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This article examines people’s ability to learn cate-
gories by induction over exemplars, and in particular,
how the diversity of training exemplars affects the rate
of learning, the pattern of generalization, and the ability
to distinguish new exemplars from old ones. Although
we focus on perceptual categories, the relevance of di-
versity to generalization applies widely to people’s abil-
ity to infer properties of things as in, for example, in-
ductive inference or conceptual reasoning, as well as
perceptual classification. In normative terms, diverse ev-
idence gives rise to stronger inductive arguments. This
diversity principle has been emphasized in the philoso-
phy of science (for a recent discussion, see, e.g., Wayne,
1995), and considerable experimental work has exam-
ined the extent to which it is adhered to in everyday judg-
ments by both adults (e.g., Osherson, Smith, Wilkie,
Lopez & Shafir, 1990) and children (for a recent discus-
sion, see, e.g., Heit & Hahn, 2001). With respect to se-
mantic concepts, some categories are cognitively favored
over others. An issue that has provoked much discussion
is the extent to which the “coherence” of categories relies
on similarities and is degraded by diversity (cf. Barsalou,
1983; Corter & Gluck, 1992; Hahn & Ramscar, 2001;
Jones, 1983; Murphy & Medin, 1985; Rosch, Mervis,
Gray, Johnson & Boyes-Braem, 1976). However, the rel-
evance of diversity to perceptual categories is uncontro-
versial. Studies of perceptual categories have shown that

even infants are sensitive to category variability (e.g.,
Mareschal, French, & Quinn, 2000; Quinn, Eimas, &
Rosenkrantz, 1993; Younger, 1985). Many studies of adults
(reviewed below) have similarly found that diversity influ-
ences category processing. The nature of that influence re-
mains unclear.

We can distinguish several fundamental mechanisms
by which diversity might influence category processing.
First, individual item similarities could produce diversity
effects. With respect to generalization, if one has en-
countered a wide range of examples in the past, a novelty
selected at random from a wide range of possibilities is
more likely to be similar to something familiar than if
one has only a narrow base of highly similar experiences
on which to draw. Alternatively, there could be general
effects of diversity that are independent of individual
item similarities. For example, category boundaries might
be shifted away from diverse categories, or similarity re-
lations among stimuli might be normalized according to
the amount of variability among the stimuli.

Our aim in this article is to distinguish among these
different mechanisms and to determine the extent to
which variability gives rise to general changes in how
categories are processed. To assess the generality of di-
versity effects across tasks, we examine category learn-
ing, generalization, and memory for category members.
We also assess the generality of diversity effects across
the stimulus space from the outer edges of our categories
to their centers and their boundaries.

Category Learning
Several studies have reported that more-variable cate-

gories are harder to acquire than less-variable categories
(Fried & Holyoak, 1984; Homa & Vosburgh, 1976; Pe-
terson, Meagher, Chait, & Gillie, 1973; Posner, Gold-
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In this study, we examined the effect of within-category diversity on people’s ability to learn per-
ceptual categories, their inclination to generalize categories to novel items, and their ability to distin-
guish new items from old. After learning to distinguish a control category from an experimental cate-
gory that was either clustered or diverse, participants performed a test of category generalization or
old–new recognition. Diversity made learning more difficult, increased generalization to novel items
outside the range of training items, and made it difficult to distinguish such novel items from familiar
ones. Regression analyses using the generalized context model suggested that the results could be ex-
plained in terms of similarities between old and new items combined with a rescaling of the similarity
space that varied according to the diversity of the training items. Participants who learned the diverse
category were less sensitive to psychological distance than were the participants who learned a more
clustered category.
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smith, & Welton, 1967; Posner & Keele, 1968). How-
ever, some of these studies are open to alternative inter-
pretations, so the evidence that diversity affects category
learning is less overwhelming than it first appears. In the
studies by Posner and colleagues, involving random dis-
tortions of prototype images, stimulus variability is con-
founded with recognizability—participants in the low-
variability condition, but not the high-variability condition,
recognized three out of four category prototypes as famil-
iar shapes (a triangle, an “M,” and an “F”). Although the
Posner studies are therefore unconvincing as evidence that
more-variable categories are harder to learn, two subse-
quent studies found differences in learnability due to ex-
emplar diversity even when prototype images were random
dot patterns rather than familiar images (Homa & Vos-
burgh, 1976; Peterson et al., 1973).

The only other study demonstrating an effect of di-
versity on category learning, Fried and Holyoak (1984),
used random checkerboard patterns as prototypes and
created exemplars of each category by randomly invert-
ing the color of some squares relative to the prototype.
Diverse categories (with many squares inverted relative
to the prototypes) were harder to learn than less-variable
categories (with fewer squares inverted). As Stewart and
Chater (2002) point out, the probability that a sizable
chunk of a checkerboard pattern remains constant is
higher among less-diverse patterns than among those
with more variability. Therefore, if discrimination be-

tween checkerboard categories relies on chunks common
to stimuli in the same category (McLaren, 1997; Palmeri
& Nosofsky, 2001), Fried and Holyoak’s effect of diver-
sity suggests that it is easier to abstract a few large fea-
tures from less-diverse patterns than a larger number of
small features from more-diverse patterns. A similar in-
terpretation applies to the results discussed above in-
volving distorted dot patterns.

If this explanation is correct—that learning difficulty
is determined solely by the number of features required
to distinguish the target categories—variability within a
fixed number of features should not affect learnability.
The categories in our study have been designed to test this
prediction. They are distinguished by their locations rel-
ative to two obvious, continuous perceptual dimensions;
the stimuli are not composed of numerous component
parts that could be aggregated into abstract features or in-
variant chunks.

