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Overall slowing of response time (RT) is a hallmark
characteristic of aging. Fisher and Glaser (1996), Ratcliff,
Spieler, and McKoon (2000), Ratcliff, Thapar, and McK-
oon (2001), and Thapar, Ratcliff, and McKoon (in press)
have recently argued that this slowing can be best under-
stood through models that allow the various components
of cognitive processes to be individually examined.Mod-
els can be useful not only in revealing which tasks suffer
decrements with age, but also in identifying the compo-
nents of the cognitiveprocesses that are responsible for the
observed decrements in performance.

Ratcliff et al. (2001) applied the diffusion model (Rat-
cliff, 1978, 1981, 1985, 1988, 2002; Ratcliff & Rouder,
1998,2000;Ratcliff,Van Zandt,&McKoon,1999) for sim-
ple two-choice decisions to data from a signal detection
task for college-age subjects and for older subjects (ages,
60–75 years). In the diffusion model, a decision is made
when information accumulated over time from a stimulus
reaches one or the other of two response criteria (repre-
senting the two-choices available to the subject). Increases
in mean RT can come about from changes in the response
criteria, changes in the amount of information available
per unit time from the stimulus, and/or changes in com-
ponents of responding outside the decision process (non-
decision components—e.g., stimulus encoding, response
execution).Which possibility is responsible for mean RT

increases in any given set of data is determined by fitting
the model to correct and error RT distributions and accu-
racy rates. Fitting all of these dependent variables simul-
taneously makes the model highly constrained (see Rat-
cliff, 2002).

For the signal detection task they investigated, Ratcliff
et al. (2001) found the usual slowing of RTs for older sub-
jects relative to young subjects, coupled with approxi-
mately equal accuracy rates for the two groups. The diffu-
sion model explained the longer RTs of the older subjects
as a combination of a 50-msec increase in nondecision
componentsof processing andmore conservative response
criteria. The rate of accumulationof informationover time
was the same for the older subjects as for the young. Tha-
par et al. (in press) also found the usual slowing of RTs for
older subjects with a masked-presentation letter discrimi-
nation task, and their older subjects were less accurate
than the young. The diffusion model showed the same ef-
fects as those with Ratcliff et al.’s (2001) signal detection
task—a 50-msec slowing of nondecision components of
RT andmore conservativeresponse criteria—butolder sub-
jects had a rate of accumulation of information that was
half that of the young subjects.

In this article, we present data for young and older sub-
jects from a two-choice, masked-brightness discrimina-
tion task and show how age-related differences in perfor-
mance in this task contrastwith the age-related differences
in letter discrimination found by Thapar et al. (in press).
We also show how the diffusion model explains this con-
trast and discuss how themodel allowsmore insightful in-
terpretations of aging effects than do earlier analyses—in
particular, Brinley plot analyses (Brinley, 1965). The ap-
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propriateness of Brinley analyses has been challenged re-
cently on a variety of fronts (see Fisher & Glaser, 1996;
Ratcliff et al., 2000), and for the data presented here, we
argue that the best interpretationof the effects of aging on
RT comes not from Brinley plot analyses, but from the
kind of comprehensive theoretical accounts that can be
provided by models like the diffusion model.

One significant property of the diffusion model is that
it provides an explanationof the full set of dependent vari-
ables in two-choice tasks—that is, both RT and accuracy
data. In accommodating accuracy data as well as RT data,
the model allows theoretical linkage between paradigms
that use RT measures and those that use accuracy mea-
sures, such as threshold detection tasks. For example, if
older subjects show a decrement in threshold detection,
relative to young subjects, then in a two-choice version of
the same task, they should show a decrement in the rate of
accumulation of information from the stimulus, with the
size of the decrement predictable from the threshold de-
tection data.

Without a model that relates RT and accuracy data, the
results from Ratcliff et al.’s (2001) signal detection exper-
iments and Thapar et al.’s (in press) letter discrimination
experiments would present a puzzle. For example, con-
sider the generalized slowing hypothesis, a prominent hy-
pothesis that has been widely accepted and attributes age-
related RT differences to a slowing with age in the speed
of all cognitive processes or in the speed of a general
mechanism that contributes to many cognitive processes
(Cerella, 1985, 1990, 1991, 1994;Fisk&Warr, 1996;My-
erson, Hale, Wagstaff, Poon, & Smith, 1990; Salthouse,
1985, 1996;Salthouse,Kausler, & Saults, 1988). From the
point of view of this hypothesis, the fact that the increase
in mean RT for old subjects relative to young subjects is
about the same size in both Ratcliff et al.’s (2001) and Tha-
par et al.’s experiments would indicate that cognitive
processes are affected similarly by age in the two tasks.
But unlike the diffusion model, the hypothesis could not
explain why older and young subjects are about equally
accurate in the signal detection task, but not in the letter
discrimination task.

The diffusion model’s ability to integrate RT and accu-
racy data into a single theoretical account is highlightedin
the experiment presented in this article. From Thapar
et al.’s (in press) results, we know that older subjects are
slowed in two-choice, masked-letter discrimination. This
finding is consistentwith findings in letter threshold iden-
tification tasks that show that letter identification accu-
racy decreases with age (Coyne, 1981; Fozard, 1990;
Spear, 1993). Decreasing accuracy in letter identification
can be attributed to the declining contrast sensitivity for
high spatial frequencies that has been found for older sub-
jects in experiments using sine-wave gratings (Owsley,
Sekuler,& Siemsen, 1983). The diffusionmodel ties all of
these findings to a decrease, for older subjects, in the rate
of accumulation of information from high spatial fre-
quency stimuli.

