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The need to categorize on the basis of uncertain infor-
mation is ubiquitous in both personal and professional
life. Each time we decide to follow or exceed the speed
limit, to bring or not bring a jacket, to hire or not hire an
individual, or to diagnose a patient, we are categorizing.
All organisms categorize and must perform this task with
some measure of success or they will die. In light of this
fact, it is reasonable to suppose that, in many domains,
human categorization performance is nearly optimal
(Ashby & Maddox, 1998). Although optimality can be
defined in a number of different ways, a common defin-
ition is performance that maximizes long-run reward
(Green & Swets, 1966).

The optimal classifier is sensitive to information about
category base rates (e.g., the prevalence of different dis-
eases in the population) and the costs and benefits asso-
ciated with correct and incorrect categorization (e.g., the
benefit of correctly diagnosing a heart attack, and the
cost of misdiagnosing) and uses this information to set a
decision criterion that maximizes reward; values below

the criterion yield one categorization response, and val-
ues above the criterion yield another response. The opti-
mal decision criterion is affected similarly by base-rate
and cost-benefit manipulations (see Equation 2, below).
For example, if the probability of observing an exemplar
from Category A is three times that of observing an ex-
emplar from Category B (a 3:1 base-rate condition), or if
the benefit of a correct Category A response is three
times the benefit of a correct Category B response (as-
suming no cost for an incorrect response; referred to as
a 3:1 payoff condition), then the optimal decision crite-
rion, βo � 3, maximizes long-run reward.

Despite the survival value of optimal categorization,
direct comparisons of human behavior with that of the
optimal classifier suggest that humans rarely behave op-
timally. A robust finding in the categorization decision
criterion learning literature is that observers use a sub-
optimal decision criterion in both conditions, referred to
as conservative cutoff placement, but that the magnitude
of conservative cutoff placement is much larger when
payoffs are manipulated than when base rates are manip-
ulated, even when the optimal decision criterion is equated
across conditions (Busemeyer & Myung, 1992; Erev,
1998; Healy & Kubovy, 1981; Maddox, 2002; for related
work from the recognition memory literature, see Estes
& Maddox, 1995; Heit, Brockdorff, & Lamberts, 2003).
A thorough understanding of the mechanisms underly-
ing these performance differences is of fundamental im-
portance for at least two reasons. First, a better under-
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standing of the cognitive processes involved in decision
criterion learning under unequal base-rate and payoff
conditions will help cognitive scientists develop and test
computational models of performance in this ubiquitous,
real-world task. A fruitful approach taken by a number of
researchers is to use the optimal classifier as a bench-
mark against which to compare human performance and
as a starting point for developing plausible computa-
tional models (Ashby & Maddox, 1993; Busemeyer &
Myung, 1992; Erev, 1998; Maddox & Dodd, 2001). Sec-
ond, a more thorough understanding will allow us to de-
velop and test procedures that might lead to better deci-
sion criterion learning. Progress on these two general
issues facing cognitive scientists provides the motivation
for the present research.

Conservative Cutoff Placement, Probability
Matching, and Accuracy Maximization

One popular explanation for the prevalence of conser-
vative cutoff placement and the base-rate versus payoff
decision criterion learning difference offered in the 1970s
and 1980s was the generalized probability-matching hy-
pothesis, which states that the participant chooses a de-
cision criterion that yields response probabilities that
match the base rates plus some constant based on the
payoff matrix (Healy & Kubovy, 1981; see also Thomas
& Legge, 1970). The generalized probability-matching
hypothesis predicts conservative cutoff placement be-
cause the decision criterion that matches the response
probabilities is generally suboptimal, and it predicts con-
servative cutoff placement of a greater magnitude in un-
equal payoff conditions because the base rates are equal
and thus there is a bias toward the equal response fre-
quency decision criterion. Specifically, in a 3:1 base-rate
condition with category discriminability, d′ � 1.0 (as in
Healy & Kubovy, 1981), the decision criterion associ-
ated with 75% A and 25% B responses (i.e., probability
matching) would be β� 1.59, whereas the optimal deci-
sion criterion is βo � 3. Similarly, in a 3:1 payoff condi-
tion, the decision criterion associated with 50% A and
50% B responses would be β � 1, whereas the optimal
decision criterion is βo � 3. Healy and Kubovy found
support for the generalized probability-matching hy-
pothesis in a series of experiments that used the numer-
ical decision task and a category d′ � 1.0.

Maddox and Bohil (1998) provided some preliminary
evidence against the generalized probability-matching
hypothesis. Maddox and Bohil (1998) compared perfor-
mance in a 3:1 base-rate and 3:1 payoff condition across
three levels of d′ (1.0, 1.7, and 2.2). Because the base
rates and payoff matrices were fixed across d′ condi-
tions, the generalized probability-matching hypothesis
predicts no effect of d′ on decision criterion placement,
but Maddox and Bohil (1998) found that the decision
criterion was more nearly optimal for d′ � 1.7 and 2.2
than for d′� 1.0. More rigorous tests have replicated this
effect numerous times since (see Maddox, 2002, for a 
review).

Maddox and Bohil (1998) offered an alternative hy-
pothesis. They suggested that a unitary goal, such as
probability matching or reward maximization, may not
underlie decision criterion learning; rather, participants
may have multiple competing goals. Maddox and Bohil
(1998) proposed a competition between reward and ac-
curacy maximization (COBRA) hypothesis. COBRA
postulates that observers attempt to maximize reward
(consistent with instructions and monetary compensa-
tion contingencies) but also place importance on accu-
racy maximization.1 When base rates are manipulated,
the decision criterion that maximizes reward simultane-
ously maximizes accuracy and so there is no competi-
tion, leading to good decision criterion learning. On the
other hand, when payoffs are manipulated, the decision
criterion that maximizes reward does not simultaneously
maximize accuracy. Because the observer must sacrifice
some measure of accuracy to maximize reward when
payoffs are manipulated, any weight placed on accuracy
will lead to the use of a decision criterion that is more
suboptimal than that used in the base-rate conditions.

Although COBRA predicts better decision criterion
learning in base-rate than in payoff conditions, COBRA
makes no assumptions about learning of the reward-
maximizing decision criterion, and in isolation does not
account for the fact that conservative cutoff placement is
observed in both conditions. Maddox and Dodd (2001)
developed a hybrid model of decision criterion learning
that instantiates COBRA, but also assumes that the ob-
server’s estimate of the reward-maximizing decision cri-
terion is determined from the objective reward function
(von Winterfeld & Edwards, 1982). The quantitative de-
tails of the model will be outlined below, but for now a
few brief comments are in order. The objective reward
function plots long-run reward as a function of decision
criterion placement (Figure 3, below). Steep objective
reward functions, for which large changes in reward are
associated with small changes in the decision criterion,
are hypothesized to lead to better learning of the reward-
maximizing decision criterion than flat objective reward
functions. This is referred to as the flat-maxima hypoth-
esis. One factor that influences the steepness of the ob-
jective reward function is category discriminability, with
d′ values near 2.2 yielding steep objective reward func-
tions and smaller and larger values yielding flatter ob-
jective reward functions. Thus, the hybrid model predicts
less conservative cutoff placement in base-rate and pay-
off conditions for steep objective reward functions (i.e.,
for d′ values near 2.2) than for flat objective reward func-
tions. Because many of the early studies used d′ � 1.0
(e.g., Healy & Kubovy, 1981), which yields a flat objec-
tive reward function, the hybrid model would predict
conservative cutoff placement for both base-rate and
payoff conditions.

Despite the large body of evidence in support of
COBRA, Maddox and Bohil (1998) may have been pre-
mature in rejecting probability matching in favor of ac-
curacy maximization. It is worth stating explicitly that a
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single-process model that assumes reward maximiza-
tion, a single-process model that assumes accuracy max-
imization, and a single-process model that assumes prob-
ability matching all fail to account for the simultaneous
effects of d′, base-rate, and payoff manipulations on de-
cision criterion learning. So as a unitary process explana-
tion, all three are inadequate. COBRA provides a good ac-
count of the data, but it is the “hybrid,” dual-process nature
of the hypothesis that is the key to its success. Thus, a more
appropriate test of the probability-matching hypothesis
with COBRA would require that it be embedded within a
dual-process framework. To achieve this goal, we develop
below the competition between reward and probability
matching (COBRM) hypothesis, which is identical to
COBRA except that the accuracy-maximizing decision
criterion is replaced with the probability-matching deci-
sion criterion.

