case a = 0.16; the dashed line, a = 0.12; and the dotted line,a = 0.08 (0= 0.1).



448

not constant, since M is a function of U, a, z, and 02 (see
Equation 12). If u = 0, then the acceptance rate equals
/4 = 0.785, and for u # 0, it will be always lower than
7/4. In Figure 1, the acceptance rate as a function of drift
rate [ (on the abscissa) is shown for three different values
of a (ois always equal to 0.1). Both the range of 4 and the
different values of a are realistic values, in the sense that
one may encounter them in real applications (given that 0=
0.1); they produce decision times around 1 sec. It can be
seen that in the most extreme case in Figure 1 (a = 0.16
and i = 0.4), the overall acceptance rate is still about 0.3.

In conclusion, a symmetric diffusion process can be
simulated very easily in two steps: (1) Determine the
boundary of absorption, based on the probabilities of
reaching each of the boundaries; and (2) draw a response
time from the conditionalresponse time density, given the
boundary of absorption.

Part 2: Rejection-Based Method for the General
Wiener Process

We now proceed with the general Wiener process, with-
out the requirement of a starting point symmetrically be-
tween the absorbing boundaries. The rejection method de-
scribed in the previous subsection will be applied one or
more times in order to obtain a realization from the more
general process. In particular, given the starting point, a
new diffusion process is defined with symmetric absorb-
ing boundaries that lie between the original boundaries, and
the rejection method is applied. If the simulated value is
located at one of the original absorbing boundaries, the
process stops, and if not, again a new symmetric diffusion
process is defined, and this goes on until absorption oc-
curs at one of the original boundaries. Each time a fixed dis-
tance is traveled (the distance in the symmetric diffusion
process from the starting point to the absorbing boundary)
and how long it takes to travel the fixed distance is simulated.

The central property of the diffusion process on which
the algorithm is based is the Markov property: Once it is
determined that the process is at a certain state, x(f) at time
t, the future behaviorof the process does not depend on how
state x(f) was reached.

The algorithm is explained further in detail on basis of
a flow chart (Figure 2) and an example (Figure 3). First,
the variables of the algorithm are initialized. The integer
kis a counter, #© is the simulated time at step 0, and z©® is
the starting point of the first symmetric diffusion process.
At the start of the algorithm, z© equals z, the starting point
of the original diffusion process. In the example in Figure 3,
the absorbing boundaries of the general diffusion process
are 0 and 0.12, and the starting point is 0.04. Therefore,
the starting point of the first symmetric diffusion process
is also 0.04. The other two variables, w and r, are position
and time variables. They will be assigned values in the
course of the algorithm.

Next, a new diffusion process with the starting point ex-
actly in between the two absorbing boundaries is defined.
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The starting point has already been initialized, and the
lower and upper boundary (I and u®) are now chosen so
that one of them equals an absorbing boundary of the orig-
inal diffusion process, in particular the absorbing boundary
closest to the new starting point. The drift rate and variance
remain unchanged. In the example, the absorbing bound-
aries of the original diffusion process are 0 and 0.12. There-
fore, with starting point at 0.04, the new absorbing bound-
aries for step 0 are O (the most nearby original absorbing
boundary) and 0.08. Notice that the starting point 0.04 lies
exactly halfway between these boundaries. New absorbing
boundaries are represented by a dotted line in Figure 3.

In a third step, the rejection algorithm as described in the
previous subsectionis applied to the new symmetrical dif-
fusion process. In the flow chart, the rejection algorithm is
denoted by REJ, and the outcome of the simulation assigns
values to w and r. The position w must equal /® or u®.
After this, the total simulation time is updated. In the ex-
ample, the first application of the rejection algorithm re-
sults in w = 0.08 and r = 0.20 and the observation is de-
noted by “x” in Figure 3.