For low spatial frequency stimuli, it appears that there
is little effect of age on the accuracy of threshold identifi-
cation performance (Elliott,Whitaker,&MacVeigh,1990;
Owsley et al., 1983).

If this is true, the diffusion model’s account of perfor-
mance with high spatial frequency stimuli can be tested.
The prediction is that with low spatial frequency stimuli,
the rates of accumulation of information in a two-choice
task should be the same for older and young subjects.
Older subjects should differ from young subjects only in
other components of performance, such as nondecisional
processes or response criterion settings.To implement this
test of the diffusion model, we used two-choice masked-
brightness discrimination.

The stimuli in the experimentwere patches of black and
white pixels. The subjects were asked to decide, for each
patch, whether it was dark or bright (see Ratcliff, 2002).
Brightnesswas implemented as the proportion of black to
white pixels in the patch. The brightness and duration of
the stimuli were manipulated to vary response accuracy
from near floor to near ceiling.Although the patches have
high spatial frequency information in them, the dark ver-
sus bright decision must be made on the basis of global
brightness (the information that would be obtainedby de-
focusing the eyes and judging a blurred patch). We ex-
pected that older subjects’ RTs would be longer than
young subjects’ and that the increase would come from
the nondecisionalcomponentsof processing and, perhaps,
response criteria settings. But because the required dis-
crimination is based on low spatial frequency information,
there should be no decrement in the rate of accumulation
of information for the older subjects. Furthermore, if there
is no decrement in the rate of accumulation of informa-
tion, then (as will be explained below) there should be a
difference in performance between older and young sub-
jects in RTs, but not in accuracy.

THE DIFFUSION MODEL

The diffusion model is designed to apply only to two-
choice decisions that are relatively fast and composed of
a single-stagedecisionprocess (as opposed to themultiple-
stage decision processes that might be involved in, e.g.,
reasoning or problem-solving tasks). As a rule of thumb,
the model would not be applied to experiments in which
mean RTs are much longer than about 1–1.5 sec. Other
models in the same class as the diffusionmodel have been
applied to decision making (Busemeyer & Townsend,
1993; Roe, Busemeyer, & Townsend, 2001) and simple
RT (Smith, 1995).

The diffusion model assumes that decisions are made
by a noisy process that accumulates information over time
from a starting point toward one of two response criteria
or boundaries, as in Figure 1, where the starting point is la-
beled z and the boundaries are labeled a and 0. When one
of the boundaries is reached, a response is initiated. The
rate of accumulation of information is called the drift rate
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(v), and it is determined by the quality of the information
extracted from the stimulus. For example, if a “bright”
stimulus was displayed for a long time prior to masking,
information qualitywould be good, and the mean value of
the drift rate toward the bright boundary would be large.
Within each trial, there is noise (variability) in the process
of accumulating information, so that processes with the
same mean drift rate do not always terminate at the same
time (producing RT distributions) and do not always ter-
minate at the same boundary (producing errors). This
source of variability is calledwithin-trial variability.Panel
A in Figure 1 shows three processes, all with the same
mean drift rate toward the top boundary (shown by the
arrow labeledDrift Rate). One terminatesquicklyat the cor-
rect boundary, another terminates more slowly, and the
third terminates at the incorrect boundary.

In the experiment presented in this article, the subjects
were instructed to respond as quickly as possible in some
blocks of trials and to respond as accurately as possible in
other blocks. Speed–accuracy tradeoffs are modeledby al-
tering the boundariesof the decisionprocess:Wider bound-
aries require more information before a decision can be
made, and this leads to more accurate and slower re-

sponses. The dashed lines in panelA of Figure 1 shownar-
row boundaries.With these boundaries, the processes ter-
minate at the points labeledT, one with a correct response
and the other two with error responses.

Empirical RT distributions are positively skewed. The
diffusion model naturally predicts this shape by simple
geometry, as is shown in panel B of Figure 1. Moving
from left to right in the figure, equal size decreases in the
rate of approach to the boundary (the X values, shown by
the arrows) for the fastest processes lead to increases in re-
sponse time smaller than those for the slowest processes
(shown by the Y and Z values, respectively).

Accounting for differences in RT between correct and
error responses has long been a problem (see Luce, 1986),
but in the diffusion model, the relative speeds of correct
and error responses can be explained by assuming vari-
ability in components of processing across trials. Vari-
ability in drift rate across trials leads to slow error re-
sponses, and variability in starting point leads to fast error
responses (see Ratcliff & Rouder, 1998; Ratcliff et al.,
1999).

Besides the decision process, there are nondecision
componentsof processing, such as encoding and response

Figure 1. An illustration of the diffusion model. Panel A shows three sample
paths and two boundary separations (the solid and the dotted lines). The points
marked T represent the terminating points when the boundary positions are
at the dotted lines. Panel B represents how distribution shape changes when
drift rate changes by an amount X. The fastest responses slow by Y, and the
slowest responses slow by Z, leading to a small shift in the leading edge of the
distribution and a larger change in the tail, leading to increased skew.
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execution.These are combined in the diffusionmodel into
one parameter, Ter (which is not shown in Figure 1). Like
drift rate and starting point, Ter has variability across tri-
als (see Ratcliff, Gomez, & McKoon, in press; Ratcliff &
Tuerlinckx, 2002). Because the standard deviation in the
distribution of Ter is typically less than one quarter the
standard deviationin the decision process, the combination
of the two (their convolution) alters neither the shape of
the RT distribution (see Ratcliff & Tuerlinckx, 2002, Fig-
ure 11) nor the standard deviation for the distribution that
is predicted from the decision process. For example, if the
standard deviation in Ter is 25 msec and the standard de-
viationin the decisionprocess is 100msec, the combination
(square root of the sum of squares) is 103msec. Variability
in Ter stretches out the leading edge of the RT distribution,
stretching the difference between the .1 and the .3 quan-
tiles (by typically less than 10%of the range, st, of the uni-
form distribution assumed for variability in Ter).