Multiple-process models are difficult to test empiri-
cally using standard statistical procedures (e.g., analysis
of variance [ANOVA]). Rigorous tests generally require
that each observer participate in all experimental ses-
sions, and that the data from all experimental conditions
be modeled simultaneously. Using this approach, one
can apply models that instantiate COBRA and COBRM
and determine which provides the better account of the
data. An even better approach is to combine quantitative
modeling techniques with an experimental manipulation
that provides a critical test of the two hypotheses. In the
next section, we introduce an experimental manipulation
of this sort that examines the effect of different training
procedures on decision criterion learning.2

Objective Versus Optimal Classifier Feedback,
Probability Matching, and Accuracy
Maximization

As outlined earlier, when category base rates are ma-
nipulated, the decision criterion that maximizes reward
simultaneously maximizes accuracy, and so COBRA pre-
dicts no competition. On the other hand, when payoffs
are manipulated, the participant must sacrifice some
measure of accuracy to maximize reward—a require-
ment that many participants appear unwilling to meet.
Maddox and Bohil (2001) speculated that observers place
importance on accuracy maximization in part because
the most common type of feedback in decision criterion
learning studies—objective classifier feedback—em-
phasizes accuracy. The top panel of Figure 1 depicts a
hypothetical feedback display based on the objective
classifier. Following a response, the observer is pre-
sented with information regarding the actual gain for that
trial, and the potential gain had he/she responded with
the correct category label. In this example, the observer
generated an incorrect B response and earned 0 points,
whereas a correct A response would have earned 3 points.
(In our studies, we also include information regarding
cumulative performance, i.e., the Total Points and the
Potential Point Total). We refer to this as objective clas-

sifier feedback, because the potential gain is always based
on performance of the classifier that generates the ob-
jectively correct response on every trial, and thus is 100%
accurate. Bohil and Maddox (2003; Maddox & Bohil,
2001) compared cost-benefit decision criterion learning
under objective classifier feedback conditions, with feed-
back based on the optimal classifier. The bottom panel
of Figure 1 depicts a hypothetical feedback display based
on the optimal classifier. Following a response, the ob-
server is presented with information regarding the actual
gain for that trial, and the optimal classifier’s gain. In
this example, the observer generated an incorrect B re-
sponse and earned 0 points. Importantly, the optimal
classifier also generated an incorrect B response and
earned 0 points. Bohil and Maddox (2003) suggested
that optimal classifier feedback might lead observers to
sacrifice accuracy in order to maximize reward, resulting
in better decision criterion learning.

Across a wide range of conditions, Bohil and Maddox
(2003) found better decision criterion learning with op-
timal classifier as opposed to objective classifier feed-
back. They applied the hybrid model described above,
which instantiates the flat-maxima and COBRA hypothe-
ses, and found that the model provided a good account of
the data by assuming that the weight placed on accuracy
was greater for objective than for optimal classifier feed-
back. These data provide support for the COBRA hy-
pothesis and suggest that optimal classifier feedback
leads observers to place less weight on accuracy maxi-
mization, resulting in a more nearly optimal decision cri-
terion. However, there are at least two alternative expla-
nations that cannot be ruled out. One is the competition
between reward and probability matching (COBRM) hy-
pothesis outlined above. The longstanding interest in the
matching–maximizing dichotomy makes this an impor-
tant issue (e.g., Ashby & Maddox, 1993; Estes, 1976;
Herrnstein, 1961, 1970; Herrnstein & Heyman, 1979;

Figure 1. Hypothetical feedback displays for the objective clas-
sifier and optimal classifier feedback conditions.
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Williams, 1988). A second alternative is referred to as
the competition between reward and equal response fre-
quency (COBRE) hypothesis (similar in spirit to the
range frequency hypothesis developed by Parducci, 1965).
The idea is that observers might attempt to maximize re-
ward (as instructed) but might also be biased toward re-
sponse patterns that yield equal “A” and “B” response
frequencies. With respect to objective versus optimal
classifier feedback, the assumption would be that optimal
classifier feedback “releases” the observer from the bias
toward probability matching (in COBRM) or from the bias
toward equal response frequencies (in COBRE), resulting
in more nearly optimal decision criterion placement.

Unfortunately, when costs and benefits are manipu-
lated, all three hypotheses make identical predictions
and thus are nonidentifiable. When costs and benefits
are manipulated, base rates are equal and probability
matching implies equal “A” and “B” response frequen-
cies. Similarly, accuracy maximization implies equal
“A” and “B” response frequencies. This equivalence of
decision criterion values is depicted graphically in the
top panel of Figure 2, which displays a hypothetical 3:1
payoff categorization problem with category discrim-
inability, d′ � 1.0. Notice that the accuracy-maximizing
decision criterion (βa), the decision criterion that satis-
fies probability matching (βm), and the decision criterion
that results in equal “A” and “B” response frequencies
(βe) all equal 1 (i.e., βa � βm � βe � 1). Notice also that
the optimal decision criterion βo � 3.

To provide a critical test of these three hypotheses and
to determine which best captures the effect of optimal
versus objective classifier feedback on decision criterion
learning, we need to examine an experimental situation
for which each hypothesis makes a unique prediction.
An unequal base-rate condition provides an excellent
testing ground for at least three reasons. First, unequal
base rates have the same effect on the optimal decision
criterion as unequal costs and benefits, and so a base-
rate and a cost-benefit condition that yield identical opti-
mal decision bounds can be examined. Second, when base
rates are unequal, the accuracy-maximizing, probability-
matching, and equal response frequency decision crite-
ria are different. This nonequivalence of decision crite-
ria is depicted graphically in the bottom panel of Figure 2,
which displays a hypothetical 3:1 base-rate categoriza-
tion problem with d′ � 1.0. Notice that the accuracy-
maximizing decision criterion (βa) is equivalent to the
reward-maximizing decision criterion (βo). The decision
criterion that results in equal “A” and “B” response fre-
quencies (βe) is slightly less than 1.0, and the decision
criterion that satisfies probability matching (βm) lies
intermediate between the equal response frequency and
accuracy-maximizing decision criteria. Finally, because
the accuracy- and reward-maximizing decision criteria
are identical, COBRA predicts no effect of optimal clas-
sifier feedback relative to objective classifier feedback
on base-rate learning since there is no competition. On

the other hand, if optimal classifier feedback releases the
observer from a bias (either toward probability matching
or equal response frequencies), then both the COBRM
and COBRE hypotheses predict better base-rate learning
with optimal classif ier feedback than with objective
classifier feedback.

This article reports the results from an experiment that
examined the effects of optimal versus objective classi-
fier feedback on decision criterion learning when pay-
offs or base rates and category discriminability (d′� 1.0
vs. 2.2) were manipulated. Finally, we revisited a delayed
feedback manipulation initially investigated by Maddox
and Bohil (2001; Experiment 1). In the immediate feed-
back condition, observers received information about
their performance and that of either the optimal classi-
fier or objective classifier on each trial. In the delayed
feedback condition, feedback was not provided on every
trial, but rather was provided on every fifth trial, and rep-
resented aggregate performance during those five trials.
Maddox and Bohil (2001) speculated that delayed feed-
back might lead observers to focus less on accuracy,
leading to better decision criterion learning. However, no
effect of delay was observed. Thus, the present study
consisted of 16 experimental conditions constructed
from the factorial combination of two feedback condi-

Figure 2. Hypothetical Category A and B distributions for d ′ �
1.0 under 3:1 payoff (top panel) or 3:1 base-rate (bottom panel)
conditions. �a, �m, �e, and �o denote the decision criteria that
maximize accuracy, satisfy probability matching, lead to equal
“A” and “B” response frequencies, and maximize reward, re-
spectively.
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tions (optimal vs. objective classifier feedback) with two
base-rate/payoff conditions (3:1 payoff vs. 3:1 base rate),
two category discriminabilities (d′ � 1.0 vs. d′ � 2.2),
and two delay conditions (immediate feedback vs. de-
layed feedback). Each observer completed all 16 exper-
imental conditions. A within-observers design was uti-
lized to allow for model testing using the hybrid model,
and variants of the hybrid model that instantiated the
COBRM and COBRE hypotheses.

