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Location perception: The X-F%les parable

WILLIAM PRINZMETAL
University of California, Berkeley, California

Three aspects of visual object location were investigated: (1) how the visual system integrates in-
formation for locating objects, (2) how attention operates to affect location perception, and (3) how
the visual system deals with locating an object when multiple objects are present. The theories were
described in terms of a parable (the X-Fiiles parable). Then, computer simulations were developed. Fi-
nally, predictions derived from the simulations were tested. In the scenario described in the parable,
we ask how a system of detectors might locate an alien spaceship, how attention might be implemented
in such a spaceship detection system, and how the presence of one spaceship might influence the lo-
cation perception of another alien spaceship. Experiment 1 demonstrated that location information is
integrated with a spatial average rule. In Experiment 2, this rule was applied to a more-samples theory
of attention. Experiment 3 demonstrated how the integration rule could account for various visual il-

lusions.

The perception of an object’s location is probably one
of the most fundamental acts of perception, influencing
everything from object recognition to action. For exam-
ple, in object processing, the perception of “what” and
“where” may be somewhat anatomically separate (see,
e.g., Mishkin, Ungerleider, & Macko, 2001). Yet, the
identification of an object (i.e., “what”) is almost always
accompanied by some idea of the object’s location (i.e.,
“where”; see, e.g., Hazeltine, Prinzmetal, & Elliot, 1997;
Johnston & Pashler, 1990). The perception of location
may have a special status in attention (see, e.g., Tsal &
Lavie, 1993). Finally, although there might be instances
in which perception and action can be dissociated (Goodale
& Milner, 1992), there is generally a close correspondence
between where we perceive an object to be and our ac-
tions toward that object.

The objectives of this study were threefold. The first
was to understand the basic mechanisms of location per-
ception. Two contrasting models of the mechanisms of
object location were developed and tested. Both models
specified how information from a population of “detec-
tors,” each with a different “receptive field,” is combined
to yield the perception of a unique location of an object.
The second goal was to understand how attention affects
location perception. Two classes of models of attention
and location perception were compared. One of the mod-
els invoked smaller receptive fields and tighter tuning
functions as the mechanism of attention (Desimone &
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Duncan, 1995). The other model postulated “more sam-
ples” as the mechanism whereby attention affects loca-
tion perception (see, e.g., Luce, 1977). The final goal was
to understand how the presence of one object affects the
perceived location of another object. Again, two classes
of models were compared. The consequence of one of
these classes of models is that the perceived location of
one object will be repelled from a landmark object. The
other class of models predicts that the perceived location
of an object will be attracted to a landmark object.

For each of these three issues, the analysis proceeded
in four steps. The first step consisted of a verbal descrip-
tion of two alternative theories. For example, two descrip-
tions of the mechanisms of attention were developed. The
theories were described in terms of a story called the X-
Files parable. The parable was inspired by the television
show of the same name. Different versions of the parable
will be described in detail later, but in general it goes as
follows: An alien spacecraft lands somewhere in the
United States. The task of the FBI is to decide where the
spacecraft landed so that they can send their agents out
to investigate. Simply put, each competing model was
first described in a metaphor.

The inspiration for describing a formal model in terms
of'aloose parable is Pandemonium, which was one of the
first cognitive theories simulated by computer (Self-
ridge, 1959). The reason for using a parable is that, al-
though the models involve neurally plausible mecha-
nisms, I do not want to equate a particular theoretical
mechanism with a particular neural structure. Thus, al-
though the theory uses constructs such as detectors and
receptive fields, these detectors are not necessarily the de-
tectors in physiological areas V1 or V2. Indeed, the aim
is to outline and test general design features of the visual
system that enable us to locate objects in space.

The second step in the analysis was to perform com-
puter simulations of each parable. The output of the sim-



ulations was the distribution of locations that the FBI
would investigate in a given situation. Hundreds of sim-
ulations were performed for each X-Files story. The re-
sults in some cases were rather surprising: The models
performed in ways that were at odds with claims in the
literature about how these models behave.

As the third step, a mathematical description of the
consequences of each theory was inferred from the sim-
ulations. The mathematical description involved statis-
tics not often used in psychological research. For example,
in deciding between models of the integration of infor-
mation from different detectors, the kurtosis (peakedness)
of the response distributions was critical. The final step,
of course, was to conduct an experiment to determine which
theory provided the best fit of the data on human location
perception.

In each experiment, data were collected using the
method of reproduction (see Huttenlocher, Hedges, &
Duncan, 1991; Newby & Rock, 2001; Prinzmetal, Amiri,
Allen, & Edwards, 1998; Prinzmetal, Nwachuku, Bodan-
ski, Blumenfeld, & Shimizu, 1997; Prinzmetal & Wilson,
1997; Tsal, Meiran, & Lamy, 1995). On each trial, ob-
servers were briefly presented with a target dot. The ob-
servers responded by moving a cursor (with a mouse) to
the location where they thought the target had appeared.
The method provides very rich data. In the present study,
the variance and shape of the distribution of location re-
sponses was used to test different theories of location per-
ception, attention, and the effect of landmarks.

The method of reproduction was used by Prinzmetal
and colleagues in an extensive series of experiments to
study attention (Prinzmetal et al., 1998; Prinzmetal et al.,
1997; Prinzmetal & Wilson, 1997). For example, Prinz-
metal et al. (1997, Experiments 5 and 6) examined the
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effect of attention on the perception of location. On each
trial, observers were briefly presented with a small gray
target dot. The task was to locate the dot by moving a
mouse cursor to the position of the dot. Figure 1 illus-
trates the distribution of a typical observer’s responses
around the target location (plotted at the origin) in two
conditions. The goal of Experiment 1 of the present study
was to develop a theory that accounted for the statistical
properties of distributions such at those shown in Fig-
ure 1. A model that successfully accounts for the shape of
the distribution of responses was a critical first step in un-
derstanding other aspects of location perception.

In the experiments by Prinzmetal et al. (1997), atten-
tion affected the variance of location responses. The left
panel of Figure 1 illustrates the distribution of responses
under divided attention, and the right panel shows the
distribution of responses under focused attention. Prinz-
metal and colleagues also tested the effect of attention
with a number of other stimulus attributes, including
color (hue), line orientation, line length, spatial fre-
quency, brightness, and contrast (Prinzmetal et al., 1998;
Prinzmetal et al., 1997; Prinzmetal & Wilson, 1997). In
every case, attention affected the variance of responses
but not the mean response (however, also see Festinger,
Coren, & Rivers, 1970; Tsal, Shalev, Zakay, & Lubow,
1994). The second goal of the present study was to de-
velop and test an account of how attention affected the
variance of location responses.

In the final section of this study, I investigated how the
presence of a distractor object (a landmark) affected the
location perception of a target object. The model that
best described the results may have application in de-
scribing illusions as diverse as the Miiller-Lyer illusion
and the gravity lens illusion (Greene, 1998; Naito & Cole,
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Figure 1. Location errors, in screen pixels, from Prinzmetal, Nwachuku, Bodansky, Blumenfeld, and
Shimizu (1997). Although the stimuli were in randomly chosen locations, the responses are plotted as if the

target were at the origin.
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Figure 2. A series of alien detectors in a horizontal array across the United
States. Each detector has a radar field (RF) represented by an oval. The bold
RFs have registered a paranormal event.

1994). Tests of these models critically depended on an ac-
curate description of the distribution of location responses,
the topic of Experiment 1.

EXPERIMENT 1
The Integration Rule

The goal of the first experiment was to determine how
the visual system integrates information from many lo-
cation detectors to yield the perception of a target dot’s
location. The integration rule turns out to determine the
distribution of location responses. The X-Files parable
will be used to introduce the integration problem and two
classes of solutions to this problem.

A typical theme in the television show The X-Files is
that a strange anomaly occurs somewhere in the United
States. The event is often the arrival of an alien space-
craft. Two FBI agents are sent to the site to investigate.
The question that arises is, how do they know where to
investigate? The question, phrased in terms of visual per-
ception, is, of course, how does a human observer locate
a briefly presented stimulus?

To simplify the situation, imagine that the alien could
have landed on a 1-D line from approximately Los An-
geles to New York (e.g., Figure 2). One might imagine
that the FBI (or the National Security Agency) has set up
a series of alien-detecting radars from Los Angeles to
New York. Each detector has a radar field (RF), shown
as an oval. If an alien lands in the RF of a detector, the
detector issues an alert (i.e., a hit). However, it is possi-
ble that a detector can miss an alien landing in its RF
(i.e., a miss). Similarly, there is some probability that a
detector will issue a false alarm (FA)—that is, report a
nonexistent alien spacecraft.

On a particular day, three detectors issued an alert, as
is shown with the bold ovals in Figure 2. The question is,

where should the FBI agents go to find the alien? Where
has the alien landed? Central headquarters might tabu-
late the alerts, as is shown in Figure 3A and 3B. In the
figure, one location received alerts from two detectors,
so that location has received a total of two alerts. The
other locations have received either one or zero alert. A
decision must be made on the basis of the alerts. There
are many ways in which the information could be inte-
grated and a location determined. Two integration rules
are the winner-take-all rule and the spatial average rule.

In the winner-take-all rule, the location that has the
highest activation will be chosen as the alien landing lo-
cation (shown in Figure 3A). This location is indicated
with an arrow, and its activation is 2. In this particular
episode, the FBI agents will go to the position indicated
by the arrow. In a different episode, given the same alien
landing location, the agents might go to a different loca-
tion. That is because the detectors operate in a probabilis-
tic manner (hit rate < 1.0; FA rate > 0.0). Hence, the pat-
tern of activation (Figure 3) will be different from episode
to episode, even if the alien lands in the same location.

Figure 4A shows the result of a simulation of a typical
distribution of chosen locations over 10,000 “TV episodes”
by the winner-take-all rule. The winner-take-all—or high-
est activation—rule has the attribute of maximizing the
number of episodes in which the FBI agents arrive at the
exact location of the alien. Note that with this rule, re-
mote detectors have no influence on performance. As is
shown in Figure 4A, the shape of the resulting distribu-
tion is leptokurtic.

The simulated data shown in Figure 4A were produced
in the following manner. A number of discrete (integer)
locations were defined (for example, from —150 to +150).
Associated with each location was an activation counter.
The counters were initially set to 0.0. The midmost lo-
cation was the target location. Next, detector RFs were
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Figure 3. (A) The winner-take-all integration rule. (B) The spatial average rule.