If the simulation of the symmetrical diffusion process
leads to an absorption at one of the boundaries of the orig-
inal diffusion process, then the simulation stops. In that case,
the final boundary of absorption is known, as is the total
simulated first-passage time. However, if absorption oc-
curs at the other boundary, the rejection algorithm will be
applied another time but with the new starting pointw, the
current position in the state space. In the example, the re-
jection algorithm has to be applied another time, since w
is not equal to 0.0. The new starting point, z(1), is now
equal to 0.08, and the new absorbing boundaries are 0.04
(dotted line) and 0.12. The second application of the re-
jection algorithm ends up in the upper boundary of the
original diffusion process, so that the algorithm stops. The
simulated time in this step was 0.22, so that the total sim-
ulated diffusion time is equal to 0.42.

The advantage of the rejection-based method is that the
simulation time is not proportional any more to the phys-
ical time to run through the process. Another advantage
over the random walk method is that it does not involve a
discrete approximationto the continuousdiffusion process.
Therefore, the accuracy of the simulationis bounded only
by the numerical accuracy of the computer system on which
the simulation takes place.

It is difficult to obtain theoretical results about the sim-
ulation time for the rejection-based algorithm in Figure 2.
The simulation time depends on the acceptance rate for
the input parameter values and the number of times that
the absorbing boundaries of the original diffusion process
do not coincide with the chosen boundaries from the re-
jection algorithm. However, both the acceptance rate and
the expected number of times that a subdivision of the
original diffusion process in a symmetric subprocess has
to be made depend on so many things that it is difficult to
make general assertions.
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Figure 2. Flow chart for the rejection-based algorithm to simulate from a diffusion process.

Simulation of the Stochastic Differential Equation

Another way of defining the diffusion process is via a
stochastic differential equation (SDE; Karlin & Taylor, 1981;
Smith, 2000) defined for X(¢),

dX(t) = pdt + odB(1), a7)

under the condition that X(0) = z and where B(%) is a stan-
dard Brownian motion process. For each #> 0, B() has a stan-
dard normal distribution with E[B(f)] = 0 and Var[B(?)] = ¢.
Moreover, Cov[B(?),B(s)] = min(z,s).

It can be proved that the sample path {X(7); t =20} of a
diffusion process is (almost surely) continuous but the de-
rivative dX(7)/dt (for any t = 0) does not exist (see Karlin
& Taylor, 1981, p. 341, for an illustration). Therefore, the
change in X(¢) in a small time interval should be repre-
sented by a stochastic differential equation instead of by
the usual deterministic differential equation. Intuitively,
Equation 17 states that the change in X(?) in a small time
interval dt is normally distributed with mean udt and vari-
ance 02dt. The latter follows from inserting Var[B(f)] = ¢

and Cov[B(1),B(s)] = min(Z,s) in the usual formula for the
variance of the difference dB(f) = B(t + df) — B(?).

A discrete version of the continuous SDE in Equation 17
can be defined as follows:

K(tyy) = X() = Mty =t )+ O]t =b(1)] (18)

Assume that the time intervals are constant, or, in other
words, Aty = T(forallk=1,2,...). It follows from the de-
finition of the Brownian motion that the difference Ab; =
b(t, . ) — b(t,) is normally distributed with mean 0 and
variance T.

Like the random walk approximation, the discrete ver-
sion of the SDE is an approximation to the diffusion
process. The stochastic process that is defined in Equa-
tion 18 can also be seen as a random walk for time inter-
vals 0, 7, 27, . .. with normally distributed displacements.
The simulation process stops if the x(¢,) = a or x(¢,) < 0 for
a certain k. Smith (1990) has shown that in case that 7 ap-
proaches 0, this random walk process converges to a dif-
fusion process with drift rate ¢ and variance 62.
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Wald (1947) gives the approximate expected number of
time intervals needed to reach a boundary, as shown in
Equation 19.

As was the case for the ordinary random walk, the ex-
pected simulation time is O(T™).

A problem with this method and the stopping rule is
that, in the final simulation step, the state variable always
exceeds the boundary, and this leads to inaccuracies in the
approximation of the theoretical diffusion process, which
can be quite substantial as Luce (1986) and Smith (1990)
have noted. The reason why Equation 19 gives only the ap-
proximate number of steps is thatin its derivation the bound-
ary excess is ignored (Cox & Miller, 1970).