To summarize, the predictions are as follows. First, if
optimal classifier feedback releases observers from a
bias toward accuracy maximization, as suggested by
COBRA, then we predict better decision criterion learn-
ing with optimal classifier feedback than with objective
classifier feedback in the 3:1 payoff condition, but no de-
cision criterion learning difference in the 3:1 base-rate
condition. Second, if optimal classif ier feedback re-
leases observers from a bias toward probability matching
or a bias toward equal response frequencies, as suggested
by COBRM and COBRE, respectively, then we predict
better decision criterion learning with optimal classifier
feedback than with objective classifier feedback in both
the 3:1 payoff condition and the 3:1 base-rate conditions.
This follows because one cannot probability match or re-
spond with equal frequencies in the 3:1 payoff and 3:1
base-rate conditions while simultaneously maximizing
reward. Third, if delayed feedback has an effect similar
to that of optimal classifier feedback, then the predic-
tions outlined above will also hold for delayed relative to
immediate feedback. Finally, we predict an interaction
between the nature of the feedback (optimal vs. objective
or delayed vs. immediate) and category d′ on decision
criterion learning, with a larger effect of feedback being
predicted in the d′ � 1.0 than in the d′ � 2.2 conditions.
This prediction holds because the accuracy sacrifice
needed to maximize reward is larger for d′ � 1.0 (8%)
than for d′� 2.2 (3%), and the “A” to “B” response ratio
assumed by the reward-maximizing decision criterion is
larger for d′ � 1.0 (.88 to .12) than for d′ � 2.2 (.77 to
.23).

Initial tests of these predictions are provided by ex-
amining trends in performance measures; specifically,
point totals and decision criterion estimates from signal
detection theory using ANOVA. These are adequate for
many comparisons (e.g., feedback effects, d ′ effects,
base-rate/payoff effects), but are not adequate for the
more important comparisons between COBRA, COBRM,
and COBRE. In particular, the differences between
COBRM and COBRE are fairly subtle since both predict
feedback effects on payoff and base-rate learning. These
comparisons, and a detailed understanding of the psy-
chological processes involved in decision criterion learn-
ing, are provided by applying a series of models to the
data from all conditions simultaneously, but separately
by observer and block. We now briefly review the opti-
mal classifier and our modeling framework before turn-
ing to the experimental findings.

THE OPTIMAL CLASSIFIER AND
DECISION BOUND THEORY

Optimal Classifier
Suppose the optimal classifier must determine whether

a patient suffers from Disease A or B based on medical
test X, whose outcomes for the diseases are normally dis-
tributed as depicted in Figure 2. The optimal classifier
computes expected reward for each response and then
chooses the response that maximizes expected reward.
This requires comparing the likelihood ratio,

lo(x) � f (x | B) / f (x | A), (1)

with the optimal decision criterion,

βο � [P(A)VaA] / [P(B)VbB], (2)

and using the optimal decision rule:

If lo(x) � βο ,

then respond “B,” otherwise respond “A,” (3)

where f (x | i) denotes the likelihood of test result � given
disease category i, where P(A) and P(B) denote the Cat-
egory A and Category B base-rate probabilities, respec-
tively, and VaA and VbB denote the benefits associated
with correct diagnoses. (The costs of incorrect diagnoses
also affect the optimal decision criterion, but in the pres-
ent study these were set equal to zero and thus drop out
of the equation.) 

Three points are of interest. First, when P(A)VaA �
P(B)VbB, βο � 1, the optimal classifier assigns the stim-
ulus to the category with the highest likelihood and si-
multaneously maximizes reward, maximizes accuracy,
probability matches, and generates equal response fre-
quencies. Second, if the payoff for Disease A is three
times the payoff for Disease B, a 3:1 payoff condition
[i.e., if VaA � 3VbB and P(A) � P(B)], βο � 3.0. How-
ever, accuracy maximization, probability matching, and
equal response frequencies must be sacrificed (see Fig-
ure 2, top panel). Finally, if the A base rate is three times
the B base rate, a 3:1 base-rate condition [i.e., if P(A) �
3P(B), and VaA � VbB], βο � 3.0. In this case, accuracy
and reward are simultaneously maximized, whereas prob-
ability matching and equal response frequencies must be
sacrificed (see Figure 2, bottom panel).

Decision Bound Theory
There are at least two sources of noise in perceptual

and cognitive systems—perceptual and criterial noise
(Ashby & Lee, 1993; Ashby & Townsend, 1986)—that
are not inherent in the optimal classifier decision rule
(Equation 3). Perceptual noise refers to trial-by-trial
variability in the perceptual information associated with
repeated presentations of the same stimulus. With one
perceptual dimension, the observer’s percept of stimu-
lus i, on any trial, is given by xpi � xi � ep, where xi is
the observer’s mean percept and ep is a random variable
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denoting perceptual noise (we assume that σpi � σp).
(Notice that perceptual noise is different from the vari-
ability inherent in the category distributions.) Criterial
noise refers to trial-by-trial variability in the placement
of the decision criterion. With criterial noise the deci-
sion criterion used on any trial is given by βc � β � ec,
where β is the observer’s average decision criterion, and
ec is a random variable denoting criterial noise (assumed
to be univariate normally distributed). Decision bound 
theory assumes that the observer attempts to use the
same strategy as the optimal classifier, but with less 
success because of the effects of perceptual and criter-
ial noise (Ashby, 1992b). Hence, the simplest decision
bound model is the optimal decision bound model. The
optimal decision bound model is identical to the opti-
mal classifier (Equation 3) except that perceptual and
criterial noise are incorporated into the decision rule.
Specifically,

If lο(xpi) � βο � ec , 

then respond “B,” otherwise respond “A.” (4)

A THEORY OF DECISION CRITERION
LEARNING AND A HYBRID MODEL

FRAMEWORK

Maddox and Dodd (2001) developed a hybrid model
of decision criterion learning that instantiates the flat-
maxima and COBRA hypotheses.

Flat-Maxima Hypothesis
The flat-maxima hypothesis assumes that the observer

adjusts the decision criterion (at least in part) on the
basis of the change in the rate of reward, with larger
changes in rate being associated with faster, more nearly
optimal decision criterion learning (e.g., Busemeyer &
Myung, 1992; Dusoir, 1980; Kubovy & Healy, 1977;
Thomas, 1975; Thomas & Legge, 1970; von Winterfeld
& Edwards, 1982). The change in rate of reward is com-
puted from the objective reward function, which plots
objective expected reward on the y-axis and the decision
criterion value on the x-axis (e.g., Busemeyer & Myung,
1992; Stevenson, Busemeyer, & Naylor, 1991; von Win-
terfeldt & Edwards, 1982). To generate an objective re-
ward function, one chooses a value for the decision cri-
terion and computes the expected reward for that criterion
value. This process is repeated over a range of criterion
values. The expected reward is then plotted as a function
of decision criterion value. Figure 3a plots expected re-
ward as a function of the deviation between a hypotheti-
cal observer’s decision criterion ln(β) and the optimal
decision criterion ln(βo) standardized by category d′ —
referred to as k � ko � ln(β)/d′ � ln(βo)/d′—for cate-
gory discriminability d′ � 1.0 (solid line) and d′ � 2.2
(broken line) and for the 3:1 payoff and 3:1 base-rate
conditions. (The objective reward function is identical for
3:1 payoff and 3:1 base-rate conditions.) Notice that ex-

pected reward increases as the deviation from the optimal
decision criterion decreases toward zero (i.e., the optimal
decision criterion), and expected reward is maximized.

