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In location-cuing studies of visual attention, a partic-
ular location in the visual field is indicated (cued) by a
marker, after which a target is presented. The most gen-
eral finding from this type of study has been that target
identification or detection is faster and more accurate at
cued (valid) than at uncued (invalid) locations (Cheal &
Lyon, 1991; Jonides, 1981; Posner, 1980). A secondary
finding has been that the time interval between cue and
target onset (stimulus onset asynchrony, or SOA) affects
both response time (RT) and accuracy. Specifically, as
SOA increases, identification RT generally decreases at
valid locations and increases or remains constant at in-
valid locations (Remington & Pierce, 1984), whereas
identification accuracy increases at valid locations and
decreases or remains constant at invalid locations (Cheal
& Lyon, 1991; Gottlob & Madden, 1998). The time sig-
natures of these RT– and accuracy–SOA curves have
been studied under a wide variety of stimulus and task
demands (Cheal & Lyon, 1991; Cheal, Lyon, & Gottlob,
1994; Posner, 1980; for a review, see Wright & Ward,
1998).

Much work on visual attention has involved an attempt
to describe its movement or allocation, often employing
metaphors, such as spotlight (Posner, Snyder, & David-
son, 1980), zoom lens (Eriksen & St. James, 1986), gra-
dient (Cheal et al., 1994; LaBerge & Brown, 1989), and
stagelight (Sperling & Weichselgartner, 1995). These
metaphors for allocation, however, do not identify the
mechanism by which attention improves processing of

the target. To address that issue in the context of target
detection (simple RT), models have been formulated to
distinguish between bias and sensitivity changes due to
attention (Hawkins et al., 1990; Smith, 2000). On the
other hand, when target identification, rather than detec-
tion, is measured, change in bias is no longer tenable as
an explanation, and researchers have proposed mecha-
nisms more directly involved with sensitivity. For in-
stance, both Cheal (1997) and LaBerge (1994) proposed
that attention works to increase the rate of information
flow at the attended location. Other studies have sug-
gested that attention works through such mechanisms as
improved localization (Treisman & Gelade, 1980) and
exclusion of distractor information (Shiu & Pashler, 1994).

In a few recent studies, attention mechanisms have
been identified through the use of psychophysical func-
tions relating target and distractor quality to accuracy. Lu
and Dosher (2000) concluded that location cues improved
identification accuracy because of perceptual effects, such
as stimulus enhancement and external noise exclusion.
Cameron, Tai, and Carrasco (2002) also found evidence
for stimulus enhancement (which they called contrast
gain) as the mechanism of attention. These researchers
looked directly at improvements in accuracy due to effects
on perceptual representations, but they did not examine
directly the speeding-up of responses because of attention.
This change in RT due to attention will be examined in the
present study through the examination of RT distributions,
which offer more information than do mean RTs.

RT distributions have been tied to underlying mecha-
nisms through the use of sequential sampling models, such
as the random walk and the diffusion models (Ratcliff,
1988; Ratcliff, Van Zandt, & McKoon, 1999). Sequential
sampling models for two-choice identification tasks are
well established in the literature (for recent empirical
work, see Ratcliff, 2002, Ratcliff, Thapar, & McKoon,
2001, and Van Zandt, Colonius, & Proctor, 2000; for ana-
lytic treatments, see Luce, 1986, and Townsend & Ashby,
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1983). Random walk models treat information accumu-
lation as occurring in discrete time; diffusion models are
continuous generalizations. Both types of models have
three major parameters: In the diffusion model, these are
named drift rate, which is the rate of evidence accumu-
lation, drift rate variance, and boundary, which is the
amount of evidence required to emit a response. Each
boundary in the standard two-choice model corresponds
to a single choice (A or B); movement toward Bound-
ary A implies movement away from Boundary B. A re-
sponse is emitted when either boundary is crossed. In the
two-choice diffusion model, information accumulation
for A and B are perfectly (negatively) correlated. Ratcliff,
who developed the two-dimensional diffusion model and
fitted it to two-choice data, has added other factors, such
as variability in starting state and contaminant RTs, in
order to fit the model to data (Ratcliff, 2002; Ratcliff &
Tuerlinckx, 2002).

Generalizations of sequential sampling models to n
choices have been discussed by Luce (1986), Karpiuk,
Lacouture, and Marley (1997), Shiffrin (1997), Nosofsky
(1997), and Ratcliff and McKoon (1997). As Luce noted,
n-choice models are potentially much more complex
than two-choice models, especially if evidence accumu-
lation is dependent among the choices (Shiffrin, 1997).
However, as has been noted by several researchers (Mar-
ley & Colonius, 1992; Van Zandt, 2002; Van Zandt et al.,
2000), an n-choice random walk, with any degree of cor-
relation among the choices, can be equivalently repre-
sented as a race across n independent counters. (It should
be noted, however, that there are restrictions on the types
of models that can be mimicked by independent parallel
processes; see Townsend, 1976.) According to this equiv-
alence between dependent and independent parallel
models, diffusion models and race models are not iden-
tifiably different, although if there is a reason to model
particular dependencies between the choices (such as for
fitting), they can serve to constrain a model. In that vein,
Van Zandt et al. compared race and diffusion models for
perceptual matching data and found that the fits were
comparable for that particular data set. Many other fits
of race models have been reported, including those of
Karpiuk et al., Nosofsky, and Ratcliff and McKoon.