Generalization to Novel Instances
How does diversity during category learning affect the

subsequent classification of novel items? Many studies
have shown that generalization is affected by the diver-
sity of category members, but the effect of diversity ap-
pears to vary with the location of test items relative to
the category prototypes. Far away from a prototype, the
diversity of previously seen category members has a pos-
itive effect on generalization of that category. This has

Figure 1. Training stimuli for the clustered and diverse versions of the ex-
perimental category and for the control category.
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been shown both for items near the boundary between
categories (Cohen, Nosofsky, & Zaki, 2001; Fried &
Holyoak, 1984; Rips, 1989; for examples of boundary
items, see Figure 2, items A, I, and G) and for peripheral
items on the outer fringes of previously seen exemplars
(Flannagan, Fried & Holyoak, 1986; Fried & Holyoak,
1984; Homa & Vosburgh, 1976; Posner & Keele, 1968;
for examples of peripheral items, see Figure 2, items D,
E, and F). In contrast, category diversity has a negative
effect on generalization in the vicinity of the prototype

(Flannagan et al., 1986; Fried & Holyoak, 1984; Homa
& Vosburgh, 1976).1 A noteworthy exception to the gen-
eral pattern was reported by Peterson et al. (1973), who
observed negative effects of category diversity on gen-
eralization across a wide range of distances from cate-
gory prototypes. However, the criterion-learning task
used by Peterson et al. meant that participants learning
higher diversity categories received more training than
did those learning lower diversity categories. This dif-
ference in amount of training could explain the uni-

Figure 2. Positions of training stimuli (marked by labeled dots) within the parameter space defined by
head area and stem height. One group of participants learned to distinguish the control category from the
clustered category XC (A), and the other group learned to distinguish the same control category from the
diverse category XD (B). Category prototypes (not seen during training) are indicated by stars, and a lin-
ear category boundary is shown as a dashed line midway between the prototypes.

Figure 3. Positions of novel test items (marked by asterisks) and training items (dots) within the head
area and stem height parameter space, for participants in the clustered category condition (A) and the di-
verse category condition (B).
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formly negative effects of diversity observed by Peter-
son et al. (cf. Flannagan et al., 1986).

In summary, the effect of diversity on generalization
seems to vary, so that results for boundary items do not
necessarily carry over to central items, or to peripheral
items, and so on. One possibility is that these various ef-
fects simply reflect differences in item similarities. Ex-
emplars of a diverse category are, on average, more dis-
tant from the category prototype (see Figure 3), which
could account for a negative effect on generalization to
a previously unseen prototype. At the same time, these
exemplars are closer to the category boundary and also
to fixed peripheral items, which could account for a pos-
itive effect on generalization. Are there any effects of di-
versity above and beyond item similarities, and if so, are
these effects the same across the stimulus space? Some
studies have controlled or factored out item similarities
(Cohen et al., 2001; Posner & Keele, 1968; Rips, 1989;
Stewart & Chater, 2002; but see the discussion in E. E.
Smith & Sloman, 1994, and Nosofsky & Johansen, 2000),
and some have examined generalization right across the
stimulus space (Flannagan et al., 1986; Fried &
Holyoak,1984; Homa & Vosburgh, 1976; Peterson et al.,
1973). However, no study has done both. Our study was
designed to test for general effects of diversity after item
similarities were factored out, while probing generaliza-
tion across boundary, central, and peripheral items.

We also aimed to distinguish between two basic mech-
anisms that might alter generalization in response to
variability. First, response biases (i.e., a basic tendency
to favor one response category over another) might form
in the classification decision process in favor of more-
variable categories (Ashby & Maddox, 1990; Cohen
et al., 2001; see also Stewart & Chater, 2002). Second,
similarity comparisons might be rescaled or normalized
by the amount of variability observed within the relevant
categories, altering the perception of distance in the rel-
evant stimulus space. Thus, if we did observe a general
effect of variability, our analyses were designed to dis-
tinguish whether the effect was mediated by a response
bias or some form of rescaling.

Memory for Instances
How does diversity during category learning affect

our ability to distinguish new instances from old? Al-
though some theorists maintain that categorization does
not rely on memory for specific exemplars, no one denies
that exemplars experienced during category-learning
tasks normally form traces in (episodic) memory. Are
those memory traces affected by the diversity of items
experienced during learning? The mechanisms of re-
sponse bias and rescaling, discussed above in relation to
generalization, may also be relevant to instance memory.
Empirically, we are aware of only one study that has ex-
amined the effect of diversity in a category-learning task
on subsequent recognition memory. Neumann (1977)
trained people on a single category, then asked them to
rate the familiarity of novel items (“How certain are you

that you saw this during training?”). Responses varied de-
pending on the distribution of training items. This result
showed that the perceived familiarity of new items was af-
fected by the diversity of items in the training category.
However, it is likely that some or all of the effect observed
by Neumann reflected item similarities, so it is not clear
whether more general effects of diversity were involved.

OVERVIEW OF THE PRESENT STUDY

The goal of our study was to test the effect of category
diversity on learning, generalization, and instance mem-
ory. Each participant in our study learned a control cat-
egory, which was the same for all participants, and an ex-
perimental category that was either clustered or diverse.
This design made it possible, in principle, to detect re-
sponse bias effects due to category diversity, and also to
distinguish between global rescaling across the whole
stimulus space and category-specific rescaling around
each category according to its own variability. The dis-
tance between category prototypes and between the
nearest exemplars of the control and experimental cate-
gories was the same for all participants, as was the
amount of training.

Our study used simple two-dimensional materials:
flowers that varied in stem height and head area, as
shown in Figure 1. These materials allowed us to manip-
ulate category variability without affecting the meaning-
fulness of the stimuli (cf. Peterson et al., 1973; Posner &
Keele, 1968). Also, with these materials we could plau-
sibly assume that people’s category representations
would be based on two perceptual dimensions (corre-
sponding closely to stem height and head area), which
made it possible to factor out effects of item similarity in
regression models. Some reassurance for the justifica-
tion of this assumption is provided by the fact that the
two dimensions are assigned equal weights in best-fit re-
gressions (see Appendixes A and B). Optimal classifi-
cation accuracy for our stimuli requires equal attention to
the dimensions of head area and stem height. If Cohen
et al. (2001) are correct that learners distribute attention
optimally, the equal weighting we observe lends credence
to a close correspondence between psychological and
physical dimensions for our stimuli.

Training
In a supervised classification training task, each par-

ticipant learned the control category (C) and an experi-
mental category (X ). All participants had the same num-
ber of training trials for all exemplars. This controlled
exemplar frequency, which can enhance generalization
(e.g., Nosofsky, 1988), but did not guarantee the same
level of category acquisition across both categories or
both groups as training to criterion performance would.
We manipulated the dispersion of training items around
the category X prototype, so that half the participants
learned a clustered category (XC) and half learned a di-
verse category (XD), as shown in Figure 2.
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If it is generally more difficult to learn highly variable
categories than to learn less variable ones, even when the
number of distinguishing features is held constant, par-
ticipants learning XD should make more errors, require
more training before achieving criterion performance,
and give slower responses than participants learning XC
(though previous studies have not assessed whether cate-
gory diversity affects response speed during learning).
Moreover, these effects might be either global, affecting
categories C and X equally, or category specific, affecting
only category X.