(C) Gaussian activation of locations.

defined. The size of the RF, n, was one of the inputs to
the simulations. In this example, » = 31, the first RF
covered Locations —150 to —119, the second covered
Locations —149 to —118, the third, Locations —148 to
—117, and so forth. (No locations were skipped.) Next,
each detector whose RF included Location 0 (the target
location) fired with probability p(hit), and the others
fired with probability p(FA). In the simulations illus-
trated in Figure 4, p(hit) = .40 and p(FA) = .20. In this
example, when a detector fired it incremented all of its
locations by a constant amount. This is called a rectan-
gular activation profile (see Figure 3A); other profiles

Highest Activation
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are discussed later. With the winner-take-all rule, the lo-
cation whose activation counter was the highest was cho-
sen for the response. On trials in which there was a tie for
the highest activation, two different tie-breaking proce-
dures were used. In the simulation shown in Figure 4,
when there was a tie the trial was rerun. In other simula-
tions, one location was randomly selected from the tied
locations. As will be illustrated below, the method of
breaking ties did not affect the general shape of the dis-
tribution. To generate the distributions shown in Figure 4,
this simulation was run 10,000 times. Figure 4 is the fre-
quency histogram of 10,000 location trials.
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Figure 4. The output of a simulation of (A) the winner-take-all rule and (B)

the spatial average rule.
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Simulations for the spatial average rule were similar to
those for the winner-take-all rule, except that in each
trial, rather than select the location with the highest ac-
tivation, the spatial average was calculated. The “aver-
age” location is simply the sum of location number times
its activation, divided by the sum of all the activation.
The average location in the figure is the location where
the activations would balance, if the horizontal axis were
a see-saw (see Figure 3B). The mean activation rule has
the property that it minimizes errors (or, to be more pre-
cise, the square of the summed errors). That is, when the
agents arrive on scene, they are likely to be not far from
the actual location, but the probability of being at the
exact location is less than it would be with the winner-
take-all rule. The chosen location need not be the loca-
tion with the highest activation. A simulation of the
mean activation rule over 10,000 episodes is shown in
Figure 4B.

As can be seen in Figure 4B, the mean activation rule
yields a normal distribution of chosen locations. This is
because the distribution of sample means is a normal
distribution (according to the central limit theorem). As
is discussed in the Appendix, the leptokurtic distribution
in Figure 4A (winner—take all) is the extreme value dis-
tribution (Johnson, Kotz, & Balakrishnan, 1995, chap. 1).
(This distribution is called the extreme value distribution
because it results from the distribution of maximum—or
minimum—values from n independent random sam-
ples.) The distribution can be related to the normal dis-
tribution in the following manner.! Plotted in Figure 5
are the cumulative distributions of the chosen locations
with the two integration rules using the simulated data
shown in Figure 4. The top abscissa indicates locations
across the country from, say, Los Angeles (—40) to New
York (40). (Assume the correct location is at ground
zero.) If the abscissa is stretched by a power, p, the high-
est activation distribution can be fit by a normal distrib-
ution (see Kontsevich & Tyler, 1999; Pelli, 1985). (Neg-
ative values on the abscissa are first multiplied by —1,
raised to p, and then multiplied again by —1.) In Fig-
ure 5, if p = .56 then the two distributions match exactly.
Hence, if the exponent, p, is 1, the cumulative distribu-
tion by the winner-take-all rule becomes the same as the
distribution by the spatial average rule. Thus the expo-
nent, p, is an indication of the shape of the distribution.
When p = 1, the distribution of location responses is
normal (spatial average rule). When p < 1, the distribu-
tion is leptokurtic (winner-take-all rule).

Several hundred simulations were run, and the rela-
tion between the spatial average rule and the winner-
take-all rule was quite regular. The inputs to the simula-
tions were p(hit), p(FA), RF size, and activation profile.
In the simulation in Figure 4, the profile was rectangu-
lar. That is, when a detector “fired” all of its locations
were activated equally. Other profiles were tested. Fig-
ure 3C shows the results of activation with Gaussian
weights so that when a detector fires, it activates the lo-
cation at its center more than others. Other activation
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Figure 5. The cumulative distributions, moving from west to
east, of the two integration rules.

profiles (e.g., the Mexican hat and triangular profiles)
were tested.

The results of a few of the simulations are illustrated
in Table 1. The fits of the spatial average model are easy
to describe: They always yielded a normal distribution,
with the exponents close to 1.0. The exponents with the
winner-take-all model were always considerably less
than 1.0. There are a few things to note about the winner-
take-all simulations. First, as the RF gets smaller, the
distribution becomes more leptokurtic (compare Simu-
lations 2 and 3). Hence, the distribution of location re-
sponses where RFs are smaller (central vision) should be
more leptokurtic (i.e., should have a smaller exponent)
than the distribution of location responses with larger
RFs. Second, as the signal-to-noise ratio decreased, the
distribution of the winner-take-all rule became more lep-
tokurtic (e.g., compare Simulations 3 and 4). This is be-
cause locations far from the target are more likely to be se-
lected. Third, the method of breaking ties did not change
the shape of the distributions markedly. Finally, the winner-
take-all model did not handle some nonrectangular acti-
vation filters very well. For example, with a Mexican hat
filter and the parameters in Simulation 9, the distribu-
tion of location responses was bimodal with a dip at the
actual target location. Hence, the winner-take-all model
might not be a good mechanism for integration in parts
of the visual system that contain units that have an exci-
tatory center and an inhibitory surround. Finally, and
most strikingly illustrated in Figure 4, the winner-take-
all model is more likely to find the exact location, but when
it errs the error will be large. The spatial average model
is less likely to “nail” the exact location, but it is usually
not too far off.

The winner-take-all rule has been used successfully in
anumber of theories of luminance detection for stimuli at
threshold. For example, Pelli (1985) proposed that there
are a number of detectors, some relevant and some irrel-
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Table 1
Model Simulations

Winner Take All

Spatial Resample  Random

Simulation  Hit FA  Width  Filter = Average Ties Selection
1 4 2 31 rect 0.99 0.56 0.59
2 4 2 15 rect 1.00 0.47 0.47
3 4 2 45 rect 0.99 0.55 0.60
4 4 3 45 rect 1.01 0.76 0.77
5 8 5 15 rect 1.00 0.42 0.42
6 .8 .6 15 rect 1.00 0.46 0.47
7 8 7 15 rect 1.01 0.71 0.70
8 4 2 15 Gauss 1.00 0.52 0.52
9 4 2 17 hat 1.01 0.61 0.60
10 4 2 15 ramp 1.00 0.53 0.52

Note—The right three columns are the exponents of the fits. Two methods of handling
ties are illustrated with the winner-take-all model. The Gaussian activation filter
(Gauss) was approximated with the following weights: 1, 3, 6, 8, 11, 13, 14, 15, 14,
13,11, 8, 6, 3, and 1. The Mexican hat filter (hat) was approximated with the follow-
ing weights: —1, —1, =3, =3, —3,4, 12,21, 24,21, 12,,4, —-3,-3, =3, —1,and —1.
The following weights were used for the ramp filter: 15, 14, 13, 12, 11, 10,9, 8, 7, 6,
5,4,3,2,and 1. FA, false alarm rate; rect, rectangular distribution.

evant. The value of the detector with the highest activa-
tion is passed to a decision mechanism. If the value asso-
ciated with this detector exceeds a threshold, the observer
responds that a signal was present (also see Kontsevich &
Tyler, 1999). Note that although this theory is highly suc-
cessful in accounting for detection at threshold, it may
not be appropriate for localizing stimuli that are clearly
above threshold. In terms of the X-Files parable, a detec-
tion task is similar to asking whether an alien landed any-
where in the United States, not to asking where in the
United States the alien has landed. In their theory of
guided search, Cave and Wolfe (1990) used a winner-
take-all rule. Tsal et al. (1995) used a winner-take-all in-
tegration rule in accounting for the effects of attention.

The spatial average rule has also been used success-
fully. For example, Ashby, Prinzmetal, Ivry, and Maddox
(1996), in accounting for the phenomenon of illusory
conjunctions, assumed that the distribution of perceived
locations would be a normal distribution. The spatial av-
erage rule has the nice property that it is robust. Even
with low signal-to-noise ratios, the selected location will
not be too far from the actual location.

The goal of Experiment 1 was to characterize the inte-
gration rule used for location simply by obtaining enough
data from each observer to precisely characterize the dis-
tributions of errors, as in Figures 4 and 5. The question is
simply whether the cumulative distribution of location re-
sponses can be fit by a normal distribution (with only
mean and variance parameters) or whether the additional
power parameter, p, is necessary to fit the data.

The task was very simple. On 90% of the trials, a
small dot was briefly presented. The observer’s task was
to move the screen cursor with a mouse to the location
where the dot had appeared and click the mouse. On 10%
of the trials, there was no target dot. On these trials, a
correct response was to press a control button labeled
“absent” that was always present in the bottom right cor-

ner of the screen (see Prinzmetal et al., 1998). These
catch trials were included to ensure that the dots were
clearly visible, above threshold. The goal of this research
was to understand the perception of location of stimuli
that were above threshold, not the perception of location
of stimuli at or below threshold.

There were two independent variables: target eccen-
tricity and exposure duration. The target dots appeared at
a randomly chosen location on an imaginary circle that
subtended either 2.29° (near) or 4.58° (far) of visual
angle. It seemed desirable to include a variable that should
affect perceptual performance. To the extent that the task
measures perceptual processes as opposed to memory
processes, performance should vary with a variable re-
lated to perception. (See Werner & Diedrichsen, 2002,
for an example of the effect of a memory-related vari-
able.) Hence, responses should be more variable with a
larger stimulus eccentricity—that is, precision should
decrease with eccentricity. Furthermore, the winner-
take-all rule predicts that the exponent should be small
with stimuli that are closer to the fixation point, as was
explained above.

Two exposure durations were used: 66.7 (short) and
500 (long) msec. The long exposure duration was suffi-
cient for observers to fixate the stimulus dot and clearly
perceive its location. Thus, the variance in the long ex-
posure conditions should reflect processes that are not
related to a brief nonfoveal presentation. These would
include memory and motor processes, collectively called
“other” processes. The variance in responses in the short
exposure duration condition would be affected by these
“other” processes, as well as limits in performance due
to a brief nonfoveal presentation (i.e., perceptual pro-
cesses). By examining the shapes of both distributions
of responses, it is possible to infer the shape of the dis-
tribution of perceived location, independent of these
“other” processes.
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Method

Observers. Three observers, 20 to 23 years of age, were paid $50
to participate. They were naive as to the purpose of the experiment.

Procedure. The 3 observers were individually tested in eight ses-
sions, each session lasting about 1 h. The first session began with
2 blocks of 100 practice trials followed by 10 blocks of data col-
lection. Each block consisted of 100 trials. On subsequent days, the
observers had approximately 20 warm-up trials and then 10 blocks
of data collection trials. Thus, the data set consisted of 8,000 trials
per observer.

In each block of 100 trials, 90 were target-present trials (a target
dot appeared) and 10 were target-absent trials (no dot appeared).
The task was to move the cursor (which was in the form of a plus
sign) to the location where the stimulus appeared and then click the
mouse. On target-absent trials, the observers were to click a control
button labeled “absent” at the bottom right corner of the screen.
When the observer made a miss (i.e., pressed the “absent” button
when a dot was present) or a FA (i.e., did not press the “absent” but-
ton when a dot was not present), the computer emitted a loud sound
like that of a foghorn. Such errors were rare.