The derivative of the objective reward function at a
specific k � ko value determines the change in the rate
of expected reward for that k � ko value; the larger the
change in the rate, the “steeper” the objective reward
function at that point. Three derivatives are denoted by
the plus sign, square, and circle and the associated tan-
gent line in Figure 3a. The slope of each tangent line,
corresponding to the derivative at that point, decreases as
the deviation from the optimal decision criterion de-
creases (i.e., as we go from plus sign to square to circle).
Notice also that the deviation from the optimal decision
criterion for a fixed steepness value is smaller for d′ �
2.2 than for d′� 1.0. Figure 3b plots the relationship be-
tween the steepness of the objective reward function
(i.e., the derivative at several k � ko values) and k � ko.
The three derivatives denoted in Figure 3a are high-
lighted in Figure 3b. The flat-maxima hypothesis pre-

Figure 3. Objective reward functions for d′ � 1.0 (solid line)
and d ′ � 2.2 (broken line) for a 3:1 base-rate or 3:1 payoff con-
dition (top panel). The tangent lines denoted by the plus sign have
the same slope and thus reflect the same derivative or steepness.
The same holds for the tangent lines denoted by the squares and
circles. Steepness of the objective reward functions from the top
panel, along with the “equal steepness” points denoted by the
plus sign, square, and circle (bottom panel). Notice that the flat-
maxima hypothesis predicts more nearly optimal decision crite-
rion learning for d′ � 2.2 than for d′ � 1.0.



OPTIMAL CLASSIFIER FEEDBACK EFFECTS 309

dicts that steeper objective reward functions (d′ � 2.2)
will lead to more nearly optimal decision criterion values
than flatter objective reward functions (d′ � 1.0). Be-
cause the flat-maxima hypothesis is based on the objec-
tive reward function, it applies only to learning of the 
reward-maximizing decision criterion. In the hybrid
model, the observed decision criterion is a weighted av-
erage of the reward- and accuracy-maximizing decision
criteria (i.e., the COBRA hypothesis).

COBRA
The second mechanism assumed to influence decision

criterion placement is COBRA. Consider the 3:1 payoff
condition depicted in Figure 4a. The reward-maximizing
decision criterion, kro � ln(βro)/d′� ln(3)/d′, is different
from the accuracy-maximizing decision criterion, kao �
ln(βao)/d′� ln(1)/d′, and thus the observer cannot simul-
taneously maximize accuracy and reward. If an observer
places importance or weight on reward and accuracy,
then the resulting decision criterion will be intermediate
between the reward- and accuracy-maximizing criteria. We
instantiate this process with a simple weighting function,

k � wka � (1 � w)kr, (5)

where w (0 � w � 1) denotes the weight placed on ac-
curacy. Equation 5 results in a single decision criterion,
such as k1, that is intermediate between the accuracy-
and reward-maximizing criteria. Figure 4d depicts a 3:1

base-rate condition. Here kro � kao and so there is effec-
tively no competition.

COBRM
COBRM postulates that observers attempt to maxi-

mize expected reward, but they also place importance on
probability matching. Figure 4b depicts the 3:1 payoff
case, and Figure 4e depicts the 3:1 base-rate case. The
3:1 payoff situation is exactly analogous to that from
COBRA since the probability-matching decision crite-
rion, km, is identical to ka. However, in the 3:1 base-rate
case, COBRM continues to predict a competition, whereas
COBRA does not. As with COBRA, we instantiate this
process with a simple weighting function,

k � wkm � (1 � w)kr, (6)

where w (0 � w � 1) denotes the weight placed on prob-
ability matching. Equation 6 results in a single decision
criterion, such as k1, that is intermediate between the
probability-matching and reward-maximizing criteria.

COBRE
COBRE postulates that observers attempt to maxi-

mize expected reward, but they also place importance on
generating equal numbers of “A” and “B” responses.
Figure 4c depicts the 3:1 payoff case, and Figure 4f de-
picts the 3:1 base-rate case. The 3:1 payoff situation is
analogous to that from COBRA and COBRM since the

Figure 4. Hypothetical category distributions for d′ � 1.0 under a 3:1 pay-
off condition (panels a–c) or 3:1 base-rate condition (panels d–f). Panels a and
d instantiate the COBRA hypothesis, panels b and e instantiate the COBRM
hypothesis, and panels c and f instantiate the COBRE hypothesis.
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equal response frequency decision criterion, ke, is iden-
tical to ka and km. However, in the 3:1 base-rate case,
COBRE (like COBRM) continues to predict a competi-
tion. We instantiate this process with a simple weighting
function,

k � wke � (1 � w)kr, (7)

where w (0 � w � 1) denotes the weight placed on equal
response frequencies. Equation 7 results in a single deci-
sion criterion, such as k1, that is intermediate between the
equal response frequency and reward-maximizing criteria.

Framework for a Hybrid Model
The COBRA, COBRM, and COBRE versions of the

hybrid model assume that the decision criterion used by
the observer to maximize expected reward (kr) is deter-
mined by the steepness of the objective reward function
(Figure 3). A single steepness parameter is estimated
from the data that determines a distinct decision crite-
rion in every condition for which the steepness of the ob-
jective reward function differs. Before each experimen-
tal condition, the observer is pretrained on the category
structures in a baseline condition with equal base rates
and equal payoffs (described in the Method section),
which pretrains the accuracy-maximizing, probability-
matching, and equal response frequency decision crite-
ria since these are all equivalent under these conditions.
COBRA, COBRM, and COBRE are instantiated in the
hybrid model by estimating the w parameter in Equations
5, 6, and 7, respectively.

All of the models developed in this article are based
on the decision bound model in Equation 4. Each model
includes two “noise” parameters (one for d′ � 1.0 and
one for d′ � 2.2) that represent the sum of perceptual
and criterial noise (Ashby, 1992a; Maddox & Ashby,
1993). Each model assumes that the observer has accurate
knowledge of the category structures [i.e., lο(xpi)], which
is reasonable since each observer completed a number of
baseline trials and was required to meet a stringent per-
formance criterion (see Method section). Finally, each
model allows for a suboptimal decision criterion that is
determined from the flat-maxima hypothesis along with
COBRA, COBRM, or COBRE.

The nested structure of the models is presented in Fig-
ure 5, with each arrow pointing to a more general model
and models at the same level having the same number of
free parameters. The number of free parameters, includ-
ing the two noise parameter described above, needed to
fit a single block of data is presented in parentheses. (The
details of the model-fitting procedure are outlined in the
Results section.)

The simplest model was the hybrid model, which es-
timated a single steepness parameter from the data to de-
termine kr, and a single w parameter from the data. Three
variants of the hybrid model, and all other models dis-
played in Figure 5, were examined. These included the
COBRA, COBRM, and COBRE versions (see Equations

5–7). Four generalizations of the hybrid model were also
developed. The hybrid(stp; wOptimal; wObjective) model in-
cluded a separate w parameter for optimal classifier feed-
back and objective classifier feedback. The hybrid(stp;
wImmediate; wDelay) model included a separate w parameter
for immediate and delayed feedback. The hybrid(stp;
wOptimal/Immediate; wObjective/Immediate; wOptimal/Delay; wObjective/

Delay) model also included a separate w parameter for each
of the four feedback � delay conditions. The final model
was the hybrid(stpImmediate; stpDelay; wOptimal; wObjective)
model. This model was developed after an initial exami-
nation of the results because, to anticipate, we observed a
general performance decline across all conditions when
feedback was delayed as opposed to immediate. We spec-
ulated that this general performance decline might be bet-
ter captured by a deficit in reward-maximization decision
criterion learning, and not to changes in the weight as-
signed to accuracy, probability matching, or equal re-
sponse frequencies.

EXPERIMENT

The overriding goal of this experiment was to provide
a critical comparison of the COBRA, COBRM, and
COBRE hypotheses by examining the differential effects
of objective versus optimal classifier feedback on deci-
sion criterion learning in 3:1 payoff and 3:1 base-rate
conditions. Each observer completed 16 perceptual cat-
egorization tasks constructed from the factorial combi-
nation of two types of feedback (optimal and objective
classifier) with two base-rate/payoff conditions (3:1 base
rate and 3:1 payoff ), 2 levels of d′ (1.0 and 2.2), and two
delayed feedback conditions (immediate or five-trial de-
layed). Each task consisted of three 120-trial blocks of
training in which feedback was based on the optimal
classifier or objective classifier, followed by a 120-trial
test block, during which feedback was omitted. Table 1
displays the payoff matrix values, optimal points, opti-
mal accuracy, and optimal decision criterion value for
each experimental condition for a single block of trials.

