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Dynamical trajectories in category learning
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Category learning has traditionally been studied by examining how percentage correct changes with
experience (i.e., in the form of learning curves). An alternative and more powerful approach is to ex-
amine dynamical learning trajectories—that is, to examine how the parameters that describe the cur-
rent state of the model change with experience. We describe results from a new experimental paradigm
in which empirical-learning trajectories are directly observable. In these experiments, participants
learned two categories of spatial position, and they were constrained to identify and use a linear deci-
sion bound on every trial. The dependent variables of principal interest were the slope and the inter-
cept of the bound used on each trial. Data from two experiments supported the following conclusions.
(1) Gradient descent provided a poor description of the empirical trajectories. (2) The magnitude of
changes in decision strategy decreased with experience at a rate that was faster than that predicted by
gradient descent. (3) Learning curves suffered from substantial identifiability problems.

Traditionally, category learning has been investigated
by examining how response accuracy changes with ex-
perience. Often, such data are presented in the form of a
learning curve, which plots proportion correct against
trial or block number. Learning curves are a good non-
parametric method for investigating category learning,
because no model needs to be specified during their con-
struction. Learning curves are also relatively simple to
compute and often provide an effective method for com-
paring task difficulty across different conditions of an
experiment (e.g., Shepard, Hovland, & Jenkins, 1961).

On the other hand, the use of learning curves to test
among competing models is severely limited because, in
most cases, a variety of different models will be capable
of predicting the same learning curves. For example, a
popular assumption of many category-learning models is
that the trial-by-trial learning of categories is accom-
plished via a process of gradient descent on the error sur-
face (Ashby, Alfonso-Reese, Turken, & Waldron, 1998;
Erickson & Kruschke, 1998; Estes 1993, 1994; Estes,
Campbell, Hatsopoulos, & Hurwitz, 1989; Gluck &
Bower, 1988; Hurwitz, 1990; Kruschke, 1992; Nosofsky,
Kruschke, & McKinley, 1992). Roughly speaking, gra-
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dient descent algorithms (e.g., the delta rule, back-
propagation) predict that the learner will update the pa-
rameters that govern learning on a trial-by-trial basis in
a way that causes the probability of error to decrease in the
fastest possible manner (e.g., Rumelhart, Hinton, & Wil-
liams, 1986). Even so, for any increasing learning curve, it
will always be possible to find two models that provide per-
fect fits, where one assumes gradient descent and the other
does not (an example will be shown below).

This article has a number of goals. First, we will demon-
strate some of the limitations of learning curves when
category-learning data are analyzed. Next, we will con-
sider some advantages of considering category learning
as a dynamical process that can be studied with classical
techniques from dynamical systems theory. In the third
section, we will propose a new empirical method in which
dynamical trajectories are directly observable. Finally, two
experiments will be presented that demonstrate the appli-
cation of a dynamical systems approach to category learn-
ing. Among other results, we will show that the empirical
trajectories from our experiments are incompatible with
the assumption of gradient descent.

Some Limitations of Learning Curves

Consider an experiment in which observers are asked to
classify stimuli into two categories, A and B, and suppose
that the stimuli vary across trials on three continuous-
valued dimensions (e.g., color, shape, and size). Suppose
further that the category structures are such that size is
the only relevant dimension. For example, large stimuli
might be in Category A, and small stimuli in Category B.
In this case, there are a number of ways these categories
could be learned. One possibility is that observers use an
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Figure 1. Simulated backward-learning curves for the rule-
based and procedural-based models in category-learning tasks
with (A) continuous- and (B) binary-valued dimensions.

explicit rule-based strategy in which they only try unidi-
mensional rules that are easy to verbalize. If we denote
the stimulus values on the three dimensions by x,, x,, and
X3, then under this scenario, all rules are of the form

Respond A if x; > ¢g;; otherwise respond B,

where ¢, is the decision criterion on dimension i. To use
this strategy successfully, an observer must find the rele-
vant dimension and determine the optimal value of €. The
latter problem is often referred to as criterial learning.

A very different possibility is that observers use a
strategy in which they integrate information from all the
stimulus dimensions at some predecisional stage (e.g.,
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by using a form of procedural learning). In this type of
learning, each stimulus dimension is assigned a weight,
and the category response is determined by computing a
weighted combination of the values on each stimulus di-
mension. For example, an observer using such a strategy
might respond according to the following decision rule:

Respond A if oy x; + ox, + 05x3 > B;
otherwise respond B,

where ¢; is the weight on dimension i and Bis the decision
criterion. To learn the optimal form of this linear discrim-
inant function, the dimension weights and the decision cri-
terion are optimized in a trial-by-trial incremental process.

The rule-based strategy will produce learning that is
nearly all-or-none. If the observer has selected the incor-
rect stimulus dimension, accuracy will be near chance.
On the first trial in which the correct dimension is se-
lected, accuracy will jump dramatically, and the only
thing preventing optimal responding will be a suboptimal
decision criterion. In contrast, we expect the procedural-
learning process to lead to incremental improvements in
accuracy—small changes in the dimensional weights
should lead to small changes in accuracy. As such, accu-
racy should gradually rise from chance to near-optimal
levels. These two strategies, therefore, should produce
the most discrepant possible learning curves.

To verify this intuition, we conducted simulations of a
model in which a rule-based decision strategy was as-
sumed and one in which a procedural-learning strategy was
assumed.! Average simulated backward-learning curves
are plotted in Figure 1A.2 As was expected, the two mod-
els predict quite different backward-learning curves. The
rule-based model (solid line) initially performs at chance
and then jumps to near-perfect accuracy during the block
in which a criterion of 10 consecutive correct responses
was met (arbitrarily numbered Block 0). On the other
hand, the procedural-learning model (dotted line) demon-
strates incremental learning. The initial performance of
the procedural-learning model is at chance, but instead of
a large jump in accuracy from one block to the next, ac-
curacy gradually improves across a number of blocks.

The simulations shown in Figure 1A assumed
continuous-valued stimulus dimensions. What would
happen instead if the stimuli from the two categories var-
ied across trials on three binary-valued dimensions? In
this case, the stimulus coordinates would form a cube,
and each of the two categories would contain four exem-
plars whose coordinates form opposite faces of the cube.
The results of this simulation are shown in Figure 1B.
Note that the rule-based model (solid line) and the
procedural-learning model (dotted line) initially perform
at chance, but then the performance of both dramatically
jumps to near-perfect accuracy within a few blocks.

In this experiment, it would be virtually impossible to
test between all-or-none and incremental learning by ex-
amining learning curves. The problem is that, although
the procedural-learning model incrementally adjusts the
position of its decision bound (i.e., a plane in this case),
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most of these changes have no effect on accuracy, be-
cause of the sparse nature of the stimulus space. For ex-
ample, suppose that on trial n, the decision plane of the
procedural-learning model is such that both sides con-
tain two exemplars from Category A and two from Cat-
egory B. In this case, accuracy will be at chance. Now
suppose that the plane is incrementally adjusted so that
it moves in the direction of the optimal decision bound.
Unless this movement passes through the coordinates of
one of the four incorrectly classified exemplars (and
does not pass through the coordinates of one of the four
exemplars that were correctly classified), accuracy on
trial n» + 1 will be the same as that on trial #. Thus, with
binary-valued stimulus dimensions, the incremental
procedural-learning model predicts that accuracy will
remain at chance as the decision bound is incrementally
adjusted until the bound rotates through the coordinates
of an incorrectly classified exemplar. At this point, ac-
curacy will increase discretely. Figure 1B shows that this
identifiability problem is so severe that the incremental
procedural-learning model predicts essentially the same
learning curves as the all-or-none rule-based model. In
other words, simply changing the nature of the dimen-
sions (from continuous to binary valued) produced a lack
of identifiability at the level of analysis typically used in
category-learning experiments.

Dynamical Trajectories

Every model can be characterized by a set of param-
eters. Excluding any stochastic influences, specifying
the numerical values of these parameters fixes the pre-
dictions of the model. Let @ denote the vector of param-
eters for some particular model. The so-called parameter
space of the model contains a dimension for each pa-
rameter in the @ vector. For any numerical value of ®—
that is, for any point in the parameter space—the model
will make specific numerical predictions that will be as-
sociated with some overall probability of an incorrect
categorization response, P(error | @). Adding this extra
P(error| @) dimension to the parameter space creates a
probability-of-error surface. In any experiment, some
particular combination of parameters @* will predict
fewer errors than any other possible combination will.
Thus, the lowest point on the probability-of-error surface
will have coordinates @*, and the elevation there will be
P(error| @*). The behavior of the model on the first trial
of the experiment can be described by the initial param-
eters @,, so learning can be described as movement
through the parameter space in an attempt to find the
lowest point on the probability-of-error surface—that is,
as an attempt to move from the initial point @, to the op-
timal point @*. The path taken by the model through pa-
rameter space is called its dynamical trajectory. A major
goal of this article is to show that dynamical trajectories
provide a powerful alternative to learning curves as a
tool with which to compare competing learning models.