The task in the present paradigm is a four-choice iden-
tification task, which offers certain advantages over a two-
choice identification task in the study of visual attention.
These advantages include a lower chance rate of accuracy,
which discourages guessing and increases the information
value of locating the target. In accordance with the find-
ings above regarding the equivalence of diffusion and race
models, the four-choice identification can be modeled
either by a four-boundary diffusion process with a com-
plex (but underdetermined) correlation across responses
or, alternatively, as a four-counter race model. The race
model that most simply describes this task maps indi-
vidual, independent counters to target responses (e.g., a
Target A counter produces only a Target A response). This
model contains two important features that preserve map-

pings between single counters and responses: (1) The
model does not converge counters onto responses, as op-
posed to some models that contain or processes (e.g.,
Response A could arise from Counter A or Counter B),
and (2) the counters have context independence (Van
Zandt, 2002), in that the marginal distributions for the
single counters are identical to the single-counter distri-
butions. Because the counters are nonconverging and
context independent, RT distributions for correct trials
can be assumed to be identical to the finishing time dis-
tributions of the single counters associated with each re-
sponse. These finishing time distributions can be mod-
eled by the one-dimensional (1-D) diffusion (Wiener)
process (Luce, 1986; Ratcliff, 1993). The equation for
this process (Cox & Miller, 1965) expresses the RT prob-
ability density function (pdf ), g(t), as

(1)

where L is the boundary, r is the drift rate, and d is the
drift rate variability. This distribution is called the Wald,
or inverse Gaussian (Burbeck & Luce, 1982; Luce, 1986;
Ratcliff, 1993; Schwarz, 2001; Zabel & Anderson, 1997)
and fits empirical RT distributions well (Luce, 1986;
Ratcliff, 1993).

In the interests of generality, it will be assumed that
the four identification targets form an equivalence class,
because the targets are t shapes in different orientations,
with minimal semantic content and equal visibility. This
allows collapsing the counters for the four targets onto a
single one-boundary diffusion process. This assumption,
along with the direct mapping between component coun-
ters and responses, will allow us to simplify our model
so as to draw general conclusions about the finishing
time distributions of the 1-D diffusion process, which
will be inferred from the shapes of RT distributions.

A useful distribution for describing RT distribution
shape is the ex-Gaussian (Brown & Heathcote, 2003;
Hockley, 1984; Luce, 1986; Ratcliff, 1993; Ratcliff &
Murdock, 1976), which can closely approximate both the
empirical RT distributions and the Wald. The ex-Gaussian
is a distribution formed by the convolution of a Gaussian
and an exponential distribution; the RT pdf, f (t), is given
by

(2)

It is determined by three parameters: m and s (mean
and variance of the Gaussian) and t (exponential param-
eter). The mean of the ex-Gaussian is m � t, and the vari-
ance is t 2 � s 2. In describing RT distributions, variance
is dominated by t, because t is usually four times as
large as s (Ratcliff, 1993).

In many cases, the ex-Gaussian fits both empirical RT
distributions (Brown & Heathcote, 2003) and diffusion
model simulations (Ratcliff et al., 1999; Spieler, Balota, &
Faust, 2000) at least as well as any other distribution. The
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ex-Gaussian and the Wald are very close in appearance;
often they can be distinguished only by examination of the
hazard functions in the tails (Van Zandt, 2002). Further-
more, it will be shown in the Discussion section that
changes in boundary and drift rate in the Wald map onto
changes in the parameters of the ex-Gaussian.

Previous research in which the fitting of ex-Gaussians
to RT distributions has been used has shown that the pa-
rameters seem to react in a lawful manner to experimen-
tal manipulations. For instance, Hockley (1984) found
that for visual search, increasing set size produced in-
creases in m and s, whereas for memory search, increas-
ing set size produced increases in t only. These differen-
tial effects were interpreted as reflecting a fixed search
rate (visual search) versus a search rate that was affected
by load (memory search). Similar differences, attributed
to fixed- versus load-affected search rate, were found in
judgment-of-recency and recognition tasks. In the same
vein, Spieler et al. (2000) compared interference effects
in the Stroop task (which involves nonspatial selectivity)
with other tasks, such as global/local figures and flanker
tasks (which involve spatial selectivity). Stroop interfer-
ence in color naming produced increases in m, s, and t ,
whereas interference in the four spatial tasks was mani-
fested in m and s, but not in t . One interesting aspect of
both Hockley’s and Spieler et al.’s findings is that when
there was an effect in m, there was always a correspond-
ing effect in s, indicating that when the Gaussian portion
of the distribution was affected, it was always affected in
both of its parameters. Many other researchers have used
ex-Gaussian parameters to link experimental manipula-
tions to RT distributions, including Ratcliff (1988, 1993)
and Ratcliff and Murdock (1976).