Stimulus eccentricity was varied within blocks. On half of the target-
present trials, the near eccentricity was used, and on half the far ec-
centricity was used. The order of trials within a block was randomly
determined. The exposure duration alternated between blocks. Two
of the observers always began with the long exposure duration, and
1 began with the short exposure duration.

Stimuli. Stimuli were presented on an Apple Computer 15-inch
color monitor with a screen resolution of 640 X 480 pixels. The
viewing distance was 66 cm, and the observers’ heads were re-
strained with a chinrest. From this distance, 32.7 pixels subtended
1°. Normal office ambient lighting was used.

The target stimulus consisted of a filled circle subtending ap-
proximately 0.30° of visual angle. The stimulus was gray (approx-
imately 96 cd/m?) and was presented on a white background (ap-
proximately 122 cd/m?). A black fixation dot and the “absent”
button were present throughout the block of trials. The screen cur-
sor appeared 250 msec after the stimulus dot disappeared, and it re-
mained in view until the observer responded. The cursor would
reappear at the location from which it had disappeared on the pre-
vious trial. The target circles appeared on a randomly chosen loca-
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Figure 6. All of the responses of 1 observer with the short ex-
posure duration and far eccentricity. The axes are in screen pix-
els; 32.7 pixels subtended 1° of visual angle.
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Figure 7. The responses in Figure 6 displayed as errors from
the target location.

tion on an imaginary circle with a radius that subtended either 2.29°
or 4.58° of visual angle. The observers were not told of this con-
straint in stimulus location. The observers were questioned at the
end of the experiment, and none had noticed this constraint on the
target location.

There were 500 msec between the response and the next trial.
Each trial began with the computer emitting a click sound. On
target-present trials, the click coincided with the onset of the target
circle. On target-absent trials, the click coincided with the instant
the target would have appeared if there had been a target.

Results

Raw data. The stimuli were clearly above threshold,
as indicated by the presence/absence judgments. The hit
rate was over .99 for each observer, and the FA rate av-
eraged .010 (the FA rate never exceeded .025). The dis-
tance from the target to the response was calculated for
every trial. Trials in which this distance exceeded 7 SDs
were excluded from the analysis (<1% of the trials).

Figure 6 shows all of the responses for 1 observer in
one of the four conditions (short exposure, far eccen-
tricity). The actual stimulus locations were always on the
circle. For this observer, there was a tendency for re-
sponse locations along the vertical median to be farther
from fixation than the stimulus locations and for those
along the horizontal median to be closer than the actual
stimulus locations. Two of the observers exhibited this
pattern, but the third exhibited the opposite pattern. The
responses in Figure 6 are replotted in Figure 7 in terms
of error, with the target location at the center of the plot.
This observer had a slight tendency to respond to the left
of the actual target location. The constant errors did not
systematically vary across the four conditions.

Variability (or dispersion) was measured in terms of
precision.2 Precision was the average squared distance,
in screen pixels, from the stimulus to the response. This
measure will be referred to as pixels”2. The precision for
each observer and condition is given in Table 2. For each
observer, the responses are more variable in the far con-
dition than in the near condition, and the responses are



Table 2
Precision in Experiment 1
Short Long
Near Far Near Far
Subject M SE M SE M SE M SE
1 1787 59 608.7 20.1 540 1.8 654 22
2 161.1 58 5241 185 760 2.7 1574 5.6
3 2089 6.8 2974 100 350 1.2 498 1.6

Note—Precision measured in pixels”2 (32.7 pixels are 1° of visual
angle).

also more variable with the short than the long exposure
duration.

Model fits. For each observer and condition, the data
were analyzed in three separate ways: horizontal error,
vertical error, and what will be termed radial error. The
distribution of horizontal errors for 1 observer in one
condition is illustrated in Figure 8. For all observers and
conditions, the correlation between errors in the hori-
zontal and vertical directions was small (averaging » =
.10) so that the horizontal and vertical errors could be
treated separately. The radial error distributions were the
distributions of errors from the imaginary circle on which
the stimuli fell along a line radiating from the fixation
point.

Figure 9 shows the cumulative distribution of the data
plotted in Figure 8, along with the best-fitting normal
distribution. The normal distribution, of course, has two
parameters: the mean and the variance. This observer’s
data in this condition (short exposure, far condition) is
captured quite well by a normal distribution. The good
fit of this observer and condition was not unique, as is
discussed below.

Each observer’s results in each condition were fitted
with a normal distribution (two parameters) and the dis-
tribution given by the winner-take-all rule (three param-
eters). The third parameter in the winner-take-all rule
was the exponent, p (see Figure 5). All of the data were
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Figure 8. A frequency histogram of the errors along the hori-
zontal axis.

LOCATION AND THE X-FILES 55

extremely well fit with the normal distribution. The fits
are shown in Table 3. In all cases, the normal distribution
accounted for over 99.99% of the variance (R?%). The re-
sults were also fit with the exponent. For the winner-
take-all rule, the exponent should be less than 1.0. For a
normal distribution, the exponent should equal 1.0. The
exponent hovered around 1.0 and averaged 0.992.

To evaluate statistically the adequacy of the normal
distribution, the fit of the normal distribution was com-
pared to the fit of the winner-take-all distribution with
the following F statistic (Ashby & Lee, 1991):

(SSE,, - SSE, )/ (P, - F,)
SSE,, /| P,

df:(Pw_Pn)’Pw> (1)

where P, is the number of parameters of the winner-
take-all model (i.e., the model with the larger number of
parameters), P, is the number of parameters of the nor-
mal distribution model (i.e., the model with fewer pa-
rameters), and SSE|, and SSE,, are the sum of squares for
the two models. Significant F' values of this statistic
would mean that the (two-parameter) spatial average
model should be rejected in favor of the (three param-
eter) winner-take-all model. Table 3 shows the results of
this analysis. The additional parameter of the winner-
take-all model did not significantly improve any of the
fits. Furthermore, a prediction of the winner-take-all
model is that the smaller the RFs (i.e., the closer to fix-
ation), the smaller the exponent will be. There was no
hint of that tendency in the data. The average for the short
exposure duration for near and far conditions (averaged
over X, Y, and Rad) were 1.02 and 1.00, respectively.

>

Discussion

The data from each observer and condition are fit very
well by the cumulative normal distribution. This result
implies that the visual system can be characterized as in-
tegrating above-threshold location information by a spa-
tial average rule. The spatial average rule has the conse-
quence of minimizing errors rather than being precisely
correct in location judgment. The winner-take-all model
has the consequence of maximizing the probability of
being precisely correct, but at the expense of larger er-
rors. For the visual system, minimizing error might be
more important than being precisely correct. When one
is locating a predator, it is perhaps better to be approxi-
mately correct than to risk a large error (and death) by
running toward the predator.

One might wonder about the generality of these find-
ing with other observers and other conditions. Experi-
ments 2 and 3, both of which involved above-threshold
stimuli and slightly different tasks, provide additional
support for the spatial average model. In Experiment 2,
there were 9 observers in 24 different conditions, and in
Experiment 3 there were 5 observers. The average expo-
nent of all 17 observers in all conditions in the three ex-
periments was 1.04, and there was never a case in which
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Figure 9. The predicted and observed cumulative response dis-
tributions for a typical observer and condition. The predicted dis-
tribution is a normal distribution.
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the exponent was significantly less than 1. (Note that in
each of the winner-take-all simulations in Table 1, the
spatial average model would have been rejected by the
statistical test in Equation 1 and p < .05.)

The present results contrast with results with stimuli
at threshold, in which the winner-take-all (i.e., nonlin-
ear) combination rule seems to apply (see, e.g., Kontse-
vich & Tyler, 1999; Pelli, 1985). The hypothesis behind
these theories is that the activation of the location with
the highest activation is compared to a threshold. If the
activation of the location with the highest activation is
above the threshold, the observer responds that the stim-
ulus was present. It may not be surprising that the winner-
take-all rule applies in a detection experiment with loca-
tions at threshold. If the highest activated location is

below the threshold, a weakly activated location will also
be below the threshold and hence provide little additional
information. In a location experiment with stimuli above
threshold, such as the present experiments, all active lo-
cations potentially provide useful information.

One might question whether the method of reproduc-
tion (i.e., the observers directly indicated the stimulus lo-
cation with a mouse) captures perceptual processes. The
response distributions contain variability due to nonper-
ceptual sources. For example, observers have to remem-
ber the stimulus location, if only for a short time. There
may be variability due to positioning of the cursor. These
other sources of variability can be assessed by examin-
ing the long (500-msec) exposure condition. In the long
exposure condition, the observers had time to move their
eyes to the stimulus location so that the exposure was
foveal, and there was probably little variability due to vi-
sual processes. Hence, the short exposure condition con-
tained variability due to perceptual and nonperceptual
sources, whereas the long exposure condition represented
variability due only to these other sources. The distribu-
tions for the long and short exposures could be treated as
normally distributed random variables. Since the sum of
any two normally distributed random variables is also a
normally distributed random variable, one can infer that
the component of the short exposure duration due only
to perceptual processes is also a normally distributed
variable.

It is possible that these “other” sources of variance are
normally distributed but that the perceptual component
is not. There may be circumstances in which these other
sources of variance mask a leptokurtic perceptual com-
ponent. Although possible, this result seems unlikely in
the present circumstance because the variance for the
short exposure condition (perception + other) is much

Table 3
Model Parameters for Experiment 1
Observer 1 Observer 2 Observer 3

Condition SD Exp. F(1,3) SD Exp. F(1,3) SD Exp. F(1,3)
Near short X 9.17 1 0 8.28 1 0.04 9.41 1.08 0.27
Near short Y 798 099 0.02 7.58 092 0.44 10.67 1.08 0.32
Far short X 12.58 0.98 0.23 1648  1.02 0.03 11.9 0.94 0.58
Far short Y 13.97 1.08 4.92 1596 1.07 2.18 10.25 091 1.29
Near long X 395 097 0.51 5.77  0.96 0.1 3.35 1 0
Near long Y 372 092 0.43 529 094 0.64 329 0.89 0.55
Far long X 4.52 1 0 8.1 0.98 0.48 447  0.96 0.35
Far long Y 467 091 0.17 8.27 1 0 3.78  0.93 0.53
Near short Rad 949  1.05 0.77 8.59 1 0 10.74  1.08 1.05
Far short Rad 16.83 1 0 1495 1.03 0.07 11.63 1 0
Near long Rad 5.21 1.06 0.73 571 095 0.83 3.48 1 0
Far long Rad 524 097 0.88 7.84 099 0.03 4.47 1 0

Means 8.11  0.99 9.40  0.99 729 099

Note—Near and far refer to the eccentricity; short and long refer to the exposure duration. SD, stan-
dard deviation used to fit the normal distribution; Exp., the exponent used to fit the winner-take-all
model; X and Y, horizontal and vertical dimensions, respectively; Rad, distribution along a radial
axis. The critical value for the F statistic (p < .05) is 10.27, so that any value above this would vio-
late the spatial average model. The spatial average model was not rejected with any observer or con-
dition. The condition in bold is illustrated in Figure 9 and discussed in the text.



larger than that for the long exposure condition (other).
The average precision in the short exposure condition is
330 pixels, in comparison with 50 pixels for the long ex-
posure condition (see Table 2).