Dynamical trajectories through the parameter space
completely characterize the learning assumptions of a

model. In particular, any learning model must define
some algorithm that describes how @ changes on a trial-
by-trial basis—that is, it must define the allowable
dynamical trajectories. In category learning, the most
popular approach has been to assume that learning fol-
lows a process of gradient descent—in other words, that
the trajectories always move in the direction of the steep-
est possible descent down the probability-of-error surface.
The gradient in the probability-of-error surface in every
direction is specified in the vector of partial derivatives
dP(error | ®)/dw. Thus, according to gradient descent al-
gorithms, the change in @ across trials is completely de-
termined by dP(error | @)/0w:

dw/dt = — o0 dP(error | )/0@. (1

In particular, gradient descent algorithms assume that o
is a constant. In this model, @ is changed in the direction
that causes the greatest possible decrease in P(error | @),
and the steeper the gradient in the error surface at the
point @ on trial n (or at time ¢), the greater the resulting
change in @ on trial n + 1.

Admittedly, it is unlikely that people perform the cal-
culus required by Equation 1 on a trial-by-trial basis; how-
ever, it is reasonable to assume that observers may adjust
the parameters that govern learning with the goal of min-
imizing error. In fact, psychologists consider the as-
sumption of gradient descent to be so reasonable that it is
almost a universal feature of current category-learning
models (Ashby et al., 1998; Erickson & Kruschke, 1998;
Estes, 1993, 1994; Estes et al., 1989; Gluck & Bower,
1988; Hurwitz, 1990; Kruschke, 1992; Nosofsky et al.,
1992). Furthermore, if the goal is to accurately describe
how people develop category representations, the as-
sumptions that define the manner in which learning oc-
curs (e.g., gradient descent) are as critical as assump-
tions regarding the storage of information, response
selection, and category access.

One especially popular method of implementing gra-
dient descent is to cast the model in the form of a con-
nectionist network. Briefly, these models assume a mul-
tilayer network of interconnected nodes. The parameters
of the model include the strengths (or weights) of these
connections. Information is passed from an input layer to
an output layer, sometimes through an intermediate (hid-
den) layer or layers. The input layer represents the stim-
ulus, and each node in the output layer is associated with
a response. Learning in these networks is the process of
modifying the strengths of the connections between the
layers—almost always via an algorithm that implements
gradient descent. Well-known examples include the delta
rule and back-propagation, both of which implement
gradient descent, but in different types of connectionist
networks (Haykin, 1994). Models of this type have been
quite successful in accounting for various aspects of
human category-learning performance, but the gradient
descent assumption has never been directly tested, so it
is not clear whether gradient descent accurately de-
scribes the nature of learning in human observers.



As learning progresses from the initial state @, to the
optimal state @*, changes in P(error|w) tend to de-
crease, because in most cases, the probability-of-error
surface flattens out around @*. Gradient descent predicts
that the magnitude of changes in @ are proportional to
the gradient—that is, gradient descent algorithms make
large changes in @ when @ is in a region where the
probability-of-error surface is steep and small changes
in @ when @ is in a region where the probability-of-error
surface is shallow. For this reason, gradient descent typ-
ically predicts that the magnitude of changes in @ will
tend to decrease as the observer gains experience in the
task. At the extreme, these models predict no further
changes in @ once @ = @*, because the probability-of-
error surface is flat at @ = @* (since @* contains the co-
ordinates of the minimum of the probability-of-error
surface). In fact, empirical evidence for such decreases
has been reported (Busemeyer, Swenson, & Lazarte,
1986). Even so, many category-learning models that in-
corporate gradient descent include an additional as-
sumption that this decrease is even more severe than pre-
dicted by standard gradient descent. This assumption,
which is known in the literature as cooling, is formally
implemented by allowing the constant o in Equation 1
to decrease with experience. To our knowledge, the as-
sumption of cooling has never been empirically tested.

Dynamical trajectories provide more identifiability
than learning curves do. To see this, consider the trajecto-
ries of two different category-learning models that are
characterized by the same pair of parameters w, and ®,.
For example, both models might assume that observers
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use a linear decision bound with slope @, and intercept @,
in order to categorize stimuli that vary across trials on two
dimensions. Note that the rule-based and the procedural-
learning models described in the previous section satisfy
this description. However, suppose that the two models
postulate different learning mechanisms. In particular,
suppose that the first model assumes that learning obeys
gradient descent, whereas the second postulates a learn-
ing process that dramatically violates gradient descent.

Figure 2 shows dynamical trajectories from these two
models across a series of six trials in a hypothetical
category-learning experiment. The graph is a contour plot
of the probability-of-error surface over the (w,, ®,) pa-
rameter space. Darker areas in Figure 2 indicate a smaller
probability of error, and all the points on the same con-
tour have the same probability of error. The solid white
lines are the trajectories of the two models, and the filled
circles represent the position of each model on the error
surface across trials. Initially, both models begin at ap-
proximately the same point on the error surface (i.e.,
trial 1) and end at the surface minimum, @*. As is pre-
dicted by gradient descent, the trajectory of Model 1
proceeds directly downhill, whereas the trajectory of
Model 2 clearly violates gradient descent. Despite this
large qualitative difference in the learning assumptions,
note that both models predict the same probability of
error on each of the six trials illustrated in Figure 2 (e.g.,
the trajectories of both models on trial 3 lie on the same
contour line). As a result, these two very different model
trajectories predict identical learning curves. Thus, al-
though it would be easy to test between the models if dy-

7
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Figure 2. State space defined by the parameters @, and ), overlaid upon a
contour plot of a probability-of-error surface. The solid white lines represent
the model trajectories, and the filled white circles represent each model’s posi-
tion on the error surface across six trials. See the text for details.
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namical trajectories were available, they are nonidentifi-
able with traditional methods of data analysis (i.e., learn-
ing curves).

The advantage of learning curves is that they are non-
parametric—in the sense that they can be estimated
without making any assumptions about the observer’s
decision strategies. The disadvantage is the high degree
of nonidentifiability that exists at this level of data analy-
sis. As we have seen, models that make strikingly differ-
ent assumptions about decision strategy can predict
identical learning curves. In contrast, the identifiability
problems are virtually eliminated with a dynamical tra-
jectories analysis. Two models postulating different
learning algorithms almost necessarily must predict dif-
ferent dynamical trajectories. A major disadvantage with
a dynamical trajectories approach, however, is that it is
parametric—that is, since the trajectories are computed
through some specific parameter space, trajectories can
be computed only if a decision model is first specified.
To make matters worse, the numerical values of the pa-
rameters that collectively define the state of the model
on each trial are unobservable in typical applications. As
such, these parameters must be estimated from the data.
This is a serious impediment, because during learning
the values of these parameters will presumably change
on a trial-by-trial basis. One solution to the parameter es-
timation problem is somehow to make the trajectories di-
rectly observable. If this could be done, the parameters
would always be known, and the problem of estimating
the trajectories would vanish, because they would be em-
pirically observable. In the remainder of this article, we
will propose an experimental method that accomplishes
this goal, and we will report the results of an experiment
in which this method was used.

Making Dynamical Trajectories
Directly Observable

There have been several attempts to estimate dynam-
ical learning trajectories at discrete time points during
the course of multidimensional perceptual categoriza-
tion (Alfonso-Reese, 1996; Minda & Smith, 2001; Smith
& Minda, 1998, 2000). In none of these studies were the
empirical trajectories directly observable. Smith and
Minda (1998, 2000; Minda & Smith, 2001) estimated
dynamical trajectories predicted by prototype and exem-
plar models of categorization by fitting these models to
relatively small segments of empirical data (e.g., groups
of 10 trials; Minda & Smith, 2001). In Alfonso-Reese’s
experiment, a novel approach, called the decision bound
probe technique (DBPT), was used to estimate the tra-
jectories. The DBPT interrupts a sequence of traditional
category-learning trials (that include trial-by-trial feed-
back) with probe blocks that occur at various times
throughout learning. Each probe block includes 50 trials
without feedback, during which participants are in-
structed to categorize a set of transfer stimuli (that are
uniformly distributed across the stimulus space) by
using the same decision rule that they used during the

preceding learning phase. The data from the probe
blocks is then used to estimate a best-fitting decision
bound, whose parameters are assumed to locate the dy-
namical trajectory within the parameter space on the last
learning trial preceding the probe block. Thus, to the ex-
tent that participants are able to maintain their decision
strategy throughout the probe blocks, the DBPT allows
the learning state to be estimated at discrete time points
throughout the learning process (i.e., that depend on how
many learning trials lie between the probe blocks). There-
fore, in the DBPT, as in the work of Smith and Minda, the
decision process is observed indirectly, and the trajecto-
ries are estimated by making assumptions about the true
model of categorization.