Some ad hoc methods have been presented to correct for
this excess over a boundary. The correction method of Heath
and Kelly (1988) yields the best results. The method cor-
rects for an excess by widening the boundary separation:

a%a+§a\/”_t
0 —oV'T, (20)

where {is a constant whose optimal value is 0.586 (Smith,
1990).

exp(——z'u(az_ Z)] - exp(z—'uzzj

if 110

(19)
o

Probability Integral Transform Method

To explain the probability integral transform method,
assume that for a random variable X, gy (x) is a probabil-
ity density and that Gy (x) is its associated cumulative dis-
tribution function. Suppose a new random variable U = Gy (X)
is defined. It is easy to prove that U is uniformly distrib-
uted over [0, 1] (see Appendix C). Conversely, if a realiza-
tion u from a uniform density is obtained, its transform, x =
G !(u), is a draw from the density gy (x) (see also Appen-
dix C).

To apply this theory to the case of the diffusion process,
letus define F\(7) = Fr (| Y = y) as the conditional cumu-
lative distribution function for response y (y = 0, 1). The
formula for F;(¢) is as shown in Equation 21.

Obtaining a realization from the diffusion process pro-
ceeds, then, as follows. First, decide on the boundary of
absorption by using the probabilitiesPr(Y=0) and Pr(Y = 1);
this renders an observed value y. Second, draw a uniform
random number # and compute ¢ = Fy—l(u). The pair (y, 1)
is then a realization from the diffusion process.

Computing the inverse of the cumulative distribution
function has to be done numerically. For this purpose, the

a=.12
uM=12] Xw-.m
:
1
1
=08 >‘<
w=.08
=71
z=z9%
=04 | 1M=04
19=0 4 A 4
r=02 r=0.22
=02 {2 =0.42

Figure 3. An example of the rejection-based method for the simulation of the diffu-

sion process.
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function F(¢) can be approximated by using a grid of
points (nodes). Denote the sequence of N grid points by
t1,....ty. For each grid point#;, the corresponding function
value h; = Fy(t;) is calculated. A uniformly distributed ran-
dom variable u is drawn and the associated realization f is
determined as follows:

1 ifusF,(f)
t=<tiy ifFy(t;)<us<F,(tiy),i=1,....N-1 (22)
Iy ifu>F(ty).

If Nis taken large enough, the approximation will be highly
accurate. More complex approximations are also possible,
such as linear interpolation between two grid points.

EVALUATION OF THE
SIMULATION METHODS

In this section, a Monte Carlo study is presented to eval-
uate and compare the three simulation methods on two cri-
teria: speed and accuracy. The speed of the random walk
and SDE approximations depends on the precision para-
meter 7. If a high precision is used (a small value of 7), a lot
of small simulation steps may be needed, and that will slow
down the methods. Likewise, the speed of the probability
integral transform method depends on the number of tab-
ulated grid points, N. For the probability integral transform
method, setting up the table with function values can be a
large cost, but once that table is available, a value is easily
determined. On the other hand, the speed of the rejection-
based method depends on the amount of time that it takes
to evaluate Equation 16. These considerations show that it
is difficult to make predictions about which method will
be faster.

Concerning accuracy, some firm statements can be
made, since the rejection-based method is an exact simu-
lation method and hence is by definition better than every
approximation method; therefore it functions as a bench-
mark (it is needed to evaluate the accuracy of the three other
methods). It is interesting, however, to compare the per-
formance of the three other methods with the performance
of the rejection-based algorithm. In particular, we are in-
terested in the precision that is needed for the other meth-
ods to be almost as accurate as the rejection-based method.

To avoid superfluous notation, we will abbreviate the
names of the three simulation methods. The random walk
approximation will be denoted as the RW method, the

rejection-based method as the RB method, the stochastic
differential equation approximation as the SDE method,
and the probability integral transform method as the PIT
method.