It was mentioned in the introduction that several the-
ories have used a winner-take-all integration rule (see,
e.g., Cave & Wolfe, 1990; Tsal et al., 1995). The partic-
ular integration rule that was used was probably not cen-
tral to these theories, and they could have used a spatial
average rule as well as a winner-take-all rule. However,
interesting questions are raised by these theories. For ex-
ample, Cave and Wolfe hypothesized that attention in vi-
sual search is guided by the most active location. On the
one hand, it may be the case that the mechanism for guid-
ing visual search is different from the mechanism for the
conscious perception of location. Thus, the winner-take-
all rule might be appropriate for the Cave and Wolfe
guided search model. On the other hand, the spatial av-
erage mechanism, which on average will minimize er-
rors (or, to be more precise, error squared), might be a
good mechanism for guiding attention as well as for the
conscious location of objects.

It can be concluded that the spatial average model pro-
vides a good characterization of the integration of loca-
tion information for the visual system as a whole, and it
is not necessary to add a nonlinear parameter. Note,
however, that there is a fundamental difference between
the model (X-Files) and the visual system: The model
has only a single layer of detectors and the visual system
contains many layers of analysis. In fact, the visual sys-
tem may contain many nonlinear components (e.g.,
winner-take-all model), but the combination of these can
be described by the spatial average (i.e., linear) system.
The linear combination of nonlinear processes would
yield a normal distribution by the central limit theorem.
The best we can do in a behavioral experiment such as
the present one is to describe the output of the system as
a whole, and not just, for example, area V1.

Even though we can characterize the integration rule of
the system only as a whole, the finding that the resulting
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distribution of location responses is normal turns out to
be important in studying attention and the effect of land-
marks. The assumption of a spatial average model leads
to a potentially powerful measurement of attention. Fur-
thermore, to test the models of the effect of a landmark in
Experiment 3, the distribution of location responses was
critical. There maybe circumstances in which the winner-
take-all (or other) integration rule is more appropriate
(e.g., near-threshold exposure). However, as a first step in
any model of attention (Experiment 2) or in determining
how the presence of one object affects the location of an-
other object (Experiment 3), we must make assumptions
about the integration of perceptual information. In the ex-
periments reported in this article, the spatial average model
is the most consistent with the data.

EXPERIMENT 2
Attention

In several previous experiments, it has been found that
attention reduces the variance of location responses, as is
shown in Figure 1 (Newby & Rock, 2001; Prinzmetal et al.,
1998; Tsal & Meiran, 1993; Tsal et al., 1995). Two mech-
anisms for this reduction in variance have been proposed:
reduction in receptive field size and more-samples theory.

The first proposed mechanism is based on the idea
that attention reduces the size of receptive fields or, more
generally, sharpens tuning functions. Figure 10 shows a
simplified situation with nine possible target locations
and nine detectors. (The locations are the dots, and the
detector RFs are the ovals and circles.) In Figure 10A,
each RF covers three locations; in Figure 10B, each RF
covers one location. It may be that attention reduces RF
size. In the visual system, Moran and Desimone (1985)
described cells in area V4 whose receptive fields appear
to shrink around an attended location (also see Spitzer,
Desimone, & Moran, 1988). However, it is not clear
whether the behavior of these cells represents the mech-
anism of attention or is the result of another attentional
mechanism. For example, an attentional mechanism (e.g.,

COCO0CU0T0

Figure 10. Possible target locations and detectors. In both panel A and panel B, there are nine locations and nine
detectors. In panel A, most detectors guard three locations, and in panel B each detector guards one location.
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more samples) operating in an area prior to V4 may be
the cause of the smaller RF in V4. Tsal et al. (1995) pro-
posed a “resolution theory of attention,” which is medi-
ated by smaller receptive fields.

The main problem with the smaller-receptive-fields
account of attention is that it has never been shown to
work. In fact, it generally makes the wrong prediction. In
every simulation that I have run, as the size of the RF
gets smaller the variability of location responses in-
creases, provided that the following conditions are met:
(1) The number of detectors remains constant, (2) there
are enough detectors to locate the stimulus, (3) the hit
rate is less than 1.0 and the FA rate is greater than 0, and
(4) the hit and FA rates do not vary with RF field size.
The reason for this result is quite clear. Consider one lo-
cation in Figure 10 (e.g., Salt Lake City). In Figure 10B,
only one detector is guarding each location. There is a
probability [1 — p(hit)] that an alien attack will be missed,
possibly with unfortunate consequences for the citizens of
Salt Lake City. In Figure 10A, however, with three detec-
tors guarding each location the probability of missing an
alien attack on Salt Lake City is only [1 — p(hit)]3. Of
course, with multiple detectors guarding a location, there
is a greater probability of a FA at that location, but if hits
and FAs both increase exponentially and p(hit) > p(FA),
then more detectors guarding a location must lead to bet-
ter performance. The observation that smaller RFs can
lead to worse performance than larger RFs has been
made by other investigators (e.g., Heiligengerg, 1987;
Hinton, McClelland, & Rumelhart, 1988; O’Reilly, Koss-
lyn, Marsolek, & Chabris, 1990). Thus, the shrinking of
receptive fields with attention observed by Moran and
Desimone (1985) could be a consequence of another at-
tentional mechanism.

The second type of theory to account for the effect of
attention proposes that attention is like obtaining more
samples (see, e.g., Bonnel & Miller, 1994; Luce, 1977).
In the X-Files parable, obtaining more samples could be
similar to the following scenario: Suppose that instead
of reporting to the FBI at the end of each day whether or
not there was a hit on that day (sample size = 1), the
agents waited 3 days and reported whether there were
zero, one, two, or three hits (sample size = 3). (Of course,
this analysis assumes that the alien stays in the same lo-
cation for 3 days.) In the latter case, the spatial average
is calculated after 3 days (three samples). If a decision
about the alien’s location is made after 3 days (three sam-
ples) instead of after 1 day (one sample), the variance of
distributions over episodes will be reduced. According
to the spatial average rule, the variance of an observer’s
responses, Var,,, is simply the square of the standard
error of the mean:

_ Var

Varresp =

()

where 7 is the sample size and Var is the variance of each
sample. The variance of responses will naturally be less
after three samples (» = 3) than after one sample (n = 1).

The concept of discrete samples is a bit obscure in terms
of the visual system because it is impossible to quantify
the exact number of samples an observer might take.
However, consider the ratio of the variance of more at-
tention (more samples) to responses with less attention
(fewer samples):

Mess

Var, Var/n 1/n
= (3)

more attn - more _
Varless attn Var/nless 1/nless Pmore

more

Here, the ratio of the observed variances is directly re-
lated to the ratio of samples. The ratio of observed vari-
ances provides a theoretically motivated metric of atten-
tion assuming integration by spatial average and assuming
that attention is mediated by more samples. The variances
are obtained directly from the distribution of the observers’
responses. Thus, more-samples theory, together with the
spatial average integration rule, makes possible a simple
and theoretically motivated metric of attention. This mea-
sure of attention is more tightly coupled to the mechanisms
of attention than are other measures (e.g., slopes of the dis-
play size function). However, as will be described below, a
more general approach that does not assume spatial aver-
aging will be taken in the present experiment.

More samples might be implemented in physiological
terms in many different ways. For example, the refractive
period might be reduced so that cells are allowed to fire at
a higher rate (McAdams & Maunsell, 1999; Wurtz, Gold-
berg, & Robinson, 1980). Perhaps a higher firing rate
would be reflected in cerebral blood flow as well as in
single-cell activity (Gandhi, Heeger, & Boynton, 1999).
McAdams and Maunsell have found that the change in
behavior of V4 cells is better described by a change in fir-
ing rate than by a change in the cell-tuning function. A
second way in which more samples might be implemented
is that detectors could be recruited from an unattended re-
gion of space by shifting their receptive fields to include
the attended region of space (Connor, Preddie, Gallant, &
Van Essen, 1997). Finally, attention might change the tun-
ing function of a cell so that it includes stimulus values
that normally do not activate it. Indeed, attention has
many physiological effects (Colby, 1991) and many of
these might be related to more samples.

In Experiment 2, I looked for evidence consistent with
the more-samples theory of attention. The number of
samples is a theoretical construct that cannot be directly
manipulated. The claim is that attention affects the num-
ber of samples. To test this idea, attention was varied using
the dual task paradigm described below. Another vari-
able, related to the number of samples, was also manip-
ulated. This variable was exposure duration: The longer
the exposure duration is, the greater the number of sam-
ples there will be. The question addressed was whether
exposure duration would affect performance in a man-
ner that is quantitatively similar to attention. The method
is similar to one used by Loftus and his colleagues, who
asked how much additional exposure duration was equiv-
alent to the duration of an iconic image (Loftus, Johnson,
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Figure 11. A theoretical distribution based on the idea that at-
tention can be considered similar to increasing the exposure du-
ration and therefore the number of samples. In this example, at-
tention is “worth” 33.3 msec of additional exposure duration.

& Shimamura, 1985). Here, I am asking how much ex-
posure duration attention is worth.

Exposure duration and number of samples are of
course not identical. However, to the extent that expo-
sure duration is equivalent to number of samples, the
variance of responses should decrease in a similar man-
ner. Consider the hypothetical data in Figure 11. The
solid symbols are the results of simulations (spatial av-
erage model). In the simulations, exposure duration is
simulated with the number of samples taken before a lo-
cation decision is made. The location decision is based
on the sum of activation over n samples. The more sam-
ples (or the longer the exposure duration), the less the
variance will be. If the data were generated from an ex-
periment with conditions in which attention was varied,
in the hypothetical data (Figure 11) attention would have
been worth exactly 33.3 msec, because more attention is
worth the equivalent of 33.3 msec more time for more
samples.

