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Every day we see, hear, taste, touch,and smell objectsand
events that must be categorized into one of many categories
to facilitate understanding or selection of an appropriate
behavior. In keeping with the importanceof categorization
in everyday life, much research has been devoted to an un-
derstanding of the perceptual and cognitive operations in-
volved in it. The current thinking is that there are at least
two categorization systems and that each is associated
with separate brain systems (Ashby, Alfonso-Reese,
Turken, & Waldron, 1998; Ashby & Ell, 2001; Pickering,
1997; E. E. Smith, Patalano, & Jonides, 1998). There is
general agreement that one system is explicit (i.e., rule or
theory based), is available to conscious awareness, and
likely involvesfrontal brain structures. There is less agree-
ment about the nature of the implicit system, but a grow-
ing body of work suggests that this system involvesa grad-
ual strengthening of stimulus–response associations
within the striatum (a region of the basal ganglia that con-
tains the caudate nucleus and the putamen), and is not
available to conscious awareness (e.g., Ashby et al., 1998).

Ashby and Waldron (1999; see also Ashby, Waldron, Lee,
& Berkman, 2001; Waldron & Ashby, 2001) recently pro-
posed a neuropsychologically plausible model of the im-
plicit categorization system as applied to visually pre-
sented stimuli. This model assumes a central role for the
striatum and is referred to as the Striatal Pattern Classifier
(SPC). Evidence in support of a central role for the stria-
tum in visual categorization and the assumptions of the
model will be presented shortly.

In recent years there has been a growing interest in de-
termining whether speech perception can be viewed as a
form of pattern recognition.This approach has yielded sev-
eral important and successful models (e.g., Nearey, 1997;
Nossair & Zahorian, 1991). The present study adds to this
body of research by extendinga successful model of visual
categorization (pattern classification) to the auditory do-
main.

The goals of this study are many. First, we examine the
neuropsychologicalplausibilityof the SPC as applied to au-
ditory categorization.Since most real-world auditory cate-
gorization problems are likely solved implicitly, this seems
like a reasonable starting point. Although the neuropsy-
chological underpinningsof the model are not critical for
the present empirical application (i.e., a computational-
level interpretation is adequate), we believe that neuropsy-
chologicalplausibilityissuesmust beemphasized,especially
given the explosion of work on the neuroscience of per-
ceptual and cognitivephenomena (e.g., Gazzaniga, 2000).
Second, we apply the SPC to data from a vowel catego-
rization study. Third, we compare performance of the SPC
with that of a popular model in the speech perception lit-
erature, namely the Normal A PosterioriProbability(NAPP)
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Twelve male listenerscategorized54 syntheticvowel stimuli that variedin second and third formant fre-
quency on a Bark scale into the American English vowel categories /I/, /U/, and /Æª/. A neuropsycho-
logically plausible model of categorization in the visual domain, the Striatal Pattern Classifier (SPC;
Ashby & Waldron, 1999), is generalized to the auditory domain and applied separately to the data from
each observer. Performance of the SPC is compared with that of the successful Normal A Posteriori
Probability model (NAPP; Nearey, 1990; Nearey & Hogan, 1986) of auditory categorization. A version
of the SPC that assumed piece-wise linear response region partitions provided a better account of the
data than the SPC that assumed linear partitions, and was indistinguishable from a version that as-
sumed quadratic response region partitions. A version of the NAPP model that assumed nonlinear re-
sponse regions was superior to the NAPP model with linear partitions. The best fitting SPC provided a
good account of each observer’s data but was outperformed by the best fitting NAPP model. Implica-
tions for bridging the gap between the domains of visual and auditory categorization are discussed.
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model of Nearey and Hogan (1986; Nearey, 1990). The
NAPP model is well established in this field and we doubt
that the SPC will outperform the NAPP model. In light of
this fact, our goal is not to compare the SPC to NAPP in
order to reject one model or the other. Rather, our goal is
to use the NAPP model as a benchmark against which to
compare the SPC. If the SPC provides a reasonable ac-
count of the data relative to the NAPP model, then we will
deem the SPC a model that warrants additional study. By
applying the SPC to auditory categorization, we are tak-
ing an important step toward bridging the gap between
studies of visual and auditory categorization (see also
Kingston & Macmillan, 1995; Macmillan & Kingston,
1995), and toward offering a general neurobiological
framework for studying both visual and auditory catego-
rization.

The next section outlines the assumptions of the SPC
and generalizes the model to auditory processing. In ad-
dition, the NAPP model is described. We then introduce
the experiment and detail the experimental methods. We
then present the results and theoretical analyses, and fi-
nally a summary and discussion.

Striatal Pattern Classifier
The SPC (Ashby & Waldron, 1999) can be viewed as a

neuropsychologicallyplausible implementationof the de-
cision process assumptions of Ashby and Townsend’s
(1986; Ashby & Perrin, 1988) General Recognition The-
ory (GRT; also called decision bound theory; Ashby &
Maddox, 1993; Maddox & Ashby, 1993). GRT is a gener-
alization of signal detection theory to stimuli that vary
along multiple dimensions. In GRT, perceptual processes
and decisional processes are characterized by separate and
uniquely identifiable parameters.

Perceptual processes. Real-world objects vary along
multiple basic stimulus dimensions, each of which is con-
tinuous, rather than binary valued (e.g., Ashby, 1992a;
Ashby & Maddox, 1998). For example, objects may vary
along the dimensionsof size, color, location, fundamental
frequency, and amplitude. GRT takes as its fundamental
axiom that repeated presentations of the same stimulus
yield different perceptual effects (i.e., perceptual noise ex-
ists) and assumes that a single multidimensional stimulus
can be represented perceptually by a multivariate proba-
bilitydistribution(Ashby & Lee, 1993;Ashby & Townsend,

Figure 1. (a) Hypothetical contours of equal likelihood for nine stimuli constructed from
the factorial combination of three levels along two stimulus components. (b) Hypothetical
minimum-distance response regions and striatal units for three categories assuming one stri-
atal unit per category. (c) Hypothetical minimum-distance response regions and striatal units
for three categories assuming two striatal units per category.