Design and Procedure

Three independent variables are manipulated in the
Monte Carlo experiment: drift rate (1), combination of
boundary separation and starting point (a|z), and, if used
by the algorithm, the precision 7. First, there are five levels
for the driftrate 1: 0.0,0.1,0.2,0.3,and 0.4. Second, six lev-
els for the combination of absorbing boundary and start-
ing point are chosen (denoted as a|z): 0.08]0.04,
0.12]0.06,0.16]0.08,0.08|0.02,0.12]0.04,and 0.16]0.04.
Third, three levels of precision Tare chosen for the RW and
SDE methods: 0.01,0.001, and 0.0001 (ordered from low to
high precision). For the PIT method, three levels of preci-
sion are chosen (operationalized in number of grid
points): 500, 5,000, and 50,000.

The three independent variables are completely crossed.
For each cell of the design, 20 samples of 3,000 observa-
tions are simulated. All four methods are programmed in
FORTRAN, and the Monte Carlo experiment is run on a
personal computer with a Pentium III 600-MHz processor.

For each criterion, speed and accuracy, we examine two
dependent variables. First, with respect to speed, we com-
pute the time that it takes to draw 3,000 observations. Sec-
ond, the mean number of steps taken for the RW and SDE
methods to reach an absorbing barrier is computed, and,
for the RB method, the mean number of applications of
the rejection algorithm before an absorbing barrier is
reached. For the PIT method, no steps have to be taken in
the simulation.

With respect to the accuracy of the simulation, again two
dependent variables are examined. Both response proba-
bility and the conditional response time density are simu-
lated, and hence for both aspects the accuracy of approxi-
mation is evaluated. First, we examine the proportion of
times that the process hits the upper boundary. Second, for
the processes that hit the upper boundary, a measure of
maximal deviation between the observed and theoretical
conditional cumulative distribution function is computed:

H = sup |F()-F(®)], (23)

0<t<oo

where F (9 is the empirical distribution function for the
simulated values from the diffusion process, and F(?) is the
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theoretical conditional distribution function for the diffu-
sion process (Equation 21). It is expected that H is small-
est for the rejection-based algorithm, and it will be inves-
tigated how close the other methods approximate this value.

If Equation 23 is multiplied by the square root of the
number of observations \n), it becomes a Kolmogorov—
Smirnov test statistic (Mood et al., 1974). Under the con-
dition that F', (¥) converges to F(f) if the sample size goes
to infinity, the distribution of the test statistic D, = \nH
known. Given that n is large enough, D, can be used to
test the hypothesis that a sample of simulated values with
empirical distribution function F',(f) does come from the
target distribution F (). Under the null hypothesis that this
is true, the proportion of rejections of the null hypothesis
should not exceed 5% (1%) if the test is performed at the
nominal significance level of ov= .05 (ot =.01).

In this paper, emphasisis put on the raw value H instead
of on the Kolmogorov—Smirnov statistic, because the out-
come of the Kolmogorov—Smirnov test depends on the sam-
ple size. Any method that is not exact will be rejected as
inaccurate if the number of simulations is large enough,
and that is not needed here. Therefore, the Kolmogorov—
Smirnov test will not be considered any more, and only the
raw values H are used.

Results for the Speed of Simulation

In Table 1, one can find the mean time (in seconds) the
algorithms needed to draw 3,000 realizations from the dif-
fusion process. The RW method with the lowest precision
is the fastest, followed by the RB method. For equal pre-
cision levels, the SDE method is the slowest. The results
suggest that for the RW and SDE methods, the simulation
time is O(7™"). The simulation time for the PIT method is
comparable to that of the RW method. However, if the
number of simulations was larger than 3,000, the PIT
method would perform faster than the RW method be-
cause, beyond the fixed cost of computing the table with
function values, it takes no time to select values from it.

Table 2 shows the mean number of steps for the RW and
SDE methods, again as a function of the precision level 7.