The hypothetical data in Figure 11 could be fit by
Equation 2 because they were generated by a spatial av-
erage integration rule. However, simulation from the
winner-take-all rule could not be fit by Equation 2. I
found that the decrease in variance with increased num-
ber of samples could always be fit with the following ex-
pression, regardless of the integration rule:

Var = d(e_bx ) +a. 4)

The parameters are b, which determines the shape of the
function; d, a scale factor; and a, the asymptote. The
quantity x refers to the number of samples (in a simula-
tion) or the exposure duration (in an experiment). Hence,
Equation 4 was a flexible tool for characterizing the de-
crease in variance that one would expect with increasing
exposure duration and/or samples. The two solid line
functions in Figure 11 were created with the same pa-
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rameters, except that having more attention is like hav-
ing more samples by parameter c:

Var = d[e_b(x+c) ] +a. (5)
Thus, ¢ is equivalent to 33.3 msec. The dotted line is the
function labeled “more attention” moved over by exactly
33.3 msec. The empirical question is, to what extent can
attention and exposure duration be considered different
methods of influencing the same underlying theoretical
variable (i.e., number of samples)? Notice that in Fig-
ure 11 the two functions asymptote at the same value. In
this experiment, the exposure durations were not such as
to obtain asymptotic performance (except perhaps for
1 observer). To the extent that attention and exposure du-
ration reflect the same underlying variable, it should be
possible to model the variances of the response distribu-
tions with high and low attentional loads by the addition
of a parameter, c.

A second version of the more-samples model was also
tested. In this version, rather than having an additive ef-
fect, attention changed the sampling rate. In the rate ver-
sion, instead of adding a constant (c) a rate parameter (d)
was estimated. In this parameterization, x + ¢ became
x * d (see Equation 5).3 This version provided fits that
were similar to those of Equation 5.

Using the methods presented here, whereby observers
directly locate a target, as in Experiment 1, attention has
been manipulated in three ways. Tsal and Meiran (1993)
used a variant of a spatial cuing method developed by
Posner (1980). Three regions were marked by large cir-
cles. Just before the presentation of a target dot, one of
the circles got brighter, indicating that the target was
most likely within the indicated circle (also see Tsal
et al., 1995). The observers then located the target in a
manner similar to that of Experiment 1. Prinzmetal et al.
(1998) used a variety of dual task manipulations to ma-
nipulate attention. In one method, used here, the dual
task was letter identification. Letter identification was
either easy or difficult. When letter identification was
easy, presumably it took little attention and the observers
could devote their attention to the dot localization task.
When letter identification was difficult, the observers
could not devote their attention to the dot localization
task. Finally, Newby and Rock (2001) used the inatten-
tion paradigm, in which the target to locate was either
not expected (inattention) or expected (divided attention;
see Mack & Rock, 1998).

With all three methods, the result of the attentional
manipulation was the same: greater variance in location
responses with less attention (e.g., Figure 1). In princi-
ple, the analysis above could be applied to any method of
varying attention, but the procedure of Prinzmetal et al.
(1998) was chosen for the following reasons. The cuing
paradigm used by Tsal and Meiran (1993) differs from
the original Posner (1980) paradigm in that the cue not
only affects attention but also provides direct informa-
tion relevant for the response. Thus, the attention effect
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was confounded with information on location provided
directly by the cue. In the method used by Newby and
Rock (2001), only one inattention trial can be obtained
per observer, and many thousands of trials per observer
are required for the present analysis.

Method

Procedure. The experiment was similar to Experiment 1 except
that a second task was introduced to manipulate attention. On each
trial, not only did a small dot appear in the periphery, as in Experi-
ment 1, but at the same time a 3 X 3 matrix of letters was presented
in the center of the screen. The letter matrix always contained either
the target letter F or the target letter T. The observer’s tasks were to
indicate which target letter had been presented and to indicate the
location of the dot. After the presentation of the dot and letter ma-
trix, the observer moved the screen cursor over the location where
the dot had been presented. If the letter matrix contained the letter
F, the observer would press the left button on the mouse. If the let-
ter matrix contained the letter T, the observer would press the right
button on the mouse. On 8.88% of the trials, no dot (only the letter
matrix) was presented. On these trials, the observer was to move
the cursor to the “absent” button in the bottom right corner of the
screen and press the appropriate button to indicate the target letter.
Thus, by moving the cursor and pressing one button, the observer
indicated the identity of the target letter, whether a target dot was
present, and, if the target dot was present, its location.

Attention to the dot task was manipulated by making the letter
task easy or difficult. On the easy trials, all of the nontarget letters
in the matrix were Os. On difficult trials, the nontarget letters were
heterogeneous and randomly drawn from all the letters of the al-
phabet. Prinzmetal and colleagues found that this manipulation of
attention affected performance in a wide variety of tasks (Prinz-
metal et al., 1998; Prinzmetal et al., 1997, Prinzmetal & Wilson,
1997). With the easy letter condition, there was less variance on the
dot localization task, presumably because there was more attention
“left over” to perform the localization task. In each block, half of
the trials were in the easy condition and half were in the difficult
condition, and they were presented in a random order.

In addition to the attention manipulation, there were four differ-
ent exposure durations. For the first 3 observers, these were of 50,
100, 166.7, and 233.3 msec. For the remaining 6 observers, they
were of 40, 106.7, 173.3, and 240 msec. The reason for the differ-
ence was that the first 3 observers were run with a 60-Hz monitor
and the remaining observers with a 75-Hz monitor. In each block,
there were 96 target dot-present trials and 12 target dot-absent tri-
als. Each combination of exposure duration and attention condition
was used equally often for target-present and target-absent trials
within a block.

Each trial began with a fixation dot in the center of the screen.
The target dot and the matrix of letters came on at the same time.
The letters were presented for 250 msec (first 3 observers) or
240 msec (remaining 6 observers). The target dot was presented for
one of the four exposure durations described above.

On each trial, the observers were given feedback on the correct-
ness of their present/absent judgments, as in Experiment 1. In ad-
dition, whenever the observer identified the target letter incorrectly,
the computer sounded a brief beep. There was no feedback on the
accuracy of the location judgment.

Each of 9 observers, selected as in Experiment 1, participated in
10 1-h sessions. During each session, data were collected on eight
blocks of 108 trials per block, yielding 8,640 trials per observer.
There were practice and warm-up trials, as in Experiment 1. The
observers’ ages ranged from 22 to 55 years. All the observers were
naive as to the purpose of the experiment, except W.P. (the author).

Stimuli. The stimulus displays were similar to those of Experi-
ment 1 except that the monitor had a screen resolution of 832 X

624 pixels and the viewing distance was 50.8 cm. At this viewing
distance, 26.6 pixels subtended 1° of visual angle (in comparison
with Experiment 1, in which 32.7 pixels subtended 1°). The bright-
ness values of the background (white) and the gray target dot were
the same as in Experiment 1.

The target dot, when present, subtended 0.34° of visual angle and
was located on an imaginary circle whose radius subtending 3.5°.
The 3 X 3 letter matrix was created with Helvetica uppercase 12-
point type. The letters were black, and the entire matrix of letters
subtended approximately 1.05° in height and 1.40° in width.

Results

The stimuli were clearly above threshold as indicated
by the presence/absence judgments. The hit rate was
over .999 for each observer, and the FA rate was under
.010 for each observer. The average percents correct on
the letter task were 98.8% versus 93.8% for the easy and
difficult conditions, respectively [#(8) = 3.87, p < .01,
one-tailed].

The data were fit to the spatial average (normal) dis-
tribution and the winner-take-all distribution, as in Ex-
periment 1. There were 24 fits per observer (difficult vs.
easy letter condition X 4 exposure durations X horizon-
tal vs. vertical vs. radial error). The normal distribution
provided excellent fits of the data. When the exponent pa-
rameter was added, none of the fits were significantly im-
proved. If this parameter equals 1.0, the distribution is the
normal distribution. The exponent averaged 1.06.

As in Experiment 1, the precision of responses was
used as a measure of variance (i.e., the averaged squared
distance from the stimulus to the response; see note 3).
The average precision on the location task in the easy and
difficult letter conditions are given in Table 4. Thus, the
difficulty of the letter task had a substantial influence on
the precision of location accuracy. The letter condition
affected location precision for each observer except P.E.

The precision results in Table 4 were fit with Equa-
tions 4 and 5. The value of parameter c is given in Table 4.
For every observer except P.E., adding c to the easy let-
ter condition improved the fit. The F ratios used to com-
pare the augmented model to the model without ¢ ranged
from F(1,4) = 115.06 (Observer K.R.) to F(1,4) = 6.68
(Observer T.A., p = .054). There was no improvement
for Observer P.E. [F(1,4) = 0]. Because Observer P.E.
didn’t show an effect of attention, his data is not infor-
mative as to how attention affects location perception. (It
is not at all clear why PE. did not show an attention ef-
fect. The difficulty of the letter task did not affect his
performance on the localization task.) Hence, the re-
maining analysis concerns the 8 observers who did show
an attention effect.

For 7 of these 8 observers, the model presented in Fig-
ure 11 and Equations 4 and 5 provides a good qualitative
and quantitative account of the data. The effect of atten-
tion is similar to that of increased exposure duration.
Only Observer E.R. did not follow this pattern. I will
first discuss the 7 observers who conform to the pattern
and then contrast their performance with that of Ob-
server E.R.
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Table 4
Precision in Experiment 2

Exposure Duration (msec)

Observer 50 100 166.7 2333 M 50 100 166.7 2333 M c
Easy Letter Condition Difficult Letter Condition
E.R. 666 532 442 403 510 733 591 503 465 573 28.6
J.E. 1,422 1,196 1,058 1,123 1,200 1,590 1,303 1,104 1,149 1,287 21.8
K.R 781 680 658 584 676 1,041 941 864 709 889  158.1
Exposure Duration (msec)
42 109 175 242 142 42 109 175 242 142 c
Easy Letter Condition Difficult Letter Condition
W.P. 2,121 1,542 1,290 1,000 1,488 2,947 2443 2,182 2,039 2,403 184.5
1.0. 2,024 1,875 2,000 1,668 1,892 2,808 2,229 2337 1931 2,326 179.1
S.H. 816 735 628 560 685 936 770 701 574 745 69.1
T.A. 568 512 436 386 476 756 605 560 458 595 67.8
Z.E. 842 729 723 698 748 878 868 819 819 846  197.0
PE. 992 711 572 500 694 992 711 572 500 694 —12.6

Note—Precision of location responses as a function of attention condition and exposure duration in milliseconds.
The parameter c is the number of milliseconds that one would add to the easy letter condition to make it match the
difficult letter condition.

To obtain a qualitative sense of whether exposure dura-
tion and attention may both be characterized, in part, by
the same underlying variable (i.e., number of samples),
the results are plotted in Figure 12 in the same format as
in Figure 11. The solid lines represent the actual data. The
dashed line represents the easy letter condition displaced

by parameter c. The error bars represent 2 standard errors
of the variance.# Each point represents approximately 960
trials (depending on the number of misses).