586 MADDOX, MOLIS, AND DIEHL

1986). For a two-dimensional stimulus, a bivariate normal
distribution is assumed to describe the set of percepts. A
bivariate normal distribution is described by a mean and
variance along each dimension, as well as a covariance
term, mx, my, s2

x, s2
y, covxy, where the subscripts x and y

denote dimensions x and y. Figure 1a depicts hypotheti-
cal equal likelihood contours for nine stimuli constructed
from the factorial combination of three levels along two
dimensionsx and y. With bivariate normal distributions,the
equal likelihood contours are always circular or elliptical.
The spread of the contour along the x and y dimensions is
related to the perceptual variabilityalong each dimension.
Note that the three contours associated with Level 1 of di-
mension y have less variability than the three contours as-
sociated with Level 2 of dimension y. One form of percep-
tual interaction predicted by GRT is especially important
to the present application. It is called perceptual indepen-
dence. Perceptual independence holds for a single stimu-
lus if and only if the perceptual effects for dimensions x
and y are statistically independent (see Ashby, 1988;
Ashby & Maddox, 1991; Ashby & Townsend, 1986; Per-
rin & Ashby, 1991, for empirical tests of perceptual inde-
pendence). With bivariate normal distributions, percep-
tual independence holds when the major and minor axes
of the contourare parallel to the coordinateaxes (i.e., when
the covariance or correlation is zero). Perceptual indepen-
dence holds for all but the top left and top right contours
in Figure 1a. A positive slope for the major axis implies a
positivecovariance (or positiveperceptual dependence,as
seen for the top right stimulus), and a negative slope im-
plies a negative covariance (or negative perceptual depen-
dence, as seen for the top left stimulus).1

Decision processes. In GRT, the experienced observer
learns to divide the perceptual space into response regions
and assigns a response to each region. The partitions be-
tween response regionsare called decisionbounds. On each
trial the observer determines the location of the percep-
tual effect and gives the response associated with that re-
gion of the perceptual space. The SPC offers a neuropsy-
chological theory of this process as applied to the
categorization of visually presented stimuli. It is well
known that stimuli are represented perceptually in higher
level visual areas such as inferotemporal cortex (i.e., IT).
It is also well established that cells in IT project, in a
many-to-one fashion, to striatal cells (J. Wickens, 1993).
Because the projectionsare many to one, it is assumed that
a low-resolution map of the perceptual space is repre-
sented among the striatal units. Over trials, each striatal
unit becomes associated with a particular categorization
response. Thus, the striatum can be thought of as associ-
ating a categorization response with a cluster of visual
cortical cells. On each trial the observer determines which
unit is closest to the perceptual effect and gives the asso-
ciated response. This minimum-distance classification
scheme results in response regions that are separated by
linear partitions (Ashby & Maddox, 1993). Hypothetical
minimum-distance response regions for a three-category

problem for the nine stimuli in Figure 1a under the as-
sumption that one striatal unit is associated with each cat-
egory are displayed in Figure 1b. The response regions de-
picted in Figure 1b are not optimized in any sense; that is,
they are not constructed in such a way as to maximize
long-term accuracy. However, evidence with visually pre-
sented stimuli suggests that with experience, observer’s
response regions, as modeled with the SPC, do become
more nearly optimal (Maddox, 2001, 2002). Hypothetical
minimum-distance response regions for the same stimuli
but where two striatal units are associated with each cate-
gory are displayed in Figure 1c. In this case the response
region partitions are piecewise linear. Importantly, within
this theoretical framework, the perceptual representation
parameters (Figure 1a) are separate from the response re-
gion or striatal unit parameters (Figure 1b).

A large body of neuropsychological,brain imaging, and
animal research provides support for the claim that the
striatum plays a central role in implicit visual categoriza-
tion. First, patientswith Parkinson’s disease and Hunting-
ton’s disease,whose neuropathologyresults in a decrement
in striatal functioning, demonstrate impaired probabilis-
tic classification learning, a form of implicit categoriza-
tion (Filoteo, Maddox, & Davis, 2001; Knowlton, Man-
gels, & Squire, 1996; Maddox & Filoteo, 2001). Second,
functional neuroimaging studies with normal individuals
suggest that the striatum is activatedduring a task of prob-
abilistic classification learning (Poldrack, Prabhakaran,
Seger, & Gabrieli, 1999; Seger, Poldrack, Prabhakaran,
Zhao, Glover, & Gabrieli, 2000). Third, animal studies
implicate the striatum in certain aspects of category learn-
ing (McDonald & White, 1993; Packard & McGaugh,
1992). Finally, and perhaps most importantly, Waldron,
Ell, Ashby, McCormick, and Casale (2000) recently de-
veloped a learningmodel implementationof the SPC with
enough biological detail that they were able to test the
model by applyingit simultaneously to single-cell record-
ing and human behavioral data. Briefly, they modeled the
behavior of visual cortical cells, medium spiny cells in the
caudate nucleus (a structure within the striatum), and
dopamine cells of the substantia nigra. The approach was
to calibrate the model by fitting it to single-cell recording
data collected within the caudate nucleus and the sub-
stantia nigra and then, holding those parameters fixed, to
fit the few remaining parameters to human category learn-
ing data. The model provided an excellent simultaneous
account of the single-cell and human category learning
data, and provides the strongest evidence to date for the
neurobiologicalplausibility of the SPC.

A generalization to auditory categorization. Al-
though it is straightforward mathematically to apply the
SPC to data from an auditory categorization task, it is im-
portant to determine whether there is any empirical sup-
port for the neuropsychologicalplausibility of the SPC as
a model of auditory categorization.First, we need to deter-
mine whether brain areas in the auditory processing sys-
tem project to the striatum in much the same way that IT
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projects to the striatum. Second, we need to determine
whether there is support from the neuropsychologicaland
animal literature for the importance of the striatum in the
categorizationof auditory stimuli. Although less research
has been conducted to address these issues, at least three
recent studies are relevant. Two recent animal studies
found direct projections from auditory cortex into the
striatum (Arnauld, Jeantet, Arsaut, & Desmotes-Mainard,
1996; Chudler, Sugiyama, & Dong, 1995), suggesting that
a low-resolution map of the auditory perceptual space is
represented among the striatal units. In fact, one of these
studies (Chudler et al., 1995) suggested that there was a
convergence from multiple sensory systems into the stria-
tum. A third study implicated the striatum in the catego-
rization of auditory stimuli in the rat (Jog, Kubota, Con-
nolly, Hillegaart, & Graybiel, 1999). In that study the rat
was trained to run a T-maze. On half the trials a food re-
ward was presented in the left goal box, and on the other
half a food reward was presented in the right goal box. An
auditory cue (a 1000- or 8000-Hz tone, 75 dB) signaled
which box (left or right) contained the reward on each
trial. The rats successfully learned the task, and significant
striatal involvement was found in this discrimination. To
our knowledge no categorization studies with striatal-
damaged patients (e.g., Parkinson’s or Huntington’s dis-
ease) have been conductedusing auditory stimuli. Clearly
this is a ripe area for future research.

To summarize, there does appear to be neuroanatomical,
neurophysiological, and behavioral data implicating the
striatum in auditoryprocessing and categorization.In light
of this fact, our next step will be to examine quantitatively
the ability of the SPC to account for data from an auditory
categorization task in normal human listeners. Before in-
troducing the vowel categorization experiment and the
modeling results, we briefly review the currently popular
NAPP model of auditory categorization.