Generalization and Recognition
After the training task, each participant completed ei-

ther a generalization or old –new recognition task in-
volving the novel items shown in Figure 3. These include
the previously unseen category prototypes, internal
items within the region spanned by the training items,
boundary items that were equidistant from the two cate-
gory prototypes (on the dashed lines in Figures 2 and 3),
and peripheral items beyond the outermost training
items. In addition to the novel items, which were the
same for all participants, the generalization task in-
cluded some of the training items to reinforce category
diversity during the task. The recognition task included
all of the training items in addition to the novel ones.

Participants in the generalization task classified items
as members of category C, category X, or neither (as in
Peterson et al., 1973). The neither response provides par-
ticipants with an alternative to random guessing for pe-
ripheral items that may bear little resemblance to either
training category. The availability of a neither response
elicits up to 60% more information compared with a
two-alternative forced-choice task and reveals the struc-
ture of each category on the far side as well as near the
boundary between them. The ratio of C versus X re-
sponses should be unaffected by the availability of a nei-
ther response (Luce, 1959). To see this, suppose that with-
out neither responses a particular peripheral item is
classified in category C rather than X 9 out of 10 times.
With neither responses, suppose that 80% of the cate-
gory C responses for this item change to neither, along
with the same fraction of category X responses. The ratio
between C and X responses remains unchanged.

On the basis of item similarities and consistent with
previous results for items at various locations within the
stimulus space (e.g., Fried & Holyoak, 1984, and other
works discussed above), we predicted that, on novel
items far from the prototype, the diverse category, XD,
would generalize more than the clustered category, XC,
producing more category X responses to boundary items
and to peripheral items beyond the category X training
exemplars. For the prototype of the experimental cate-
gory, we predicted that the diverse category would gen-
eralize less, producing fewer category X responses to this
item than the clustered category would. Following Fried
and Holyoak, we also predicted that people who learned
the diverse category would give fewer neither responses

overall to novel items than would people who learned the
clustered category.

In the recognition task, participants classified each
item as old if they thought they had seen it during the
training task, or else new. There are virtually no relevant
previous studies from which to derive detailed predic-
tions, but if diversity of training items affects recogni-
tion, people who learned the diverse category should
produce more false alarms to novel items than people
who learned the clustered category.

To factor out differences in item similarities between
the two groups, we fit regression models that predicted
generalization and recognition responses to all test items
(old and new) on the basis of their similarities to the
training exemplars. Analyses tested whether category
diversity affected response biases and whether there
were either global or category-specific differences in
distance scaling. Our regression analyses were based on
the generalized context model (GCM; Nosofsky 1984,
1986; see also Medin & Schaffer, 1978). However, our
interest was not to test a particular theory of categoriza-
tion or recognition, but to test whether item similarities
alone were sufficient to explain any differences we ob-
served between groups. The GCM has a well-documented
capacity to model exemplar effects for perceptual classi-
fication stimuli such as ours, and it provides a powerful
analytical tool to test for effects above and beyond the in-
fluence of item similarities. Details of our adaptations of
the GCM are given in Appendixes A and B.

METHOD

Participants
The participants were 73 undergraduate psychology students who

received course credit for participating. All but six were female. The
participants were randomly assigned to one of two training condi-
tions, with 36 participants 18–24 years old (M � 19.44, SD � 1.27)
in the clustered category condition and 37 participants 18–31 years
old (M � 19.54, SD � 2.19) in the diverse condition. No color-blind
participants were recruited. After the training task, 41 participants
did the generalization task (20 and 21 participants from the clustered
and diverse conditions, respectively). The other 32 participants did
the recognition task (16 each from the two training conditions).

Stimuli
The training task used three sets of nine flowers, depicted in Fig-

ure 1, comprising exemplars of the control category, C, the clustered
category, XC, and the diverse category, XD. There were three variants
of each flower with different colors in the flower head. Figure 2
shows the locations of the training exemplars within the two-
dimensional space of stem height and head area. Categories XC and
XD had the same prototype, that is, the same stem height and head
area averaged across training exemplars. Apart from exemplar I,
which is the same in XC and XD, all other exemplars were closer to
the prototype in XC than in XD. Exemplars of the control category
corresponded to pairwise average coordinates of XC and XD exem-
plars, reflected across the diagonal category boundary shown as a
dashed line in Figure 2. Category C was therefore a mirror image av-
erage of XC and XD, with an intermediate level of diversity. Neither
stem height nor head area alone were sufficient to distinguish cate-
gory C from XC or XD—participants had to use both stimulus di-
mensions to accurately classify members of the two categories.
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Thirteen novel flowers, for the generalization and recognition
tasks, were located as in Figure 3. We included more peripheral
items for category X in anticipation of the diversity manipulation af-
fecting it more than category C. The novel items for category C oc-
cupied mirror image coordinates with respect to corresponding
items for category X. All 13 novel flowers were used in the general-
ization task, along with training exemplars A¢, D¢, F ¢, H ¢, and I ¢
from category C and the corresponding exemplars from either XC or
XD, as appropriate. The recognition task used the novel flowers, plus
the exemplars of category C and either XC or XD, as appropriate.

Three different flower head color schemes were used to create a
task-irrelevant dimension of variation, with three variants of each
flower. During training, each participant saw each flower the same
number of times in each color scheme. In the generalization and
recognition tasks, each flower occurred once in each color scheme.
In addition to reducing ceiling effects during training, the color
variations allowed us to probe recognition memory for each flower
three times (once in each color scheme), without actually present-
ing any specific stimulus more than once.

Procedure
The participants were tested individually in a quiet room. First,

the experimenter read instructions for the learning task aloud. The
participants were encouraged to respond quickly, but accurately. A
computer controlled by a SuperLab script presented stimuli on a
display screen and recorded the participants’ keypresses and laten-
cies. During training, the participants classified flowers into a
“gold” category (category C) and a “silver” category (category X )
by pressing keys labeled with an appropriately colored star. After
each response, the flower image was replaced with feedback saying
either CORRECT or INCORRECT for 500 msec before the next flower
was presented. There were 15 blocks of training trials, with each of
the 18 training flowers presented once per block in a different ran-
dom order. Random orders were matched across participants in the
two training conditions. Colors were randomized, but each flower
appeared five times in each color scheme. The participants had a
short break after every three blocks.