In contrast, in several studies, attempts have been
made to make the decision process directly observable
in categorization tasks in which the stimuli varied across
trials on only a single physical dimension. In all these
studies, a signal-detection-like decision process was as-
sumed in which the observer sets a criterion on the stim-
ulus dimension and assigns all the stimuli with a value
greater than that criterion to one category and all the
stimuli with a value less than the criterion to the con-
trasting category. In this case, the parameter space is one-
dimensional (i.e., the value of the decision criterion). A
series of studies have developed empirical methods for
making the value of this parameter directly observable.

The most common such method is based on the so-
called numerical decision task (Lee & Janke, 1964, 1965).
Briefly, in this task, two univariate normal distributions
of numbers are defined, and on each trial, a random sam-
ple, x, is drawn from one of the distributions and pre-
sented to the observer. The observer’s task is to decide
whether this number was sampled from Distribution A
or B. In most applications, the decision criterion in this
task is not known to the participants, but in the cutoff re-
port condition in Kubovy and Healy (1977), the crite-
rion, & was specified by the participants and, therefore,
was directly observable. Specifically, on each trial, the
participants were first asked to specify a numerical value
for & Next, a random sample, x, from one of the two cat-
egory distributions was presented, and the participants
were to make their responses on the basis of the follow-
ing decision rule: if x > ¢, respond A; otherwise, re-
spond B. For example, if x = 10 and the participant had
set € = 5, the required category response was A. The par-
ticipants were given feedback about the accuracy of each
categorization response, and they were permitted to ad-
just the value of € on the basis of this information at the
beginning of the next trial. The version of the numerical
decision task used by Busemeyer and Myung (1992)
(Experiment 2) framed the task as a medical classifica-
tion problem. Here, the observer’s choice of £ determined
his or her diagnosis about the presence or absence of a
disease.

Both of these studies were successful in making the
decision criterion directly observable on a trial-by-trial
basis, although the primary focus was not to investigate
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Figure 3. An example of a trial from Experiment 1. (A) At the beginning of a trial, only the re-
sponse regions are visible. (B) Next, the stimulus is presented, and (C) the observer adjusts the po-
sition of the decision bound as needed. Category A and B response regions are represented as solid

and hatched regions, respectively.

dynamical trajectories but, rather, to test among various
models of criterial learning. Kubovy and Healy (1977)
tested between deterministic and probabilistic criterial-
learning models, whereas Busemeyer and Myung (1992)
tested the parameter search process of their hill-climbing
model. Thus, the primary goal of these studies was to test
specific models. Although the decision criterion was di-
rectly observable, dynamical trajectories were not ex-
amined, and the decision task was unidimensional. In
contrast, in several studies, dynamical trajectories were
estimated in a category-learning task with multidimen-
sional stimuli, but the decision bound was not directly
observable on a trial-by-trial basis (Alfonso-Reese, 1996;
Minda & Smith, 2001; Smith & Minda, 1998, 2000). The
goal of the present experiment was to combine both ex-
perimental procedures, so that the decision strategy in a
task with multidimensional stimuli was observable on a
trial-by-trial basis and this information, in turn, was used
to specify dynamical learning trajectories. This experi-
mental technique was used to test the assumptions of gra-
dient descent and cooling and to highlight the nonidenti-
fiability issues associated with learning curves.

EXPERIMENT 1

In our experiment, each stimulus was a single circle
that varied across trials in its location on the computer
screen. Thus, the stimuli varied on two physical dimen-
sions—vertical and horizontal spatial positions. Exem-
plars from Category A were characterized by positions
on one part of the screen, and exemplars from Category B
tended to fall in another part (although the category dis-
tributions overlapped). Throughout the experiment, the
screen was divided into dark green and dark blue re-
sponse regions that were separated by a line. An exam-
ple is shown in Figure 3. The observers could move this
line between trials to any position on the screen by press-
ing appropriate computer keys. Stimulus circles from
Category A were displayed in light green, and circles
from Category B were displayed in light blue. The ob-
servers were instructed to position the line between tri-
als to maximize the probability that light green Cate-
gory A exemplars fell in the dark green Category A
response region and that light blue Category B exem-
plars fell in the dark blue Category B response region.
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The dependent variables of interest were the slope and
the intercept of the line that divided the monitor into the
two regions.3 For each observer, a plot of these values
across trials defined that observer’s dynamical learning
trajectory for this particular categorization task.

An example showing the sequence of events on a hypo-
thetical trial in which the observer responds incorrectly is
shown in Figure 3. The trial begins with only the response
regions and the decision bound visible (Figure 3A). Then
a Category B exemplar is presented in the Category A re-
sponse region, thereby indicating an incorrect response
(Figure 3B). The participant then makes a response by ad-
justing the position of the decision bound (Figure 3C) to
account for the current stimulus and all other, previously
viewed stimuli.

Method

Participants

The observers in all the experiments were 20 undergraduates at
the University of California, Santa Barbara, who received partial
course credit in an introductory psychology course for participating
in the experiment. All the observers reported 20/20 vision or vision
corrected to 20/20, reported normal color vision, and completed
one session approximately 45 min in duration.
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Stimuli and Stimulus Generation

The stimuli in all the experiments were light green (Category A)
and light blue (Category B) circles defined by their spatial positions
on the monitor. The category structures used in Experiment 1 are
shown in Figure 4, along with the initial and the optimal linear de-
cision bounds. The Category A and B stimuli are plotted as plus
symbols and circles, respectively. The abscissa represents horizon-
tal position on the monitor, while the ordinate represents vertical
position.

Each participant learned four different category structures. The
stimuli from all the category structures were generated by randomly
sampling from two bivariate normal distributions specified by a
mean and variance on each dimension and a covariance between di-
mensions (see Table 1 for the exact category parameters). The cat-
egories always had different means but the same variances and co-
variance. Under these conditions, the optimal decision bounds are
the solid lines plotted in Figure 4. The category structures were cho-
sen so that optimal accuracy was 80%. The order of presentation of
the category structures was counterbalanced using a 4 X 4 Latin
square, and each participant was presented with a different pseudo-
random ordering of the stimuli in each category structure.

The design of this experiment was based upon the randomization
technique (Ashby & Gott, 1988). Briefly, using the parameters
listed in Table 1 for Category Structure 1 (CS1), 100 random sam-
ples were drawn from both the Category A and the Category B pop-
ulations. The two samples were then combined to form CS1. The
stimuli in the other three category structures were generated by ro-
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Figure 4. Stimulus distributions for the four category structures used in Experiments 1 and 2. Cat-
egory A and B exemplars are plotted as plus symbols and circles, respectively. The initial (dashed
line) and optimal (solid line) decision bounds are also plotted.
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Table 1
Category Parameters of the Four Category Structures Used in Experiments 1 and 2
Means Variances

Category Horizontal Position Vertical Position pqrizontal Vertical
Structure A B A B Position Position Covariance

1 57 525 202 288 3,000 3,000 110

2 575 525 288 202 3,000 3,000 =50

3 503 597 262 228 3,000 3,000 50

4 503 597 228 262 3,000 3,000 —110

tating the CS1 stimulus set: 120° for CS2, 220° for CS3, and 270°
for CS4. The parameters for each of these category structures are
also given in Table 1.

The stimuli were computer generated and displayed on a View-
Sonic 15-in. CRT with 832 X 624 pixel resolution in a dimly lit
room. Each random sample (x;, x,) from a given category structure
defined a pixel point on the monitor and the center of each circular
stimulus. All the stimuli subtended a visual angle of approximately
1°. The stimuli were generated and presented using the Psychophysics
Toolbox (Brainard, 1997; Pelli, 1997) in the MATLAB environment.

Four initial decision bounds were chosen (arbitrarily) and were fac-
torially combined with all of the category structures. The initial de-
cision bounds (INI1-4) are plotted with respect to the four category
structures in Figure 4. For illustrative purposes, only one initial deci-
sion bound was plotted with respect to each category structure.

Display

As was stated earlier, this task was designed so that the decision
bound was directly observable. This was accomplished by dividing
the monitor into dark green (Category A) and dark blue (Cate-
gory B) response regions, as depicted in Figure 3 by the solid and the
hatched regions, respectively. The decision bound separated these
two response regions.

Procedure

The participants were run individually in a dimly lit testing room.
On a trial, a stimulus from either Category A (light green circle) or
B (light blue circle) was presented in one of the two category re-
sponse regions. The participant’s task was to adjust the decision
bound so that all of the stimuli from a given category structure were
divided into two categories as accurately as possible. Specifically,
they were instructed to position the decision bound so that as many
of the light green (Category A) exemplars as possible fell in the
dark green region (Category A response region) and as many of the
light blue (Category B) exemplars as possible fell in the dark blue
response region (Category B). Note that the specific colors used in
Experiment 1 were chosen so that the Category A and B stimuli
were clearly visible when presented in the Category A and B re-
sponse regions. The participants were able to move the boundary in
six possible ways on every trial—(1) up, (2) down, (3) left, (4) right,
(5) rotate clockwise, and (6) rotate counterclockwise—by pressing
keys labeled as such on the computer keyboard. The position of the
bound (i.e., the slope and the intercept) was recorded after every
trial. The participants were told that there were two equally likely
categories and were informed of the optimal accuracy. More specif-
ically, the participants were told that the categories would overlap
and that it was possible to be incorrect even if the decision bound
had been placed in the most accurate position possible.