NAPP Model
We only briefly review the NAPP model here since it is

described fully in other articles (Nearey, 1990; Nearey &
Hogan, 1986). As applied to vowel categorization, the
NAPP model assumes that listeners focus on the outputof
“detectors” or “filters” that are tuned to language-specific
vowel categories. These detectors produce normally dis-
tributed outputs that correspond roughly to the likelihood
of the vowel category given the stimulus input.These like-
lihoods are then combined using the classic Luce (1963)
choice rule (also called the relative goodness rule) to gen-
erate predicted response probabilities for each vowel cat-
egory. From the output of the choice rule one can gener-
ate a response surface for the model. The response surface
denotes the most likely categorization response for each
point in the space. The partitions that separate the various
regions of the response surface behave much like the de-
cision bounds in the SPC. Nearey has examined different
types of response region partitions, in particular linear and
quadratic partitions.

Although NAPP is a model of speech recognition and
has many variants depending on the assumptions made
about speech processing, the predicted response probabil-
ities from the model can always be derived from logistic
regression. In addition, situations exist in which different
NAPP model assumptions are mathematically equivalent
at the level of the data. In other words, families of NAPP
models often map onto the same logistic regression equa-
tion. In light of this fact, when fitting the data in the fol-
lowing vowel categorization experiment we will focus on
logistic regression models, specifically, linear and nonlin-
ear logistic regression models. Alternative formulations
of the model will be outlined in the Discussion section.

Listeners labeled a set of synthetic vowel stimuli that
varied in second and third formant frequencies and that
ranged perceptually among the categories /I/, /U/, and /Æª/.

METHOD

Listeners
Listeners were 12 males ranging in age from 18 to 37 years with

a mean age of 27.2. An attempt was made to limit listeners to a rel-
atively homogeneous dialect group (Central Texas); all listeners
were raised in or around the metropolitan areas of Austin, Houston,
or Dallas. They received monetary compensation for their partici-
pation.

Stimuli
Fifty-six five-formant synthetic vowel stimuli were synthesized

using a KLATT88-type cascade resonance synthesizer implemented
on a PC. The stimulus space encompassed the American English
vowel categories /I/, /U/, and /Æª/. Stimuli shared a common first for-
mant (F1) frequency but varied in second and third formant fre-
quencies (F2 and F3) on a perceptually motivated frequency scale
(Bark). F2 varied between 9.0 and 14.2 Bark (1081–2390 Hz) in
equal 0.4-Bark steps. F3 varied from 10.0 to 15.2 Bark (1268 –
2783 Hz), also in equal 0.4-Bark steps. The Hertz values used as
input parameters to the synthesizer were calculated to correspond
with their desired Bark value equivalents using an equation from
Traunmüller (1990). The two stimuli with the highest F2–F3 fre-
quency combination were subsequently eliminated because prelim-
inary investigations indicated they had an unnatural quality com-
pared with the other stimuli in the set. A plot of the remaining 54
stimuli in the F2, F3 space is displayed in Figure 2a. The frequency
values of F1, F4, and F5 were 4.5 Bark (455 Hz), 16.2 Bark
(3250 Hz), and 17.0 Bark (3700 Hz), respectively. The default band-
widths of the synthesizer were used: 60 Hz for F1, 90 Hz for F2,
150 Hz for F3, and 200 Hz for F4 and F5. All stimuli were 225 msec
in duration (chosen because it is similar to the measured intrinsic
duration of these vowels produced in citation form; Hillenbrand,
Getty, Clark, & Wheeler, 1995). The fundamental frequency was a
constant 132 Hz for the initial 150 msec and thereafter fell linearly
to 127 Hz over the final 75 msec. Stimuli were ramped on and off
with a 10-msec half-cosine function and were normalized for RMS
amplitude.

Procedure
Listeners were seated at separate response stations in a sound-

attenuated chamber. Stimuli were presented over Beyer DT-100
headphones at a level of 70 dB SPL. Fourteen randomized blocks of
the 54 stimuli were presented (756 trials/listener). Listeners were
asked to identify each stimulus by pressing one of three response
buttons labeled with the key words hid, hood, and heard, corre-
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sponding to the three identifiable American English vowel cate-
gories.

RESULTS AND THEORETICAL ANALYSES

Vowel Categorization Response Probabilities
The proportions of /I/, /U/, and /Æª/ responses to each

stimulus were computed for each listener and used for the
model-based analyses. Figure 2b displays the most com-
mon response for each of the 54 stimuli, averaged across
observers.

Model-Based Analyses
The data to be modeled were 162 observed vowel cate-

gorization response probabilitiesdetermined from the re-
sponse probabilitiesfor each of the three vowel categories
(hid, hood, and heard ) for all 54 stimuli. However, be-
cause the response probabilities for the three vowel cate-
gories for each stimulus must sum to one, there are only

108 df in the data for each listener. All model-basedanaly-
ses were performed at the level of the individual listener.
Data were not collapsed across listeners since averaging
often alters the structure of the categorizationdata in such
a way that the correct model of individual performance
provides a poor account of the aggregate data (Ashby,
Maddox, & Lee, 1994; Estes, 1956; Maddox, 1999; Mad-
dox & Ashby, 1998; J. D. Smith & Minda, 1998).

The parameters of the SPC and logistic regression mod-
els were estimated using maximum likelihoodprocedures
by minimizing the negative natural log likelihood (2lnL;
Ashby, 1992b; T. D. Wickens, 1982). With logistic regres-
sion, closed-form expressions for the best fitting parame-
ters exist and can be obtained from several “canned” pro-
grams. Because numerical integration is required to fit the
SPC (details provided below), an iterative search routine
was used to estimate the model parameters.2 Although
maximum likelihoodestimates can be used to test the em-
pirical validity of a model in isolation, a more useful ap-
proach is to compare the fits across models. Three ap-
proaches are available for model comparison. First, when
two models have the same number of parameters, the
maximum likelihood fit values can be compared directly,
and the model with the smallest fit value is deemed the
better model. Second, when one model is a special case of
another model—that is when two models are “nested”—
a likelihood ratio (or G2) test can be used to determine
whether the extra parameters of the more general model
provide a significant improvement in fit over the more re-
stricted model. Consider two models,M1 and M2, for which
M1 is a special case of M2. The statistic G2 = 2[lnL2 2
lnL1] is asymptoticallyx2 distributedwith degrees of free-
dom equal to the difference in the number of parameters
between the models. If G2 is larger than the x2 critical
value, then the more general model, M2, is deemed supe-
rior. If G2 is smaller than the x2 critical value, then the less
general model, M1, is deemed superior. Finally, situations
exist in which two models have different numbers of free
parameters and also are not nested. In this case, the statis-
tic AIC = 2r 2 2lnL, where r is the number of free para-
meters and L is the likelihoodof the model given the data,
can be compared (Akaike, 1974; Takane & Shibayama,
1992). The AIC statistic penalizes a model for extra free
parameters in such a way that the smaller the AIC, the
closer a model is to the “true model,” regardless of the
number of free parameters. Thus, to find the best model
among a given set of competitors, one simply computes an
AIC value for each model and chooses the model associ-
ated with the smallest AIC value. In the present applica-
tion all three of these model comparison procedures will
be utilized.