Consider Observer K.R. (Figure 12), who showed a
large effect of attention. Attention was “worth” 158.0 msec
for this observer (i.e., c = 158 msec). One can easily imag-
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Figure 12. The results of 4 observers. Solid triangles represent results from the easy letter condition, and solid

squares represent those from the difficult letter condition. Unfilled triangles represent results from the easy let-
ter condition moved laterally by ¢ msec. Each point is based on a minimum of 1,385 trials. Error bars represent
2 standard errors of the variance.
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ine that if the easy letter condition was shifted 158 msec
(the dotted line), a single function could fit both the easy
and the difficult noise conditions. Observer J.O. also had
a large attention effect “worth” 216 msec (i.e., ¢ = 216).
Observer S.H. had a much smaller effect of attention,
worth only 42 msec. The reader is invited to plot the data
from the other observers from Table 4 and/or test alter-
native models.

For the 7 observers who followed the predicted pat-
tern, several additional quantitative models were tested.
One might question whether anything is happening with
these observers other than the addition of the param-
eter ¢. Against the model with four parameters (a, b, s,
and c), we tested three different five-parameter models.
These five-parameter models had different a, b, and s pa-
rameters for easy and for difficult letter conditions. These
models did not significantly improve the fits for any of
these 7 observers. The F values used to compare these
five-parameter models and the four-parameter model
ranged from F(1,4) = 0 to F(1,4) = 2.40 (the critical
value is 7.71).

E.R. did not follow the predicted pattern (see Fig-
ure 12). For this observer, attention could be thought of
as 28.6 msec of additional exposure duration. However,
the visual fit of this observer’s data does not seem very
good in that the two attention conditions do not appear to
asymptote at the same value. For this observer, each of
the five-parameter models provides a significantly bet-
ter fit than does the four-parameter model. Note that this
was not the case for any of the other observers. The prob-
lem with this observer’s data may be that the exposure
durations were not long enough to yield a good indica-
tion of asymptotic performance. Alternatively, it may be
that for this observer exposure duration (or attention)
may have had an additional effect on the asymptote.

For each observer, we also analyzed the data with the
rate version of Equation 5. In this version, we estimate a
rate parameter, d, and x * d replaces ¢ + x. Of the 8§ sub-
jects who showed an attention effect, 3 were fit better by
the x * d formulation and 5 were fit better by the x + ¢
formulation. The differences were not great, probably
because the fits were extremely good to begin with. I
think that in order to make the experiment sensitive
enough to show the difference between these versions of
the more-samples model, one would have to run an ex-
periment with many more than four exposure durations.
However, one needs a minimum of approximately 1,000
trials per condition. Adding more exposure durations
would make the experiment extremely large.

Discussion

The goal of this experiment was to determine whether
or not increased attention could be considered analogous
to increased exposure duration. The rationale was that
both attention and exposure duration might be related to
the same underlying theoretical construct: more sam-
ples. If this account is correct, then a single parameter

should account for the change in variance with changes
in exposure duration and attention.

The results were encouraging for the more-samples
model. Of the 8 observers who were affected by the atten-
tion manipulation, the performance of 7 was consistent
with the more-samples model in that the effect of attention
on precision could be accounted for by a single parameter
related to exposure duration. For the 8th observer, this was
not the case. Although we cannot account for the results of
1 observer, it is encouraging to know that our quantitative
methods were powerful enough to detect this exception.

The relation of attention and exposure duration to the
same underlying construct does not mean that attention
functions exactly as increased exposure duration. There
are probably numerous ways in which increasing exposure
duration and increasing attention have different effects on
the visual system. For example, with long exposure dura-
tion, detectors early in visual processing, including retinal
receptors, may fatigue. On the other hand, a faster firing
rate of cells with increased attention is more likely to fa-
tigue cells later in visual processing.

Nevertheless, a model that assumed that the effect of
attention was like the effect of increased exposure dura-
tion fit the results of 7 of 8 observers fairly well. The ex-
ception was Observer E.R., for whom the function with
attention does not seem to asymptote to the same level
without attention. As was pointed out above, Prinzmetal
etal. (1998), with exposure durations up to 0.5 sec, found
performance with and without attention to asymptote to
the same value. It may be that the exposure durations
used in this experiment were not long enough to yield a
good estimate of the asymptotic value for Observer E.R.
Alternatively, for this observer exposure duration may
have had an influence in addition to that which it shares
with attention. For example, although the target letter
may have “popped out” of the easy letter arrays, this ob-
server may have tried to remember the arrays during the
difficult letter condition. Memory for the letter array may
have interfered with memory for the location of the tar-
get dot. Thus, it is possible, at least for 1 observer, that the
attention manipulation affected nonperceptual processes
and that these processes were reflected in the asymptote.

This experiment does not prove that the more-samples
notion of attention is correct. However, the results were
reasonably consistent with the more-samples theory of
attention, and therefore it remains a viable candidate the-
ory. Furthermore, the alternative—smaller receptive
fields—makes the wrong prediction. In the simulations,
smaller receptive fields resulted in larger variability of
location responses. Several colleagues have suggested al-
ternatives that would repair the smaller-receptive-fields
theory. One possibility is that with smaller receptive
fields, perhaps there are more detectors and hence better
performance. There is no question that adding detectors in-
creases performance, but such improvement is the result of
more detectors (providing more samples), not of decreas-
ing RF size. The second suggestion is that perhaps with



smaller RFs, each detector becomes more accurate (i.e.,
higher hit rate, lower false alarm rate). There is no question
that increasing the sensitivity of detectors improves per-
formance, but it would be the sensitivity of the detectors,
not the RF size, that results in better performance.

Two final notes of caution are in order. First, the
smaller-receptive-fields theory and the more-samples
theory are intended here to account for what Lu and
Dosher (1998) would term signal enhancement (or inter-
nal noise reduction). The stimulus displays were unclut-
tered. There are other situations in which it might not be
clear which item is the target item (cases of “noise ex-
clusion”; see, e.g., Awh, Matsukura, & Serences, 2003;
Dosher & Lu, 2000). It is unclear how to apply either of
the models discussed here to cases of noise exclusion.

Finally, computer simulations, just like experiments,
suffer from the inductive fallacy. That is, it is difficult to
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prove that there is no version of the smaller-receptive-
fields theory that could make the correct prediction (i.e.,
less variance with more attention). However, despite nu-
merous attempts, [ could not get such a model to work.
Furthermore, other investigators have independently
come to the same conclusion with very different simula-
tions (see, e.g., Heiligengerg, 1987; Hinton et al., 1988;
O’Reilly et al., 1990). It is difficult to imagine what version
of the smaller-receptive-fields theory would work when
actually implemented in a computer simulation. It be-
hooves those who subscribe to the smaller-receptive-fields
theory to demonstrate that it can lead to the appropriate
behavior. Furthermore, it would be important to under-
stand the necessary conditions for such a model to work.
At this point in time, the more-samples theory is the
most viable computational account for the effect of at-
tention on location perception.

Figure 13. (A) The pattern of activation when two aliens land. The
black bars represent activation due to the alien to the west, and the white
bars represent activation due to the alien to the east. (B) Separating the
activation by the point of minimum activation. (C) Separating the acti-
vation by a statistical dispersion method. Only the information within a
“neighborhood” (bracket) is considered as arising from one spacecraft.
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EXPERIMENT 3
Multiple Objects

The final experiment was conducted to address the
question of what happens if two aliens land. The situa-
tion is illustrated in Figure 13. How might the perceived
location of one alien spaceship be affected by the pres-
ence of a second alien spaceship? There are two compu-
tational problems. The first is to determine whether there
are one, two, or more aliens. This problem is very diffi-
cult and will not be addressed here. The second problem
is addressed by the following question: Assuming there
are two alien spaceships and the FBI knows this, how is
the activation from the radar detectors used to determine
the location of each spaceship? In Figure 13, for exam-
ple, RFs in the center get activation from both alien
spaceships.

One class of solutions is to look for a point of mini-
mum activation. This solution is illustrated in panel B of
Figure 13. All the activation to the west of that minimum
are attributed to one alien, and all the activation to the
east of that minimum are attributed to the other. Once the
activation is assigned, the information attributed to each
alien is integrated as in the previous simulations.

Logan’s (1996) CODE theory of attention uses this
type of parsing rule. According to this theory, objects are
defined in terms of an activation pattern, as in Figure 13.
The minimum value that separates the two “mountains”
in the terrain defines objects.

The consequence of using the minimum point depends
on the integration rule. In the computer simulations, if
the spatial average rule were applied separately to the ac-
tivation east and west of the minimum point, the conse-
quence would be to shift the locations apart. On average,
the alien to the west of the minimum point would be lo-
cated farther to the west, and the alien to the east of the
minimum point would be located farther to the east. The
reason for these shifts is clear from Figure 13. Consider
the west alien location. Activation to the right of the min-
imum point was truncated. Note that the distribution of
perceived locations will still be a normal distribution be-
cause the distribution of sampling means is always nor-
mal regardless of the shape of the population distribution.

The computer simulations yielded more complex re-
sults with the winner-take-all rule. Depending on the pa-
rameters of the simulation, the distribution of location
responses was shifted farther apart (as above) or closer
together. In these simulations, they would generally be
shifted closer together when the RF size was small. Using
the winner-take-all integration rule, the distribution of
locations over episodes was leptokurtic. Furthermore,
depending on the parameters of the simulation, it could
be asymmetric. That is, the distribution of locations of
one spaceship would be skewed toward that of the other.
Thus, in making predictions about how the presence of
one object affects the perceived location of another ob-
ject, it was important to characterize the shape of the dis-

tribution. Fortunately, the shape of the distributions of
the location responses was normal. If the shape of the
distribution is normal, then the minimum point always
predicts that the aliens would be perceived as being far-
ther apart than they actually are.

A second class of models is one in which a statistical
solution based on a measure of dispersion is used. A
t test would be an example of this sort of solution. A 7 test
tests whether a datum is too far from a group of scores
to be considered a member of that group. The idea be-
hind the statistical solution is illustrated in Figure 13C. To
simplify the simulations, a range statistic was used as the
measure of dispersion. For example, all of those locations
indicated by the bracket (on the left) were considered a
part of one potential object (or spaceship). The location
marked “?” was outside the range and therefore not con-
sidered part of that object. Thus, all of those locations that
were within some critical range were considered together.

The idea behind the statistical dispersion model was
implemented in the following manner. A series of “neigh-
borhoods” was defined. A neighborhood is simply a
group of contiguous locations that are all within z loca-
tions of each other. For example, if the neighborhood
size was nine locations, the first nine locations from the
left would be the first neighborhood. The bracket in Fig-
ure 13C is the third neighborhood from the left, and so
forth. Many different neighborhood sizes were simu-
lated. In each simulation, the two neighborhoods with
the highest total activation were considered possible tar-
get locations. The information within each of these two
neighborhoods was integrated (separately) according to
the spatial average or winner-take-all rule to choose one
location on each episode. Regardless of the integration
rule, the statistical dispersion model tended to make
items appear closer together, although the shape of the
distribution was affected by the integration rule, as in the
previous simulations. This shift occurs because the win-
ning neighborhood includes activation from the other
spacecraft. For example, in the figure the winning neigh-
borhood in brackets includes activation from the space-
craft on the right. As in the previous simulations, the spa-
tial average rule yielded a normal distribution and the
winner-take-all rule yielded a leptokurtic distribution. In
some circumstances, the latter distribution was asym-
metric in the simulations.