In addition to the relationship between experimental
manipulations and changes in ex-Gaussian parameters,
there are mappings between parameter changes in the
diffusion process (as represented in the present context
by the Wald) and parameter changes in the ex-Gaussian.
In the most general sense, a change in any single diffu-
sion parameter will affect all three parameters of the
ex-Gaussian. This relationship between the diffusion
process and the ex-Gaussian will be explored more fully
in the Discussion section of this article. In the present
study, RT distributions from a location-cuing task were
fitted with ex-Gaussians, and the attention effect, as re-
flected in the ex-Gaussian parameters, provided con-
straints on a diffusion model interpretation of the mech-
anisms involved in attention.

EXPERIMENT 1

Experiment 1 was designed to investigate attention in
a location-cuing task by analyzing RT distributions for
target identification. Previous research in which identi-
fication accuracy has been used has shown that accuracy
for valid trials increases as a function of cue–target SOA
and asymptotes at 100–150 msec for cues presented near
the target (peripheral cues; Cheal & Lyon, 1991; Gottlob

& Madden, 1998). The implication has been that very
short SOAs do not allow for sufficient attentional prepa-
ration by the time the target appears but that slightly
longer SOAs allow for attentional processes to be fully
engaged at target onset. The asymptotic behavior indi-
cates that perceptual processes are affected maximally
by attention at very short time scales.

Studies in which RT has been investigated have found
that identification RT for valid trials also decreases over
a similar time scale (Eriksen & Hoffman, 1972; Posner,
1980), although asymptotic performance is difficult to
confirm with RT, because of the possibility of general-
ized warning effects. The decrease in mean RT due to at-
tention over a range of short cue–target SOAs should im-
plicate (at least partially) the same perceptual processes
that are involved with the increase in accuracy. If that is
the case, the shapes of the RT distributions may also
change as a function of SOA. For instance, if attentional
engagement improves the perceptual representation of
the target at longer SOAs, one might predict ex-Gaussian
parameter changes that would be consistent with in-
creases in drift rate in a diffusion process. In Experi-
ment 1, RT distributions for five successive cue–target
SOA values were compared in terms of shape, using
ex-Gaussian decomposition.

Successive cue–target SOAs were chosen as a basis for
comparison for several reasons. First, because the goal
was to compare various levels of attentional preparation,
three different potential baseline conditions were con-
sidered but rejected. (1) Invalid trials were considered as
a baseline, as has been used previously in studies look-
ing at RT distributions (e.g., Johnson & Yantis, 1995).
There are some potential pitfalls to this method, how-
ever, in that the responses to valid and invalid trials may
be qualitatively different in some way. For instance, if
probability matching were used by observers, valid and
invalid trials would consist of different mixture distrib-
utions of discrete attentional states, such as spotlight ver-
sus spread of attention (Jonides, 1983; but see Johnson
& Yantis, 1995). This would make comparisons of RT
distributions problematic. (2) Another possibility would
be to use a neutral cue condition as a baseline and com-
pare valid RTs with that, but there are methodological
problems involved in comparing neutral with valid trials
(Jonides & Mack, 1984). For instance, a neutral cue con-
sisting of four markers (one for each possible target lo-
cation) may trigger a different type of attention alloca-
tion than does a cue that indicates a single target location
with 90% probability. The only exception to the neutral/
valid distinction is when noninformative cues are used.
(3) A third possible baseline that was rejected was that of
a 0-msec SOA trial (simultaneous cue and target). This
comparison would also raise problems, because the per-
ceptual representation of a simultaneous cue and target
is very much different from the target presented alone.
For instance, at a 0-msec SOA for peripheral cues, there
may be lateral masking between the cue and the target
(Lyon, 1990), and with any type of cue, the total lumi-
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nance on 0-msec SOA trials is higher than when the tar-
get is presented alone. Because of the potential problems
with these three measures of baseline performance, it
was decided that it would be best to compare RT distri-
butions across different cue–target SOAs. In this man-
ner, the trials would be comparable in every way, except
for the time interval between the cue and the target.

Cue validity was fixed at 90%; the 10% of the trials
that were invalid allowed the comparison of invalid and
valid RTs, to ensure that the observers were allocating in
response to the cue. Another reason for using a 90% valid
cue was that high probabilities (high cue predictabilities)
have been found to induce stronger cuing effects (Gottlob,
Cheal, & Lyon, 1999), and if any probability-matching
strategy were to be used (Johnson & Yantis, 1995; Jonides,
1983), trials would consist mostly of a single type of re-
sponse. This would minimize the mixing of RT distribu-
tions, which would raise problems for any analyses based
on their shape.

Method
Observers. Twenty-four University of Kentucky students between

19 and 25 years of age participated. All the observers had a mini-
mum of 12 years of education. Corrected near visual acuity was
measured from a 4-ft distance. Acuity ranged between 4/4 and 4/8
for all the observers. The observers were paid $10 per 1-h session.