Method
Observers. Six observers were recruited from the University of

Texas community. All observers were tested and had 20/20 vision
or vision corrected to 20/20. Each observer completed 16 sessions,
each of which lasted approximately 60 min. Monetary compensa-
tion was based on the number of points accrued across the whole
experiment. The data from one of the observers was excluded from
all subsequent analyses because of poor performance. In many con-
ditions, this observer perseverated on a single response, or re-
sponded randomly, rarely achieving performance above chance.

Stimuli and stimulus generation. The stimulus was a filled
white rectangular bar (40 pixels wide) presented on the black back-
ground of a computer monitor. The bar rested upon a stationary
base (60 pixels wide) that was centered on the screen, and bar
height varied from trial to trial. There were two categories, A and
B, whose members were sampled from separate univariate normal
distributions. The sampled values determined the height of each
presented bar stimulus. Category mean separation was 21 and 46 pix-
els for d′ � 1.0 and d′ � 2.2 conditions, respectively. The standard
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deviation was 21 pixels for each category. Several random samples
of size 60 were taken from each distribution, and the samples that
best reflected the population means, standard deviations, and ob-
jective reward function were selected to yield a set of 120 unique
stimuli for each level of d′.

Procedure. Prior to the first experimental session, observers
were informed that they would be participating in a series of simu-
lated medical-diagnosis tasks, and that on each trial of the experi-
ment they would see a bar graph presented on the computer screen.
They were told that the bar represented the result of a hypothetical
medical test that was predictive of two possible diseases, and their
job was to try to diagnose the patient on the basis of this test result
(i.e., the height of the bar). The observers were told that each trial
represented the test result for a new patient, and that they would
earn a certain number of points for each trial depending on how
they responded. They were instructed to try to maximize their point
total over the course of the experiment, as this would determine
their monetary compensation.

The order of presentation for the 16 experimental conditions was
determined by Latin square, and observers completed one experi-
mental condition during each daily session. To teach observers the
category distributions prior to each experimental manipulation, as
well as to minimize carryover effects, each experimental condition

was preceded by the completion of a minimum of 60 baseline tri-
als, where category costs and benefits were unbiased (i.e., VaA � 2,
VbB � 2). After observers had completed 60 baseline trials, perfor-
mance was examined. If the observer reached an accuracy-based
performance criterion (response accuracy not more than 2% below
optimal), then those 60 trials were fit by two decision bound mod-
els (see Maddox & Bohil, 1998, for details). The optimal decision
criterion model assumed that the observer used the optimal deci-
sion criterion (i.e., βo � 1) in the presence of perceptual and crite-
rial noise (Ashby, 1992b), whereas the free decision criterion model
estimated the observer’s decision criterion, along with perceptual
and criterial noise, from the data. Because the optimal decision cri-
terion model is a special case of the free decision criterion model,
likelihood ratio tests were used to determine whether the extra flex-
ibility of the free decision criterion model provided a significant
improvement in fit. If the free decision criterion model did not pro-
vide a significant improvement in fit over the optimal decision cri-
terion model, then the observer was allowed to begin the experi-
mental condition. If the free decision criterion model did provide a
significant improvement in fit, then the observer completed 10 ad-
ditional trials, and the same accuracy- and model-based criteria
were applied to the most recent 60 trials (i.e., Trials 11–70). This
procedure continued until the observer reached the appropriate cri-

Figure 5. Nested relationship among the decision bound models applied simultaneously to the data from all ex-
perimental conditions. Each arrow points to a more general model. The number denotes the number of free pa-
rameters necessary to fit the model to a single block of trials.

Table 1
Category Payoff Matrix Entries, Points, Accuracy, and Optimal 

Decision Criterion Value (Based on 120-Trial Blocks) for 
Each Experimental Condition

Payoff Matrix 
Entries

VaA VbB P(A) P(B) Points Accuracy βo

d′ � 1.0, Baseline 2 2 .50 .50 166 69.2 1
d′ � 1.0, 3:1 Payoff 3 1 .50 .50 186 61.0 3
d′ � 1.0, 3:1 Base rate 2 2 .75 .25 186 77.8 3
d′ � 2.2, Baseline 2 2 .50 .50 206 85.9 1
d′ � 2.2, 3:1 Payoff 3 1 .50 .50 212 82.9 3
d′ � 2.2, 3:1 Base rate 2 2 .75 .25 212 88.7 3
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terion. Including these baseline trials and this fairly conservative
accuracy- and model-based performance criterion ensured that each
observer had accurate knowledge of the category structures before
exposure to each experimental manipulation, and minimized the
possibility of within-observer carryover effects from one experi-
mental condition to the next. In addition, a different set of disease
(i.e., category) labels was used in each experimental condition.

A typical trial proceeded as follows. The stimulus was presented
on the screen and remained until a response was made. Observers
were instructed to categorize each stimulus by pressing the appro-
priate button on the keyboard. Five lines of feedback that stayed on
the screen until the observer pressed a key to move on to the next
patient followed each response in the immediate feedback condi-
tion. Figure 1 presents hypothetical feedback displays for optimal
classifier and objective classifier feedback under immediate feed-
back conditions. The top line of feedback indicated the disease pos-
sessed by the hypothetical patient (instead of the categorization re-
sponse, which is depicted in Figure 1 for illustrative purposes).
Fictitious disease names were used (e.g., “valinemia” or “brucel-
losis”), and a different pair of disease labels accompanied each ex-
perimental condition. The second line indicated the number of
points gained for the given response. In objective feedback condi-
tions, the third line displayed the potential gain for a (objectively)
correct response on the trial. In other words, if the observer’s re-
sponse was correct, based on a priori category membership, then
lines 2 and 3 of the feedback presented the same number of points.
If the observer’s response was incorrect, the third line showed what
could have been earned had a correct response been given. In opti-
mal classifier feedback conditions, however, the third line of feed-
back presented the number of points that the optimal classifier
earned. In this case, if the observer made an (objectively) incorrect
response (based on a priori category membership of the stimulus),
but gave the correct response in relation to the optimal criterion,
then both the observer and the optimal classifier would be incorrect
for that trial, and lines 2 and 3 would present the same number of
points gained or lost (Figure 1). The fourth line showed the number
of points that the observer had accumulated to that point in the ex-
perimental condition, and the fifth line showed the number of
points accrued by the objective or optimal classifier, depending on
feedback condition. In the delayed feedback conditions, the top line
of feedback was omitted. In addition, the remaining four lines of
feedback denoted aggregate performance over the five trials. There
was a 125-msec intertrial interval, during which the screen was
blank, between removal of the feedback and presentation of the next
stimulus. Observers were given a break every 60 trials.

Results and Theoretical Analysis
This section begins with an analysis of basic trends in

the signal detection theory decision criterion estimates
(Green & Swets, 1966) and point totals. We transformed
each of these measures into a deviation from optimal
score as follows:

deviation from optimal decision criterion

� k � ko

� ln(β ) /d′ � ln(βo)/d′

and

deviation from optimal points

�

These analyses will provide insights into the effects of
d′, objective versus optimal classifier feedback, and de-

layed versus immediate feedback on payoff and base-rate
decision criterion learning. They will also provide initial
tests of the COBRA, COBRM, and COBRE hypotheses
as they relate to the effects of objective versus optimal
classifier feedback on base-rate and payoff learning.
More rigorous tests will be introduced in the next sec-
tion, devoted to the model-based analyses.

Performance Trends
A 2 d′ (1.0 vs. 2.2) � 2 feedback condition (objective

vs. optimal classifier feedback) � 2 base-rate/payoff
condition (3:1 payoff vs. 3:1 base rate) � 2 delay condi-
tion (immediate vs. delay) � 4 block within-observers
ANOVA was conducted in the deviation from optimal
decision criterion and deviation from optimal point mea-
sures. The most important results are displayed graphi-
cally in Figure 6, with the left-hand column of plots dis-
playing the k � ko results, and the right-hand column of
plots displaying the deviation from optimal point results.
The deviation from optimal decision criterion values for
each participant in each of the 16 experimental condi-
tions (averaged across blocks) are displayed in Table 2.