Table 1
Mean Time (in Seconds) to Draw 3,000 Realizations from the
Diffusion Process for the Four Simulation Methods

Method Precision Level Mean Time

Random walk 0.01 0.0252
0.001 0.2669

0.0001 2.5717

Rejection-based 0.1663
Stochastic differential 0.01 0.1688
equation 0.001 1.3905
0.0001 12.9905

Probability integrated 500 0.0264
transform 5,000 0.2256
50,000 2.3164

Note—For the RW and SDE method, precision level is 7. For the PIT
method, precision level is N, the number of grid values used to approx-
imate F(f).
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For the RB method, the mean number of times that the re-
jection algorithm has to be applied is shown in the same
table. The SDE method takes more time, because it takes
more steps than the RW method to reach the boundary and
it requires more complex calculations (one has to draw
normally distributed numbers instead of uniformly dis-
tributed ones as in the RW method). The PIT method is not
mentioned in this table, since the selection of a value is
done in one step.

The third column of Table 2 contains the expected num-
ber of steps before absorption. (The expected number of
steps is computed for each combination of drift rate, a, and
z, and then the mean is taken.) The expected number of
times the rejection algorithm has to be applied for the RB
method is not available, since there is no formula to com-
pute it. For the RW method, the observed and theoretical re-
sults are very similar, but for the SDE method, the ob-
served and theoretical results differ, especially for the
lowest precision. The reason is that Equation 20 is only an
approximating formula and not the exact one. This discrep-
ancy between the observed and expected number of steps
was also noted by Luce (1986) and Smith (1990).

The effects of the different parameter values (U, a, and z)
on the speed of simulation are not shown in detail here; we
will only briefly mention some interesting findings. The
mean simulation time for the RW and SDE methods de-
creases if the (absolute) value of the drift rate becomes
larger. Moreover, if the boundary separation a is large, it
will take longer to simulate the process. For the RB method,
a drift rate closer to zero leads to a shorter simulation time.
This is expected, because the acceptance rate of the rejec-
tion algorithm attains its maximum at ¢t = 0. Also for the
RB method, the simulation time is larger the more asym-
metric the diffusion process is. If the starting pointis close
to the lower boundary and the drift rate large, then more
applications of the rejection algorithm are needed than
when the starting pointlies symmetrically. In the latter case,
by definition, only one application of the rejection algo-
rithm is necessary. For the PIT method, a larger boundary
separation a and a smaller drift lead to a larger simulation
time.

Results for the Accuracy of the Simulation

First, we checked whether the simulation methods yield
good estimates of the probability of absorption at the
upper boundary. To do so, the sum of the absolute devian-
cies between the simulated proportions and theoretical
probabilities(Equation 3) is calculated. Because the RB and
PIT method do not use approximations at this stage, there
cannot be accuracy problems. However, this does not hold
for the two other methods (RW and SDE). Only the results
for the highest precision levels of the RW and SDE meth-
ods are computed. The approximation for the RW method
is as good as for the RB and PIT method. In particular, the
sums of absolute devianciesare 0.0368 for the RW method,
0.0279 for the RB method, and 0.0352 for the PIT method.
The SDE method produces inaccurate results, especially
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Table 2
Mean Number of Steps Needed to Reach a Boundary for the Random Walk (RW)
Method, the Rejection-Based (RB) Method, and the Stochastic Differential

Equation (SDE) Method
Observed Mean Number Expected Mean
Method Precision Level M SD Number

Random walk 0.01 26.655 14.406 26.738
0.001 274.469 148.547 265.181
0.0001 2,651.922 1,440.373 2,650.635

Rejection-based 1.423% 0.449
Stochastic differential 0.01 35.727 18.245 26.505
equation 0.001 293.127 154.795 265.051
0.0001 2,739.748 1,470.129 2,650.505

Note—For the RW and SDE method, precision level is 7. For the PIT method, precision level

is N, the number of grid values used to approximate F, (7).