After training, each participant performed either the generaliza-
tion or old–new recognition task. Both tasks began with instruc-
tions read aloud by the experimenter. In the generalization task, the
participants classified flowers into the categories “gold,” “silver,”
or “neither” (a blue sticker marked the key for a neither response).
There were three blocks of generalization trials, with 13 novel flow-

ers and 10 old flowers in each. Colors were randomized, with each
flower appearing once in each color scheme. In the old–new recog-
nition task, the participants decided whether each flower had ap-
peared during the training task, and responded by pressing keys la-
beled old or new. There were three blocks of recognition trials, with
13 novel and 18 old flowers in each. Again, colors were random-
ized, with each flower appearing once in each color scheme. The
participants received no feedback during either the generalization
or recognition tasks. Random orders were matched across partici-
pants in the clustered and diverse training conditions. After each
classification or old–new response, the test flower was replaced
with the question “How confident are you?” and the participants
responded on a scale from 1 (low confidence) to 9 (high confi-
dence). The participants had the opportunity for a short break be-
tween each block.

RESULTS

Learning
The first block of trials was excluded from analysis,

because it would primarily reflect guessing. Participants
learning the diverse category generally made more er-
rors than those learning the clustered category, as shown
in Figure 4. Inferential tests were based on three mea-
sures of difficulty computed for each participant: the
first training block completed with no errors, the total
number of errors made, and the mean reaction time (RT)
for correct responses. Here and throughout, two-tailed
tests are reported, and significance is evaluated at an
alpha level of .05.

In computing the first error-free training block (from
2–15), two participants learning the clustered category
and 10 learning the diverse one did not achieve an error-
free block. These participants were assigned scores of
16. Scores for the first error-free block did not satisfy
parametric assumptions, so this variable was analyzed
separately from errors and RTs. Participants learning the
clustered category achieved their first error-free block
earlier in training [median � 4.0, IQR (interquartile
range) � 6.75] than did participants learning the diverse

Figure 4. Fraction of error responses during category learning, as a function
of training group (clustered or diverse), category (C or X), and block of training.



CATEGORY DIVERSITY 295

category (median � 9.0, IQR � 12.0). This difference
was significant in a Mann–Whitney test (U � 446.0,
n1 � 36, n2 � 37, p � .014).

The total numbers of errors were computed separately
for the control and experimental categories, and a square
root transform was applied to the totals for each partici-
pant to reduce skewness, kurtosis, and heterogeneity of
variance. The mean root errors were 2.62 and 2.77 for
the clustered condition categories C and X, respectively,
and 3.24 and 3.60 for the diverse condition (SE � 0.238,
0.189, 0.206, and 0.226, respectively). These mean val-
ues are detransformed and expressed as error rates in
Table 1. RTs for correct responses were log transformed.
Three outlying RTs (out of 16,765), less than 200 msec
or greater than 5,000 msec, were excluded from analysis.
The mean log RTs were 2.775 and 2.779 for the clustered
condition categories C and X, and 2.836 and 2.848 for
the diverse condition (SE � 0.016, 0.016, 0.014, and
0.015, respectively). These mean values are detransformed
and shown in Table 1. A two-way multivariate analysis of
variance (MANOVA) was performed on root errors and
log reaction times, with training diversity (clustered or
diverse) as a between-subjects factor and stimulus cate-

gory (control or experimental) as a within-subjects factor.2
Here and throughout, there were no multivariate outliers
within levels of training diversity ( p � .001). This means
that the other statistics from these MANOVAs are not un-
duly influenced by a few unrepresentative data points.

In combination, errors and RTs were affected by cat-
egory diversity [F(2,70) � 7.67, p � .001]. People learn-
ing the clustered category made fewer errors and gave
faster responses than did people learning the diverse cat-
egory. There was no significant difference between the
control and experimental categories [F(2,70) � 1.62,
p � .21], nor an interaction between diversity condition
and category [F(2,70) � 1]. Thus, the diversity of cate-
gory X affected responses to both categories C and X
equally.

Errors and RTs made independent contributions to the
combined differences between training groups, as indi-
cated by a unique effect for each variable after factoring
out the other in Roy–Bargmann stepdown analyses
[Fs(1,70) � 5.24, ps � .025]. In univariate ANOVAs, the
main effect of category diversity was significant both for
errors [F(1,71) � 7.78, p � .007] and for RTs [F(1,71) �
9.51, p � .003].

Generalization
Average response percentages for various types of test

item in the category generalization task are shown in
Table 2. Asterisks identify those entries that are relevant
to the predicted diversity effects we outlined above. To
limit the family-wise error rate, we tested only a few key
contrasts from this table, and followed up with regression
analyses encompassing the whole of the data. Confidence
ratings for the generalization and recognition tasks have
not yet been analyzed and are not reported.

Table 1
Summary Measures of Training Difficulty, Including Error

Rates and Reaction Times (RTs, in Milliseconds) for Correct
Responses, as a Function of Training Group (Clustered or

Diverse) and Test Category (C or X)

Error Rate (%) RTs

Training Category C Category X Category C Category X

Clustered 5.5 6.1 595 601
Diverse 8.3 10.3 685 705

Table 2
Distribution of Generalization Responses, Showing

Percentage of Each Response Alternative as a Function of
Stimulus Region and Type of Novel Item 

Response

Control Experimental Neither

Stimulus Region Item Type Training % SD % SD % SD

Boundary Boundary Clustered 54 5 18* 4* 28 4
Diverse 53 5 23* 4* 24 4

Control Prototype Clustered 95 3 2 2 3 2
Diverse 95 3 0 0 5 3

Inside Clustered 97 2 0 0 3 2
Diverse 95 3 2 2 3 2

Peripheral Clustered 90 6 5 5 5 4
Diverse 87 7 0 0 13 7

Experimental Prototype Clustered 2 2 88* 4* 10 4
Diverse 2 2 76* 7* 22 7

Inside Clustered 0 0 92 3 8 3
Diverse 2 2 79 7 19 7

Peripheral Clustered 6 2 50* 4* 44 4
Diverse 8 2 66* 4* 26 3

Overall Clustered 37 3 38 3 26* 2*

Diverse 37 3 43 3 21* 2*

*Entries relevant to predicted diversity effects outlined in text.
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Analysis of response fractions. Our initial analysis
of generalization examined four measures: the fraction
of neither responses across all novel items (neither), the
fraction of category X responses for novel boundary
items (boundaryX ), the fraction of category X responses
for novel items on the periphery of category X (periphX ),
and the fraction of category X responses for the unseen
category X prototype (protoX ). The protoX scores were
near ceiling and could not be analyzed parametrically.
Although protoX scores were slightly lower for partici-
pants trained on the diverse category compared with the
clustered category, this difference between groups was
not significant [Mann–Whitney (corrected for ties) Z �
1.16, n1 � 20, n2 � 21, p � .25].