Striatal pattern classifier. Several versions of the SPC
were examined. Following general recognition theory, the
SPC assumes that the perceptual effect associated with a
single presentation of stimulus i is stochastic and, in the
present application, can be represented over trials by a bi-
variate normal distribution.We denote the perceptual dis-

Figure 2. (a) Schematic illustration of the 54 synthetic vowel
stimuli in the F2, F3 space. (b) Symbolic representation of the
most common vowel category response (/I/, /U/, and /Æª/ ) for each
of the 54 stimuli averaged across observers. Circle, /I/; square,
/U/; diamond, /Æª/.
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tribution (i.e., density function) for stimulus i by fi(x,y),
where x and y denote the perceived F2 and F3 values. The
SPC also assumes that a low-resolution map of the per-
ceptual space is represented in the striatum. Each striatal
unit becomes associated with a particular categorization
response. On each trial the observer determines which unit
is closest to the perceptual effect and gives the associated
response. Thus, the SPC assumes that the low-resolution
map of the perceptual space is carved up into separate re-
sponse regions, with each region having an associated re-
sponse. We denote the response region for category j by Âj.
Thus, the probabilityof responding Rj on stimulus Si trials
is equal to the probability that a perceptual effect from the
fi(x,y) distribution falls in the Âj response region. Compu-
tationally, this is equivalent to the proportion of the fi(x,y)
distribution in the Âj response region. More formally,

P(Rj |Si) = E fi(x,y) dx dy. (1)

Âj

Because the response regions can take many forms, and
because theoretically the mean, variance, and covariance
parameters associated with the perceptual distribution
fi(x,y) need not be constrained, evaluating Equation 1 re-
quires numerical integration procedures.3

All models tested made the following two perceptual
representation assumptions: (1) The mean perceptual ef-
fects (i.e., the mean for each bivariate normal distribution
of perceptual effects) were located at the synthesizedF2, F3
values (Figure 2a). (2) The perceptual covariance matrices
were identical across stimuli. In other words, the F2 per-
ceptual variabilitywas constantacross the 54 stimuli, the F3
perceptual variability was constant across the 54 stimuli,
and the F2, F3 perceptual dependencewas constant across
the 54 stimuli. This is referred to as a stimulus invariant
(SI) perceptual representation since the perceptual covari-
ance matrix entries are invariant across stimuli (Ashby &
Maddox, 1993, 1994; Ashby & Townsend, 1986).

Four sets of perceptual representationassumptionswere
tested. The four perceptual representations tested differed
only in the assumptions made about the F2 and F3 percep-
tual variabilities, and the F2, F3 perceptual dependence.
From most constrained to most general, the versions are as
follows:

1. Perceptual representation Version 1 (PR1). This ver-
sion assumed that the perceptual standard deviationalong
the F2 dimension was equivalent to the perceptual stan-
dard deviation along the F3 dimension (i.e., sF2 = sF3)
and that perceptual independence was satisfied between
the perceived F2, F3 values (i.e., r F2,F3 = 0). In other
words, the contours of equal likelihood for all 54 stimuli
were circles of the same diameter. This model contained
one free parameter.

2. PR2. This version allowed the perceptual standard
deviation along the F2 dimension to be different from the
perceptual standard deviation along the F3 dimension

(i.e., sF2 Þ s F3) and assumed that perceptual indepen-
dence was satisfied between the perceived F2, F3 values
(i.e., rF2,F3 = 0). In other words, the contours of equal
likelihood for all 54 stimuli were ellipsoids of the same
size and orientation whose major and minor axes were
parallel to the F2, F3 axes. This model contained two free
parameters.

3. PR3. Like Version 1, Version 3 assumed that the per-
ceptual standard deviation along the F2 dimenison was
equivalent to the perceptual standard deviationalong with
the F3 dimension (i.e., sF2 = s F3), but allowed a percep-
tual dependence to exist between the perceived F2, F3 val-
ues (i.e., rF2,F3 Þ 0). In other words, the contours of equal
likelihood for all 54 stimuli were ellipsoids of the same
size and orientationwhose major and minor axes were not
required to be parallel to the F2, F3 axes. This model con-
tained two free parameters.

4. PR4. This version allowed the perceptual standard
deviation along the F2 dimension to be different from the
perceptual standard deviation along the F3 dimension
(i.e., sF2 Þ sF3) and allowed a perceptual dependence to
exist between the perceivedF2, F3 values (i.e., rF2,F3 Þ 0).
In other words, the contours of equal likelihood for all 54
stimuli were ellipsoids of the same size and orientation
whose major and minor axes were not required to be par-
allel to the F2, F3 axes. This model contained three free
parameters.

Response regionassumptions. Four different response
region assumptions were tested:

1. SPC1. This model assumed that a single striatal unit
was associated with each of the three vowel categories, for
a total of three striatal units. Under these conditions, the
decision bounds that partition the F2, F3 space into three
vowel categories are linear. An example is displayed in
Figure 1b. This model has five free response region para-
meters.4

2. SPC2.This model assumed that two striatal unitswere
associated with each of the three vowel categories, for a
total of six striatal units. Under these conditions, the deci-
sion bounds that partition the F2, F3 space into three vowel
categories are piecewise linear. An example is displayed
in Figure 1c. This model has 12 free response region pa-
rameters.

3. SPC3. This model assumed that three striatal units
were associated with each of the three vowel categories,
for a total of nine striatal units. Under these conditions, the
decision bounds that partition the F2, F3 space into three
vowel categories are again piecewise linear. This model
has 18 free response region parameters.

4. SPCQC. The response region assumptions of this
model differ somewhat from those of the other three mod-
els because technically no striatal units exist. This model
assumes that the partitions between response regions are
quadratic in nature and that three such quadratic partitions
exist. This model can be thought of as a generalization of
SPC1, but in which the linear partitions are replaced by
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quadratic partitions. This model has 11 free response re-
gion parameters.5

The model-based analyses began with a comparison of
the four perceptual representation assumptions (PR1–
PR4) for the simplest set of response region assumptions
(SPC1). Because the models are nested or contain the
same number of free parameters, they can be compared
using likelihood ratio (G2) tests. First, we compared the
fit of PR1 with the best fitting of PR2 and PR3. For only
2 of 12 observers did the extra free parameters of PR2 or
PR3 provide a significant improvement in fit [G2(1) =
5.88, and 38.90, p < .05]. Next, we compared PR1 with
PR4 again using likelihoodratio (G2) tests. For 7 of the 12
observers, the extra free parameters of PR4 provided a
significant improvement in fit [G2(2) ranging from 7.02 to
41.86, p < .05]. On the basis of the slight superiority for
the PR4 assumptions, and because one aim was to provide
the best possible account of the data, all subsequentanaly-
ses focus on PR4. Even so, all SPC model were also fit
under the PR1 assumptions and these will be discussed
briefly.