In sum, the parameters of the diffusion model corre-
spond to the components of the decision process as fol-
lows: z is the starting point of the accumulation of evi-
dence, a is the upper boundary, and the lower boundary is
set to 0. For the fits of the model to the data described in
this article, the boundarieswere assumed to be symmetric
about the starting point, so that z = a/2. The amount of
variability in the mean drift rate across trials is assumed to
be normally distributed with a standard deviation of h,
and the variability in starting point is assumed to have a
uniform distributionwith a range of sz. For each stimulus
condition in an experiment, it is assumed that the rate of
accumulation of evidence is different, and so each has a
different value of drift, v. Within-trial variability in drift
rate (s) is a scaling parameter for the diffusion process
(i.e., if it were doubled, other parameters could be multi-
plied or divided by two to produce exactly the same fits of
the model to data). Ter represents the nondecisional com-
ponents of RT, and the amount of variability in Ter across
trials is assumed to have a uniform distribution with a
range of st.1

EXPERIMENT

On each trial of the experiment, a patch of pixels was
displayed on the screen and then masked. The duration
and brightness of the pixels was varied. A subject’s task
was to indicate whether the stimulus was dark or bright.
Speed blocks, for which the subjects were asked to re-
spond as quickly as possible, alternated with accuracy
blocks, for which the subjects were instructed to respond
as accurately as possible. The aim was to determine how
fast older subjects can respondwhen they are encouraged
to go fast and how they compare under speed instructions
to young subjects asked to be accurate. Not only does the
speed–accuracy manipulation provide data for stringent
tests of the diffusion model, it also emphasizes that mean
RT is not a fixed characteristic of a subject; rather, it is ad-
justable in the same way as, for example, hit and false
alarm rates in signal detection.

Method
Subjects. Thirty-six young adults (12 men and 24 women) and 35

older adults (15 men and 20 women) participated in the experiment.
The young adults were college students from Bryn Mawr, recruited
from fliers posted on campus, and were paid for their participation.
The older adults were healthy, active, community-dwelling individ-
uals, 60–75 years of age, living in the suburbs of Philadelphia. The
older adults were recruited from advertisements placed in local
newspapers and were paid for their participation. The subjects had
to meet the following inclusion criteria to participate in the study: a
score of 26 or above on the Mini-Mental State Examination (Fol-
stein, Folstein, & McHugh, 1975); a score of 15 or less on the Cen-
ter for Epidemologogical Studies–Depression Scale (CES–D;
Radloff, 1977); and no evidence of disturbances in consciousness,
medical or neurological disease causing cognitive impairment, head
injury with loss of consciousness, or current psychiatric disorder.
The means and standard deviations for standard background char-
acteristics are presented in Table 1. The subjects’ static visual acu-
ity was screened to ensure that all the subjects had a minimum cor-
rected visual acuity of 20/30, using a Snellen “E” chart.
The subjects were tested individually for two, three, or four ses-

sions; the number of sessions was the number required to produce
two sessions of stable data (i.e., data such that responses were not be-
coming significantly faster from session to session). The young sub-
jects usually had stable performance in the first session, but the older
subjects took one or two sessions for performance to stabilize. Either
two or three sessions of data per subject were used in the data analy-
sis and model fitting.
Stimuli. The stimuli were 643 64 arrays of black and white pix-

els on a gray background (the whole display was 3203 200 pixels).
Brightness of the square was manipulated by varying the probabil-
ity that a pixel was white. Four checkerboard patterns, each 643 64
pixels, were used to mask each stimulus; presented sequentially, they
were a checkerboard with 23 2 black and white squares, a checker-
board the same as the first but with the black and white squares re-
versed, a checkerboard with 3 3 3 black and white squares, and its
reverse. The checkerboards were designed by trial and error to mask
both smaller and larger random features of a stimulus that might
have remained visible through only one or two of the masks. The
smaller checkerboard seemed to eliminate the smaller random pat-
terns in a stimulus, and the larger checkerboard seemed to eliminate
the larger random patterns. The stimulus and mask arrays measured
0.9 in. on each side on a display measuring about 10 3 8 in. The
subjects sat between 18 and 24 in. from the display.
Apparatus. The stimuli were presented on a Pentium II class ma-

chine, and the responses were collected from buttonpresses on the
computer’s keyboard—the / key for a bright response and the z key
for a dark response.
Procedure. There were six levels of brightness, achieved with six

values for the probability of a pixel’s being white: .350, .425, .475,
.525, .575, and .650. These were crossed with three stimulus dura-
tions—50, 100, and 150 msec.