The most important finding was a significant inter-
action for both k � ko and points between objective ver-
sus optimal classifier feedback and base-rate/payoff con-
dition [k � ko, F(1,4) � 64.28, MSe � .023, p � .001;
points, F(1,4) � 21.61, MSe � .001, p � .01]. This inter-
action is depicted in the top two panels of Figure 6. Post
hoc analyses revealed a significant feedback effect in the
payoff condition [k � ko, t(4) � 2.46, p � .07; points,
t(4) � 3.83, p � .05], suggesting better decision crite-
rion learning with optimal relative to objective classifier
feedback, that was nonsignificant in the base-rate con-
dition [k � ko, t � 1; points, t(4) � 1.31, p � .05]. These
results support the COBRA hypothesis that optimal clas-
sifier feedback helps the observer focus more attention
on reward maximization than on accuracy maximization.
They provide less support for the COBRM and COBRE
hypotheses, since both of these predict better payoff and
base-rate learning with optimal classifier feedback. Even
so, the more rigorous test of these hypotheses awaits the
model-based analyses.

The interaction between d′ and base-rate/payoff con-
dition was significant for both measures [k � ko, F(1,4) �
10.57, MSe � .121, p � .05; points, F(1,4) � 61.27,
MSe � .001, p � .001] and is depicted in middle two
panels of Figure 6. Post hoc analyses suggested that the
effect of d′ was greater in the payoff condition than in
the base-rate condition. No other interactions were found
to be significant. Several main effects were significant.
In support of the flat-maxima hypothesis, the main ef-
fect of d′ was signif icant [k � ko, F(1,4) � 110.58,
MSe � .166, p � .001; points, F(1,4) � 20.01, MSe �
.012, p � .05], resulting in better performance for d′ �
2.2 (k � ko � �.41; points � �.06) than for d′ � 1.0
(k � ko � �.88; points � �.12). For both measures, the
main effect of delay was significant [k � ko, F(1,4) �
16.47, MSe � .901, p � .05; points, F(1,4) � 13.32,
MSe � .019, p � .05], resulting in worse decision crite-

(observed points 2 optimal points)
optimal points

.
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rion learning when feedback was delayed (see the bot-
tom two panels of Figure 6). This factor did not interact
with any other variables, suggesting that this deficit in
learning was a general effect. The main effect of block
was also significant [k � ko, F(3,12) � 9.82, MSe �
.082, p � .001; points, F(3,12) � 4.23, MSe � .003, p �
.05], suggesting a gradual performance improvement
with experience. The objective versus optimal classifier
feedback main effect was significant for the point mea-
sure [F(1,4) � 8.42, MSe � .008, p � .05], suggesting
better decision criterion learning with optimal classifier
(�.07) relative to objective classifier feedback (�.10),
but was not significant for the k � ko measure (F � 1).

Before turning to the model-based analyses, we report
on one additional analysis. For each participant in each
d′ and delayed feedback condition, we determined whether
the decision criterion, k, and the point total were closer
to optimal with optimal classifier feedback than with ob-
jective classifier feedback. Table 3 displays the propor-
tion of times that each measure was closer to optimal

when feedback was based on the optimal classifier (col-
lapsed across d′, delay, and observer) separately for the
3:1 payoff and 3:1 base-rate conditions and separately
for each of the four blocks of trials. If COBRA is correct,
and optimal classifier feedback helps the observer to
focus more on reward maximization and less on accu-
racy maximization, then it should be the case that the de-
cision criterion and point measures will be consistently
closer to optimal with feedback based on the optimal
classifier in the 3:1 payoff condition, but not in the 3:1
base-rate condition. On the other hand, both COBRM
and COBRE predict that optimal classif ier feedback
should lead to more nearly optimal decision criteria and
point totals in both the 3:1 payoff and 3:1 base-rate con-
ditions. The results support COBRA. In the 3:1 payoff
condition, the decision criterion measure was closer to
optimal 75% of the time, and the point measure was
closer to optimal 68% of the time, with feedback based
on the optimal classifier. On the other hand, in the 3:1
base-rate condition, the decision criterion measure was

Figure 6. Average deviation from optimal decision criterion (left column) and average deviation from optimal points (right
column) for the (top row) interaction between objective versus optimal classifier feedback and base-rate versus payoff condi-
tion, (middle row) interaction between d′ and base-rate versus payoff condition, and (bottom row) delay effect. Standard error
bars are included.
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closer to optimal 48% of the time, and the point measure
was closer to optimal 53% of the time with feedback
based on the optimal classifier.

These analyses provide good initial support for the
COBRA hypothesis that optimal classifier feedback will
improve performance relative to objective classifier feed-
back in the 3:1 payoff, but not in the 3:1 base-rate con-
dition. They also suggest that delayed feedback led to a
general performance decrement that did not interact with
any other factor (e.g., d′, base-rate/payoff condition, etc.).
We turn now to the model-based analyses that more rig-
orously compare the COBRA, COBRM, and COBRE hy-
potheses, and determine whether delayed feedback led
to a general or specific performance deficit.

Model-Based Analyses
Each of the five models displayed in Figure 5 was fit

under the COBRA, COBRM, and COBRE assumptions,
for a total of 15 models. Each model was applied simul-
taneously to the data from all 16 experimental conditions
separately for each block and observer. Maximum like-
lihood procedures were used to estimate the parameters
from each model, as they have a number of advantages
over other estimation procedures (see Ashby, 1992b;
Wickens, 1982, for details). Because the models were

applied separately to each block of trials, we could iden-
tify the model with the fewest free parameters that could
not be improved upon (statistically) by a more general
model, referred to as the most parsimonious model, for
each observer in each block. However, our interest was
in identifying the most parsimonious model overall for
each observer. Since decision criterion shifts across tri-
als are likely large early in learning, but are much smaller
later in learning and during the test block, we decided to
determine the most parsimonious model from the final
training block and test block. Thus, the most parsimo-
nious model was determined from the fit of each model
summed over the last two blocks. (Using the cumulative
fit across all four blocks did not change the pattern of re-
sults.) Even so, we do examine the parameter values sep-
arately by block to better characterize decision criterion
changes with experience.

We took a two-pronged approach to the model-based
analyses. First, we used a combination of likelihood ratio
(G2) tests (when the models were nested) and Akaike’s
AIC criterion tests (Akaike, 1974; for comparing non-
nested models) to determine which of the five models in
Figure 5 provided the most parsimonious account of the
data when COBRA was assumed. We then repeated the
process for the COBRM and COBRE models. The aim

Table 2
Deviation From Optimal Decision Criterion (k � ko) for Each of the 16 Experimental Conditions 

and 5 Observers (Averaged Across Blocks)

Observer

1 2 3 4 5

d′ � 1.0 Immediate Objective 3:1 Base rate �0.84 �0.58 �0.47 �0.86 �0.59
3:1 Payoff �1.25 �0.68 �0.27 �1.10 �0.69

Optimal 3:1 Base rate �0.47 �0.14 �0.41 �0.33 �0.75
3:1 Payoff �0.44 �0.29 �0.52 �0.88 �0.65

Delay Objective 3:1 Base rate �1.34 �0.63 �1.16 �0.12 �1.50
3:1 Payoff �1.27 �2.14 �1.69 �1.04 �1.48

Optimal 3:1 Base rate �1.42 �0.98 �0.91 �0.90 �1.39
3:1 Payoff �0.85 �0.70 �1.42 �0.96 �1.27

d′ � 2.2 Immediate Objective 3:1 Base rate �0.60 �0.16 �0.06 �0.18 �0.01
3:1 Payoff �0.21 �0.33 �0.37 �0.46 �0.38

Optimal 3:1 Base rate �0.49 �0.06 �0.41 �0.21 �0.10
3:1 Payoff �0.09 �0.30 0.00 �0.28 �0.26

Delay Objective 3:1 Base rate �0.46 �0.61 �0.16 �0.74 �0.60
3:1 Payoff 0.28 �0.87 �0.65 �0.72 �0.32

Optimal 3:1 Base rate �1.24 �0.23 �0.52 �0.23 �1.65
3:1 Payoff �0.48 �0.72 �0.22 �0.32 �0.77

Table 3
Proportion of Time That Optimal Classifier Feedback Led to More Nearly
Optimal Performance Than Objective Classifier Feedback (Across d′ and

Delay Condition) for the k � ko and Deviation From Optimal Point Measures

Block

Measure Condition 1 2 3 4 Average

k � ko 3:1 Payoff .75 .85 .70 .70 .75
3:1 Base rate .45 .50 .55 .40 .48

Dev. Opt. 3:1 Payoff .65 .85 .60 .60 .68
Points 3:1 Base rate .45 .55 .65 .45 .53
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here was to determine whether there was some conver-
gence across COBRA, COBRM, and COBRE variants
regarding the steepness and weight parameter assump-
tions that provided the best fit to the data. Second, we
compared the fits of the COBRA, COBRM, and COBRE
models directly to determine which hypothesis best ac-
counts for the effect of optimal versus objective classi-
fier feedback on payoff and base-rate learning.