The goodness-of-fit (2lnL) and percent of variance ac-
counted for by the SPC1, SPC2, SPC3, and SPCQC mod-
els (all assuming PR4) for each observer are displayed in

Table 1. The goodness-of-fit (2lnL) and percent of vari-
ance accounted for by the same models averaged across
observers are displayed pictorially in Figures 3a and 3b,
respectively. The results can be summarized as follows.
First, on the basis of the average fit, SPC2 provided a sig-
nificant improvement in fit over SPC1 [G2(7) = 18.19,p <
.05]. At the individualobserver level, SPC2 provided a su-
perior account for 5 of 12 observers [G2(7) ranging from
20.10 to 52.48, p < .05] and a marginally superior account
for 2 other observers [G2(7) = 12.03 and 13.66,with a crit-
ical value of 12.02, p < .10]. In addition, the reduction in
unexplained variance for SPC2 relative to SPC1 was
nearly 25%. Second, in no case did the extra free parame-
ters of the SPC3 model provide a significant improvement
in fit over the SPC2 model at the individualobserver level
[G2(6) ranging from 0 to 9.42, p > .05] or for the average
fit [G2(6) = 1.43, p > .05]. Finally, there was little differ-
ence in fit between SPC2 and SPCQC. Because the mod-
els are not nested, AIC was used to determine which
model provided the superior account of the data. For 7 of
12 observers SPCQC provided a superior account of the
data, whereas SPC2 provided a better account for the re-
maining 5 observers. The similarity in the fits of the mod-
els is evident from an examination of the averaged AIC
values and percent of responses accounted for by each
model. The averaged AIC values were 173.71 and 173.63
for SPC2 and SPCQC, respectively.The averaged percent
of responses accountedfor were 96.99 and 97.00 for SPC2
and SPCQC, respectively.6 Clearly more research is
needed to tease these models apart. Because the focus of
this work is on an application of the SPC, we concentrate
the detailed analyses on SPC2.

The piecewise linear response region partitions for the
SPC2 model for each of the 12 observers are displayed as
the broken lines in Figure 4. Two comments are in order.
First, the only strong trend in response region partitions
for SPC2 is the general concave-downward shape of the
/U/–/Æª/ boundary. Second, the elbows in the piecewise
linear partitions often fall outside of the stimulus space.
Possibly, these changes in the partitions are affecting
mainly the low-probability tails of the distributions, per-
haps compensating for inadequate assumptions about na-
ture of “noise” in the system. A few comments are also in
order regarding the best fitting perceptual representation
parameters. There were individual differences in the re-
sultingperceptual representationparameters, but two gen-
eral statements can be made. First, it was not the case that
the F2 standard deviation was consistently larger or
smaller than the F3 standard deviation. Specifically, for 6
of the 12 observers the F2 standard deviation was larger,
for 5 of 12 the F3 standard deviation was larger, and for 1
of 12 the standard deviations were equal. Second, for 8 of
12 observers the F2, F3 percepts were negatively corre-
lated, suggesting that perceived values of F2 that were
larger than the actual F2 value were associated with per-
ceived values of F3 that were smaller than the actual F3
value (and vice versa). We revisit this finding in the Dis-
cussion section.
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Figure 3. (a) Average goodness-of-fit (2lnL), and (b) average
percent of variance accounted for by the SPC and NAPP models.
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NAPP model. It is straightforward to show that the lin-
ear version of the NAPP model is equivalent to a system
of three linear logistic equations (Lachenbruch, 1975;
Nearey, 1990) and thus can be fit using readily available
“canned” statistical software. In addition, the quadratic
version of the NAPP model is equivalent to nonlinear lo-
gistic models and can also be fit using statistical software.
Although we will be fitting logistic regression models to
the data, these applicationswere motivated by the psycho-
logically meaningful NAPP model, so the models will be
referred to as NAPP-LLR and NAPP-NLLR for applica-
tionsof linear and nonlinear logisticregression,respectively.

The number of free parameters, goodness-of-fit (2lnL),
and percent of variance accounted for by the NAPP-LLR
and NAPP-NLLR models for each observer are presented
in Table 1. The averaged fit and percent of variance ac-
counted for are displayed in Figure 3. The results were
clear. A G2 test comparing the average fit values for the
NAPP-NLLR and NAPP-LLR models was significant
[G2(6) = 31.64, p < .001]. In addition, for 10 of 12 ob-
servers, the NAPP-NLLR model provided a significant
improvement in f it over the NAPP-LLR model [G2(6)
ranging from 17.57 to 58.53, p < .05]. Finally, the reduc-
tion in unexplained variance for NAPP-NLLR relative to

NAPP-LLR was nearly 50%. Taken together these results
provide strong support for the use of nonlinear response
region partitions within the framework of the NAPP
model. The nonlinear response region partitions for the
NAPP-NLLR model for each of the 12 observers are dis-
played as the solid curves in Figure 4.

SPC and NAPP comparisons. NAPP was developed
in the speech perception domain and has been quite suc-
cessful; thus we did not expect the SPC to provide as good
an account of the data. Even so, some comparisons with
NAPP are in order. First, we compared the SPC model that
assumed linear response region partitions (i.e., SPC1)
with the linear version of NAPP (i.e., NAPP-LLR). Be-
cause the models are not nested, we used AIC to compare
the models. As expected, the NAPP-LLR model was su-
perior to SPC1. On the basis of the average AIC, for 9 of
12 observers the NAPP-LLR model provided a better ac-
count of the data. Even so, the percent of variance ac-
counted for was high, and was essentially identical, with
a slight advantage for SPC1 (percent of variance ac-
counted for: SPC1 = 96.10%; NAPP-LLR = 95.59%). In
addition, the response region partitions were similar
across models. Second, we compared the piecewise linear
SPC2 with the NAPP-NLLR. Again, the NAPP model

Table 1
Goodness-of-Fit (-lnL) and Percent of Variance Accounted for by the SPC

and NAPP Models as Applied to the Vowel Categorization Data

SPC Models NAPP Models

SPC1 SPC2 SPC3 SPCQC LLR NLLR

Observer (9) (15) (21) (18) (6) (12)