Table 1
Subject Characteristics

Older adults Young adults

Test M SD M SD

Age 67.95 4.80 19.63 1.11
Years of education 15.13 2.22 12.67 1.03
MMSE 28.89 1.39 29.11 0.94
Vocabulary 13.41 2.38 14.49 2.26
Picture completion 11.74 2.06 11.24 2.79
IQ estimate 114.90 11.28 116.76 12.11
Mood 8.09 5.20 9.84 3.87

Note—MMSE, Mini-Mental State Examination.
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Each trial began with a1 sign fixation point presented on a gray
background for 250 msec. Then the stimulus was displayed, fol-
lowed by the four checkerboard masks displayed for 17 msec each.
Then a gray background was presented until a response was made.
In accuracy blocks, if a response was correct, there was a 500-msec
pause and then the next trial; if a response was incorrect, the word
ERROR was displayed for 300 msec and then erased, and then there
was a 500-msec pause before the next trial. In speed blocks, there was
no accuracy feedback. If a response was shorter than 250 msec, the
message TOO FAST was displayed for 1,500 msec (to discourage the
subjects from simply making rapid random responses to finish the
experiment quickly); if a response was longer than 700 msec, TOO
SLOW was displayed for 300 msec. Then there was a 500-msec pause
before the next trial.

In each session, there were five blocks of accuracy trials alternat-
ing with five blocks of speed trials, with 144 trials per block pre-
sented in random order. There were a total of 40 trials for each
brightness, duration, and speed versus accuracy condition in each
session.

In accuracy blocks, the subjects were instructed to respond accu-
rately. In the speed blocks, the subjects were instructed to respond
quickly, using the TOO SLOW message as a guide to when they were
responding too slowly.

Results
In the data analyses, RTs shorter than 250 msec and

longer than 3,000 msec were eliminated for the young
subjects (less than 0.6% of the data), and RTs shorter than
280msec and longer than 3,500msec were eliminated for
the older subjects (less than 0.3% of the data). Further dis-
cussion of outliers and contaminants is given below in the

section on fitting the diffusion model to the data. At a
minimum, there were 2,600 observations per subject.
Brinley plots. As was mentioned in the introduction,a

standard procedure in aging research is to construct Brin-
ley plots of the data. Older subjects’ mean RTs for each
experimental condition are plotted against young sub-
jects’ mean RTs for the same conditions. Although Brin-
ley plots can be produced from changes in any of several
components in the diffusion model, we present the plots
here for the data from our experiment to show that our re-
sults are consistent with the approximately linear func-
tions obtained in other studies. Figure 2 shows three fitted
straight lines, one for the data from speed blocks, one for
the data from accuracy blocks, and one for the speed and
accuracy blocks combined. The points on each function
are the points for the 18 experimental conditions (with
bright responses to bright stimuli grouped with dark re-
sponses to dark stimuli). For the speed blocks, the slope
was 1.24 (intercept, 84 msec); for the accuracy blocks, the
slope was 0.82 (intercept, 107 msec); and for the com-
bined data, the slope was 0.72 (intercept, 179 msec). The
fact that the slope varies according to whether all or part
of the data are plotted illustrates one of the problemswith
interpretationsbased on Brinley plots: It would not be ex-
pected that the amount of cognitiveslowing for older sub-
jects, relative to young ones, would dependon whether ex-
perimental data for speed and accuracy blocks of trials are
plotted separately or combined. However, what is most

Figure 2. Brinley plots for correct response times (RTs) for the exper-
iment. The points on the graph represent the same conditions for older
and young subjects. Straight lines are fitted for speed and accuracy con-
ditions separately and for the conditions combined. Error bars are two
standard errors in mean RT.
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surprising is that the slope is less than one for both the ac-
curacy conditionand the combined data; usually, the slope
is greater than one.

The data pointshave2 standard error bars plottedaround
them. For the speed plot and the accuracy plot, the straight
lines fall within the error bars (or ellipses that could be
drawn around them) for all but 3 or 4 out of 36 data points.
In other words, the straight lines provide reasonably good
descriptions of the data. However, when the speed and ac-
curacy data are combined, the straight linemisses the con-
fidence ellipses for about 10 data points, indicating that
the straight line does not provide an adequate description
of the data. Although standard error bars are usually not
presented for Brinley plots, the data in Figure 2 illustrate
why they shouldbe: In many cases in which data from dif-
ferent experiments or conditions are combined, a straight
line may not provide a good fit to the data (see Ratcliff,
Spieler, & McKoon, 2003).
Accuracy. Figure 3 shows plots of the probability of a

bright response as a function of six levels of brightness
and three stimulus presentation times for older and young
subjects for the speed and the accuracy conditions.At the
short stimulus duration, there is a bias toward responding

bright, and at the long stimulus duration, there is a bias to-
ward respondingdark (see Ratcliff, 2002). If there were no
bias, the three functions would pass through the cross
hairs in the middle of the figure. The bias probably oc-
curred because the neutral gray backgroundwas perceived
as dark, as compared with the white in the stimulus, at the
shortest stimulus duration.As will be seen below, this bias
is treated exactly the same way in the diffusion model as
bias is treated in signal detection theory, with a criterion
on drift rate (Ratcliff, 1985;Ratcliff et al., 1999). For each
stimulus presentation duration, response probability for
the two brightest stimuli is about the same, and the effect
of stimulus duration shows up for the darker stimuli.
Quantile probability functions. Quantitativemodels

are needed to provide a complete explanation of process-
ing in this task—that is, to account for all aspects of the
experimental data. A model that deals only with correct
mean RT is incomplete, since it cannot account for accu-
racy rates, error RTs, or the shapes of RT distributions. If
a model for mean RTs only were extended, it would al-
most certainlymake incorrect predictions. In contrast, the
diffusion model provides an account of all the dependent
variables in the decision process—correct and error RTs,

Figure 3. Probability of a bright response as a function of brightness of the stimulus for
three stimulus durationsand speed and accuracy conditions.The data are averaged over sub-
jects.
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their distributions,and accuracy rates. To fully test the dif-
fusion model, it is fit simultaneously to all these aspects
of the data, which are plotted as quantileprobability func-
tions (Figures 4 and 5).