Visual feedback regarding the current position of the decision
bound was given on a trial-by-trial basis. The participants were in-

bound, the participants were able to initiate the next trial by press-
ing the space bar. The current stimulus remained on the monitor
until the space bar was pressed. All the trials were separated by a
response—stimulus interval of 500 msec. The sequence of events on
a hypothetical error trial is shown in Figure 3.

Before beginning the experiment, the participants were given 15
practice trials to ensure that they understood the task. The partici-
pants were then told that they would perform the task with four sets
of categories and that the stimuli and the optimal decision bound in
each of the category structures would be different. The participants
were able to move on to the next category structure once they had
met the stopping criterion of 80% correct over the last 40 trials in
the current category structure. Beginning on Trial 40, this criterion
was computed on every trial within a given category structure. An
upper limit of 200 trials was imposed for those participants who did
not reach the stopping criterion in a category structure. The break
between category structures was self-paced.

Results and Discussion

Trials to Criterion

Each of the 20 participants attempted to learn four cat-
egory structures. Three category structures (out of 80
total) in which the participants did not meet the stopping
criterion (80% correct over the last 40 trials) were not
considered in the following analyses. The median num-
ber of trials to reach the stopping criterion for each cat-
egory structure is given in Table 2. None of these differ-
ences were statistically significant [ ¥2(3) = 0.806].

Empirical Trajectories

Recall that the primary dependent variables were the
slope and the intercept of the decision bound on every
trial and that the decision bound separated the Category
A and B response regions. To aid in the visualization of
subsequent analyses, the decision bounds were reparam-
eterized as the slope (i.e., degrees of rotation of the
bound from horizontal) and the area of the computer
screen that was associated with the Category A response
region (hereafter referred to as the area). In the experi-
ment, the slope ranged from 0° to 360°, where 0° referred

Table 2
Median Trials to Criterion in the Four Category
Structures of Experiment 1

formed that a correct trial was defined as one in which the stimu- Category Structure Median Interquartile Range
lus (the center of the stimulus) from Category A (or B) appeared in 1 62 57.75
the Category A (or B) response region. Thus, the stimulus presented 2 82 49.25
on trial n provided feedback regarding the position of the bound fol- i gg 32(7)(5)

lowing trial n—1. When satisfied with the position of the decision
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Figure 5. Two representative examples of trajectories (in white) that were
classified as not violating gradient descent with respect to the theoretical error
surface. The gray circle (outlined in black) marks the initial bound, the gray di-
amond marks the final bound, and the white asterisk marks the optimal bound.
The top panel is an example from CS4, whereas the bottom panel is an exam-

ple from CS1.

to a horizontal decision bound in which the Category A
response region was above the Category B response re-
gion and the slope increased as the bound was rotated in
a counterclockwise direction. The area ranged from
0 pixels? to 519,168 pixels? (based on a monitor resolu-
tion of 832 X 624 pixels).

One of the objectives of this experiment was to de-
velop a paradigm in which the dynamical learning tra-
jectories were directly observable. The slope and the area
were directly observable on a trial-by-trial basis, so the
dynamical trajectories describing the evolution of an ob-
server’s decision strategy across trials were directly ob-
servable as well. In the plots of these trajectories, pre-

sented below, we overlay the trajectories with contour
plots showing the associated probability of error (as in
Figure 2; see Ashby, 1992b, for details on computing the
error probabilities). It is important to point out, however,
that even a model with perfect memory for all category
exemplars would not have access to this probability-of-
error surface, because its construction requires knowl-
edge of the exact category parameters (i.e., means and
covariance matrices). At best, such a model can hope
only to estimate these parameters by using some trial-
by-trial updating procedure. Therefore, the probability-
of-error surface is stochastic across trials, although trial-
by-trial changes in that surface should gradually decrease
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Figure 6. Two representative examples of trajectories (in white) that were
classified as violating gradient descent with respect to the theoretical error sur-
face. The gray circle (outlined in black) marks the initial bound, the gray dia-
mond marks the final bound, and the white asterisk marks the optimal bound.
The top panel in an example from CS2, whereas the bottom panel is an exam-
ple from CS3. The optimal bound is obscured by the trajectory in the top panel

and is located at the coordinates 150°, 2.51 X 105 pixels2.

with experience. We will examine this issue in more de-
tail shortly.

The Assumption of Gradient Descent

Visual inspection of the empirical trajectories re-
vealed some that appeared to approximately satisfy gra-
dient descent and some that showed apparent dramatic
violations. Figure 5 shows two trajectories that are rep-
resentative of those that were roughly consistent with
gradient descent.# Note that in both cases, the trajecto-
ries proceed from the initial bound toward the optimal
bound in the general direction of steepest descent. On
the other hand, Figure 6 demonstrates two trajectories

representative of those that were classified as violating
gradient descent—that is, the change in the decision
bound is not consistently in the direction of steepest de-
scent. In fact, the change in the decision bound often re-
sulted in an increase, rather than a decrease, in the prob-
ability of error. Qualitatively, only a small percentage
(approximately 10%) of the trajectories appeared to ap-
proximate a gradient-descent-like progression.
Optimal learner. To test the assumption of gradient
descent more rigorously, we compared the empirical tra-
jectories with those of an optimal learner model. To con-
struct this model, we added a gradient descent learning
algorithm to the general linear classifier (GLC) of deci-
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Figure 7. The 95% confidence regions (in white) simulated by the optimal
learner for CS1-INI4 (top) and CS3-INI1 (bottom). Overlaid upon the confi-
dence regions are examples of trajectories (in black) classified as violating gra-
dient descent with respect to the optimal learner. The gray circle (outlined in
black) marks the initial bound, the gray diamond marks the final bound, and
the white asterisk marks the optimal bound. The optimal bounds are obscured
by the confidence intervals and are located at the coordinates 30°, 3.75 X 105

pixels2 (top), and 250°, 1.65 X 105 pixels? (bottom).

sion bound theory (Ashby, 1992a; Maddox & Ashby,
1993). The GLC assumes that observers always use a lin-
ear decision bound. The optimal-learning model that we
added to the GLC assumed perfect memory for all of the
stimuli that had been presented. In addition, after each
stimulus presentation, the parameters of the decision
bound were reestimated to those values that minimized
the proportion of errors up to that point. Of course, since
the optimal learner initially had no knowledge of the cat-
egory parameters, its representation of the local gradient

information was imperfect, although this representation
improved with experience.

The performance of the optimal learner was simulated
for a total of 250 replications of 200 trials for all possi-
ble category structure-initial decision bound combina-
tions (see the Appendix for details of all the simula-
tions). A composite deviation index was computed for
each of the 250 simulated trajectories, using the follow-
ing procedure. First, an average simulated trajectory was
obtained by computing the average values of the deci-
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Figure 8. The 95% confidence region (in black) simulated by the adaptive
learner for CS3-INI4. Overlaid upon the confidence region is a trajectory (in
white) classified as violating gradient descent with respect to the adaptive
learner. The gray circle (outlined in black) marks the initial bound, the gray di-
amond marks the final bound, and the white asterisk marks the optimal bound.
Both the final and the optimal bounds are obscured by the trajectory and are
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located at the coordinates 250°, 1.65 X 105 pixels2.

sion bound parameters on each trial across replications.
Next, the deviation from the average trajectory (in Eu-
clidean distance) was computed on a trial-by-trial basis
for each replication.’ Finally, these deviations were stan-
dardized, and a composite index for each simulated tra-
jectory was computed by summing the standardized
scores for all 200 points. The 250 trajectories were then
rank ordered according to their deviation index, and the
most deviant 5% of the simulated trajectories were
deleted. This procedure resulted in the construction of a
95% confidence region determined by finding the enve-
lope of the remaining trajectories (i.e., the 95% that were
most typical).

Representative confidence regions for two of the cate-
gory structures are plotted in white in Figure 7. For expo-
sition, the confidence regions in Figure 7 were generated
by plotting the 95% most typical simulated trajectories.
There are several points worth noting about the confi-
dence regions. First, in both category structures, the con-
fidence regions include portions of the parameter space
that have a probability of error less than .50. Second, in
the top panel, where the initial decision bound was near
the optimal decision bound, the confidence region also
includes points with a probability of error greater than
.50. Third, there was clearly a considerable amount of
variability in the simulated trajectories, as indicated by
the spread of the confidence regions. These observations
support the claim that even an optimal gradient descent

learning algorithm could produce trajectories that depart
substantially from the trajectory predicted by gradient
descent over the theoretical (i.e., population-based)
probability-of-error surface.

