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A common way to analyze data acquired with adaptive
psychophysical procedures for threshold estimation is to
average the signal levels encounteredduring the run. This
results in the desired threshold estimate. It is tempting to
analyze the data further in order to obtainmore information
on the form of the psychometric function (PF). Adaptive
data placement is concentrated around the threshold with
a certain spread to both sides. Would the data admit an
estimation of the slope (or spread) of the PF?

Adaptive data placement is intended to reduce the num-
ber of trials needed to estimate a threshold.For scarce data
sets, it would be advisable to use maximum-likelihood
(ML) techniques in order to obtain reliable estimates.
However, several researchers have encountered the prob-
lem that there is a considerable bias in ML slope esti-
mates from adaptive data (Leek, Hanna, & Marshall,
1992; Treutwein & Strasburger, 1999; a brief review of
the empirical literature on slope estimation is found in
Strasburger, 2001b). The present paper demonstrates this
effect with parametric and nonparametric ML algorithms,
as well as with Spearman–Kärber analysis, and then pre-
sents an explanation based on the serial dependency of
adaptive data. Finally, an adaptive procedure, especially
designed to estimate threshold and slope simultaneously,
is presented in order to illustrate what is missing in adap-
tive threshold-only estimation data.

DEMONSTRATING THE SLOPE BIAS

Slope Bias With a Parametric
Maximum-Likelihood Algorithm

It is common practice with ML techniques to assume a
certain PF and to vary the parameters of this function so
as to maximize the likelihood of the parameter set for the
run in question. This is called the parametric approach.
The more that is known about the true PF, the better the
ML estimates will be. Although for behavioral data the
type of the true PF is not known, in simulations the ML
fit can use the same type of function as do the simulated
runs.

For the simulations presented in Figure 1, 10,000 runs
were simulated per condition. A cumulative normal dis-
tribution was assumed to be the true PF for the simulated
runs, with the working point (X50) being zero and its
spread S = X80 X20 being two (i.e., X20 = 1, X80 = 1; a
z score unit of one is equal to X84 = 1.188). This defini-
tion of S corresponds to S = X90 X60 in two-alternative
forced-choice tasks (for other definitions of the spread,
see Strasburger, 2001a). The considered PF runs between
zero and one, corresponding to the performance in a
yes–no task without false alarms. The simulated adap-
tive runs started at the central signal level, X50 = 0. The
levels were increased one step after each no response and
increased one step after each yes response. Step size Dx
was set to either .5 or .25. This corresponds to the maxi-
mum (S/4) and minimum (S/8) step size recommenda-
tion by Green, Richards, and Forrest (1989). The run
length varied from 10 to 100 trials.

For each simulated run, an ML estimate of the slope
was determined. To this end, the likelihood for this run
to occur given a certain PF was calculated, and the pa-

1389 Copyright 2001 Psychonomic Society, Inc.

I thank Stanley Klein, Jeff Miller, Andreas Möltner, Frank Neutzler,
Hans Strasburger, Bernhard Treutwein, and Dirk Vorberg for valuable
discussions. Correspondence should be addressed to C. Kaernbach, In-
stitut für Allgemeine Psychologie, Universität Leipzig, Seeburgstraße
14-20, 04 103 Leipzig, Germany (e-mail: christian@kaernbach.de).

Slope bias of psychometric functions
derived from adaptive data

CHRISTIAN KAERNBACH
Universität Leipzig, Leipzig, Germany

Several investigators have fit psychometric functions to data from adaptive procedures for thresh-
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rameters of the PF were varied so as to maximize this
likelihood.1 The PF was assumed to be a cumulative nor-
mal distribution, running from zero to one, with variable
threshold and slope. This gave 10,000 threshold and
slope estimates for each condition. Some of these slope
estimates were infinite, preventing averaging of the
slope estimates. Instead, Figure 1 presents the median of
the slope estimates (circles), divided by the true slope. It
can be seen that the median of the slope estimates is in
all cases well above the true slope. This is especially so
for short runs, but even for runs with 100 trials, the slope
bias is around 10% (Dx = .5) or 20% (Dx = .25). The
slope bias is less for the larger of the two step sizes.
However, it should be noted that long runs with as many
as 100 trials will in general not be performed with large
step sizes throughout. When the step size is initially
large, it is common practice to reduce it after a certain
number of trials. Moreover, the calculationof the median
underestimates the effect, since, due to the skewed dis-
tribution of the slopes, there is a large number of very
high slope estimates. For instance, a quarter of all 50-
trial runs with Dx = .25 yielded a slope estimate larger
than twice the true slope.