A one-way MANOVA was performed on the variables
neither, boundaryX, and periphX, with training diversity
(clustered or diverse) as a between-subjects factor. In
combination, these variables were affected by training
diversity [F(3,37) � 3.19, p � .035]. People trained on
the diverse category gave fewer neither responses over-
all, more category X responses for boundary items, and
more category X responses for items on the periphery of
category X, as predicted. Roy–Bargmann stepdown analy-
sis (details not reported here) indicated that the signifi-
cance of the overall effect was due primarily to the pe-
riphX variable—people trained on the diverse category
gave fewer neither responses to items on the periphery of
category X and classified them as members of category X
instead.

Regression models. In our stimuli, similarities be-
tween test and training items necessarily varied as a
function of training diversity, so it is possible that the ef-
fect of diversity on periphX, for example, reflects the fact
that peripheral items were closer to some of the diverse
training exemplars than to the corresponding clustered
exemplars. To factor out the effect of item similarities
and to test for a general effect of variability, we fit re-
gression models as described in Appendix A to predict
each participant’s responses to the full set of test items
(both old and new). The predicted probability of a par-
ticular response was a function of the similarity between
each test item and the training exemplars of categories C
and X. The full model included three parameters of in-
terest: (1) a distance scaling parameter, s, that deter-
mined the sensitivity of response probabilities to a given
change in head area or stem height, (2) a category C rela-
tive response bias, biasC | CX, that determined the bias (on
a scale from 0 to 1) to classify something as category C
rather than X, and (3) a neither response bias, biasneither,
that determined the bias to say that something belonged
to neither category C nor X. Changes in s and biasneither
can have superficially similar effects on predicted re-
sponse probabilities, but a change in biasneither will not
affect the ratio of C to X responses, whereas a change in
sensitivity will. The two parameters consequently have
distinguishable effects on regression fits.

Goodness of fit statistics for models with and without
separate biasC | CX parameters for each participant indi-

cated that it did not vary significantly within training
groups [c2(39) � 41, p � .37], nor between training
groups [c2(1) � 0.21, p � .65]. Subsequent analyses
fixed this parameter at the overall median value, which
favored category C over X by a ratio of more than 2:1.
This level of bias means that an item that was equally
similar to both categories would be classified as a mem-
ber of category C twice as often as category X. This
strong bias may reflect participants’ expectation that the
two categories would occur equally often, whereas there
was a preponderance of novel items on the category X
side of the stimulus space.3

With biasC | CX held at the overall median value, we de-
termined best-fit values of s and biasneither for each partic-
ipant. Figure 5 shows response contours for the two train-
ing groups, based on median values of s and biasneither. As
the 70% contours show, the inclusion of a neither re-
sponse allowed us to model category structure on the far
side of each category as well as on the side near the
boundary. The median values of biasneither were 0.0297
and 0.0310 for the clustered and diverse training groups,
respectively (IQRs � 0.0446 and 0.0549). This differ-
ence was not significant in a Mann–Whitney test (U �
175, n1 � 20, n2 � 21, p � .36).

The median values of s were 2.72 and 2.26 for the
clustered and diverse groups (IQRs � 1.40 and 0.55).

Figure 5. Categorization training and test items and predicted
response contours. Markers show training items for clustered (�)
or diverse (�) training groups and novel test items (✳). Solid lines
are for the clustered training group, showing the equiprobability
category boundary and the 70% categorization contours for each
category. Dotted lines show the same information for the diverse
training group.
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Participants who learned the diverse category had sig-
nificantly lower sensitivity to distance than did those
who learned the clustered category (U � 131, n1 � 20,
n2 � 21, p � .039). The effect of this difference in s val-
ues is illustrated in Figure 6A, which shows the influ-
ence of each training item on the classification of a test
item as a function of the distance between the two. The
rescaled similarity of an exemplar at distance 0.4 (where
the two curves are furthest apart) is 20% greater for par-
ticipants who learned the diverse category than for those
who learned the clustered category. Distance 0.4 corre-
sponds to a circle around a training item on Figure 2 or
3 extending not quite one grid unit in each direction.

Did the effect of training diversity affect distance scal-
ing for categories C and X equally? The GCM ordinarily
assumes that the same scaling applies throughout the
stimulus space, but Nosofsky and Johansen (2000) have
suggested that category-specific scaling could explain
the apparent bias toward diverse categories reported in
Rips’ (1989) classic pizza-or-coin study. We fit an en-
hanced regression model that had separate s parameters
for categories C and X (for each participant) and found
no significant difference in goodness of fit between the
enhanced model and the original [c2(41) � 37, p � .66].
Our results therefore suggest global rescaling across the
whole stimulus space and do not indicate category-
specific rescaling.

Recognition
The proportion of incorrect responses for various

types of test item in the old–new recognition task are
summarized in Table 3. Miss rates for training exemplars
ranged from 22% to 33%, whereas false alarm rates for
most new items were over 50%. The two training groups
differed markedly on their responses to peripheral items
beyond the outer edge of category X exemplars. People

trained on the clustered category mistook these for old
items on only 22% of trials, whereas those trained on the
diverse category mistook them on 50% of trials.