To determine whether the empirical trajectories were
consistent with sample-based gradient descent, we com-
pared each of the empirical trajectories with the appro-
priate confidence region. Specifically, a trajectory was
classified as violating sample-based gradient descent if
more than 5% of the movements (i.e., changes in the
state of the empirical trajectories) were to points outside
of the confidence region. Analyzing the trajectories in
this way revealed that 66% of the observers violated gra-
dient descent. On average, trajectories that were classi-
fied as violating gradient descent produced 25 move-
ments during the course of learning. It could be argued
that given this small number, a criterion of 5% is too lib-
eral. However, increasing this criterion to 20% still re-
sults in almost half (42%) of the trajectories being clas-
sified as violating gradient descent. Two examples of
trajectories that violated gradient descent are overlaid in
black on the confidence regions in Figure 7. Although
not absolute, this analysis indicates that gradient de-
scent, by itself, does not provide a complete description
of these data.

In addition to investigating the confidence regions
predicted by the optimal learner model, it is also worth-
while to examine the confidence regions predicted by
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other popular gradient descent algorithms. As a result,
we investigated the predictions of a version of the GLC
that learned via a least mean square (LMS) algorithm,
and we also investigated the predictions of Kruschke’s
(1992) ALCOVE (attention learning covering map)
model. As with the optimal learner, confidence regions
were computed for both models and compared with the
empirical trajectories. The goal of these analyses was not
to test these models rigorously but, rather, to explore the
predictions of several different gradient-descent—based
learning algorithms.

Adaptive learner. The adaptive learner is a simple
connectionist network version of the GLC. It differs
from the optimal learner only in its learning assumptions
(and it had no internal noise). The adaptive learner used
a popular connectionist gradient descent learning algo-
rithm—namely, the delta rule (Widrow & Hoff, 1960).
Details are given in the appendix.

The simulations are based on 1,000 replications using
a single category structure (CS3) and initial bound (INI3).
The confidence region was computed using the same pro-
cedure as that for the optimal learner and is plotted in Fig-
ure 8 (this time in black). Inspection of the confidence re-
gion illustrates that this simple model did not learn the
categories within the allotted 200 trials—that is, the tra-
jectories did not terminate at the global minimum of the
error surface. However, simulation runs with an in-
creased number of trials demonstrated that the adaptive
learner does eventually reach the global minimum. Fur-
thermore, increasing the learning rate (i.e., 1 in the Ap-
pendix) above the value used in these simulations re-
sulted in convergence to the optimal decision bound in
fewer trials, but at the expense of increased variability in
the confidence regions. In addition, consistent with the
optimal learner, the confidence regions were initially
fairly wide and narrow with time—indicating that the
adaptive learner builds a more detailed representation of
the error surface with experience.

To test whether the empirical trajectories were consis-
tent with the trajectories of the adaptive learner, we repli-
cated the analysis performed with the optimal learner,
but only for empirical trajectories with the CS3—INI3
combination (n = 5). Not surprisingly, all of the empir-
ical trajectories were inconsistent with the adaptive
learner. This result was expected given that the adaptive
learner did not learn the categories. Interestingly, not all
of the observed violations were driven primarily by de-
cision bounds near optimal. Consider, for example, the
white trajectory overlaid upon the adaptive learner con-
fidence region in Figure 8. In direct contrast to the adap-
tive learner, this trajectory proceeds in the opposite di-
rection along the error surface.

ALCOVE. ALCOVE is an exemplar-similarity—based
connectionist model of category learning. Briefly, it as-
sumes that category decisions are made by computing
the similarity of the stimulus to memory representations
of all the previously seen exemplars (see Kruschke,
1992, for a full description). ALCOVE has four param-

Table 3
Parameter Values Used in the ALCOVE Simulations
c 0 A 2
75 4.5 .01 .005
4.5 4.5 .01 .005
4.5 4.5 .1 .005
75 4.5 .1 .005
75 4.5 .01 .16
4.5 4.5 .01 .16
4.5 4.5 .1 .16
75 4.5 1 .16

eters: ¢, ¢, A, and A,. The ¢ parameter is a measure of
the overall discriminability of the stimuli, ¢ specifies the
consistency of responding, and the two learning rates, A,
and A, determine how quickly the exemplar category as-
sociations and attention weights are learned, respec-
tively. ALCOVE is a popular model of category learning
that assumes that the weights between layers in the network
are updated by a process of gradient descent on error.

For the present application, two numerical values of c,
A, and A, were used, and the value of ¢ was held con-
stant—resulting in eight unique parameter combinations
(see Table 3). These parameter values have all been used
in past applications of ALCOVE (e.g., Nosofsky &
Kruschke, 2001). Each of the eight parameter combina-
tions was used to generate simulated trajectories for all
four category structures (using a single initial bound,
INI3). Each of the 32 possible parameter—category-
structure combinations were replicated 200 times. Con-
fidence regions, which were generated using a procedure
identical to that for the optimal and the adaptive learners,
are shown in white in Figure 9.

The ALCOVE trajectories were tested as before by
comparing the empirical trajectories (n = 20) with the ap-
propriate confidence regions. Each trajectory was indi-
vidually compared with all eight confidence regions gen-
erated by varying the parameters of ALCOVE. Using the
criterion that gradient descent was violated if more than
5% of the movements for a trajectory were to points out-
side of the confidence region produced results consistent
with those from the analysis of the optimal learner—that
is, 65% of the empirical trajectories were classified as vi-
olating ALCOVE. However, unlike the optimal learner
analysis, increasing the criterion to 20% did not produce
a substantial decrease in the percentage of trajectories that
were classified as violating gradient descent (i.e., 62.5%).
Examples of trajectories that were consistent and incon-
sistent with the ALCOVE predictions are shown in black
in the top and bottom panels of Figure 9, respectively.

A related question is whether the magnitude of the
movements made by the observers is consistent with the
magnitude of the movements made by the models con-
sidered in the last section. In particular, an interesting
question is whether the magnitude of the average move-
ment following incorrect trials for the simulated models
and the human observers are comparable. In fact, this
was not the case. The magnitude of the change in the de-
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Figure 9. The 95% confidence region (in white) simulated by ALCOVE for
CS2 (top) and CS4 (bottom). Overlaid upon the confidence regions are trajec-
tories (in black) classified as not violating (top) and violating (bottom) gradi-
ent descent with respect to ALCOVE. The parameter values for both confi-
dence intervals were ¢ = .75, ¢ = 4.5, ,, = .01, and A, = .005. The gray circle
(outlined in black) marks the initial bound, the gray diamond marks the final
bound, and the white asterisk marks the optimal bound. The optimal bounds
are obscured by the confidence intervals and are located at the coordinates
150°, 2.51 X 105 pixels? (top), and 300°, 1.93 X 105 pixels? (bottom).

cision bounds of the human observers was far greater
(M = 138.63, SE = 5.96) than that for the optimal learner
(M = 52.65, SE = 14.58), the adaptive learner (M =
8.87,SE = 1.51),and ALCOVE (M = 13.55, SE = 3.49).

Cooling

As another illustration of the type of question that can
be investigated using dynamical trajectories, we will
now focus on the degree to which these data are consis-
tent with cooling—or a general decrease in step size with

experience. Although cooling is often incorporated in
learning models, to our knowledge it has never been em-
pirically tested. Because changes in the decision bound
following correct trials were smaller in magnitude than
those following incorrect trials, and since the number of
correct trials increases with training, it follows that there
was a general decrease in step size with experience. Thus,
the question was not whether such a decrease occurred,
but rather whether the decrease was greater than that pre-
dicted by gradient descent.
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Block

Figure 10. Average value of the cooling statistic, C (=SEM), across trial

blocks.

One way to answer this question is to compare the ob-
served decreases in step size with the local gradient.
Gradient descent algorithms predict that the step size on
each trial will be proportional to the local gradient (see
Equation 1). For example, let S(n) denote the step size on
trial n, and let G(n) denote the gradient in the direction
of steepest descent on trial #n. Then gradient descent pre-
dicts that

S(n) = yG(n),
for some constant y or, in other words, that the ratio

S(n)/G(n) is a constant as » increases. For this reason, we
defined the following cooling statistic:

C(n) = yS(n)/ 6 G(n),
where G(n) was computed as the difference in the prob-
ability of error between the starting point on trial n and
a step size of five units in slope—intercept space (see
note 4) in the direction of the decision bound on trial
n + 1.6 Note that G(n) is negative any time an observer
moves in a direction that increases the probability of
error, positive if the probability of error was smaller on
trial # + 1 than on trial #, and 0 if there was no change
in accuracy. The constants yand § were set to the largest
gradient possible (i.e., surface maximum — surface min-
imum = 0.6) and the largest step size possible (1,456
pixels; see note 4), respectively.

One prediction is that the mean of C(n) across trials,
C will be positive if the participants are using gradient
descent. Conversely, C < 0 implies that the participants
generally moved in a direction that increased the proba-
bility of error. The mean, C, obtained by averaging across
all the observers in all the category structures (C = 0.23,
SD = 3.38), was not significantly different from 0
[#(624) = 1.73, p > .05]. This implies that the partici-

pants, on average, did not generally move in directions
that increased or decreased the probability of error.
However, this analysis obscures differences throughout
the course of learning.