*This mean number of steps is the

mean number of times a new rejection algorithm has to be initiated. As such, its meaning dif-
fers from the other mean number of steps for the RW and SDE methods.

for the asymmetric cases. The sum of the absolute devian-
cies for the SDE method was 0.1862, which is clearly larger
than for the other two. For lower precision, the results are
even worse and therefore they are not presented.

Next, it is checked whether the obtained sample of ab-
sorption times at the upper boundary can be considered as
a sample from the conditional density in Equation 4. We
consideronly the conditional density /7| y(r| Y = 1), but the
conclusions also hold for fry (7] Y = 0).

Table 3 contains the mean deviance value H as defined
in Equation 21 for the four simulation methods. For the RW,
SDE and PIT methods, we distinguish between the three
levels of precision. The results in Table 3 show that a preci-
sion lower than 0.0001 does not yield accurate simulations
for both the RW and SDE methods. If the precision is
0.0001, the random walk gives results similar to those for
the RB method. Buteven for the smallest time intervals that
we studied, the SDE method is not as accurate as the other
two methods. For the PIT method, setting up a table of 5,000
grid points already gives an H value that is undistinguishable
from the one for the RB method (taking into account the
standard deviation). A fortiori, the same holds of course
for 50,000 grid points. The accuracy of the PIT method
would even be improved if linear interpolation was used.

The lack of accuracy of the SDE method is startling at
first sight. To make sure that the method works but needs
an excessively large precision, the simulations are re-

Table 3
Mean Values of the Deviance Measure H
for the Four Simulation Methods

Method Precision Mean H SD
Random walk 0.01 0.0759 0.0381
0.001 0.0320 0.0118
0.0001 0.0191 0.0072
Rejection-based 0.0190 0.0070
Stochastic differential 0.01 0.1926 0.0547
equation 0.001 0.0665 0.0213
0.0001 0.0301 0.0115
Probability integrated 500 0.0491 0.0210
transform 5,000 0.0205 0.0070
50,000 0.0189 0.0075

peated with 7= .000001. With this precision, drawing a
sample of 3,000 realizations takes more than 20 min. The
sum of absolute deviations between the probability of
upper boundary absorption and the actual proportion of
absorptions drops to .0335, a value close to the reported
ones for the three other methods. Moreover, the mean value
of His equal to 0.0198 (SD = .0078), and this is also closer
to the values of the three other methods (see Table 3).

Finally, we examine the differences in H for different
conditions of the design but without showing the results in
detail. Because interesting results are only to be expected
for the RW, SDE, and PIT methods, those are the only ones
that are discussed.! First, the systematic effects of the in-
dependent variables for the RW simulations with the high-
est precision (7=.0001) are studied. In conditions with zero
drift rate, the accuracy is always worse than in conditions
with nonzero drift rate. Moreover, conditions with sym-
metric starting points return more accurate results than do
conditions with asymmetric starting points.

Second, for the SDE approximation, conditions with a
small boundary separation lead to less accurate simulations.
This is understandable, because if the boundaries are close
together, it will be more likely that an excess over a bound-
ary occurs, despite the correction method. Completely in
line with this fact, from the two conditions with a small
boundary separation (0.08), the condition with starting
pointat 0.02 performs worst. It appears that the correction
method does not succeed in completely removing the in-
accuracy due to an excess over a boundary. The problem
of excess over a boundary is the reason why the SDE ap-
proximation is the least accurate method.

Third, for the PIT method, we looked at the effects for
a table of 5,000 grid values. The most important trend is
that simulations with zero drift rate are the least accurate
ones. There are no systematic effects from starting point
and boundary separation.