Best-fitting hybrid model assumptions for COBRA,
COBRM, and COBRE. The first step was to determine
the best fitting of the four hybrid models with one steep-
ness parameter that assumed the COBRA hypothesis. On
the basis of the likelihood ratio (G2) tests of the maxi-
mum likelihood fit values (with α� .05), the hybrid(stp;
w) model provided the best account of the data from Ob-
server 1, the hybrid(stp; wOptimal; wObjective) model pro-
vided the best account of the data from Observer 4, and
the hybrid(stp; wOptimal/Immediate; wObjective/Immediate; wOptimal/

Delay; wObjective/Delay) model provided the best account of
the data from Observers 2, 3, and 5. Next we compared
the f it of the hybrid model with separate steepness 
parameters from the immediate and delayed feedback
conditions [i.e., the hybrid(stpImmediate; stpDelay; wOptimal; 
wObjective) model] with that of the best f itting single
steepness model using AIC. The results were clear. For
Observer 1, the hybrid(stp; w) model continued to pro-
vide the best account of the data, but for the remaining 
4 observers, the hybrid(stpImmediate; stpDelay; wOptimal; 
wObjective) model provided the best account of the data,
suggesting that the delay manipulation did slow learning
of the reward-maximizing decision criterion, whereas
the objective versus optimal classifier manipulation af-
fected the weight placed on accuracy maximization. It is
worth emphasizing that the hybrid(stpImmediate; stpDelay;
wOptimal; wObjective) model has fewer parameters than the
hybrid(stp; wOptimal/Immediate; wObjective/Immediate; wOptimal/

Delay; wObjective/Delay) model, and so it is not the case that
the most general model provides a consistently superior
account of the data. (In fact, for 4 of the 5 participants
the hybrid[stpImmediate; stpDelay; wOptimal; wObjective] model
with fewer free parameters is providing the better ab-
solute fit of the data based on � lnL.) This is important
because it suggests that the models are capturing mean-
ingful trends in the data and are not just overfitting the
data.

The same approach was taken with the COBRM mod-
els, and we found that the hybrid(stp; wOptimal/Immediate;
wObjective/Immediate; wOptimal/Delay; wObjective/Delay) model pro-
vided the best account of the data from Observers 3, and
5, and the hybrid(stpImmediate; stpDelay; wOptimal; wObjective)
model provided the best account of the data from Ob-
servers 1, 2, and 4. Finally, assuming COBRE, we found
that the hybrid(stpImmediate; stpDelay; wOptimal; wObjective)
model provided the best account of the data from Ob-
servers 1, 2, 3, and 5, and the hybrid(stp; wOptimal/Immediate;
wObjective/Immediate; wOptimal/Delay; wObjective/Delay) model pro-
vided the best account of the data from Observer 4.

Taken together, there was reasonable convergence
across COBRA, COBRM, and COBRE models for the as-
sumption that objective and optimal classifier feedback
affects the weight placed on accuracy, probability match-
ing, or equal response frequencies, and delayed feedback
affects the speed with which the reward-maximizing 
decision criterion is learned. Next we directly compare
the COBRA,COBRM, and COBRE variants of the hy-
brid(stpImmediate; stpDelay; wOptimal; wObjective) model.

Comparison of COBRA, COBRM, and COBRE
variants of the hybrid(stpImmediate; stpDelay; wOptimal;
wObjective) model. Because the three variants have the
same number of parameters, we compared the fits di-
rectly. The results were clear. The COBRA variant pro-
vided the best account of the data from Observers 1, 2,
4, and 5, and the COBRM version provided the best ac-
count of the data from Observer 3. The absolute fit of
the COBRA model was quite good, accounting for
83%–92% of the responses in the data from the 5 ob-
servers. This result converges with that from the ANOVAs
in suggesting that the effect of optimal versus objective
classifier feedback interacts with base-rate/payoff con-
dition and that delayed feedback led to a general decline
in decision criterion learning.

To determine how the observer’s estimate of the re-
ward-maximizing decision criterion was affected by the
delayed feedback manipulation and to determine how
these values changed across blocks, we examined the
steepness parameters from the COBRA version of the
hybrid(stpImmediate; stpDelay; wOptimal; wObjective) model.
These values are displayed in Figure 7a. To determine
the magnitude of the weight placed on accuracy, how it
was affected by the nature of the feedback, and how it
changed across blocks, we examined the accuracy weight,
w, parameters from the same model. These values are
displayed in Figure 7b. A 2 delay type (immediate vs.
delay) � 4 block ANOVA revealed a main effect of delay
type [F(1,4) � 36.55, p � .01], suggesting better reward-
maximizing decision criterion learning in the immediate
feedback condition, and a main effect of block [F(3,12) �
9.50, p � .01], suggesting learning with experience. The
interaction was also significant [F(3,12) � 3.89, p �
.05] and suggested a faster learning rate in the delayed
feedback condition. Note, though, that initial reward-
maximizing decision criterion learning in the immediate
feedback condition is much better and then reaches ceil-
ing in the second block of trials; thus it is likely not the
case that delayed feedback leads to a faster rate of learn-
ing, but rather that immediate feedback quickly led to
nearly optimal decision criterion learning. A 2 feedback
type (objective classif ier vs. optimal classif ier) � 4
blocks ANOVA was conducted on the accuracy weight
values. Neither main effect was significant [feedback,
F(1,4) � 2.81, p � .05; block, F � 1], but the interaction
was [F(3,12) � 3.70, p � .05]. The most important find-
ing is that the weight placed on accuracy was much
lower, with optimal classifier feedback leading to better
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decision criterion learning. Interestingly, additional
training beyond the first block had little effect on the ac-
curacy weight in either feedback condition.

Before concluding, we compare the decision criterion
values predicted from the COBRA, COBRM, and COBRE
variants of the hybrid(stpImmediate; stpDelay; wOptimal; 
wObjective) model with those observed in the experiment.
This comparison might provide some insight into the
successes and failures of the different model variants.
Because the main result of interest was the interaction
between objective versus optimal classifier feedback and
base-rate versus payoff condition on decision criterion
estimates, we compared the k � ko values from the three
model variants with those generated from the data. These
values (averaged across observers and blocks) are plot-
ted in the four panels of Figure 8. Several comments are
in order. First, notice that only the COBRA variant pre-
dicts the large effect of objective versus optimal classi-
fier feedback on decision criterion learning in the payoff
condition observed in the data, and predicts no effect of
objective versus optimal classifier feedback on decision
criterion learning in the base-rate condition (although
the model predicts better decision criterion learning than

was observed in the data). Second, notice that the COBRM
variant predicts a small effect of objective versus optimal
classifier feedback on decision criterion learning in the
payoff condition, but the magnitude of the effect is too
small. In addition, as expected from an examination of
Figure 4, the model predicts a similarly small effect of
objective versus optimal classifier feedback on decision
criterion learning in the base-rate condition that is not
observed in the data. This variant also underpredicts the
magnitude of the base-rate decision criterion learning
deficit. Third, the COBRE model predicts no effect of
objective versus optimal classifier feedback on decision
criterion learning in either condition. This latter effect is
somewhat surprising given the fact that the equal re-
sponse frequency decision criterion is quite different
from the reward-maximizing decision criterion in both
conditions (see Figure 4). An examination of the w pa-
rameter estimates from the model provides an explana-
tion for this result. These values are provided in Table 4
for the COBRE variant and for the COBRA and COBRM
variants. Notice that the weight placed on equal response
frequency was nearly zero for both types of feedback, in
essence negating the predicted effect of objective versus