Apparatus and Stimuli. The stimuli were presented on a View-
sonic PF775 color monitor, operating in 600 � 800 mode at 120 Hz,
controlled by a Pentium 4 computer. Responses were recorded on a
standard IBM keyboard. An adjustable chinrest fixed the eye-to-
screen distance at approximately 80 cm, with the eye at center screen
level. Eye movement was monitored with a video camera connected
by cable to a monochrome monitor located at the experimenter’s
desk. During training sessions, the observers were instructed to
suppress eye movements, which were observed to occur on fewer
than 1% of the trials (which were not excluded or replaced).

The stimuli consisted of white characters on a black background.
Luminance was fixed at 330 cd/m2 for all the screen stimuli. Fig-
ure 1 contains a schematic of the events in a trial. The first display
consisted of a fixation point, which was a 0.5º dash in the center of
the screen, presented for 1,000 	 50 msec. The 50-msec variabil-
ity was due to machine delay in setting up the visual stimuli for each
trial, but within each trial, bitmaps loaded into video memory en-
sured accurate presentation time. A 33-msec cue appeared that was
1º to the outside of one of the target locations. On 90% of the trials,
the cue appeared adjacent to the location containing the target (valid
trials), whereas on 10% of the trials, the cue appeared adjacent to
the location diametrically opposite the target (invalid trials). Follow-
ing a variable (blank screen) delay, the target (100 msec), along with
three distractors, appeared. SOAs (time between onsets of the cue and
the target) were 33, 66, 83, 100, and 133 msec, presented randomly.

The target was a T subtending 2.2º in one of four orientations
(pointing right, left, up, or down), centered in one of four locations
2.6º to the top, bottom, left, or right of the fixation point. The dis-
tractors consisted of 2.2º plus (�) signs at the other three locations.
The distractors were included so that there would not be a single
abrupt onset when the target appeared. Sole abrupt-onset targets
may attract attention automatically (Yantis, 1993; but see Folk,
Remington, & Johnston, 1993) and would thus eliminate the need for
a cue. Following the target and the distractors, a 2.3º contour mask
was presented, which consisted of an outline of the four superim-
posed targets, at all target and distractor locations. The observer’s
task was to identify the target by pressing one of four possible arrow
keys on the numeric keypad, according to which way the tail of the
target was pointing. The mask was terminated at observer response,
and accuracy feedback was provided by a green � on correct trials
and a red X on incorrect trials. Cue–target SOA, target location, and
target orientation were presented in random order on each trial.

Procedure. The observers practiced for two sessions, and data
were collected on the third. The observers were instructed that a
short response time was of primary importance, a low error rate was
secondary, and eye movements were to be suppressed. Eight blocks
of 90 trials were presented, with observer-terminated breaks be-
tween blocks, to produce 648 valid trials and 72 invalid trials per
observer.

Figure 1. Order of events in a trial. Experiment 1 used peripheral cues; Experiment 2 used cen-
tral cues.
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Results and Discussion
The results will be presented, followed by a brief dis-

cussion, for both Experiments 1 and 2. The General Dis-
cussion section will address the interpretations of the
findings for both experiments.

Statistics. Because the observations (trials) were re-
peated within observers, the assumption of independence
of observations was not met. In addition, cell means were
not derived from equal numbers of observations; 90% of
the trials were valid, and 10% were invalid. Therefore,
the generalized linear mixed model, as implemented in
PROC MIXED (Littell, Milliken, Stroup, & Wolfinger,
1996), was employed. The variable of SOA was assumed
to be randomly variable over observers, which yielded a
repeated measures analysis over observers, equivalent to
the standard repeated measures analysis of variance
(ANOVA). The models implemented in PROC MIXED
were evaluated using likelihood functions instead of
sums of squares, as in an ANOVA. In PROC MIXED,
generalized F ratios are calculated using (restricted)
maximum likelihood estimates of variance components
and generalized least-squares estimates of treatment dif-
ferences (Littell et al., 1996).

Mean accuracy as a function of cue–target SOA and
cue validity is presented in Figure 2 (which also presents

the results of the second experiment). There was no main
effect of SOA, but there was a main effect of validity
[F(1,23) � 1,461.53, p � .001], due to the higher accu-
racy for valid trials (.97, SE � .18) than for invalid trials
(.68, SE � .17). There was a significant interaction of
SOA and validity [F(4,92) � 2.99, p � .05]. Preplanned
simple effects analyses yielded no significant effect of
SOA for invalid trials, but a significant effect of SOA for
valid trials [F(4,92) � 2.60, p � .05]. Post hoc paired
comparisons among valid trial accuracies, using the Sidak
correction (SAS Institute, 1989), yielded no pairwise
differences at p � .05.