In quantileprobabilityfunctions, response probabilities
are shown on the x-axis, and quantile RTs are plotted ver-
tically on the y-axis. For each conditionof the experiment
reported here, the .1, .3, .5 (median), .7, and .9 RT quan-
tiles are plotted for both error responses and correct re-
sponses in Figures 4 and 5. The x s and o s are data points
(the x s for the .1, .5, .9 quantiles and the o s for the .3 and
.7 quantiles), and the lines are the best-fitting functions
from the diffusion model, discussed below.

There were 36 conditions in the experiment: 3 stimulus
duration conditions, 6 brightness conditions, and 2 speed
and accuracy conditions.Responses for the bright and the
dark stimuliwere combined because their quantilesfell on
the same function. For each of the 36 conditions, there are
two probabilities:the probabilityof a correct response and
the probability of an error (which equals 1 2 the proba-
bility of a correct response). The subjects were generally
above .5 in accuracy, and so the responses plotted on the
right hand side of the quantile probability function are
correct responses; the responses plotted on the left are er-
rors. The function traces out the difficulty of the condi-

Figure 4. Quantile probability plots for older subjects. The
lines represent the theoretical fits of the diffusion model, and the
x s and o s represent the data (vertically adjacent quantiles alter-
nate with x and o symbols). The lines in order from the bottom to
the top are for the .1, .3, .5, .7, and .9 quantile response times
(RTs). Correct responses are to the right of the .5 response prob-
ability point, and the corresponding error responses are to the
left; if the correct response probability is p, the error response
probability is 1 2 p. Extreme errors (with a probability of less
than about .2) are not represented because a sizable proportion
of the subjects had fewer than five responses in these extreme
conditions (five RTs are needed to compute five quantile RTs).

Figure 5. Quantile probability plots for young subjects. The
lines represent the theoretical fits of the diffusion model, and the
x s and o s represent the data (vertically adjacent quantiles alter-
nate with x and o symbols). The lines in order from the bottom to
the top are for the .1, .3, .5, .7, and .9 quantile response times
(RTs). Correct responses are to the right of the .5 response prob-
ability point, and the corresponding error responses are to the
left; if the correct response probability is p, the error response
probability is 1 2 p. Extreme errors (with a probability of less
than about .2) are not represented because a sizable proportion
of the subjects had fewer than five responses in these extreme
conditions (five RTs are needed to compute five quantile RTs).
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tions: The easiest conditions are those with the most ex-
treme left and right hand quantiles—that is, the quantiles
with the highest probability of a correct response and the
lowest probability of an error. As an example, the condi-
tion with high brightness,medium duration, and accuracy
instructions has a probability correct of .875 and an error
probability of .125.

For each of the conditions, there are about 3,600 obser-
vations for correct and error responses combined. For ex-
ample, for a condition in which accuracy was .8, there
were about 2,880 observations for correct responses and
720 for error responses, about 80 correct and 20 error re-
sponses per subject on average.However, the subjects var-
ied considerably in their accuracy, and for the easiest con-
ditions, some subjects’ accuracy was above .95, so that
they had fewer than five errors, which means that they did
not have the five RTs needed to plot the error quantile
probability function. For this reason, quantile RTs are not
plotted for errors for the easiest conditions(between three
and seven quantiles are not plotted for the four plots in
Figures 4 and 5).

The quantileprobability function gives a summary pic-
ture of the data, including the shapes of the RT distribu-
tions. For both older and young subjects, RT increases and
accuracy decreases as difficulty increases (i.e., as stimu-
lus duration and brightness decrease), although the
changes are smaller with speed than with accuracy in-
structions. The overall shapes of the RT distributions are
about the same across all the conditions. The error RTs in
each condition are longer than the correct response RTs
for the same condition (as can be seen by comparing the
correct RTs for a condition on the right side of the func-
tion against the error RTs for the same condition on the
left side).

Responses are considerably faster with speed than with
accuracy instructions, as is shown in Figures 4 and 5 for all
quantileRTs. Responses are also more accurate with accu-
racy instructions,but the effect is small, between 0 and .05.

With accuracy instructions, for correct responses, the
RT distributionskews out as stimulus difficulty increases.
Across the conditions, the .1 quantileRTs increase a little,
but the .9 quantiles increase much more, by as much as
300msec. With speed instructions, the skewing is less ap-
parent,with only about 100msec of slowing in the .9 quan-
tile for older subjects and a little less for young subjects.

Older subjects are slower than young subjects with
speed instructions, by about 50 msec, but with accuracy
instructions, they are about equally fast. If anything, the .1
quantile RTs are shorter for the young than for the older
subjects, whereas the .9 quantile RTs are longer for the
young. The older and young subjects were about equally
accurate in both the speed and the accuracy conditions.

To summarize, in order to fit the data, the diffusion
model has to produce moderately large changes in RT
with small changes in accuracy going from speed to ac-
curacy instructions. Accuracy decreases as brightness be-
comes less extreme and stimulus duration becomes
smaller, andRT distributionshave to be right skewed,with
the spread in the tail greater for longerRTs, but with little

change in the .1 quantile RT. The small changes in accu-
racy suggest that theremay be little effect of aging on drift
rates because accuracy values determine drift rates to a
large degree. Because RTs are longer for older subjects in
the speed condition,but not in the accuracy condition, the
model fits may show that older subjects use more conser-
vative criteria settings with speed instructions, but not
with accuracy instructions.