To explore cooling in these data further, the change in
C(n) as a function of trial number (i.e., n) was analyzed.
Recall that gradient descent predicts that C(n) should not
vary with n. If C(n) decreases with n, then as observers
approach the optimal bound, the step sizes are decreas-
ing faster than the gradient, which indicates cooling. A
finding that C(n) increases with n indicates warming
(i.e., the opposite of cooling).

The first step in this analysis was to obtain an aggre-
gate cooling statistic by aligning each observer’s data on
the trial in which the stopping criterion was met and then
averaging the absolute value of C(n) across all the ob-
servers in all the category structures. This process ini-
tially resulted in 200 data points. Trials in which there
were no movements were then omitted from the follow-
ing analysis (35 trials total). The data were arbitrarily
grouped into five blocks of 33 trials each (analyses in
which different bin sizes were used produced similar
results). The average value of C for each of the blocks is
graphed in Figure 10. On average, C clearly decreased
with experience. A one-way repeated measures analysis
of variance was conducted on these data with the average
value of C in each of the five blocks as the dependent
variable. Consistent with a visual inspection of Fig-
ure 10, a significant decreasing linear trend was ob-
served [F(1,32) = 6.61, p < .05]. Thus, these data ap-
pear to be inconsistent with simple gradient descent—
that is, the participants decreased their movements at a
faster rate than would be predicted by gradient descent.
Note, however, that these violations of gradient descent
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Figure 11. A comparison of empirical trajectories (left panels) and backward-learning curves (right pan-
els) for 2 participants who learned CS2 (see the text for details). The 0 point on the learning curve graphs
is the trial on which criterion was met. For the trajectories, the gray circle (outlined in black) marks the
initial bound, the gray diamond marks the final bound, and the white asterisk marks the optimal bound.

affect only the speed with which the optimal bound is ap-
proached, not the path taken through the parameter
space. As such, the existence of cooling could not be re-
sponsible for the frequent rejections of gradient descent
described in the previous section.

In summary, the observers initially had changes in their
decision bounds larger than those predicted by current
models of category learning, and they decreased the mag-
nitude of these changes at a faster than predicted rate.

Identifiability and Learning Curves

In addition to testing the assumptions of learning algo-
rithms, the analysis of dynamical trajectories provides
enough information to address the identifiability problems
associated with learning curves. Recall the hypothetical
category-learning experiment discussed earlier. It was
shown that two very different models of the decision strat-
egy were capable of producing nearly identical backward-
learning curves. This argument can easily be extended to
the present experiment if one considers individual differ-
ences in the decision strategy used by the observers. There
are an infinite number of empirical trajectories that differ
only in the path they follow to the optimal decision bound

(i.e., share only the initial and final decision bounds) but
produce identical changes in accuracy across trials.

As an example, consider the learning curves and em-
pirical trajectories from CS2 and CS3 in Figures 11 and
12, respectively. The left panels in both figures are the
empirical trajectories of 2 observers, both with the same
initial decision bound. The right panels in both figures
are plots of the backward-learning curves for each of the
illustrated trajectories (0 on the horizontal axis corre-
sponds to the trial on which the stopping criterion was met,
and negative trial numbers refer to preceding trials). It is
clear from the abscissas of the backward-learning curves
plotted in Figure 11 that Participant 14 reached criterion
sooner than did Participant 6. In addition, changes in pro-
portion correct were much more frequent for Participant 6
than for Participant 14; thus, one inference from these
backward-learning curves might be that Participant 6 cy-
cled through a series of extremely different decision
bounds. However, an investigation of the empirical trajec-
tories reveals just the opposite. Participant 6 used a series
of similar decision bounds at or near the optimal bound,
whereas Participant 14 tried many different decision
bounds, few of which were optimal.
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Figure 12. A comparison of empirical trajectories (left panels) and backward-learning curves (right pan-
els) for 2 participants who learned CS3 (see the text for details). The 0 point on the learning curve graphs
is the trial on which criterion was met. For the trajectories, the gray circle (outlined in black) marks the
initial bound, the gray diamond marks the final bound, and the white asterisk marks the optimal bound.

Figure 12 demonstrates a different situation. Clearly,
the two backward-learning curves are not identical, but
they are similar in the magnitude of the increase in accu-
racy and the general shape of the curves. Interestingly,
these two, qualitatively similar, backward-learning curves
were estimated from two dissimilar learning trajectories.
Both participants started at the same point on the error sur-
face and eventually reached the optimal bound, but the ma-
jority of the decision bounds used by Participant 20 were
almost 180° off from the optimal bound. In sum, the ex-
amples in Figures 11 and 12 illustrate two different cases
in which it would be difficult to draw accurate inferences
about the evolution of the observer’s decision strategy if
backward-learning curves were the sole analytic tool.

Conclusions

The preceding analyses illustrate the diversity of ques-
tions that can be addressed by investigating dynamical
trajectories. Primary among these was empirically test-
ing the assumption of gradient descent in category learn-
ing. A set of simulation analyses using three different
gradient-descent—based models revealed that gradient

descent did not provide an adequate description of our
data—that is, the majority of the observable trajectories
violated gradient descent. Furthermore, we found strong
evidence of cooling—that is, changes in decision strat-
egy decreased at a faster rate than predicted by gradient
descent. Finally, we provided an empirical demonstra-
tion of the identifiability problems inherent in learning
curves. Specifically, it was shown that learning curves
are not reliable as a basis for inferring an observer’s de-
cision strategy.

EXPERIMENT 2

A potential criticism of Experiment 1 is that forcing
the observers to use linear decision bounds throughout
the experiment placed unreasonable constraints on their
decision strategies and, therefore, masked the underlying
process of interest. Perhaps the observers would have
adopted more complex decision bounds (e.g., quadratic)
to learn the category structures in Experiment 1 if the lin-
ear constraint had not been imposed. Thus, the goal of
Experiment 2 was to validate the methodology in Exper-



iment 1 by using a more traditional category-learning
paradigm.

Method

Participants
An additional 20 undergraduates participated in Experiment 2.

Stimuli and Apparatus
All the stimuli were presented as light blue circles on a dark blue
background.

Procedure

The procedure was identical to that in Experiment 1, with the fol-
lowing exceptions. On a trial, a single stimulus was presented, the
observer was instructed to make a category assignment by depress-
ing one of two response keys (labeled “A” or “B”) with the index
finger, and trial-by-trial feedback was provided. The trials were ob-
server paced with an upper time limit of 5 sec. If a response was not
given in that time period, the observer was prompted to speed up his
or her response, and that trial was discarded. The response—stimulus
interval was 500 msec. In an effort to equate the observed difficulty
across the two experiments, the stopping criterion was decreased to
a performance level of 75% correct (from 80% in Experiment 1)
over the last 40 trials to move on to the next category structure or
exit the experiment.

Results and Discussion

Trials to Criterion

Each of the 20 participants attempted to learn four cat-
egory structures. Two participants met criterion in only
one of the category structures and were not considered in
any of the analyses. Seven category structures (out of 72
total) in which the participants did not meet the stopping
criterion were not considered in the following analyses.
The median number of trials to reach the stopping crite-
rion for each category structure is given in Table 4. None
of these differences were statistically significant [ y2(3) =
3.13].

Modeling Analyses

The goal of this analysis was to test the hypothesis that
the more constrained Experiment 1 paradigm did not
significantly alter the decision strategy that would have
been used in a more typical category-learning task. Ac-
cordingly, we fit a number of different decision bound
models (see Ashby, 1992a, and Maddox & Ashby, 1993,
for detailed descriptions of the models) to the last 40 tri-
als of each category structure for each participant in both
experiments.” The following three decision bound mod-
els were fit to the responses of each observer.

Table 4
Median Trials to Criterion in the Four Category
Structures of Experiment 2

Category Structure Median Interquartile Range
1 63 43.00
2 69 101.25
3 52 27.00
4 49 35.00
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The General Linear Classifier. This model assumes
that the decision bound between each pair of categories
is linear. The GLC has three parameters: the slope and
the intercept of the linear bound and the variance of in-
ternal (perceptual and criterial) noise (i.e., 02). A special
case of the GLC assumes that observers use the linear
bound that maximizes accuracy (i.e., the solid bounds
shown in Figure 4). This model has only one free pa-
rameter (02) and is referred to as the optimal classifier
(0C).

The General Quadratic Classifier (GQC). A natural
extension of the GLC is to assume that the observer uses
a quadratic, rather than a linear, decision bound. The
GQC has six free parameters (five describing the form of
the decision bound and ¢2).

All of the models were fit using an iterative maximum
likelihood search procedure (Ashby, 1992a; Wickens,
1982), and the goodness-of-fit statistic was determined
by computing the AIC value (AIC = 2r — 2InL, where r
is the number of free parameters and L is the likelihood
of the model given the data; Akaike, 1974). The AIC sta-
tistic penalizes a model for poor fit and for the number of
free parameters. To find the best model among a set of
competitors, one simply computes an AIC value for each
model and then selects the model with the smallest AIC.