There are probably many ways of implementing a sta-
tistical dispersion model in neural hardware. The way it
was implemented here added a bit of the winner-take-all
decision rule because only the two neighborhoods with
the highest activations were considered. A better method
might be to construct a hierarchical arrangement of de-
tectors, with detectors high in the hierarchy being equiv-
alent to the neighborhoods in the simulation. To the ex-
tent that a neighborhood detector is activated, it might
send reciprocal activation back down to the members of
that neighborhood, creating a “rich-get-richer” effect
common in neural networks. Expressed colloquially, the



statistical dispersion models clump together items that
are close together.

In summary, the effect of a statistical dispersion model,
however implemented, is to cause location assimilation:
Stimuli will be perceived as closer together than they
truly are. The effect of a minimum point model depends
on the integration rule. If the distribution of location re-
sponses is a normal distribution, then the minimum point
model predicts that stimuli will be perceived as farther
apart than they actually are.

In this experiment, observers were briefly presented a
small target dot and a large “landmark” dot. The primary
task was to locate the small target dot, as in the previous
experiments. The question is whether, on average, the ob-
servers would locate the target dot closer to or farther
from the landmark dot than its actual position. The ob-
servers also indicated whether the target dot was to the
left or to the right of the landmark dot. The reason for this
additional task was to ensure that the observers saw two
dots on each trial and knew which dot was the target. If
the observers mistook the landmark dot for the target dot
on some trials, the average location response would be ar-
tifactually biased toward the landmark location. Further-
more, to discriminate the models, it was also necessary to
determine the shape of the response distribution.

Method

Procedure. The experiment was similar to Experiment 1 except
that a pair of dots (a small target dot and a large landmark dot) was
briefly presented. The exposure duration was 167.7 msec. The cen-
ters of the two dots were always horizontally aligned. The ob-
server’s task was to move the screen cursor (with the mouse) to the
location of the small target dot. The observer then pressed the left
mouse button if the target was to the left of the landmark, or pressed
the right mouse button if the target was to the right of the landmark.
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Thus, with one buttonpress, the observers indicated the position of
the target relative to the landmark and also the absolute position of the
target dot. On the rare occasions on which the observer indicated
the incorrect relative position (e.g., indicated that the target was to
the left when it was to the right), the computer emitted a loud sound
like that of a foghorn.

Each of 5 observers participated in a single session that lasted
about 1.25 h. The observers were first given a practice block of 50
trials, and then data were collected for 10 blocks of 100 trials per
block. The observers were volunteers, aged 22 to 30 years, who
were naive to the purpose of the experiment.

Stimuli. The experiment was run with the same monitor, com-
puter, and viewing distance as was Experiment 2. However, instead
of gray dots, the stimuli were black, on a white background. The tar-
get dot was the same size as that used in Experiment 2 and sub-
tended 0.34° of visual angle, with a diameter of 10 screen pixels.
The landmark dot was four times larger in diameter than the target
dot. The target dot was presented on the diameter of an imaginary
circle that subtended 3.5° of visual angle from the fixation point (as
in Experiment 2). On half of the trials, the landmark was to the left
of the target dot, and on half of the trials it was on the right of the
target. (The pair of dots on the left side of Figure 14A illustrates a
stimulus with the landmark to the left of the target, and the pair of
dots on the right side of Figure 14A illustrates a stimulus with the
landmark on the right side of the target.) The distance from the cen-
ter of the target to the center of the landmark subtended approxi-
mately 1.7° of visual angle (50 screen pixels). Note that at the view-
ing distance used, 26.6 pixels subtended 1° of visual angle.

Results

The observers were quite accurate at knowing whether
the target dot was to the left or to the right of the land-
mark dot. Relative location averaged 99.3% correct (see
Table 5). Trials with relative location errors were re-
moved from subsequent analysis.

Because the landmark and target dots were always hor-
izontally aligned, the errors in the horizontal direction

Figure 14. The stimuli used in Experiment 3 consisted of a single small
dot and a single large dot that were the same relative size and distance
apart as the pairs of adjacent dots in panel A or panel B. The small dots
may appear farther apart in panel A than in panel B. Panels C and D
suggest the relation to the Miiller-Lyer illusion.
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Table 5
Results of Experiment 3

Observer Relative Location (%)  Skew  Landmark Right Landmark Left t test
1 99.4 —0.401 2.40 —13.98 #992) = 17.39*
2 99.2 0.307 28.20 —5.87 #(990) = 31.37*
3 98.3 0.136 2.51 0.65 #(981) = 1.69
4 99.8 0.197 7.83 —2.61 #(996) = 18.70*
5 99.8 —0.171 -0.79 —4.49 #996) = 4.37*
Means 99.3 0.014 8.03 —5.26

Note—Skewness, shifts, and ¢ values reflect only trials on which the relative location judgment was
correct. The Landmark Right and Landmark Left columns are the average shifts in location response
in pixels in the horizontal direction (26.6 pixels are 1° of visual angle). Positive numbers indicate a

shift to the right, and negative numbers indicate a shift to the left. The ¢ test is two-tailed.

were analyzed to answer two questions: First, could the
data be fit with a normal distribution, and, second, did re-
sponses shift toward or away from the landmark dot?

Before the results were fit to a normal distribution, an
“adjusted” horizontal error was calculated in the follow-
ing manner. When the landmark was on the left of the
target, the sign of the horizontal error was reversed. No
change was made to errors when the landmark was to the
right of the target. Thus, if the landmark caused the re-
sponses to be skewed toward the landmark, the two con-
ditions would not cancel each other out. This transfor-
mation made it possible to analyze both the landmark-
left and the landmark-right conditions together.

Errors in the horizontal direction were fit to the nor-
mal (spatial average) and winner-take-all models, as in
the previous experiments. The data were fit reasonably
well by a normal distribution. For all the observers, more
than 99.98% of the variance was accounted for by a nor-
mal distribution. The predicted and observed data for
Observer 2 are shown in Figure 15. This observer had
the worst fit (in terms of SSE), yet the normal distribution
does a good job of describing the observer’s performance
with just two parameters. The addition of the third pa-
rameter did not significantly improve any of the fits.

Predictions of the winner-take-all integration model
are not as simple as those in Experiments 1 and 2. With
a landmark near the stimulus, the simulations sometimes
produced skewed distributions. The moment coefficient
of skew was calculated for each observer and is shown in
Table 5. The distributions were very symmetrical, which
of course is consistent with the normal distribution and
the spatial average integration rule.

The mean of the responses was shifted toward the land-
mark. On average, the observers responded 8.03 pixels too
far to the right when the landmark was to the right of the
target and 5.26 pixels too far to the left when the landmark
was to the left of the target. Table 5 shows the shifts for
each observer. Each observer’s average location shifted to-
ward the landmark, and the shift toward the landmark was
significant (by a ¢ test) for each observer but Observer 3.

Discussion

In this experiment, two dots were briefly presented: a
target dot and a landmark dot near the target dot. The ob-
servers had to indicate whether the target was to the left

*p <.01.

or to the right of the landmark, and they did this nearly
flawlessly. However, the landmark affected the perceived
location of the target. The observers perceived the target
as being closer to the landmark than it actually was. This
effect might be called location assimilation.

Although there was location assimilation, the distrib-
ution of perceived locations was still normal. It was not
skewed toward (or away from) the landmark. Thus, the
integration rule of the system as a whole still appears to
be the spatial average rule.

The finding of location assimilation is perhaps not
surprising. There have been several experiments in which
a dot was presented inside a circle, and observers then re-
produced the location of the dot (see, e.g., Huttenlocher
et al., 1991; Laeng, Peters, & McCabe, 1998; Nelson &
Chaiklin, 1980). The distortion is generally toward the
periphery of the circle, which could be considered a land-
mark. Huttenlocher et al. and Laeng et al. also found dis-
tortions toward the center of the quadrant that contained
the dot. These results were described as a drift toward the
prototypical location of each quadrant. It might be that
mental landmarks attract objects just as well as physical
landmarks do.

Suzuki and Cavanagh (1997) found spatial repulsion
away from an attended object. Because attention was not
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Figure 15. The fit of 1 observer to the normal distribution in
Experiment 3.



controlled in Experiment 3, it is difficult to judge the rel-
evance of these findings to the present experiment. Their
explanation was that attention recruits more detectors in
the attended location expanding mental space. Certainly,
this explanation is not inconsistent with the more-samples
model. More relevant, Werner and Diedrichsen (2002)
found attraction toward landmarks except when the tar-
get was very close to the landmark. When the target was
close to the landmark, the spatial distortion was away
from the landmark. There were many differences be-
tween the Werner and Diedrichsen experiment and the
present experiment, including the distances that were
used and the fact that Werner and Diedrichsen used two
landmarks. In general, as is discussed below, the litera-
ture suggests that location assimilation is the rule, but
there may be exceptions.

It is interesting to speculate whether the location as-
similation observed in this experiment is caused by the
same mechanism as other kinds of spatial assimilation.
For example, Pressey (1971) extended the idea of spatial
assimilation to a number of classical illusions. Pressey’s
idea can be illustrated with the stimuli used in Experi-
ment 3. Figures 14A and 14B illustrate the stimuli. How-
ever, in the figure two pairs of stimuli are presented in a
Miiller-Lyer-inspired arrangement. For many observers,
the small dots in Figure 14A appear farther apart than
the small dots in Figure 14B. This illusion might be con-
sidered a form of the Baldwin illusion (Coren & Girgus,
1978, pp. 31-33). It is interesting to note that after the ex-
periment, all of the observers who participated in Experi-
ment 3 were debriefed and shown a drawing that was sim-
ilar to that of Figures 14A and 14B. Observer 3 was the
only observer that did not perceive the dots as farther apart
in panel A than in panel B. This observer also showed the
smallest assimilation effect in the experiment.

Figures 14B and 14D provocatively include the Miiller-
Lyer illusion in comparison with the stimuli used in the
present experiment. One could think of the Miiller-Lyer
illusion as a case of position assimilation, as is suggested
in the figure. In fact, the statistical dispersion model
could be considered an instantiation of Miiller-Lyer’s

Figure 16. The gravity-lens illusion. Imagine a line connecting
the two small dots on the left of the figure and a different line con-
necting the two small dots on the right of the figure. These two
imagined lines do not seem parallel, but they are.
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original theory: “two lines are judged to be of different
lengths because it is not only both lines themselves which
are taken into account, but, involuntarily, part of the re-
gion on either side of them” (Miiller-Lyer, 1896, trans-
lated in Day & Knuth, 1981, p. 137).