Figure 7. (a) Steepness values, and (b) accuracy weight, w, values from the hy-
brid(stpImmediate; stpDelay; wOptimal; wObjective) model for the three training blocks and the
test block averaged across observers. Standard error bars are included.
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optimal classifier feedback on decision criterion learn-
ing in base-rate and payoff conditions, leading to nearly
equivalent predicted decision criterion values in all four
conditions. This pattern most likely resulted because the
model was faced with the task of predicting a pattern of
results—optimal classifier feedback better than objec-
tive classifier feedback in payoff but not base-rate con-
dition—that cannot be predicted by this model since the
equal response frequency decision criterion was very
different from the reward-maximizing decision criterion
in both payoff and base-rate conditions. The COBRM
model predicted a more reasonable pattern of results be-
cause it can predict a smaller effect of optimal classifier
feedback in the base-rate condition than in the payoff
condition because the probability-matching decision cri-
terion is more similar to the reward-maximizing decision
criterion in the base-rate than in the payoff condition.
Even so, with reasonable weight placed on probability
matching, the model is constrained to predict better de-
cision criterion learning for optimal classifier feedback
in both payoff and base-rate conditions, albeit a smaller
effect for base rates.

GENERAL DISCUSSION

The overriding goal of the present research was (1) to
obtain a more thorough understanding of the mecha-
nisms underlying decision criterion learning differences
observed in unequal base-rate and payoff conditions and

(2) to determine whether optimal classifier feedback,
which has been found to improve decision criterion in
payoff conditions, improves decision criterion learning
in base-rate conditions. Single-process models such as
those based on reward maximization, probability match-
ing, or accuracy maximization have been offered in the
literature to account for decision criterion learning under
unequal base-rate and payoff conditions (e.g., Green &
Swets, 1966; Healy & Kubovy, 1981; Maddox & Bohil,
1998). Each has had some limited success but provide
inadequate accounts of the body of decision criterion
learning data (see Maddox, 2002, for a review). One
dual-process model has received some support. It assumes
that decision criterion learning involves a competition
between reward and accuracy maximization (COBRA).
The present research compares the dual-process COBRA
model with equivalent models that instantiate a competi-
tion between reward and probability matching (COBRM)
and a competition between reward and equal response
frequencies (COBRE). To achieve this goal, we com-
pared goodness-of-fit across the three models, but more
importantly, we included an experimental manipulation
that provides a critical test of the three hypotheses by
comparing decision criterion learning with objective
versus optimal classifier feedback under unequal base-
rate conditions.

Two previous studies (Bohil & Maddox, 2003; Mad-
dox & Bohil, 2001) examined the effects of optimal ver-
sus objective classifier feedback on decision criterion
learning when payoffs were unequal and found that op-
timal classifier feedback led to better decision criterion
learning. Good accounts of the data were provided by
COBRA and suggested that optimal classifier feedback
reduced the weight placed on accuracy maximization,
leading to more nearly optimal decision criterion learn-
ing. Unfortunately, COBRM and COBRE make identical
predictions because the accuracy maximizing, probabil-

Table 4
Weight Parameter From the COBRA, COBRM, and COBRE
Versions of the Hybrid(stpImmediate; stpDelay; wOptimal; wObjective)

Model Averaged Across Block and Observer

COBRA COBRM COBRE

Objective .60 .52 .26
Optimal .35 .33 .19

Figure 8. Deviation from optimal decision criterion for the interaction between objective versus optimal clas-
sifier feedback from the observed data, and the COBRA, COBRM, and COBRE versions of the hybrid(stpImme-

diate; stpDelay; wOptimal; wObjective) model averaged across observers and blocks.
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ity matching, and equal response frequency decision cri-
teria are identical. However, the same nonidentifiability
does not hold in unequal base-rate conditions. Because
the reward- and accuracy-maximizing decision criteria
are identical when base rates are unequal, COBRA pre-
dicts no effect of optimal classifier feedback on decision
criterion learning, whereas both COBRM and COBRE
predict an effect. In support of COBRA, optimal classi-
fier feedback had a large effect on decision criterion
learning in the payoff condition, but had no effect in the
base-rate condition relative to objective classifier feed-
back. This result was supported by analyses of the point
totals and signal detection theory decision criterion esti-
mates, as well as by rigorous model-based analyses. The
model parameters suggested that observers placed less
weight on accuracy maximization when feedback was
based on the optimal classifier. The COBRM model pro-
vided a reasonable account of the data, but underpre-
dicted the performance advantage for optimal classifier
feedback in the payoff condition and predicted an effect
for the base-rate condition that was not observed in the
data. The COBRE model provided the worst account of
the data. In fact, the model predicted no effect of optimal
classifier feedback on payoff or base-rate decision crite-
rion learning and did not predict the robust finding of
better decision criterion learning in base-rate relative to
payoff conditions. Only COBRA predicted the overall
pattern of decision criterion placement across objective
versus optimal classifier feedback and base-rate versus
payoff conditions.

Delayed Feedback
This study also examined the effects of delayed feed-

back on decision criterion learning. In the immediate
feedback condition, observers received feedback on each
trial. In the delayed feedback condition, observers re-
ceived feedback on every fifth trial, and this feedback
provided information about aggregate performance over
those five trials. Maddox and Bohil (2001) speculated
that delayed feedback might have an effect similar to that
of optimal classifier feedback by leading the observer to
focus less on accuracy maximization and more on reward
maximization. This hypothesis was strongly rejected by
the present data. In fact, delayed feedback led to consis-
tently worse performance across all conditions than did
immediate feedback. This effect was best modeled by as-
suming that delayed feedback slowed the learning of the
reward-maximizing decision criterion and did not affect
the weight placed on accuracy. Future research might ex-
amine shorter trial delays (e.g., every other trial) or tem-
poral delays.

Training Implications
This work has implications for many real-world prob-

lems, in particular for training situations. In line with the
results from Bohil and Maddox (2003), the present find-
ings suggest that decision makers place importance on
accuracy maximization and that they are often unwilling

to make the accuracy sacrifice necessary to maximize re-
ward, and that this unwillingness is increased when the
feedback emphasizes the accuracy of one’s responding
(objective classifier feedback). Beyond this, the present
findings suggest that the nature of the feedback is not
relevant to training when only base rates are manipulated
since there is effectively no competition between reward
and accuracy maximization. It is important to develop
training procedures that reduce decision makers’ em-
phasis on accuracy maximization when payoffs are being
trained, but not when base rates are being trained. Train-
ing procedures based on the behavior of the optimal clas-
sifier, or possibly other desired classifiers, offer a promis-
ing approach.

Summary
In conclusion, the present study examined the effects

of optimal versus objective classifier feedback on deci-
sion criterion learning when payoffs and base rates were
manipulated, and provided a critical test of the COBRA
hypothesis. The results suggest that the performance ad-
vantage observed for optimal classifier feedback relative
to objective classifier feedback is specific only to un-
equal payoff conditions, where a sacrifice in accuracy
maximization is necessary to maximize reward and does
not result when base rates are unequal. This finding sup-
ports the COBRA hypothesis over COBRM or COBRE.
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NOTES

1. The idea of a competition between different goals or motivations
is not new. Related ideas have been gaining support in the category-
learning literature (Ashby, Alfonso-Reese, Turken, & Waldron, 1998;
Erickson & Kruschke, 1998; Pickering, 1997; Reber & Squire, 1994;
Smith, Patalano, & Jonides, 1998); this idea is similar in spirit to some
of the effort-accuracy models of choice processing (Bettman, Johnson,
Luce, & Payne, 1993; Russo & Dosher, 1983).

2. In a recent article that focused on tests of base-rate/payoff decision
criterion learning independence, we provided a preliminary test of
COBRA and COBRM and found mixed support for both (Maddox &
Bohil, 2004). However, this article did not introduce an experimental
manipulation that provided a critical test of these two hypotheses.
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