The percentage of data sets that were best accounted
for by each model across both experiments, along with
the average percentage of responses accounted for (RA)
by the best-fitting model, is listed in Table 5. As was ex-
pected, the majority of the data from both experiments
were best fit by a linear decision bound (i.e., GLC and
0C), and importantly, this percentage was almost iden-
tical across the two experiments.8 Furthermore, the RA
suggests that the models were successfully accounting
for the observed categorization data, thereby strengthen-
ing the results of this analysis.

Conclusions

Experiment 2 served as a control to Experiment 1 in that
the goal was to determine whether forcing the observers in
Experiment 1 to adopt linear decision bounds fundamen-
tally altered category learning. The results of Experiment 2
suggest that performance was well described by a linear
decision bound, even when no constraints were placed on
the form of the decision bound. Therefore, the results ob-
tained from the Experiment 1 paradigm should not be con-
sidered an artifact but, rather, a valid method for studying
category learning.

GENERAL DISCUSSION

Learning curves are arguably the most widely em-
ployed technique in the analysis of category-learning
data, but this level of data analysis can obscure mean-
ingful differences between models, even at the individ-
ual observer level. We argued that a dynamical systems
approach to category learning enriches the data that can
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Table 5
Percentage of Data Sets That Were Best Fit by the GLC, the
GQC, or the OC According to AIC

Model RA
GLC GQC ocC M SD
Experiment 1 57 12 31 90 0.08
Experiment 2 60 12 28 81 0.10

Note—RA, percentage of responses accounted for.

be obtained and provides for analyses at a much finer
level of detail than is permitted by learning curves. Ex-
periment 1 introduced a novel paradigm for making the
dynamical learning trajectories directly observable. This
experimental technique was used to test the assumption
of gradient descent in category learning and to illustrate
the identifiability problems associated with learning
curves. Experiment 2 established that the dynamical tra-
jectory paradigm is a valid method for investigating cat-
egory learning.

Analysis of the dynamical learning trajectories pro-
vided evidence against the hypothesis that categories are
learned by a simple gradient descent process. The results
from the qualitative inspection of the empirical trajecto-
ries and the analysis of cooling were not consistent with
the assumption of gradient descent, but both analyses as-
sumed that the observers had access to complete infor-
mation about the theoretical error surface. Simulations
from three different models that assumed gradient de-
scent produced a more rigorous test, which also discon-
firmed simple gradient descent.

Although gradient descent is apparently incompatible
with our data, our results do not rule out a more complex
learning process in which gradient descent is augmented
with a simulated annealing process (Darken & Moody,
1992; Geman & Geman, 1984). Simulated annealing,
which has its roots in statistical thermodynamics, would
have the effect of shaking the dynamical trajectories as gra-
dient descent forces them downhill. The result would pro-
duce jumps in the trajectories that could account for the
larger-than-predicted step sizes and the frequent excur-
sions outside of the gradient descent confidence regions.

Another possibility that our results cannot rule out is
that gradient descent is augmented by an explicit rule-
based process of hypothesis testing (Ashby et al., 1998).
According to this idea, observers occasionally generate
specific verbalizable hypotheses about category structure.
Testing these hypotheses introduces large discrete jumps
in the trajectories. Ashby et al. (1998) hypothesized that
such a process could mimic simulated annealing. The dy-
namical trajectories estimated by Alfonso-Reese (1996)
were consistent with this rule-based hypothesis.

A related issue is whether or not gradient descent may
be more likely depending on the type of category-learning
task. A recent distinction has been made between tasks
that can be learned via some explicit hypothesis-testing
procedure (i.e., rule-based tasks) and those tasks that re-
quire the observer to combine information from multiple

stimulus dimensions at some predecisional stage (i.e.,
information integration tasks; Ashby & Ell, 2001; Mad-
dox & Ashby, 2004). Observers are able to learn both
types of tasks but are rarely able to provide an accurate
description of their decision strategy in information in-
tegration tasks. Two features of the present experiments
suggest that these tasks are more similar to rule-based
than to information integration tasks. First, although it is
possible to attend to both the horizontal and the vertical
positions of the stimuli, it is perhaps even more likely
that these two sources of information were encoded as a
single spatial position dimension. Second, clearly the
participants had trial-by-trial access to the decision cri-
terion in Experiment 1. However, it could be argued that
they also had access to a very accurate, albeit noisy, rep-
resentation of the decision criterion in Experiment 2.
Thus, it may be the case that information integration
tasks, but not rule-based tasks, are learned by gradient
descent.

A comparison of the dynamical trajectories to the
backward-learning curves provided an empirical demon-
stration of the identifiability problems with learning
curves. It was shown that observers can have similar
learning curves despite clear differences in the decision
strategies employed during the course of learning. There-
fore, it is difficult to make strong inferences about the
mechanisms underlying learning when the only data avail-
able are learning curves.

Experiment 2 served as a control experiment to vali-
date the technique used to obtain dynamical learning tra-
jectories in Experiment 1. Specifically, the goal was to
test whether constraining observers to use only linear
decision bounds (Experiment 1) in some way altered the
approach they would have taken to learn the categories
under conditions more representative of typical category-
learning tasks. We found that the decision strategy of
observers in a two-alternative, forced choice category-
learning task was best described by linear decision bounds
in 88% of the data sets, thereby supporting the Experi-
ment 1 paradigm.

The most obvious difficulty in utilizing the dynamical
trajectory paradigm is developing a method for estimating
the parameters that define the state space and the trajec-
tories. Our solution to this problem was to define the state
space in terms of the parameters that specify the decision
bounds and devise an experiment in which the decision
bounds—and therefore, the parameters—were directly
observable on a trial-by-trial basis. For simplicity, we
chose to use category structures for which a linear deci-
sion strategy was optimal, but this paradigm is not limited
to this choice. For example, one could devise an experi-
ment that used a more complicated conjunctive or qua-
dratic decision strategy.

In the present study, the initial decision bounds were
arbitrary. The only minor constraint that we added was to
begin the participants at a variety of locations in the pa-
rameter space. Clearly, the starting position in this para-
digm is important. Consider 2 participants, 1 of whom



starts with a bound that has a probability of error less
than .50 and is near the minimum on the error surface
(i.e., the optimal decision bound). The other participant
begins with a decision bound that is far from optimal and
has a probability of error greater than .50. Intuitively,
one would expect this difference to have an effect on the
participants’ trajectories and overall performance in the
task. Therefore, a potential next step with this paradigm
is to test rigorously the influence of the initial decision
bound on category learning.

The category structures could also be constructed so
that stronger tests of gradient descent are possible. In
particular, learning algorithms assuming gradient descent
are known to be susceptible to local minima (e.g., Buse-
meyer, Myung, & McDaniel, 1993; Rumelhart et al.,
1986; Widrow & Hoff, 1960). In the context of the pres-
ent experiments, a local minimum would be a decision
bound on the error surface where the gradient is zero in
every direction and for which any reasonably small
change in the decision bound results in an increase in the
probability of error. With the normally distributed cate-
gories used in this article, no such local minima exist.
However, it is straightforward to construct categories for
which the resulting error surface is characterized by one
or more local minima. In such cases, gradient descent
learning algorithms predict that any trajectory passing
through a local minimum will become trapped there, and
asymptotic accuracy will, therefore, be suboptimal (White,
1989). In resource allocation tasks, it has been shown
that observers are susceptible to local minima, in that in-
formation is sometimes combined in a manner that pro-
duces suboptimal performance even if the optimal per-
formance criterion is known (Busemeyer et al., 1986).
The use of the dynamical trajectory paradigm presented
here could provide an extension of this research to cate-
gory learning.

Experiments in which the decision criterion is ob-
servable on a trial-by-trial basis (Busemeyer & Myung,
1992; Kubovy & Healy, 1977) and in which dynamical
learning trajectories are estimated (Alfonso-Reese, 1996;
Minda & Smith, 2001; Smith & Minda, 1998, 2000)
have been used to distinguish between competing mod-
els of the same psychological process. The estimation of
dynamical trajectories could also serve to help distin-
guish between component systems within a multiple sys-
tems framework. Arguments for multiple processing sys-
tems that mediate learning have been made in such
diverse fields as reasoning (Sloman, 1996), motor learn-
ing (Keele, Ivry, Mayr, Hazeltine, & Heuer, 2003; Will-
ingham, Nissen, & Bullemer, 1989), discrimination learn-
ing (Kendler & Kendler, 1962), function learning (Hayes
& Broadbent, 1988), and category learning (Ashby et al.,
1998; Ashby & Ell, 2001; Brooks, 1978; Erickson &
Kruschke, 1998; Minda & Smith, 2001; Pickering, 1997).
Consequently, there is a growing need for analytic tech-
niques that are capable of assessing the relative contribu-
tion of these component systems to learning.
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Recall the hypothetical category-learning experiment
discussed in the introduction, in which it was shown that
backward-learning curves were not a powerful method for
identifying the use of different learning algorithms. When
the stimuli were constructed from continuous-valued
dimensions, there was an observable signature in the
backward-learning curves indicating a difference between
the rule-based and the procedural-learning algorithms.
However, when the stimuli were constructed from binary-
valued dimensions, the signature was no longer present.
This hypothetical example maps quite well onto the issue
of multiple versus single systems of learning and memory.
For example, it might be possible to use dynamical trajec-
tories to analyze the differences between different systems
that each contribute to learning, which would otherwise be
undetectable if only learning curves were available.