For RT analyses, fast responses (RT � 300 msec) and
slow responses (RT � 1,000 msec) were removed. This
eliminated 1.6% of the observations for valid trials and
4.8% of the observations for invalid trials. The censoring
did not materially change the results of the statistical
analyses performed on the data. Mean correct RTs as a
function of cue–target SOA and cue validity are pre-
sented in Figure 2. There were more total observations in
the valid condition than in the invalid condition (14,751
vs. 1,085), due to both the 9:1 valid:invalid trial ratio and
the difference in accuracy across conditions. There was a
significant main effect for SOA [F(4,92) � 7.19, p � .001]
and a significant effect of validity [F(1,23) � 1,830.86,

Figure 2. Mean correct response times (top) and accuracy (bottom) for valid and in-
valid trials. Experiment 1 used peripheral cues; Experiment 2 used central cues. Bars
represent standard errors.



1298 GOTTLOB

p � .001]. The main effect of validity was due to a lower
mean RT for valid trials (486.32 msec, SE � 13) than for
invalid trials (612.49, SE � 13). The validity � SOA
interaction was not significant [F(4,92) � 1.73, p � .05].

In addition, preplanned simple effects analyses were
run on RTs for valid and invalid trials separately. For in-
valid trials, there was no main effect of SOA [F(4,92) �
0.39, p � .05]; for valid trials, there was a main effect of
SOA [F(4,92) � 25.26, p � .001], indicating that RTs
decreased significantly as a function of SOA. Post hoc
paired comparison tests of valid mean RT, using the
Sidak correction, yielded significant differences for all
pairs of observations, except for those between SOAs of
83 and 133 msec, 83 and 100 msec, and 100 and 133 msec.
The maximum difference for the significant compar-
isons was 33 msec; the minimum difference was 9 msec.

As can be seen in Figure 2, valid trials produced higher
accuracy and lower RTs than invalid trials did; this indi-
cates that the observers were using the cue to allocate at-
tention. In addition, RT decreased as a function of SOA
for valid trials, but not for invalid trials, which indicates
that the effects of attention are confined to valid locations
for these SOAs. In previous research, it has been found
that effects of peripheral cues are often maximal by an
SOA of 100 msec (Cheal & Lyon, 1991; Gottlob & Mad-
den, 1998; Jonides, 1981; Müller & Rabbitt, 1989). It is
impossible to establish asymptotic behavior with only a
few data points; however, it appears in the present data
that the benefit of the cue levels off by 100 or 133 msec.

Ex-Gaussian analysis. Because of errors, the mean
number of observations for each RT distribution, per ob-
server, was 123 (SD � 7.5). According to Brown and
Heathcote (2003), the minimal number of observations
required to produce good parameter estimates for ex-
Gaussians is about 40. Ex-Gaussians were fitted to the
120 individual RT distributions (24 observers � 5 SOAs),
using QMLE (Brown & Heathcote, 2003; Heathcote,
Brown, & Mewhort, 2002) as the fitting procedure, and all
fits converged to stable solutions. In order to evaluate the
fits, Kolmogorov–Smirnov tests were performed on the
data points versus the fitted values; the mean p value was
.95 (SD � .11), with a median of .99. Of the 120 fits, 1 fit
had a p value of less than .3, 1 was in the range of .4–.5,
6 were in the range of .7–.8, 5 were in the range of .8–.9,
and 107 were between .9 and .999. The Kolmogorov–
Smirnov test is not sensitive to deviations in the tail, be-
cause it is based on the maximum deviation between data
and predicted values. An alternative test, the Cramer–
von Mises (SAS Institute, 1989), is based on the inte-
grated difference between data and predicted values and
so has a little more sensitivity to differences in the tail.
None of the Cramer–von Mises tests were significant at
the .15 level. (It is generally accepted that a high p value
is not sufficient to accept a model; however, it may be
used to infer that the model is sufficient to describe the
data.) Means for the best-fitting values for m and s (Gauss-
ian mean and variance, respectively) and t (exponential
parameter), along with the standard errors for parameter
estimates, are presented in Figure 3. Parameters s and t

do not change with SOA, but m shows a consistent de-
crease with SOA. These parameter–SOA relationships
were tested on the individual observer level for monotonic
decreasing trends, using Kendall’s t, which is an order-
ing coefficient based on paired comparisons (Gottlob &
Madden, 1999; Kendall, 1970). Kendall’s t ranges from
�1 (strictly decreasing) to 1 (strictly increasing); random
trends would have a mean score of 0. Mean Kendall’s t
values were �.68, .05, and �.05 for m, s, and t, respec-
tively, which indicates that the shapes of the individuals’
RT distributions corresponded to those of the mean pa-
rameter estimates.