Analysis of false alarms. Due to the very limited
amount of relevant past research, the predictions (out-
lined above) for the recognition task were very general,
so we conducted only a limited set of direct inferential
tests. Our analysis pooled novel items into three groups
and examined rates of false alarms (FA) for novel items
on the category C side of the stimulus space (FA_C), the
category X side (FA_X ), and on the boundary between
categories (FA_Bndy). A one-way MANOVA was per-
formed on the three false alarm scores, with training di-
versity (clustered or diverse) as a between-subjects fac-
tor. In combination, the false alarm scores were affected
by training diversity [F(3,28) � 5.48, p � .004]. Roy–
Bargmann stepdown analysis indicated that the signifi-
cance of the overall effect was due primarily to FA_X; par-

Table 3
Error Rates in Old–New Recognition Task by Training

Diversity Showing Percentage for Training Exemplars (Old)
and Novel Test Items (New), as a Function of Stimulus 

Region and Type of Novel Item 

Training

Clustered Diverse

Region Type % SD % SD

Old Control 25 29 33 30
Experimental 22 24 29 28

New Boundary Boundary 58 37 65 35

Control Prototype 83 24 79 24
Inside 77 29 58 26
Peripheral 58 35 46 34

Experimental Prototype 83 24 77 23
Inside 69 26 77 26
Peripheral 22 30 50 36

Figure 6. Generalized context model similarity as a function of training group (clustered or diverse) and distance from
an exemplar. Derived from median best-fit values of s for each training group, when tested on generalization (A) and
recognition (B).
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ticipants trained on the clustered category made fewer
false alarms on the category X side of the boundary (ad-
justed for FA_C and FA_Bndy, mean FA_X � 37.5%,
SE � 4.47%) than did participants trained on the diverse
category (adjusted mean FA_X � 58.4%, SE � 4.47%).
Inspection of false alarm rates for individual items (Table 3)
suggested that the effect was largely attributable to periph-
eral items.

Regression models. The effect of diversity on FA_X
could be due to item similarities, since the peripheral
items on the category X side were closer to the nearest
exemplars of the diverse category than to those of the
clustered one. To factor out item similarities, we fit re-
gression models as described in Appendix B to predict
each participant’s responses to the full set of test items.
The predicted probability of an old response was a func-
tion of the similarity between each test item and the
training exemplars of both categories C and X. There
were two free parameters of interest, including the dis-
tance scaling parameter, s, as discussed above, and a re-
sponse bias, Bnew, that determined the bias (on a scale
from 0 to 1) to say that something was new rather than
old. Figure 7 shows response contours for the two train-
ing groups, based on median values of s and Bnew. The
response probability distribution was generally broader
and less peaked in the diverse condition than in the clus-
tered condition.

The median values of Bnew were .23 and .33 for the clus-
tered and diverse training groups, respectively (IQRs �
.26 and .17). However, the difference was not statistically
significant (U � 81, n1 � 16, n2 � 16, p � .080). Thus,
as a nonsignificant trend, participants who learned the
clustered category were somewhat less inclined to give
new responses (equivalently, they required somewhat less
evidence for an old response) than were participants who
learned the diverse category.

The median values of s were 2.40 and 1.17 for the clus-
tered and diverse training groups, respectively (IQRs �
1.48 and 1.40). Participants who learned the diverse cat-
egory had significantly lower sensitivity to distance than
did those who learned the clustered category (U � 33,
n1 � 16, n2 � 16, p � .001). This difference in sensitiv-
ity echoes that observed in the generalization study. The
effect of the sensitivity difference on recognition is illus-
trated in Figure 6B. The difference in exemplar influence
is greatest at distance 0.65 (about 1 1/3 grid units in Fig-
ures 2 and 3), where the influence is 168% greater for
participants who learned the diverse category than for
those who learned the clustered category.

Once more, there was no significant improvement in fit
for a model incorporating separate scaling parameters for
categories C and X compared with the simpler model with
a single global scaling parameter [c2(32) � 23.4, p � .86].

GENERAL DISCUSSION

Our experiments suggest that the diversity of percep-
tual categories affects learning, generalization, and item
recognition by altering the scale of similarities as well as
the positions of exemplars within the stimulus space.
People learning a diverse category made more errors and
gave slower responses than did people learning a clus-
tered category. After having the same amount of cate-
gory training, people who learned a diverse category
were more likely than those who learned a clustered cat-
egory to accept distant peripheral items as members of
the category. And people who learned a diverse category
were more likely to wrongly think that they had previ-
ously seen a distant peripheral item than were people
who learned a clustered category. The effects of diversity
on generalization and recognition were generally con-
sistent with responding on the basis of item similarities.
However, regression modeling with the GCM revealed a
further effect. Participants’ perception of the stimuli was
altered, so that people who learned a diverse category re-
quired a greater physical difference to perceive the same
psychological difference between stimuli. This perceptual
rescaling effect led to lower levels of accuracy in the train-
ing task, wider generalization, and poorer item recogni-
tion, over and above effects that could be attributed to item
similarities.

This study sought to distinguish different mechanisms
that might produce diversity effects, and the use of three
different, but related, tasks makes the present study par-
ticularly informative. There are numerous accounts of

Figure 7. Recognition test items and predicted response con-
tours. Markers show training items for clustered (�) or diverse
(�) training groups and novel test items (✳). Solid lines are for
the clustered training condition, showing 50% (outer) and 70%
(inner) recognition contours. Dotted lines show the same infor-
mation for the diverse training group.



CATEGORY DIVERSITY 299

category learning in the literature that could explain the
reduced learning accuracy we observed in the diverse con-
dition, but which do not simultaneously explain the ef-
fects we also observed in generalization and recognition.
For example, Fried and Holyoak’s (1984) category den-
sity model represents categories by their means (proto-
types) and variances, estimated from a sample of exem-
plars. Diverse categories are learned more slowly than
are clustered ones, because estimates of the means and
variances converge more slowly when the stimuli are less
uniform. However, because the category density model
is concerned only with categorization, it has nothing at
all to say about the diversity effects we observed in old–
new recognition. And although the category density
model predicts that diversity will affect generalization,
the pattern of responses in our data are predicted much
better by exemplar similarities than by similarities to the
category prototypes (cf. J. D. Smith & Minda, 2002; see
Appendixes A and B for details).

Diversity effects could plausibly arise from item simi-
larities, shifts in category boundaries (as reflected in cat-
egorization biases), or rescaling of similarity relations. A
combination of methodological factors contributed to our
ability to distinguish these different mechanisms. Re-
gression models allowed us to separate out item similar-
ities, to simultaneously consider response probabilities
across a large set of test items (including old and new
items, peripheral and internal as well as boundary items)
and, in the generalization study, to simultaneously con-
sider the distribution of responses across all three choices.
We would not have detected the global rescaling effect if
we had examined just a few critical items on the bound-
ary between categories, because the effect of the diversity
manipulation on individual items was quite small after
item similarities were factored out. In the generalization
task, the neither response increased the information ob-
tained on each trial (just as a four-choice multiple choice
test is more informative than the same number of true/false
questions), and made it possible to detect changes in cate-
gory structure on the far sides of the categories. 