Goodness-of-Fit (2lnL)
1 69.73 69.71 69.67 69.23 71.94 63.15
2 47.25 41.24 39.65 41.74 48.78 39.20
3 104.70 97.87 93.16 92.83 95.10 79.79
4 108.01 82.08 81.83 76.15 97.04 67.77
5 63.81 62.53 62.45 61.79 71.54 54.90
6 107.41 106.06 106.06 107.35 100.66 82.33
7 69.11 59.06 58.56 67.48 67.97 61.91
8 38.26 37.61 37.57 38.15 39.84 38.14
9 85.93 59.69 59.46 63.52 84.35 58.99

10 93.63 83.33 82.44 84.23 102.75 75.79
11 81.13 75.24 75.16 80.76 85.72 76.52
12 102.38 87.81 87.62 90.54 89.49 66.83
Average 80.95 71.85 71.14 72.81 79.60 63.78

Percent of Variance
1 98.49 98.50 98.67 98.64 98.60 98.66
2 97.47 97.50 98.14 97.99 97.99 98.65
3 92.80 93.67 94.04 94.02 94.00 95.92
4 95.35 97.50 97.56 97.96 95.47 98.36
5 97.66 97.75 97.84 98.27 97.17 98.94
6 93.32 93.52 93.52 93.34 94.22 95.72
7 97.01 98.32 98.35 96.80 97.02 97.87
8 98.66 98.78 98.79 98.68 98.28 98.53
9 92.56 96.61 96.77 97.09 93.73 97.18

10 94.46 95.60 95.54 95.54 93.77 96.84
11 97.62 97.69 97.71 97.68 96.48 96.91
12 97.77 98.47 98.49 97.94 90.37 98.53
Average 96.10 96.99 97.12 97.00 95.59 97.68

Note—Number of parameters in parentheses.
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was superior but in this case the superiority was larger.
The AIC advantage was larger for the average fit, and was
larger for all 12 observers. Even so, the percent of variance
accounted for showed less than a percentage point im-
provement (96.99% and 97.68% for the SPC2 and NAPP-
NLLR models, respectively), although importantly this

does denote nearly a 25% reduction in unexplained vari-
ance. The fact that versions of both models that assumed
linear response region partitions were rejected suggests
that the additional flexibility afforded by nonlinear deci-
sion rules was necessary to capture the listener’s vowel
categorization behavior. As Figure 4 suggests, both mod-

Figure 4. Response region partitions for the piecewise linear SPC2 model (broken lines) and for the NAPP-NLLR
model (solid curves) for each of the 12 listeners.
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els partitionedthe perceptual space similarly, althoughno-
table exceptions are evident.

DISCUSSION

This article reports the results of an auditory vowel cat-
egorization experiment in which listeners classified 54
syntheticvowel stimuli that varied along the F2 and F3 di-
mensions into one of three vowel categories, /I/, /U/, and
/Æª/. A successful, neuropsychologicallyplausible model
of categorization in the visual domain, the SPC, was gen-
eralized to the auditory domain and was applied sepa-
rately to each listener’s data from the auditory vowel cat-
egorization task. A version of the SPC that assumed two
striatal units per category, and thus piecewise linear re-
sponse region partitions, provided a good description of
the data, accountingon average for 97% of the variance in
the data. This finding is important because it suggests that
a model with a reasonable neurobiological architecture
can be applied in both the visual and auditory domains.
This provides an important step toward bridging the gap
between visual and auditory categorization and toward a
neurobiologicalunderstanding of the systems involved in
these two different, but related, forms of categorization.

A version of logistic regression that assumed nonlinear
response region partitions (NAPP-NLLR) provided a bet-
ter account of the data than a version that assumed linear
partitions (NAPP-LLR). The linear versions of the SPC
and NAPP provided approximately equal accounts of the
data, although there was a slight but consistent advantage
for the NAPP-LLR model. The nonlinear version of lo-
gistic regression (NAPP-NLLR) on the other hand provide
a larger and consistent performance improvement in AIC
fit over the piecewise linear version of the SPC. Despite
the large AIC difference, the predictivepower of the mod-
els was approximatelyequal.Specifically, we computed the
absolute value of the deviation between predicted and ob-
served response probabilities for each stimulus and then
averaged these values. Averaged across observers, the av-
erage absolute deviation between predicted and observed
response probabilities was .036 for the SPC2 model and
.034 for the NAPP-NLLR model, essentially the same
value. Interestingly, at the individual observer level, the
average absolute deviation was smaller for the SPC2
model for 5 of the 12 observers, even though the AIC
value was larger. One possibility is that the SPC2 is yield-
ing one or two large mispredictions and that these mis-
predictionsare elevating the AIC value. This possibility is
supportedby the fact that the maximum absolutedeviation
was larger for the SPC2 model for 10 of the 12 observers.
Across these 10 observers the average of the maximum
absolute deviationwas .30 for the SPC2 model and .25 for
the NAPP-NLLR model, a fairly large difference.

Response Region Nonlinearity
The superiority of the nonlinear version of the NAPP

and of the piecewise linear version of the SPC over their
corresponding linear versions is noteworthy in view of cer-

tain earlier findings:Vowel category boundariesin Swedish
(Carlson, Granström, & Fant, 1970), Russian (Karnick-
aya, Mushikov, Slepokurova, & Zhukov, 1975), and Ger-
man (Hose, Langner, & Scheich, 1983) have been reported
to be approximately linear when formant frequencies are
scaled in units similar to Bark (e.g., Mel or log units).
However, in these earlier studies no comparisons were
made between linear and nonlinear models of the data, so
it is unclear whether the results are actually at odds with
the present findings.Given the fact that the perceptual dis-
tributions (i.e., the perceptual covariance matrices) likely
differ substantially across vowels, it is not surprising that
complex response region partitions are necessary to ac-
count for vowel categorization data. A series of cross-
language studies of vowel perception are now being
planned in our laboratory to explore further the issue of
boundary linearity/nonlinearity.

Relations Between the SPC and NAPP Models
In this section we compare and contrast the architectures

of the different models. One important distinctionbetween
the SPC and the NAPP-based logistic regression models is
that the SPC makes specific assumptionsabout perceptual
processing of each individual stimulus. In short, the SPC
is in accordance with multidimensional signal detection
theory (Ashby & Townsend, 1986; Green & Swets, 1967;
Macmillan & Creelman, 1991) and assumes that repeated
presentations of a single stimulus yield different percep-
tual effects (i.e., perceptualnoise exists). The NAPP model
makes no strong claim about the perceptual processing of
individual stimuli, although in its present form it assumes
implicitly no perceptual noise. Thus, the SPC assumes a
probabilisticperceptual representation,whereas the NAPP
model assumes a deterministic perceptual representation.