Figure 3 indicates that the two ex-Gaussian shape pa-
rameters (s and t) were constant over SOA, whereas m,
which determines the mean of the entire distribution, de-
creased as a function of SOA. This describes a translation
of the distributions to the left as SOA increases, without
any changes in shape. (One would also expect general-
ized warning effects to produce some sort of leftward
translation as SOA increases, but these effects seem to be
small or absent, because invalid RTs do not decline with
SOA.) The leftward translation (change in m) is of a
smaller magnitude than the change in SOA; increasing
the SOA from 33 to 133 msec only translated the distrib-
ution to the left by 30 msec. This yielded a mean m–SOA
slope of .3; the maximum slope for any limb of the m–SOA
curve was about 0.5. Thus, it appears that RT changes
produced by the response to a peripheral cue consist of
similar RT distributions that vary only by translation
along the time axis. The generality of this finding to an-
other type of cue response will be examined in Experi-
ment 2. On the basis of both sets of results, it will be as-
serted in the General Discussion section that this pattern
is consistent with a restricted class of sequential sam-
pling mechanisms.

EXPERIMENT 2

In Experiment 1, a peripheral cue was used. Previous
studies have shown that responses to peripheral cues are

Figure 3. Means of best-fitting ex-Gaussian parameters for Ex-
periment 1, valid trials, correct responses. Bars represent mean
standard errors for parameter estimates, computed on individual
fits.
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predominantly automatic (Yantis, 1993; but see Folk
et al., 1993) and fast, as if attention is “pulled” to the tar-
get location. In contrast, responses to central cues are be-
lieved to require effort, because they must be interpreted
first and then attention must be “pushed” to the target lo-
cation. Whereas maximal responses to peripheral cues
are often observed by a 100-msec cue–target SOA, in most
cases the maximal response to central cues is observed
only after 300 msec (Cheal & Lyon, 1991; Jonides, 1981;
Müller & Rabbitt, 1989). It has been suggested that re-
sponses to peripheral cues are mediated by a posterior
visual cortical pathway, whereas central cue responses are
mediated by an anterior visual cortical pathway (Posner,
Walker, Friedrich, & Rafal, 1984). The purpose of Ex-
periment 2 was to test whether RT facilitation by a cen-
tral cue would be manifested by a strict translation of the
RT distribution to the left, as was found in Experiment 1
with a peripheral cue. This would be expected if, despite
the differences in cue type and (presumably) the mecha-
nism that processes the response to the cue, the manner
in which attention speeds processing is the same.

Method
The observer demographics and apparatus were the same as those

in Experiment 1. One observer had participated in Experiment 1;
the rest were naive. The procedure was identical to that in Experi-
ment 1, except for the use of a central cue, instead of a peripheral
cue, and the timing of the events on the computer screen (Figure 1).
The cue consisted of a 1.7º arrow with centroid at fixation, indi-
cating one of four locations on the screen. The arrow was presented
for 100 msec, followed by a 100-msec target, with cue–target SOAs
of 100, 150, 200, 250, or 350 msec. The targets and the masks were
identical to those in Experiment 1.

Results and Discussion
Statistics. PROC MIXED analyses were performed as

in Experiment 1. Mean accuracy as a function of cue–
target SOA and cue validity is presented in Figure 2
(which also presents the results from the first experi-
ment). There was a main effect of validity [F(1,23) �
1,287.51, p � .001], with valid trials (M � .97, SE �
.17) being higher in accuracy than invalid trials (M �
.67, SE � .18). There was also a main effect of SOA
[F(4,92) � 13.23, p � .001] and a significant interaction
of SOA and validity [F(4,92) � 10.26, p � .05]. Follow-
up simple effects analyses showed no significant effect
of SOA for invalid trials, but a significant effect of SOA
for valid trials [F(4,92) � 37.55, p � .001]. Post hoc
paired comparisons ( p � .05) among valid trial accura-
cies, using the Sidak correction, yielded accuracy differ-
ences between an SOA of 100 msec and all other SOAs
and between an SOA of 150 msec and all other SOAs.
Maximum and minimum differences for the significant
comparisons were .048 and .013, respectively.

As in Experiment 1, for RT (and ex-Gaussian) analy-
ses, fast responses (RT � 300 msec) and slow responses
(RT � 1,000 msec) were removed. This eliminated 1.8%
of the observations for valid trials and 7.6% of the obser-
vations for invalid trials. Mean correct RT as a function
of cue–target SOA and cue validity is presented in Fig-

ure 2. As in Experiment 1, there were more total obser-
vations in the valid condition than in the invalid condi-
tion (14,531 vs. 1,032), due to both the 9:1 valid:invalid
trial ratio and the difference in accuracy across condi-
tions. In the PROC MIXED analysis, there was a signif-
icant main effect of SOA [F(4,92) � 6.96, p � .001] and
a significant effect of validity [F(1,23) � 1,319.37, p �
.001]. The main effect of validity was due to a lower
mean RT for valid trials (526.74 msec, SE � 17) than for
invalid trials (643.52 msec, SE � 17). The validity � SOA
interaction was significant [F(4,92) � 15.66, p � .001].

In addition, preplanned analyses were run on RTs for
valid and invalid trials separately. For invalid trials, there
was no main effect of SOA [F(4,92) � 0.13, p � .05]; for
valid trials, there was a main effect of SOA [F(4,92) �
40.63, p � .001], indicating that RT decreased signifi-
cantly as a function of SOA. Post hoc paired comparison
tests of valid mean RT, using the Sidak correction, yielded
significant differences for all pairs of observations, with
a maximum difference of 68 msec and a minimum dif-
ference of 11 msec.