Most important, the neither response made it possible,
in principle, to distinguish between changes in category
biases and rescaling of similarities. We found no evidence
that similarity relations were category specific, with dif-
ferent scaling factors for different regions of stimulus
space according to the variability of categories in those
regions. Our data also showed no evidence that response
biases varied as a function of category variability. Rather,
there was a global change in sensitivity to psychological
distance in response to increased variability. This finding
is consistent with the effect of stimulus range observed by
Braida and Durlach (1972) in studies of sound intensity
perception. Our results show that the effect is not con-
fined to unidimensional stimuli and also demonstrate
that it affects standard category learning and generaliza-
tion tasks, as well as item recognition.

With regard specifically to generalization, our model-
ing demonstrates that exemplar similarities can explain

the seemingly different results observed in previous
studies for central, peripheral, and boundary items. Only
a few previous studies have controlled exemplar similar-
ities in their tests of diversity effects on generalization
(Cohen et al., 2001; Rips, 1989; Stewart & Chater, 2002).
These studies focused on boundary items, between a
clustered category and a diverse category. Rips’ pizza or
coin study found that judgments of category member-
ship differed from judgments of category similarity, and
in particular, that categorization of boundary items was
biased in favor of diverse categories rather than clustered
categories. Rips concluded that because judgments for
the categorization task differed from those for the simi-
larity task, categorization could not be based on similar-
ity. Nosofsky and colleagues have suggested alternative
interpretations within the framework of the GCM (Cohen
et al., 2001; Nosofsky & Johansen, 2000). Moreover, our
own results and those of numerous other studies (e.g.,
Shin & Nosofsky, 1992; see also works cited in Nosofsky
& Johansen, 2000) show that similarity scaling can vary
markedly between different tasks. This factor alone could
explain the differences that Rips observed between judg-
ments of category membership and category similarity.

The same confound applies to Cohen et al.’s (2001) Ex-
periment 1, which contrasted performance on identifica-
tion and categorization tasks. On the basis of a single test
item, Cohen et al. concluded that high-diversity categories
exert a “pull” on category judgments. However, their re-
sults could equally be explained by global effects of the
sort observed in the present study—that is, by similarity
scaling throughout the stimulus space, adjusted according
to the particular task, as well as the overall diversity of the
stimulus items. In contrast, Cohen et al.’s Experiment 2
provides more compelling evidence for a category-specific
effect of diversity on categorization. However, because
their analysis focused on a single boundary item, there is
no way to tell whether the category-specific effect involved
response biases or category-specific rescaling of similari-
ties. These different mechanisms can only be distinguished
by examining responses across a wider range of stimuli.

Finally, our f inding that category diversity affects
global similarity relations has implications for the inter-
pretation of Stewart and Chater’s (2002) results. Their
analyses of individual data indicated that, for most par-
ticipants, boundary items were less likely to be classi-
fied as members of an experimental category with high
diversity than with low diversity. On the basis of these
results, Stewart and Chater suggest that response biases
might be sensitive to category diversity. Alternatively,
their results could reflect the same kind of global rescal-
ing of similarities that we observed in the present study.

Although our results point to a global effect of diver-
sity that affects the whole stimulus space in learning,
generalization, and recognition tasks, they do not iden-
tify what aspect of diversity is relevant (nor have previ-
ous studies of diversity effects in categorization). Partic-
ipants might be sensitive to the total range of stimuli
(Braida & Durlach, 1972), or they might be sensitive to
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average absolute deviations from the grand mean, or av-
erage variance about category means, or some other spe-
cific measure of variability. Only detailed comparisons
across various stimulus distributions will eventually dis-
tinguish among these possibilities.
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NOTES

1. These studies all involved nonnormal distributions of exemplars,
which were generally sampled from donut-shaped regions of stimulus
space. The effect of changes in the variance of normally distributed
training exemplars has received little, if any, experimental attention. 

2. The MANOVA computes an optimal linear combination of several
dependent variables (DV), and computes an ANOVA on the resulting
composite DV. If the original DVs are correlated (positively or nega-
tively), the MANOVA protects against the inflated Type I error rate pro-
duced by separate tests of the DVs (see Tabachnick & Fidell, 1996).

3. Thanks to Dorrit Billman for suggesting this explanation.



CATEGORY DIVERSITY 301

APPENDIX A
Details of Modeling for Generalization Data

According to the generalized context model (GCM), classification decisions are based on similarity com-
parisons between a test item and individual exemplars of each category stored in memory. In our generaliza-
tion task, participants judged whether item i was a member of category C, category X, or neither. The GCM
predicts the probability of a category C response on the basis of the total weighted similarity of the test item
to exemplars of category C, divided by the weighted similarity of the item to exemplars of both categories,
plus a constant response threshold for neither responses:

(A1)

The term di,j is the distance between stimulus i and exemplar j, computed as a weighted Euclidean distance:

(A2)

where the xs and ys refer to head area and stem height measurements, respectively, and the dimension weights,
wx and wy, sum to 1. BiasC and biasX are response bias parameters, and s is a scaling parameter that determines
the sensitivity of response probabilities to a given change in distance. The probability of a category X or nei-
ther response is computed in a similar way by replacing the numerator of Equation 1 with the appropriate term
from the denominator.

Without loss of generality, we factor the response threshold K into the product of a bias parameter and the
average total similarity of each exemplar to all the others, E�. Thus, K � biasneither � E�, where

(A3)

N is the total number of exemplars. Higher values of biasneither produce more neither responses. There are two key
advantages of this innovative treatment of the neither response strength. The effect of the parameter biasneither on
goodness of fit is largely orthogonal to other parameters of the model, including the scaling parameter, s. As a
consequence, regressions converge more quickly than with an undifferentiated K response strength parameter.
Also, biasneither is independent of the number of exemplars and the average similarity among them, so mean-
ingful comparisons can be made between best-fit values of biasneither obtained across different stimulus sets. In
contrast, such comparisons with the undifferentiated K are generally not meaningful.