The SPC assumes that the observer determines the lo-
cation of the perceptual effect on each trial and gives the
categorization response associated with that region of the
perceptual space. Thus, each location (or perceptual ef-
fect) in the space is deterministically associated with one
of the categorization responses. The NAPP model, on the
other hand, assumes that each stimulus is processed by a
set of “detectors” or “filters” that are tuned to language-
specific vowel categories. These detectors produce nor-
mally distributed outputs that correspond roughly to the
likelihoodof the vowel category given the stimulus input.
These category likelihoodsare then combinedusing the rel-
ative goodness rule to determine a categorizationresponse
probability for each category. Thus, each location in the
space is probabilistically associated with one of the cate-
gorization responses.

Although NAPP is described as using the Luce choice
rule (Nearey, 1990), a probabilistic response rule, to gen-
erate predicted response probabilities, there is an alter-
nate, mathematically equivalent, interpretation that as-
sumes a deterministic response rule. This is referred to as
the “extremal Thurstonian model” (Albert & Chib, 1993;
Bock, 1975).7 In this interpretation the “filter” outputs are
from a Type 1 extreme value distribution, and the filter
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with the highest output is chosen on each trial. Under this
interpretation the outputs are noisy, but the response rule
is deterministic.Thus, both the SPC and extremalThurston-
ian interpretation of NAPP assume a deterministic re-
sponse rule. The models differ only in the “noise” assump-
tions with the SPC assuming noise in the perceptual
representation or input and the NAPP model assuming
noise in the output.

The fact that the NAPP models were superior to the
SPC models might lead one to conclude that the “noise”
assumptions of NAPP are supported over the noise as-
sumptions of the SPC. From a purely goodness-of-fit per-
spective this is a reasonable conclusion.However, there is
good reason to withhold judgment. First, it is well estab-
lished from physiology and psychophysics that noise ex-
ists in all sensory systems (see Geisler, 1989, for an ex-
cellent review regarding vision; see also Ashby & Lee,
1993).Thus it seems likely that the “correct” model should
assume a probabilistic perceptual representation. One
possibility is that the normality assumption of the SPC is
incorrect. Although this assumption fares well with visual
stimuli, it is possible that some other distribution better
captures perceptual noise in audition. Another possibility
is that the assumption that the perceptual variance–
covariancematrix is identicalacross stimuli (i.e., the stim-
ulus invariance assumption) is incorrect. Our intuition is
that this assumption is generally incorrect and that the ne-
cessity to relax it depends most on the procedural aspects
of the experiment. For example, with highly confusable
stimuli, short exposure durations, or masked displays, the
influenceof perceptual noise on performance is increased,
and the stimulus invariance assumption will more likely
need to be relaxed (e.g., Maddox,2001, 2002). In the pres-
ent study, though, the stimuli are highlydiscriminable,are
not masked, and are of reasonable exposure durations.
Thus, it is highly likely that the additionalperceptual flex-
ibility afforded the SPC (like violationsof stimulus invari-
ance) is not necessary to account for the present data. De-
spite these important issues, the pure predictive power of
the logistic regression models should not be undervalued.

SPC Perceptual Representation Parameters
The best fittingparameters from the most parsimonious

SPC model suggested that high perceived values of F2
were associated with low perceived values of F3; that is,
there was a negative perceptual dependence between per-
ceived F2 and F3 values. The latter effect may reflect a type
of auditory integrationwhereby formants locatedwithin 3
Bark (or critical band) units are averaged into a single
spectral prominencewith a “center of gravity” located be-
tween the nominal values of the two formants (Chistovich
& Lublinskaya, 1979). By this account, raising the fre-
quency of the second formant so that it enters the region
of spectral integrationwith the third formant would, in ef-
fect, lower the perceived value of F3. Unfortunately, the
model-based analyses to this point do not provide a rigor-
ous test of this hypothesissince the perceptual dependence
parameter was constant across all stimuli, even those that

differ substantially in F2 and F3. If this spectral integra-
tion hypothesis is correct, then the perceptual dependence
should emerge only for those stimuli with closely spaced
formants. As a better test of this hypothesis we separated
the stimuli into those that differed by fewer than 3 Bark
units and those that differed by more than 3 Bark units.
We then refit the SPC2 model with the PR4 perceptual
representation assumptions, but with one caveat; we as-
sumed perceptual independence for the stimuli separated
by more than 3 Bark units and allowed a perceptual de-
pendence to hold for the stimuli separated by fewer than 3
Bark units. Notice that this model has the same number of
free parameters as the SPC4 model displayed in Table 1
and Figure 3. The results were mixed. For 7 of the 12 ob-
servers the 3-Bark model provided a superior account of
the data. Restricting attention to these 7 observers, in 6 of
the 7 cases the correlation was negative, although the ab-
solute magnitude was small (average correlation 2.08).
Even though these results hint at a possible effect of spec-
tral integration, the small size of this effect and the vari-
ability across listeners appear to cast doubt on the role of
integration as a significant factor in vowel perception.
(See Diehl, 2000, for additional evidenceagainst the spec-
tral integration hypothesis.)

The SPC as a Model of Category Learning
The SPC is a neurobiologicallyplausible model of im-

plicit category learning. Although it is likely that vowel
categories are learned implicitly, this was not a study of
vowel category learning; rather, this study focused on cat-
egorization of highly learned categories. The current
thinking is that highly learned categories are represented
in cortex and that this cortical learning is mediated by sub-
cortical learning in structures such as the striatum (Ashby
et al., 1998). Thus, it seems reasonable to assume that the
cortical representation is analogous in some respect to the
subcortical representation that emerges through extensive
practice. In other words, the subcortical representation
after extensive learning provides a window onto the corti-
cal representation. It is in this light that we use the SPC in
this study.

If the SPC mediates cortical learning, and given the truly
remarkable ability that humans have to perceive and un-
derstand speech sounds, it is likely that the subcortical,
striatal representation is quite flexible. To put it more con-
cretely, it is likely that a large number of striatal units exist
and that the number necessary to adequately solve a cate-
gorization problem is determined by the complexityof the
problem to be solved. This conjecture is supported by the
finding that piecewise linear and quadratic response re-
gion partitions were necessary to adequately account for
the data.

Future Directions
There are many directionsfor future research. One weak-

ness of the present study is that the F2 3 F3 stimulus
space was fairly sparsely sampled. Under these condi-
tions, responding is very consistent, and the same vowel
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category is generally chosen for repeated presentations of
the same stimulus. This yields response probabilitiesnear
0 or 1 for the vowel categories and thus makes it difficult
to compare rigorously the performance of each model to
other models. In short, the best test of a model results
when response probabilities are intermediate between 0
and 1. Future research shoulduse stimuli thatmore densely
sample the space. Data of this kind will provide a more
fertile testing ground for the various models.