Just as in Experiment 1, valid trials produced higher
accuracy and lower RTs than invalid trials did, which in-
dicates that the observers were using the cue to allocate
attention. Also, RTs decreased as a function of SOA for
valid trials, but not for invalid trials, which indicates that
the effects of attention were confined to valid locations.
Thus, it appears that the central cues produced attention
effects similar to those produced by the peripheral cue,
but over a more extended time scale. In Experiment 1,
the RT facilitation was effected by a strict translation of
RT distributions along the time axis; therefore, an ex-
Gaussian analysis was performed on these data in order
to compare results.

Ex-Gaussian analysis. As in Experiment 1, ex-
Gaussians were fitted to the individual observers’ RT
distributions for correct responses on valid trials, at each
SOA, using QMLE. All 120 fits (24 observers � 5 SOAs)
converged successfully; mean parameter values are shown

Figure 4. Means of best-fitting ex-Gaussian parameters for Ex-
periment 2, valid trials, correct responses. Bars represent mean
standard errors for parameter estimates, computed on individual
fits.
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in Figure 4. Kolmogorov–Smirnov tests yielded a mean
p value of .97 (SD � .06), with a median of .998. Of the
120 fits, 1 fit had a p value of less than .7, 3 were in the
range of .7–.8, 7 were in the range of .8–.9, and 109 were
between .9 and .999. Cramer–von Mises tests were also
performed; none were significant at the .15 level. As in
Experiment 1, parameters s and t do not change with
SOA (except for a 12-msec change in t between SOAs of
100 and 150 msec), but m shows a consistent decrease
with SOA. Applying Kendall’s t test for monotonicity
yielded values of �.79, �.04, and �.29 for m, s and t,
respectively, again indicating that the distributions on the
individual level were consistent with the means.

Similar to the findings in Experiment 1, increasing the
SOA from 100 to 350 msec had the effect of translating
the RT distribution to the left by 55 msec. The maximum
m–SOA slope for any individual limb was about 0.37, as
m decreased from 477 to 458 between SOAs of 100 and
150 msec. Because t also decreased by 12 msec over the
interval ( m  � t � mean RT), the RT–SOA slope between
those two SOA values was 0.62.

GENERAL DISCUSSION

The results from both Experiments 1 and 2 are consis-
tent with previous studies of location cuing and visual at-
tention: Mean RT was lower for valid trials than for invalid
trials, and valid RT declined as a function of cue–target
SOA. The SOA values that were chosen (33–133 msec
for peripheral cues and 100–350 msec for central cues)
corresponded to the findings in previous research that
showed that identification accuracy reaches asymptotic
values during this time interval (Cheal & Lyon, 1991),
meaning that perceptual processes subject to attention
are not affected at later SOAs. Therefore, the processes
that bring about a decrease in valid RT during this time
interval probably have a large perceptual component. In
addition, generalized warning effects may have con-
tributed to the decrease in valid RTs, but if they existed,
they were not apparent in the invalid mean RTs.

The present experiments expanded mean RT to a com-
plete RT distribution, which revealed a constancy in dis-
tribution shape as a function of cue–target SOA. To sum-
marize the RT results, in Experiment 1 (peripheral cue),
the RT distribution shifted to the left (m  decreased) by
30 msec as SOA increased from 33 to 133 msec, and in
Experiment 2 (central cue), the m shift was 55 msec as
SOA increased from 100 to 350 msec. Both types of cues
produced a leftward shift of the RT distribution without
any changes in shape; there was a decrease in m, but no
changes in s or t, with SOA (except for a change in t
over the first two SOAs in Experiment 2). These results
may be contrasted with those of Hockley (1984) and
Spieler et al. (2000), who always found changes in s
when the value of m varied.

It is possible that probing a larger range of SOAs might
produce evidence for RT distribution shape changes on
valid trials. Those changes, however, would be difficult to

differentiate from generalized warning effects, because
as was stated above, perceptual changes due to attention
seem to be asymptotic by 100–150 msec for peripheral
cues and 300–350 msec for central cues (Cheal & Lyon,
1991; Cheal et al., 1994). Also, longer SOAs might permit
eye movements to occur, which would change the char-
acter of late-SOA responses.