As a final example of location assimilation, consider
the gravity lens illusion, shown in Figure 16 (Greene,
1998; Naito & Cole, 1994). Imagine a line connecting
the two small dots that are on the left side of the figure
and a separate line connecting the two small dots on the
right side of the figure. The reader might be surprised to
learn that a line drawn between the small dots on the left
of the figure is parallel to a line drawn between the two
small dots on the right. It is as if the larger dots attract the
smaller dots just as gravity attracts planets. The model of
assimilation depicted here could be described as a mech-
anism for implementing this mental gravity.

Position assimilation illusions have also been ex-
plained in terms of the smearing that might occur with
low-pass filtering (see, e.g., Ginsburg, 1984). A fourier
analysis of an image includes all the information in the
image. Hence, the issue is not whether a fourier image
analysis is an appropriate way to represent the informa-
tion in an image. The issue is whether these illusions are
best conceptualized in the frequency domain or in the
phase domain. The mechanism proposed here is in the
phase domain as opposed to the frequency domain. That
is, the location of objects, and not their spatial frequency,
is misperceived. An attractive aspect of the present ap-
proach is that it corresponds to the phenomenology of
the experiment: The position of the target appears shifted
in location; it does not appear blurred.

GENERAL DISCUSSION

In the experiments reported in this article, I examined
three issues involving the mechanisms of location per-
ception: (1) how the visual system integrates location in-
formation, (2) how attention affects location perception,
and (3) how the presence of one object affects the loca-
tion of other objects. In each case, an attempt was made to
contrast two classes of theories. For example, in the first
experiment information integration by a winner-take-all
rule was compared with integration by a spatial average
rule. Of course, these different classes of models could
be placed on a continuum. The winner-take-all rule gives
a large (infinite) weight to the highest activated detector,
whereas the spatial average rule weights all information
equally. One could imagine a full range of models be-
tween these two. For example, the activation value at
each location might be raised to a power. Nevertheless,
highlighting the differences between the two basic mod-
els served the purpose of making clear, testable predic-
tions possible.

Two ways in which an attentional mechanism could be
modeled were also examined. One was based on the idea
that attention could be conceptualized as an increase in
sampling; the other was based on the idea that attention
produced tighter tuning functions. Simulations of the
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tighter tuning functions theory simply did not work. Op-
erationalizing the “more-samples” idea is admittedly dif-
ficult. The approach taken in the present work was to de-
termine whether the effect of attention was quantitatively
similar to the effect of increasing exposure duration. The
assumption was that both attention and exposure duration
are related to the same underlying variable: more sam-
ples. For 7 of the 8 observers who showed an affect of at-
tention, attention and exposure duration fit the data with
a single parameter by which more attention was consid-
ered to be equivalent to a constant (or multiplicative) in-
crease in exposure duration.

In the final experiment, models that divide activation
in terms of a minimum value (Logan, 1996) were con-
trasted with a class of models that use a statistical dis-
persion approach. Because we could characterize the in-
tegration rule, these theories made clear predictions. The
statistical dispersion approach predicts location assimi-
lation, and the minimum value model predicts location
repulsion. Although there may be cases of repulsion (as
discussed above), Experiment 3 was consistent with the
statistical dispersion model.

The three issues are interrelated. Each of the models
considered had to make assumptions about the integra-
tion rule. A characterization of the integration rule was
necessary to test the models of the effect of a landmark.
Furthermore, the spatial average rule suggested a theo-
retically motivated theory of attention. The issues could
be considered separately, but much of the theoretical
power of the models would not have been possible had
the issues not been considered together.

In the remaining discussion, I first consider method-
ological issues raised by the present work and, second, I
consider one critical issue for future research. In both
sections, I attempt to highlight the strengths and limita-
tions of the present work.

The methodological approach taken here involved
four steps: a theory expressed verbally (i.e., the X-Files
parable), computer simulations, a mathematical descrip-
tion of the output of the simulations, and, finally, an ex-
periment. The alternative theories were first expressed
in terms of a fanciful story of the FBI’s locating alien
spacecraft. In addition to amusing the author, expressing
the models in this manner was useful in several ways. Al-
though the models can easily be implemented in neural
hardware, it is important to keep in mind that they refer
to general design characteristics of the visual system, not
to any particular area in the brain. By discussing radar
fields instead of receptive fields, it should be clear that
the model is not a model of a particular visual area (e.g.,
V1). Furthermore, by referring to easily comprehended
physical mechanisms, the temptation to evolve the mod-
els into multiple-layer neural networks was avoided. The
issue is not whether such implementations are correct or
incorrect; rather, the concern is that such implementa-
tions can be difficult to comprehend. A simple parable
made it easy to describe the problem and the general
structure of different solutions. The story and the mod-

els are simply metaphors for the visual system. It is clear
that the visual system did not evolve to (only) detect and
locate alien spacecraft.

Computer simulations played a vital role in all of the
work. Before the simulations were conducted, the con-
sequences of the theories were not always obvious. For
example, my colleagues and I had previously predicted
that the distribution of perceived locations would be
Gaussian (Ashby et al., 1996). The motivation for this
prediction was guided as much by mathematical conve-
nience as by anything else. Computer simulations using
a winner-take-all integration rule never yield a Gaussian
distribution. Similarly, in thinking about the mechanisms
of attention, the first guess was that the tighter-tuning-
functions theory could account for the improvement of
location perception with attention (see, e.g., Prinzmetal
etal., 1998). This idea seemed to be in accord with phys-
iological evidence (Moran & Desimone, 1985; but see
McAdams & Maunsell, 1999). After all the attempts to
simulate attention in this manner failed, it became obvi-
ous why such a scheme was doomed: If each detector
gets a smaller receptive field, the number of detectors
guarding each location decreases. One way to make such
a model work would be to add more detectors (i.e., more
samples). However, adding more samples in and of itself
was sufficient to model the effect of attention. In the final
experiment with two objects, the fact that predictions of
the minimum point model depended on the integration
rule was a complete surprise. In summary, it is well worth
going beyond a verbal description of a theory. There may
be surprises when a theory is actually simulated.

These experiments differed from many psychological
experiments in another way. The typical experiment usu-
ally makes predictions about the ordinal relation among
means. For example, as experimental psychologists, we
are usually satisfied if one mean reaction time is signif-
icantly greater than another. Occasionally, we might look
for a particular functional relation between means (see,
e.g., Sternberg, 1969). In the present experiments, the
exact shape of the response distribution was critical in
deciding between theories. In addition, precise predic-
tions about variance were also critical in testing other
theories. Of course, this study is not unique in examin-
ing statistics beyond measures of central tendency. How-
ever, it does illustrate that we can make theoretical
progress by looking beyond the first moment of the dis-
tribution. There is a cost to this approach, however. It
was necessary to gather much more data per observer
than if only means had been examined.

One of the more interesting challenges for future study
arises from the fact that the present work was limited to
strictly metric aspects of location perception, a kind of
simplistic “dot-ology.” The perception of object location
in natural environments tends to involve categorical or
other types of relations (Huttenlocher et al., 1991; Stevens
& Coupe, 1978; Tversky, 1981). In localizing my com-
puter, for example, I know that it is on my worktable, to
the /eft of the telephone. An important issue is how to



model the transition from a simple metric spatial repre-
sentation to one that involves spatial relations. In the last
experiment, for example, the observers indicated not only
the absolute location of the target dot but also whether it
was to the left or to the right of the landmark. That is, the
observers extracted a spatial relation, not just a position.

It is likely straightforward to derive models that ex-
tract spatial relation from purely metric relationships.
Imagine an X-Files problem involving two alien space-
craft, one from Mars and one from Venus. An example
of a question involving spatial relations is whether the
Martian craft is to the west or to the east of the Venusian
craft. This question is precisely the task given to the ob-
servers in Experiment 3, who were asked whether the
small dot was to the left or to the right of the large dot.
One might imagine a model with a 2-D array of detec-
tors, but some detectors are more sensitive to Martian
spacecraft and others are more sensitive to Venusian
spacecraft. In addition, this problem probably could not
be solved without some metric of latitude or an idea of
meridians of longitude. In perceptual terms, some frame
of reference would be required.

The question, therefore, is not whether the visual sys-
tem becomes “categorical” in the perception of location;
it surely does. Furthermore, modeling such processes
will not be particularly difficult when the approach taken
here is used. Such a model might provide a good fit of
the data. However, as Roberts and Pashler (2000) argued,
model fits by themselves are not very informative. An
effort was made in the present work to ask fundamental
computational questions about perception. For example,
in the first experiment I asked whether the visual system
maximizes the probability of precisely localizing objects
(winner-take-all model) or whether it functions to mini-
mize errors in location judgments (spatial average model).
The challenge for future research is to ask this type of
fundamental question about the derivation of spatial re-
lations in location perception.
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NOTES

1. I thank and acknowledge Leonid Kontsevich for suggesting this
method for fitting the winner-take-all function.

2. Variance is the average squared distance from the response to the
centroid of responses for each condition, whereas precision is measured
from the stimulus location. Since there was very little constant error, the
results in terms of precision were almost identical to the results in terms
of variance. In the present experiments, precision gave slightly more
systematic results than variance, perhaps because the centroid of re-
sponses for a condition is only an estimate of the constant error of that
condition. However, in no case were the results with precision system-
atically different from those with variance.

3. This parameterization of the more-samples model was suggested
by Thomas Sanocki.

4. The standard error of the variance is

Iy
o =0"% \%
Precision was used for 0. Note that the sampling distribution of the vari-
ance is y2. With such a large number of observations, however, the sam-
pling distribution can probably be treated as a normal distribution.
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APPENDIX

The distribution of location responses for the spatial average rule is easy to characterize, but the distribu-
tion for the winner-take-all rule is more complex. To understand this distribution, first consider the spatial av-
erage rule. Locations were numbered, starting from the leftmost location. The sum of location x activation di-
vided by the sum of all the activation was the mean location. Each trial (i.e., each X-Files episode) can be
considered a sample. The distribution of sample means is a normal distribution.

To understand the distribution from the winner-take-all rule, first consider only the target location and all
the locations to the left of the target. The “highest value” (or winner) is the location with the highest activa-
tion value. The distribution of maximum values will be determined according to the following function:

f(x)=cx* exp{_(u;x)a} for x <u.

Considering the location to the right of the target, the distribution of minimum values will be the mirror of
the above:

f(x)=c=* exp[_(x_su)_a} for x > u.

These functions are Type 2 and Type 3 extreme value functions (Johnson et al., 1995, chap. 1). The squares
in Figure A1 are the results of the cumulative distribution of a typical winner-take-all simulation, and the di-
amonds are generated by the extreme value function shown above. The results of the winner-take-all simula-
tion could always be fit by the extreme value functions, just as the results of the spatial average simulation
could always be fit by the normal distribution.
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Figure Al. The extreme value function and a winner-take-all
simulation.

The extreme value function becomes a normal distribution when @ = 2. Thus, a is critically related to the
kurtosis of the distribution.
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