GENERALITY OF THE METHODS

The random walk approximation can be generalized to
simulate other types of diffusion processes where the drift
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rate and variance parameter are not just constant but de-
pend on the position the process occupies. Being func-
tions of the state of the process, these parameters are now
denoted by u(x) and o(x). In this more general case, not
the limit of a simple random walk is taken but the limit of
a birth—death process, which is the discrete analogue of
these more general kinds of diffusion processes. However,
the structure of the basic part of the algorithm (Equation 6)
remains unchanged. Details about this generalization are
given by Bhattacharya and Waymire (1990), Busemeyer
and Townsend (1992), and Diederich (1997). The method
can also be applied to diffusion processes with reflecting
boundaries. Diffusion models with reflecting boundaries
are used in cognitive research by, for instance, Schwarz
(1993). The random walk is also easily generalized to non-
stationary models where at a fixed time point ¢, the drift
rate changes from one constant value to another while the
variance remains constant (Ratcliff, 1980). Such models
are, for instance, applied in Ratcliff and Rouder (2000).

The rejection-based method is not applicable to more
general diffusion processes such as the Ornstein—Uhlenbeck
process, since in that case there is no explicit formula for the
conditional first-passage time densities. For other diffu-
sion processes for which these explicit formulas are avail-
able, the inequality in Equation 11 may not be true, and so it
is difficult to generalize the method. The method can be
applied, however, to diffusion processes with constant drift
rate and variance and reflecting boundaries. The rejection-
based method is not applicable to models with a change in
drift rate from one constant to another at a certain time point.

The same technique of approximating the SDE is also
applicable if i and o depend on the state that the process
is in. For that case, more advanced methods than the one
described in Equation 18 are available. Fahrmeir (1976)
considered one-step methods for solving ordinary differ-
ential equations (ODEs), and Equation 18 is the so called
stochastic analogue of the Euler method for solving ODEs
(see, e.g., Burden & Faires, 1997). More advanced one-
step methods such as Heun, modified Euler, and Runge—
Kutta are more appropriate for variable drift rate and vari-
ance diffusion processes (for the simple diffusion process
considered in this paper, these methods give the same ex-
pression as Equation 18). Fahrmeir (1976) discusses theo-
retical convergence results of the numerical ODE solvers
and proposes some modifications, but only for the case
without absorbing boundaries; and for that case, some dif-
ficulties may rise as aforementioned. The method is eas-
ily generalized to the case with reflecting boundaries and
changes in drift rate from one constant value to another at
a certain time point.

It is difficult to apply the probability integral transform
method for the Ornstein—Uhlenbeck process, since no
closed-form expression is available for the cumulative dis-
tribution function. Changesin drift rate as those introduced
by Ratcliff (1980) and applied by Ratcliff and Rouder
(2000) are, however, easy to handle (from time O up to ¢,
one takes the cumulative distribution function of the first
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process, and from ¢ on, the cumulative distribution func-
tion from the second process). Moreover, random drift rate
and random starting point models (Ratcliff, 1978; Ratcliff
et al., 1999) can be simulated by inverting the cumulative
distribution function that is obtained by first integrating
over both drift rate and starting point distributions (this
may, however, have an effect on the accuracy of the method).
The probability integral transform method could be used
in a hybrid construction with some of the other methods.
For instance, a limited number of simulations from the ran-
dom walk method could be used to set up the empirical cu-
mulative distribution function of some process, and then,
starting from the empirical cumulative distribution func-
tion, the probability integral transform method is used to
generate the remaining simulations. This techniqueis par-
ticularly useful for simulating diffusion processes for which
there is no closed-form expression for the cumulative dis-
tribution function available (e.g., the Ornstein—Uhlenbeck
process). It combines the advantages of two methods: the
generality of the random walk method, and the speed and
accuracy of the probability integral transform method.

DISCUSSION

In this paper, four methods for the simulation of a
Wiener process are proposed and compared with each other
with respect to their simulation speed and the accuracy of
the results. With respect to these two criteria, it turns out
that the two best methods are the rejection-based method
and the probability integral transform method. The advan-
tage of the rejection-based method is thatitis exact. How-
ever, if a huge sample from the same distribution has to be
drawn, the probability integral transform method is to be
preferred, since its accuracy is comparable (certainly for
the choice probabilities but also for the response times) to
that of the rejection-based method and it will be at least as
fast or even faster.