DIFFUSION MODEL FITS

The diffusion model was fit to the data by minimizing
a chi-square value with a general SIMPLEXminimization
routine that adjusts the parameters of the model to find the
parameters that give the minimum chi-square value. The
data entered into the minimization routine for each exper-
imental conditionwere the RTs for each of the five quan-
tiles for correct and error responses and the accuracy val-
ues. The quantile RTs were fed into the diffusion model,
and for each quantile, the cumulative probability of a re-
sponseby that point in timewas generated from themodel.
Subtracting the cumulative probabilities for each succes-
sive quantile from the next higher quantile gives the pro-
portion of responses between each quantile. For the chi-
square computation, these are the expected values, to be
compared with the observed proportions of responses be-
tween the quantiles (multiplied by the number of obser-
vations). The observed proportions of responses for each
quantile are the proportions of the distribution between
successive quantiles (i.e., the proportions between 0, .1,
.3, .5, .7, .9, and 1.0 are .1, .2, .2, .2, .2, and .1) multiplied
by the probability correct for correct response distribu-
tions or the probability of error for error response distrib-
utions (in both cases, multiplied by the number of obser-
vations). Summing over (observed2 expected)2/expected
for all conditions gives a single chi-square value to be
minimized (see Ratcliff& Tuerlinckx, 2002, for a detailed
description).

Short outliers were trimmed out by choosing a time
(250 msec for young subjects and 280msec for older sub-
jects) at which accuracy began to rise above chance (e.g.,
Swensson, 1972) and long outliers (RTs longer than
3,000 msec for young subjects and 3,500 msec for older
subjects) were also eliminated from the analyses. Ratcliff
and Tuerlinckx (2002) modeled remaining contaminant
RTs by assuming that they arose from a random delay
added to the normal decision process. The delay was as-
sumed to vary uniformly between the minimum and the
maximum RTs in the condition, and there was a common
probability of a contaminant across all conditions. This
adds one additionalparameter to the diffusionmodel ( po)
to represent the probability of a contaminant in each con-
dition of the experiment. In the fits presented next, po was
typically .01 or less, and so contaminantsplayed little role.

For the fits presented here, five parameters were held
constant across the 18 stimulus duration and brightness
conditionsand the speed versus accuracy instructions:po,
Ter, st, sz, and h (probability of a contaminant, nondeci-
sion component of RT, and across-trial variabilities in Ter,
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z, and drift rate, respectively).Holding these five parame-
ters constant reflects the assumption that neither speed
versus accuracy instructions nor the quality of the infor-
mation from the stimulus affects any of these components
of the decision process. The separation of the boundaries
was assumed to be affected by the speed/accuracy manip-
ulation, but not by brightness or stimulus duration (be-
cause it was assumed that subjects could not identify the
stimulus duration or brightness in time to adjust criteria
before making their decision). The drift rate was assumed
to be affected by duration and brightness,but not by speed/
accuracy instructions. Changes in drift rate move points
along the quantileprobability function but do not alter the
shape of the function.

To reduce the number of parameters, we set the drift
rates for complementary bright and dark stimuli to be
complements of each other (e.g., bright drift rate equals
minus dark drift rate). However, individual subjects were
often biased on the brightness dimension (see Figure 3),
and so we added a drift criterion for each stimulus dura-
tion (see Ratcliff, 1985, 2002; Ratcliff et al., 1999). The
criterion value was added to the drift rate for all bright-
ness values.

With these restrictions on parameters, the model must
account for accuracy rates, the relative speeds of correct
and error responses, and the shapes of the RT distribu-

tions. Specifically, with only boundary separation vary-
ing, the model must account for the small changes in ac-
curacy and the large changes in RT between the speed and
the accuracy conditions. With only drift rate varying, the
model must account for the changes in accuracy and RT
distributionshape for both errors and correct responses as
a function of brightness and stimulus duration.

We fit the diffusionmodel to the data in two ways. First,
each subject’s data were fit individually, and the parame-
ter values were averaged across subjects. The means and
standard deviations for each of the parameters are shown
in Tables 2 and 3. Standard errors in the parameter values
(for significance tests) can be found by dividing the stan-
dard deviations by the square root of the number of sub-
jects. Second, we fit the model to the data averaged over
all the subjects in a group (older vs. young subjects).
These fits were used as the basis for the predictions dis-
played in Figures 4 and 5 (the solid lines). Group data have
often been used in the fitting of models, and the assump-
tion (usually implicit) is that the fits and parameter values
for the group data will turn out to be the same as the aver-
ages from the fits for the individual subjects.We provide
both for comparison. The parameter values obtained from
the group data and the average parameter values across in-
dividuals are within two standard errors of each other for
all parameters (see Tables 2 and 3). Also, the parameter

Table 3
Drift Rates for Fits of the Diffusion Model

Young Fit to Young Means Old Fit to Old Means
Brightness Flash Time (msec) Average Data Over Subjects Average Data Over Subjects

.350 & .650 50 0.339 0.358 0.379 0.348

.425 & .575 50 0.192 0.212 0.234 0.217

.475 & .525 50 0.126 0.097 0.085 0.101

.350 & .650 100 0.356 0.410 0.428 0.433

.425 & .575 100 0.270 0.283 0.270 0.288

.475 & .525 100 0.117 0.104 0.102 0.100

.350 & .650 150 0.348 0.416 0.438 0.451

.425 & .575 150 0.267 0.309 0.263 0.329

.475 & .525 150 0.179 0.183 0.140 0.184
Bias (add to drift 50 0.066 0.059 0.046 0.048

rates above) 100 0.003 0.003 20.026 20.025
150 20.037 20.027 20.095 20.045

Note—Standard deviations are .10 when drift rate is .35, .07 when drift rate is .25, and .05 when drift rate is
.10. Drift rates are within 4% of each other for old and young for means over subjects (old are 4% higher than
young) and within 1% for fits to average data. A single correlation of plus or minus .33 would be significant
at a .05 level.