Also without loss of generality, we restrict the bias parameters (biasC , biasX , and biasneither) to the range
from 0 to 1, and require them to sum to 1 (there are only two degrees of freedom among these three param-
eters). Finally, we are usually interested in the relative magnitudes of biasC and biasX compared with each
other, so we define biasC � biasC | CX (1 � biasneither) and biasX � biasX | CX (1 � biasneither). The parameters
biasC | CX and biasX | CX determine the relative magnitudes of the two category response biases. They range
from 0 to 1, and sum to 1 (having only one degree of freedom between them).

The full model defined above is fully specified with reference to four independent parameters: s, wX,
biasC | CX , and biasneither. We used this model to predict participants’ classification responses, averaged across
the three presentations of each flower (once in each color scheme). Thus for each of the 23 test flowers, the
model predicted the proportions of category C, category X, and neither responses, out of three opportunities.
Models were fit separately to the data for each participant by minimizing a likelihood-ratio chi-square good-
ness of fit statistic over the observed (O) and expected (E) response proportions:

To obtain the most accurate tests of parameter values, we eliminated parameters that did not make a sig-
nificant contribution to goodness of fit. The difference in G obtained for a particular participant by two re-
gression models that differ by the presence or absence of a single parameter can be tested against the chi-
square distribution with one degree of freedom. Chi-square difference scores can be summed across all
participants to obtain a composite statistic that can be tested against the chi-square distribution with degrees
of freedom equal to the number of participants. Parameters that did not achieve a significance level of p �
.10 on such tests were eliminated to simplify the model, as described below.

For the full model, with four free parameters for each participant, the goodness of fit was G(164) � 604.
Setting s to 0 resulted in a significantly poorer fit to the data [c2(82) � 920, p � .001; when s � 0, the pa-
rameter wX has no effect, so there are just two degrees of freedom per participant]. This result indicates that
participants’ judgments were related to the distances between test and training items (i.e., those distances
gave better predictions of responses than assuming that all items were treated identically). Setting wX to 0.5
(equal weighting for both dimensions) did not significantly reduce fitness in comparison with the full model
[c2(41) � 48, p � .22]. Setting biasC | CX to 0.5 (equal bias for both categories) resulted in a significantly poorer 
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APPENDIX A (Continued)

fit compared with the full model [c2(41) � 81, p � .001]. The neither response bias, biasneither, is required
since participants did, in fact, avail themselves of the option to respond neither. Taken together, these results
suggest that the dimension weight parameter is not needed for our data, but that the other parameters are rel-
evant. Accordingly, the dimension weight parameter was set to .5 in subsequent tests.

A further set of regressions tested whether the remaining parameters could be set to the median value for
each participant group rather than varying freely among all participants within each group. Setting s to the
median value of each group resulted in a significantly poorer fit to the data compared with including a sepa-
rate free parameter for each participant [c2(39) � 58, p � .027]. Thus, distance scaling varied within groups.
Setting biasC|CX to the median value within each group did not result in a significantly poorer fit compared
with including separate parameters for each participant [c2(39) � 41, p � .37]. A further comparison found
that setting this parameter to the overall median value (biasC | CX � 0.68) fit the data just as well as the model
that used the median of each training group [c2(1) � 0.21, p � .65]. Setting biasneither to the median value of
each group resulted in a significantly poorer fit to the data [c2(39) � 74, p � .001]. This result indicates that
the bias to respond neither varied among participants. Taken together, these results indicate that s and biasneither
are required for each participant. BiasC|CX did not vary among participants.

In response to a reviewer’s query, we also implemented a post hoc prototype mixture model that combined
similarity to instances and to prototypes, as a weighted average, with separate scaling parameters, s, for ex-
emplar and prototype similarities. The pure prototype model was much worse than the pure instance model
(goodness of fit G � 1,597 and 693, respectively). The best-fitting mixture model fit only slightly better than
the pure exemplar model, and the difference was not significant [c2(82) � 2.97, p � 1]. Thus, similarity to
prototypes had no significant effect on responses after similarity to exemplars was taken into account.

APPENDIX B
Details of Modeling for Recognition Data

In our recognition task, participants judged whether item i was old or new. The GCM predicts the proba-
bility of an old response on the basis of total weighted similarity of the test item to all exemplars, divided by
this similarity plus a constant response threshold for new responses:

(B1)

The term di,j is the Euclidean distance between stimulus i and exemplar j, as in Appendix A. Following Ap-
pendix A, we factor K into the product of the average similarity of each exemplar to all, E�, multiplied by a
bias term. Thus, K � Bnew � E�. Higher values of Bnew produce more new responses. Bold and Bnew range from
0 to 1 and sum to 1 (there is one degree of freedom between them). This full model includes three indepen-
dent parameters: s, wX , and Bnew. For each of the 31 test flowers, the model predicted the proportions of old
and new responses, out of three opportunities (once in each color scheme). Models were fit separately to the
data for each participant.

Again, we eliminated parameters that did not make a significant contribution to goodness of fit. Setting s
to 0 resulted in significantly worse fits to the data compared with the full model [c2(64) � 159, p � .001].
Setting wX to 0.5 did not significantly reduce the fit of the model [c2(32) � 24, p � .85]. Bnew is required in
order to predict any new judgments, so this parameter cannot be removed or set to 0. Taken together, these re-
sults suggest that the dimension weight parameter is not needed for our data, but that the other parameters are
relevant. The dimension weight parameter was set to .5 in subsequent tests.

A further set of regressions tested whether the remaining parameters could be set to the median value for
each participant group. The fit of the model with one s parameter for each group of participants was not sig-
nificantly worse than the fit of the model with separate parameters for every participant [c2(30) � 26, p �
.69]. A further comparison found that setting s to the overall median of all participants resulted in a signifi-
cantly worse fit to the data compared with separate values for each training group [c2(1) � 11.5, p � .001].
This result indicates that the diversity manipulation affected s. The fit of the model with one Bnew parameter
for each group was significantly worse than the model with separate parameters for each participant [c2(30) �
86, p � .001]. This result indicates that the bias to respond new varied among participants.

Again, we implemented a post hoc prototype mixture model that combined similarity to instances and to pro-
totypes, as a weighted average. The pure prototype model was substantially worse than the pure instance model
(goodness of fit G � 546 and 411, respectively). The best-fitting mixture model fit only slightly better than did
the pure exemplar model, and the difference was not significant [c2(64) � 1.42, p � 1]. Thus, similarity to
prototypes had no significant effect on responses after similarity to exemplars was taken into account.

(Manuscript received December 12, 2002;
revision accepted for publication June 18, 2004.)
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