The shape constancy of the present experiments, when
put into the context of a diffusion model, may reveal the
mechanisms at work in visual attention that serve to de-
crease identification RT. Because the diffusion model has
been the preferred model to account for identification
RT (e.g., Ratcliff, 2002), it was important to determine
whether it could easily account for the present results.
As was stated previously, the pdf of the 1-D diffusion
process is described by the Wald distribution (Equation 1),
which has three parameters: L (boundary), r (drift rate),
and d (drift rate variability). In order to explore the be-
havior of the Wald with respect to its parameters, many
representative Wald pdfs, over a large variety of parameter
values, were constructed over the interval x � 0–1 sec.
Then, for each distribution, 1,000 simulated observa-
tions were sampled and fitted to ex-Gaussians. Fits were
excellent between the sampled Wald values and the ex-
Gaussians (mean r � .99). It was found that varying a
single Wald parameter (L, r, or d ) in order to reduce mean
finishing time (RT) produced characteristic ex-Gaussian
parameter changes. Decreasing the boundary produced
decreases in m and s, with t approximately constant. In-
creasing the drift rate (the most likely candidate for an
attention-related parameter) produced decreases in m, t,
and s. Increasing drift rate variability produced a de-
crease in m, an increase in t, and an increase in s. Ac-
cording to the simulations, it is not possible to create, by
varying a single parameter, a family of identically shaped
Wald distributions that differ only in location along the
x-axis (i.e., where m, and no other parameter, in the fit-
ted ex-Gaussian is changed). This result can be con-
firmed by comparing Equations 1 and 2. For Equation 2
(ex-Gaussian), m is additive with respect to t, so the ef-
fects of changing m and t are equivalent. On the other
hand, for Equation 1 (Wald), no parameter has a simple
additive relationship with t.

The results of the above simulations and inspection of
the Wald and ex-Gaussian equations run parallel to pre-
vious inferences drawn about the diffusion model and
ex-Gaussian parameters. Zabel and Anderson (1997)
plotted Wald densities and observed that, with changes
in drift rate and drift rate variability, there were always
corresponding changes in distribution shape. Ratcliff
(1993) noted that changes in the Wald drift rate corre-
sponded to changes in both m and t in the ex-Gaussian
fits. Similarly, Spieler et al. (2000) simulated random
walks in which single parameters (drift rate or boundary)
were manipulated, after which they fitted ex-Gaussians.
When boundary was increased, there were monotonic in-
creases in m, t, and s, although the increase in m was
about five times the increases in t and s. Spieler et al.
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also found that when they increased drift rate, there were
monotonic decreases in m, t, and s, although the de-
crease in t was highly nonlinear over the range of drift
rates they tested. These three studies confirm the above
results that single parameter changes in the Wald would
not produce simple x-axis translations of RT distribu-
tions. Of course, it is possible that coordinated param-
eter changes could effect a strict translation in the RT
distributions, but these would have to take effect over all
SOAs and both experiments. Therefore, the shape invari-
ance of the RT distributions suggests that the diffusion
process cannot model the present data by varying drift
rate, drift rate variability, or boundary singly. This result
was not anticipated, because drift rate is the most rea-
sonable candidate for a diffusion model parameter that
corresponds to differences in attention or task difficulty.

One way for a diffusion model to produce a set of
translated RT distributions is by adding a parameter that
corresponds to a variable delay in the onset of informa-
tion uptake (drift). The delay would be longest at short
cue–target SOAs. In some ways, this delay corresponds
to hypothesized mechanisms in visual attention. For in-
stance, Sperling and Weichselgartner (1995) suggested
that a threshold amount of target information must be
collected before identification processes can start, and it
is reasonable that this delay would be greatest at short
SOAs. In order for this delay to produce strictly trans-
lated RT distributions, it is necessary that the amount of
noise accumulated during the delay remain constant.
However, the few sequential sampling models that in-
clude a variable delay, which has been termed premature
sampling (Laming, 1968; Rouder, 1996) or, equivalently,
starting point variability (Ratcliff & Rouder, 1998; Rat-
cliff et al., 1999), also posit that the system drifts, with
mean drift rate equal to zero during the delay. This drift
would add noise to the process in proportion to the amount
of time spent in drift (or the starting point variance),
which would show up in differences of s and t in the
ex-Gaussians.

In order to accommodate the shape constancy in the
RT distributions that were found in the present experi-
ments, a diffusion model would need to hold the total ac-
cumulated noise to a constant amount. This could be ac-
complished with a variable initial dwell period in which
the integrated noise would be held to 0 or some other
constant; that is, the system would be “on hold” for a
variable period of time before information accumulation
would start, perhaps waiting for target localization or in-
formation of a minimum “packet size.” This constant-noise
delay, although allowing the diffusion model to fit the pres-
ent data, may seem biologically implausible and ad hoc.

In summary, the same results and implications were
obtained for both peripheral (Experiment 1) and central
(Experiment 2) cues: Decreases in mean identification
RTs as a function of cue–target SOA were accomplished
by an x-axis translation of the RT distributions. This sim-
ilarity across experiments suggests that the two types of
cues invoke common mechanisms affecting RT in target

identification, but this mechanism does not appear to
correspond with simple changes in sensitivity (drift rate)
in a diffusion model. In order to accommodate the trans-
lated RT distributions, a model based on a diffusion pro-
cess may be required to include constant-noise (with the
degenerate case being zero-noise) variable time delays
in the uptake of information. This may seem implausible
biologically, but adjusting diffusion model parameters of
drift rate, drift rate variability, or boundary (unless pre-
cisely coordinated) would have corresponded to changes
in the shape of RT distributions as a function of SOA.
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