Table 2
Parameters for Fits of the Diffusion Model

as aa Ter h sz po st
Young fit to average data 0.072 0.128 0.406 0.124 0.030 .011 0.170
Young average parameters 0.073 0.135 0.405 0.151 0.037 .010 0.172
Young SDs in parameters 0.013 0.030 0.025 0.061 0.022 .006 0.046
Old fit to average data 0.071 0.116 0.459 0.155 0.033 .007 0.156
Old average parameters 0.074 0.122 0.448 0.156 0.030 .009 0.167
Old SDs in parameters 0.015 0.025 0.027 0.045 0.017 .004 0.037

Note— as, boundary separation for speed condition;aa, boundary separation for accuracy con-
dition; Ter, nondecision component of response time; h, standard deviation in drift across tri-
als; sz, range of the distribution of starting point (z); po , proportion of contaminants; and st ,
range of the distribution of nondecision times.
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values are in the same ranges as the parameter values from
other experiments (Ratcliff, 2002; Ratcliff & Rouder,
1998, 2000; Ratcliff et al., 2003; Ratcliff et al., 2001;Rat-
cliff et al., 1999; Thapar et al., in press).

The fits (Figures 4 and 5) show that the model captures
the changes in RT and accuracy as a function of stimulus
duration, brightness, and speed versus accuracy instruc-
tions for both correct and error responses, as well as the
overall differences between the older and the young sub-
jects. The only noticeable misses are for the .9 quantile
RTs with accuracy instructions (but these are not severe
misses, given the high variability in longer RTs; see Rat-
cliff & Tuerlinckx,2002). If subjectswere to truncate their
responses after 1.5–2 sec of processing on some propor-
tion of the trials, the discrepancy in the .9 quantile in the
accuracy condition would be reduced or eliminated. This
might happen if the decision boundaries were reduced as
processing time increased (cf. Luce, 1986, p. 375) or if the
subjects simply truncated processing after some long vari-
able time.

Analysis of the parameter estimates showed that the
older subjects differed from the young subjects in only one
way. The value of Ter was larger for older subjects than for
young subjects by about 40–50 msec [t (69) 5 4.93; this
was computed from the values of Ter for the fits to the in-
dividual subjects]. This increase in Ter for older subjects
relative to young subjects is about the same size increase
in Ter as that found by Ratcliff et al. (2003) and Thapar
et al. (in press). Drift rates and boundary separations for
both the speed and the accuracy conditions were not sig-
nificantly different between older and young subjects.
Thus, the older subjectswere obtainingstimulus informa-
tion from the display at the same rate as the young sub-
jects, and they were setting the same decision criteria as
the young subjects.

We computed chi-square values for each subject in the
process of fitting the model to data, and the mean values
and SDs were x 2 5 951, SD 5 408, for young subjects
(average number of observations5 4,735per subject) and
x2 5 680, SD5 320, for older subjects (average number
of observations5 3,275 per subject). But as was noted in
Ratcliff (2002), the diffusion model is much more con-
strained thanmight be expected from the number of para-
meters used in fitting. First, the nine drift rates and the
three drift criterion parameters determine position along
the x-axis of the quantileprobability function. They do not
influence the shapes of the quantile probability functions.
Second, the value of Ter locates only the vertical positions
of the quantile probability functions; it does not also in-
fluence their shape. Third, the estimate of the proportion
of contaminant responses ( po ) is usually less than or near
to .01 and has no effect on the predicted quantile proba-
bility functions relative to the case in which it is zero.
Fourth, although variability in Ter (st) allows the .1 quan-
tile response times to be more variable and more in line
with the observed variability, its only effect on quantile
RTs is a less than 7-msec increase in the difference be-
tween the .1 and the .3 quantileRTs. Fifth, the shape of the
quantile probability functions is determined only by the

parameters h (standard deviation in drift across trials), sz
(range of starting point across trials), and the values of
boundary separation (a), one value for the speed condi-
tions and one for the accuracy conditions. All the para-
meters except a were held constant across the speed and
the accuracy data. Thus, the shape and location of the
quantile probability functions are determined by only
three parameters, with only one of them different for
speed versus accuracy instructions.
Correlations between data and parameters across

subjects. Figure 6 and Table 4 show scatterplots and cor-
relations across subjects for mean values of accuracy, cor-
rect RTs, .1 quantileRTs for correct responses, error RTs,
and the parameters of the diffusion model—the mean val-
ues of boundary separations, the nondecisional compo-
nents of RT, and drift rates. The means for the data were
averagedacross all brightness,stimulusduration, and speed
and accuracy conditions.Themeans for boundary separa-
tion and drift rate were computed by averaging across all
conditions(after first checking that the two boundary sep-
arations for speed and accuracy instructions behaved in
the same ways across subjects and that the nine drift rates
behaved in the same ways across subjects).

For the empirical measures, correct and error RTs are
highly correlated, and both are slightly less correlated
with .1 quantile RTs for correct responses. The correla-
tion between accuracy and the RT measures is close to
zero, indicating that a subject’s accuracy level does not
predict his/her RTs.

There is only one correlation of note among the model
parameters, a moderate negativecorrelation between drift
rate and boundary separation, but inspection of the scat-
terplot in Figure 6 suggests that it is not particularly
strong. All the other correlations are small.