If the time intervals are chosen to be small enough (high
precision), also the random walk gives accurate results.
The third method, based on the approximation of a sto-
chastic differential equation, is the slowest and does not
yield accurate results. The fourth method, using the proba-
bility integral transform method, performs almost as fast
and as accurately as the rejection-based method.

The poor performance of the stochastic differential equa-
tion method is not very surprising, since that method suffers
from the boundary excess problem and this is not com-
pletely corrected for by widening the boundaries. Perhaps
the problem can be rectified by using an algorithm with
adaptive precision: lower precision in the neighborhood
of the starting point, but higher precision when the process
approaches one of the boundaries.

Although the rejection-based method is an exact and
fast method, a drawback of the rejection-based method is
thatitis restricted inits application: Only diffusion processes
with constant drift rate and variance can be simulated.
With only minor adaptations, the random walk method,



stochastic differential equation method, and probability
integral transform method can handle more general diffu-
sion processes.

The algorithms are compared with respect to their
speed of simulation, but they could also be compared with
respect of their “speed of implementing.” The gain in time
by speeding up the simulation may be lost in some situa-
tions by implementing the method. Of course, the speed of
implementing depends strongly on the expertise of the re-
searcher, but a few general points are worth mentioning.
If the stochastic differential equation method is left aside
because of its inaccuracy, the random walk is certainly the
easiest to implement—after that, the probability integral
transform method, and finally the rejection-based method.
Hence, if only a few simulations are needed for a quick in-
spection of the properties of a model, the random walk
may be the most preferable method.
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NOTE

1. We expect to find no systematic effects of drift rate and starting point
on the accuracy of the simulation for the RB method. Nevertheless, some
systematic effects appear, and these are attributed to the fact that the
number of cases on which the deviance measure H is computed differs.

APPENDIX A
To prove inequality 11, first rewrite f7, (7| Y = 1):
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where M and A are defined in Equations 12 and 13, respectively.
The even terms of the infinite sum (n =0, 2, . . .) are positive, and the odd terms (n =1, 3, . . .) are negative.
Also, the term for n + 1 is always smaller in absolute value than the term for n. It follows that the difference be-
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APPENDIX A (Continued)

tween consecutive terms starting from n = 1 is negative. Therefore, the total of the infinite sum starting from
n =1 is also negative. This leads to the following inequality:
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= MAexp(-Ar).

APPENDIX B

Suppose one wants to sample a realizationfrom the density function g(#), but no directalgorithm (such as there
exists for sampling from, e.g., a normal distribution) exists for this purpose. Now suppose that another density
function A(7) can be found, from which it is easy to sample (e.g., the exponential or normal density), and there
also exists a constant M such that the following inequality holds:

g(H) = Mh(1), (B1)

which means that g(7) is dominated by the function MA(t) for all z. This dominating function is called the ma-
jorization or envelope function. The algorithm then proceeds as follows:

1. Sample a t* from A(f). This t* is called a candidate value.
2. Sample u from U(0,1), independently from #*.

3.If

u< 80"
T Mh(¥)’

then accept the draw #*; otherwise go back to step 1.

It is shown in Tanner (1996) that a £* that is accepted in step 3 is a realization from g(#). Moreover, it can be
shown that 1/M is the probability that a candidate #* will be accepted as a draw from g(#), which is also called
the acceptancerate. The acceptance rate determines the efficiency of the simulation method: If the acceptance
rate is low, many candidate values need to be generated before one is accepted as coming from g(¢).

APPENDIX C

If U = Gy(X) and X has density g,(x), then Pr (U < u) = Pr (Gy(X) = u) = Pr (X = G () = Gy (G (W) = u.
Hence, U is uniformly distributed. The reverse is as follows: If X = G (U) and U is uniformly distributed over
[0,1],then Pr (X = x)=Pr (G,_(I(U) =x) =Pr (U = Pr(Gx (x)) = Gy (x).

(Manuscript received June 2, 2000;
revision accepted for publication January 18, 2001.)