Another fruitful approach will be to have listeners per-
form categorization and identification using the same
fixed set of auditory stimuli. In categorization the listen-
ers would be required to categorize each stimulus into one
of the three vowel categories. In identification,on the other
hand, each vowel stimulus would have its own unique re-
sponse label. SPC models of identification (Ashby et al.,
2001; Maddox, 2001, 2002) could then be used to provide
an estimate of the underlying perceptual representations
for each vowel stimulus. These could then be held fixed in
an attempt to model the vowel categorization perfor-
mance. The advantages of this approach are many. First, a
better estimate of the true perceptual representation can
be garnered from the identificationdata. Second, the com-
plex interplay between perceptual and decisional (re-
sponse region) processes can be investigated by compar-
ing and contrasting the performance of models that make
different assumptions about processing at each level. In
particular, the effects of learning can be examined (Mad-
dox, 2002). Finally, a more complete understandingof au-
ditory stimulus processing can be obtained by modeling
performance simultaneously across these two different,
but related, tasks (Ashby & Lee, 1991; Maddox & Ashby,
1996; see also Maddox & Bogdanov, 2000).

Speech perception research and modeling is also ripe
for cognitive neuroscience applications. For example, if
the SPC has merit, it should be difficult for patients with
striatal lesions, such as patients with Parkinson’s or Hunt-
ington’s disease, to learn speech or vowel categories. In
addition, brain-imaging techniques could be brought to
bear. Cognitive neuroscience applications in the visual
categorization domain are growing rapidly, but could be
informed by similar studies with auditory stimuli.

To summarize, the present study generalized and ap-
plied a successful model of visual categorizationto the cat-
egorization of vowel sounds. The model provided a good
account of the data and offers an important bridge be-
tween visual and auditory categorization, and toward a
neurobiologicalunderstanding of the systems involved in
these two forms of categorization.Although competitive,
the model was consistently outperformed by the NAPP
model of speech recognition.
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NOTES

1. A second form of perceptual interaction predicted by GRT is called
perceptual separability. Perceptual separability holds when the percep-
tual effects of a particular component are unaffected by the level of the
other component—that is, if the distribution of percepts associated with
one component is unaffected by the level of the other component (see
Ashby & Townsend, 1986; Maddox, 1992 for details). In Figure 1a, di-
mension y is perceptually separable from dimension x, but dimension x
is not perceptually separable from dimension y. To manage the number
of free parameters in the model and to providea straightforward compar-
ison with the NAPP model, all SPC models tested in this article assumed
that perceptual separability was satisfied along both stimulus dimensions.

2. A major problem in model fitting is to avoid “local minima.” Local
minima result when the parameter estimation algorithm identifies a set
of parameters that are “locally” superior (i.e., provide the best fit) but not
“globally” superior. Although one can never be certain that they have
obtained the global minima, procedures should be followed to minimize
this possibility. Here, multiple starting parameter values were utilized. In
addition, since the models were nested, the parameters from a more re-
stricted modelwere used as starting values for a more general model. These
procedures likely improve the chances of identifying the global minima.

3. The details of the numerical integration procedure can be found in
Ashby (1992b) and Ashby et al. (2001), but will be briefly outlined here.
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In short, one needs to evaluate Equation 1 for an arbitrary bivariate nor-
mal distribution, fi(x,y), and an arbitrary response region, Âj. Although
a number of procedures are available, the approach taken in our lab is to
apply numerical integration using Cholesky factorization (see Ashby,
1992b, pp. 24-26). The steps can be summarized as follows. First, using
the Cholesky factorization matrix, one transforms the bivariate normal
distribution fi (x,y) into a bivariate Z distribution.Second, the bivariate Z
distribution is subdivided into n 3 n equi-probability regions (in the
present case, n = 10). Third, the centroid for region 1 3 1 of the bivari-
ate Z distribution is transformed back into the x,y space (via the inverse
Cholesky matrix). Fourth, the response region Âj that contains the trans-
formed centroid is determined, and the probability (under the bivariate
Z distribution) associated with that centroid is assigned to response Âj.
This process is repeated for all n 3 n regions and for all i stimuli. If the
resulting probability was zero, we arbitrarily set it to .0001. This was
necessary to fit the model.

4. Since each striatal unit is defined by its location in the F2, F3 space,
one might conclude that this model requires six free parameters. In fact,
in fitting the model, six parameters were freely estimated. However, a
five-parameter representation exists that yields exactly the same re-
sponse region partitions. To see this, notice that by connecting the three
striatal units, one can form a triangle. The perpendicular bisectors of the
sides of the triangle determine the response region partitions, and the bi-
sectors all converge at the center of the triangle. Thus, the three response
region partitions can be defined by three slopes (one per bisector) and the
location of the center of the triangle in F2, F3 space (we thank Terrance
Nearey for suggesting this useful geometric representation).

5. Since each quadratic partition is defined by five coefficients one
might conclude that this model requires 15 free parameters. In fact, in fit-
ting the model, 15 parameters were freely estimated. Three bivariate nor-
mal “category response region” distributionswere defined. Each of these

has 5 free parameters (an F2 mean, an F3 mean, an F2 variance, an F3
variance, and an F2, F3 covariance). For each perceptual effect, the like-
lihood under each of the three “category response region” distributions
was computed, and the perceptual effect was assigned to the category
with the highest likelihood. Under these conditions the response region
partitions will be quadratic and will meet at a fixed location in F2, F3
space. However, an 11-parameter representation exists that yields exactly
the same response region partitions, and thus this model has only 11 ef-
fective parameters. Unfortunately, no straightforward geometric expla-
nation is available.

6. The same model comparisons were also made for the PR1 assump-
tions. The results mirrored those for PR4. Specifically, SPC2 provided a
significant improvement in fit over SPC1 on average [G2(7) = 19.41,p <
.05], and for 6 of 12 observers [G2(7) ranging from 14.92 to 58.98, p <
.05]. SPC3 did not provide a significant improvement in fit for the aver-
age or for any observer. Finally, for 5 of 12 observers SPCQC provided
a superior account of the data (based on AIC), whereas SPC2 provided
a better account for the remaining 7 observers (averaged AIC = 183.88
and 187.89 for SPC2 and SPCQC, respectively; averaged percent of vari-
ance accounted for = 96.28% and 96.32% for SPC2 and SPCQC, re-
spectively).

7. Mathematical equivalencies like those described between the Luce
choice version of NAPP and the extremal Thurstonian version of NAPP
are not uncommon. In fact, Ashby and Maddox (1993; see also Ashby &
Alfonso-Reese, 1995) derived similar relations among a wide variety of
categorization models that differed substantially in their assumptions
about the perceptual representation and about response selection.
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