There are a numberof strongcorrelationsbetweenmodel
parameters and empirical measures. First, there are strong
correlations between boundary separation and the RT
measures. Thismeans that conservative boundary settings
are reflected in longRTs. However, the correlationbetween
boundary separation and accuracy is close to zero. Second,
there is a moderately high correlation between drift rate
and accuracy, which means that low accuracy reflects a
low drift rate—that is, a slow rate of evidence accumula-
tion. Third, there is a moderately high negative correlation
between drift rate and correct RTs, which means that
slower subjects tend to have lower drift rates. Fourth, there
is a strong correlation between the nondecisional compo-
nent of RT and the .1 quantile RT and a lower correlation
between the nondecisional component of RT and RTs.

The only correlation of any note that is not displayed in
Table 4 or Figure 6 is the one between standard deviation
in drift across trials (h) and accuracy, a value of 2.57.
This indicates that accurate subjects tend to have small
standard deviations in drift across trials.

Themost concise summary of these results is that, across
subjects, accuracy tends to be associated with drift rate
and RTs tend to be associated with boundary separation
and the nondecisional component of RT, although the lat-
ter two are not associated.This suggests that accuracy and
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RT values are determined by different factors in the diffu-
sion model. If a subject is accurate relative to other sub-
jects, the subject’s drift rates are higher than those for the
other subjects,whereas if a subject is faster than other sub-
jects, the subject’s boundary separations are smaller than
those for the other subjects.

GENERAL DISCUSSION

The results from this study are remarkable. Older sub-
jects perform just as well as young subjects in all aspects
of performance in brightness discrimination, except that
processes other than those directly involved in the deci-
sion take 40–50 msec longer. There was no deficit in the
rate of extraction of information from the stimuli (drift
rates) for the older subjects, and they were not more con-
servative in their criteria settings.

These results have some similarity to those obtainedby
Ratcliff et al. (2001) in a signal detection-like task. Rat-

cliff et al. (2001) found a 40- to 50-msec difference in the
nondecision component of RT between older and young
subjects and no deficit in drift rate. However, in contrast
to the present study, they also found that older subjects
adopted more conservative decision criteria than did
young subjects in both speed and accuracy conditions.

The present study contrasts in two ways to Thapar
et al.’s (in press) study, in which masked letter discrimina-
tion was examined. Although Thapar et al. found about
the same difference in nondecision components of RT,
they found both more conservative decision criteria for
older subjects than for young subjects and a deficit in the
rate of accumulation of evidence for older subjects, as
comparedwith young subjects. The difference in results is
surprising at a cursory level because masked-letter dis-
crimination and masked brightness discrimination are
similar perceptual tasks. However, as was discussed in the
introduction, the perceptual literature (e.g., Spear, 1993)
provides evidence that with stimuli with high spatial fre-

Figure 6. Scatterplots of accuracy, mean correct response time (RT), .1 quantile RT for correct responses, mean
error RT, and, from fits of the diffusion model to the data, mean boundary separation (average of speed and ac-
curacy settings), mean value of the nondecisional component of RT, and mean value of drift across conditions for
all subjects (young and old) in the experiment.
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quencies, such as letters, older adults have deficits in iden-
tification, relative to young subjects, whereas with low
spatial frequency stimuli, such as the stimuli in this ex-
periment, there are no deficits as a function of aging for
our age range (deficits appear in 75- to 90-year-olds).
Thus, application of the diffusion model to the data from
this experiment and Thapar et al.’s experiment provides an
account of the effects of aging on two different perceptual
tasks that is highly consistent with the perceptual litera-
ture. In particular, the drift rate in the diffusion model,
which represents the accumulation of evidence from the
stimulus, shows the same effect of aging as that obtained
from other paradigms that use only accuracy, not RT, mea-
sures. The diffusion model is a model of the decision
process, and so it is able to identify a deficit in the quality
of evidence presented by the visual-processing system to
the decision process, but it is not able to identify where in
visual processing the deficit occurs.

As the diffusion model is applied to a variety of tasks,
patterns of results are becoming apparent that allow rates
of extraction of information from stimuli (as represented
by drift rates in the model) to be decoupled from nonde-
cision components of RT and from criterion effects (just
as signal strength is decoupled from criterion in signal de-
tection theory). Instead of a monolithic account of pro-
cessing speed solely in terms of mean correct RT, as has
been popular in the general slowing approach to aging,we
have a componential account in terms of information ex-
tracted from the stimulus and subject-adjustabledecision
criteria, an account that encompasses correct and error
RTs, their distributions, and accuracy. The three studies
conducted so far—this one, Ratcliff et al. (2001), and Tha-
par et al. (in press)—also indicate that the measure of in-
formation extraction (drift rate) matches well with results
obtained using other measures, such as accuracy or
threshold values. Finally, the good fits of themodel add to
a growing bodyof results that support the diffusionmodel
as an explanation of two-choice decision processes and
provide evidence of the generality of the model across ex-
perimental paradigms.
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NOTE

1. A uniform distribution was chosen because it is a simple two-
parameter distribution and because it has a fixed minimum. If a normal
distribution were used instead, there would be some minute probability
of obtaininga negative time. If two distributionsare added (convolved)—
for example, a diffusionmodel decision time distribution and a uniform
distribution of Ter—and one of the distributions has a much larger stan-
dard deviation than the other, the shape of the combination is determined
by the distribution with the larger standard deviation (e.g., Ratcliff &
Tuerlinckx, 2002, Figure 11). Thus, other assumptions about the shape
of the distribution of Terwould not result in any difference in the quality
of the fits or the estimates of the other parameters.
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