SUMMARY AND CONCLUSIONS

A great deal of information is lost by examining only
learning curves. A more powerful alternative is to exam-
ine trial-by-trial learning in the form of dynamical learn-
ing trajectories. The primary challenge in utilizing this ap-
proach is estimating the parameters that specify the
decision bounds. The paradigm presented in this article
solved this problem, thereby allowing for a much more de-
tailed account of category learning. The use of dynamical
learning trajectories allows not only asymptotic perfor-
mance to be examined, but also the analysis of trial-by-
trial information. We then used the dynamical trajectory
paradigm to investigate the often assumed, but rarely
tested, assumption of gradient descent. Our data indicate
that gradient descent, at least in the strictest sense, does
not accurately describe the dynamics of category learning.
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NOTES

1. The rule-based model was the verbal component of the multiple
system category-learning model, COVIS, developed by Ashby and col-
leagues (Ashby et al., 1998). The following are the parameters (and
their numerical values) that were used in the simulations: increment/
decrement in the salience of a dimension following correct/incorrect
responses (.04/.01), A = 12, y = 10, initial learning rate = 0.30, mo-
mentum term = 0.93, and decay rate = 42. The initial salience and ad-
justed salience on each dimension were set to 0.33. A perceptron was
used for the procedural-learning model with a learning rate of 0.05
(Minsky & Papert, 1969; Rosenblatt, 1958). All the parameters were
crudely adjusted to generate the backward-learning curves for the stim-
uli defined on continuous-valued dimensions. The same parameter val-
ues were used to estimate the backward-learning curves for the binary-
valued dimensions. For each model, a simulation consisted of 250
replications of 400 trials (eight 50-trial simulated blocks).

2. A backward-learning curve was generated separately for each
replication, using the following procedure. The 1st simulated block (of
8 total) in which the criterion of 10 consecutive correct responses was
met was renumbered as block 0. The simulated block immediately pre-
ceding the criterion block was renumbered as block —1 (the next block
as —2, etc.), and the simulated block immediately following the crite-
rion block was renumbered as block 1 (the next block as 2, etc.). This



renumbering procedure resulted in a total of 15 possible blocks, because
criterion could have been met in any of the 8 simulated blocks (e.g., cri-
terion could have been met in block 1 in one replication and block 8 in
another replication). The next step was to align all 250 replications on
the criterion block. In practice, several of the extreme blocks contained
few data points; thus, any block that contained data from fewer than 5%
of the replications was excluded (e.g., blocks —6 and —7 in Figure 1A).
Finally, the average backward-learning curves in Figure 1 were gener-
ated by averaging across replications.

3. The intercept was defined as the point at which the decision bound
intersected the perimeter of the monitor. The monitor intercept, rather
than the intercept on the ordinate, was used because the latter is unde-
fined for some values of the slope (e.g., 90°).

4. Although the slope and the area of the decision bound could be ad-
justed independently by the observer, there is a correlation between
these two parameters with respect to the error surface. However, this
correlation is inconsequential, since the dynamical trajectories were not
estimated but, rather, directly observable.

5. All changes in the decision bounds were computed in Euclidean
distance, using the original coordinates of the decision bounds: slope (in
degrees) and monitor intercept (the point at which the bound intersected
the perimeter of the monitor) of the decision bounds. The monitor in-
tercept ranged from 0 to 2,912 pixels, where 0 defined the lower left
corner of the monitor, and increased in the counterclockwise direction
(e.g., monitor intercept = 1,456 defined the upper right corner). For the
purpose of the distance computations, it was assumed that the maxi-
mum change in the monitor intercept was 1,456 pixels. Although the
monitor intercept ranges from 0 to 2,912 pixels, 0 and 2,912 are the
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same point (the lower left corner of the monitor). For example, a move-
ment from 20 on trial n to 2,900 on trial n + 1 probably did not result
from a change of 2,880 pixels, but rather 32 pixels. This assumption
was also applied to changes in the slope (0° and 360° are the same
point). All distances were computed using these corrected values. One
way to address this difficulty in the future would be to constrain the
magnitude of change on the slope and the monitor intercept dimensions
to be 180° and 1,456, respectively.

6. The choice of step size to compute the local gradient information
was arbitrary. The only constraint was that this step size should not be
so large as to obscure significant changes in the local gradient infor-
mation. Several step sizes were used in this computation (0.1, 1, 3, 5,
and 10), and no qualitative differences were found.

7. Although the observers in Experiment 1 were constrained to use a
linear decision bound on a trial-by-trial basis, it is possible that a linear
bound would not provide a good account of performance across the last
40 trials. For example, consider an observer who applies a series of de-
cision bounds in the Experiment 1 paradigm such that each new bound
is merely an arbitrarily small rotation of the previous one. In this case,
the decision bound estimated across 40 trials would more closely re-
semble a quadratic, rather than a linear, function. For this reason, the de-
cision bound models were also fit to the last 40 trials of each category
structure for each participant in Experiment 1.

8. AIC tends to favor more complex models (e.g., the GQC). Re-
peating the analysis with a statistic that increased the penalty for com-
plex models (BIC = rInN — 2InL, where N is the sample size; Schwarz,
1978) indicated that 97% of the data sets in both experiments were best
accounted for by a model assuming a linear decision bound.

(Continued on next page)
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APPENDIX
Details of the Simulations

The performance of all the models was simulated over a number of replications (optimal learner, 250; adap-
tive learner, 1,000; and ALCOVE, 200) of 200 trials, using either all possible CS X INI combinations (opti-
mal learner), the CS3—INI3 combination (adaptive learner), or all CS X INI3 combinations (ALCOVE). The
stimuli used for the simulations were identical to those presented to the participants, and a different random
presentation order was used in each replication. For all simulations, it was assumed that the decision bound
changes only after incorrect trials.

Optimal Learner

The optimal learner was based on the GLC (Ashby, 1992a; Maddox & Ashby, 1993). The GLC has three
free parameters (the slope and the intercept of the linear bound and the variance of internal noise, 62). The
slope and the intercept of the linear decision bound were recomputed on a trial-by-trial basis so that, on any
trial, the optimal learner used the bound that minimized the proportion of errors on all preceding trials. The
optimal learner was an ideal observer, in the sense that it had perfect memory for all the stimuli it encoun-
tered. On the basis of previous research, 02 was fixed at a low value (i.e., 10) to reflect the low amount of in-
ternal noise that would be expected given the features of Experiment 1 (e.g., the decision criterion was directly
observable, the display was high contrast, and stimulus duration was observer paced).

Adaptive Learner

The adaptive learner model was a three-layer connectionist network that instantiated the GLC. The three
nodes in the input layer encoded the horizontal and the vertical positions of the stimulus and a constant bias
term (i.e., the intercept of the linear decision bound), respectively. The single hidden unit computed the dis-
criminant value, and the single output unit converted this to a response (i.e., to @ + 1 or — 1). The weight on
the path between the hidden unit and the output unit was always fixed at 1. The three weights on the paths be-
tween the input units and the hidden unit were updated after every trial according to the LMS rule (Widrow
& Hoft, 1960). According to this algorithm, following trial n, the weight between input unit i and the hidden
unit is changed by

Aw; = nlh * (xy, x5) = h(x), x,)]x;,

where 1) is a learning rate parameter (set to 0.7) and A(x, x,) and ~*(x,, x,) are the values of the current and
optimal linear discriminant functions, respectively, for the stimulus pair (x,, x,). When the weight on the bias
term was updated, x; was set equal to 1.

It was necessary to impose an additional constraint on the response-mapping procedure, because decision
bounds that are a @ = 180° rotation of each other will result in discriminant values of identical sign. Specifi-
cally, negative values of A(x|, x,) were mapped to Category A responses for 0 < 6 = 180° and to Category B
responses for 180° < 8 = 360°. Similarly, positive values of A(x;, x,) were mapped to Category B responses
for 0 < 0= 180° and Category A responses for 180° < 6 = 360°. Furthermore, it was assumed that on a sin-
gle trial, the change in 6 =< 180°.

ALCOVE

For the ALCOVE simulations, the number and position of the exemplar nodes in the hidden layer were up-
dated on a trial-by-trial basis. ALCOVE can be viewed as a learning version of Nosofsky’s generalized con-
text model (GCM; Nosofsky, 1986). The GCM makes no mention of decision bounds, although in the pres-
ent experiments, its contour of equivocality (the set of all stimuli for which the probability of responding A
equals the probability of responding B) agrees asymptotically with the optimal linear bound (Ashby & Mad-
dox, 1993). Therefore, we derived trajectories from ALCOVE by using the parameter mappings under which
this equivalence holds (i.e., from Ashby & Maddox, 1993).
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