Figure 1 also presents an alternative way to summarize
the slope bias effect. Instead of analyzing the slope pa-
rameter directly, for each simulated run the PF values of
the psychometric functions were calculated at signal in-

tensity x = 0.5 and x = +0.5. These values were aver-
aged across all runs, and then the slope was determined
from these two values and compared with the slope of
the true PF (determined in the same way from two PF
values). Figure 1 shows the resulting data as triangles for
step size Dx = .5 (i.e., S/4). For short runs, there is much
less slope bias if it was determined from averaged PF
values than if it was determined from the ML slope pa-
rameters directly. This is probably due to the averaging
of PFs with different threshold estimates into a single av-
erage PF, thereby smoothing out the slope of this average
PF.2 For runs with 40 trials or more, there is almost no
difference between these two estimates for the slope
bias. Although this analysis clearly underestimates the
slope bias for short runs, it has the advantage that no in-
f inite values can occur (such as with ML slope esti-
mates), and it can be applied to nonparametric ML fits
(see next section).

Slope Bias With a Nonparametric
Maximum-Likelihood Algorithm

It could be presumed that the slope bias is due to the
parametric ML approach, and that there might be other
estimation methods that would reliably find the correct
slope. The search for such methods would, however, be
strongly discouraged if one were able to demonstrate that
even a nonparametric ML algorithm fails to reproduce
the true form of the PF. As complicated as its name
sounds, a nonparametricML algorithm does not do much
more than estimate the value of the PF at each signal in-
tensity, given the number of correct and incorrect re-
sponses at that level. Here, the psychometric “function”
need not be a specific function of known type: It is just a
set of PF values at certain signal levels. The only prereq-
uisite is that, for every single run, a PF value is deter-
mined for all signal levels in question, even if a certain
level had not been tested by this run. If even this direct
analysis of the “raw data” shows a slope bias, there is not
much hope in finding a way to analyze these obviously
biased data so as to obtain an unbiased slope estimate.

The following analysis demonstrates the slope bias ef-
fect with a nonparametric ML algorithm. This time a
complete analytical analysis of all 2N possible runs of
length N (a trial can have two results, N trials can have
2N results) is performed. In contrast to simulations, the
results of such a combinatorial approach can be consid-
ered exact. Due to the exponential increase in computa-
tion time, the maximum run length tested is N = 30. A PF
was chosen that was identical to the PF of the previous
simulation; the step size Dx was set to S/4 = 0.5 (i.e., the
value that had shown better slope estimates with the
parametric ML algorithm). Let us assume that we per-
form adaptive runs of N trials, with the signal level x
starting at X50 = 0 and increasing one step after each no
response and decreasing one step after each yes re-
sponse. Some of the 2N runs are less likely, and others
are more likely. The likelihood for each of these 2N runs
was calculated. Furthermore, the PF that would have re-
sulted from each run was calculated. The average of the
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Figure 1. Demonstration of slope bias for parametric PF esti-
mates, using cumulative normal distributions for both the simu-
lated adaptive runs and the parametric maximum-likelihood es-
timates. The two curves (circles and lines) show the slope bias for
two different step sizes of the adaptive staircase procedure, rep-
resenting minimum and maximum recommendations for the step
size. The triangles give slope bias estimates as obtained by aver-
aging PF values instead of analyzing the slope parameters di-
rectly. The crosses refer to slope bias data from nonparametric
PF estimates (see Figure 2).
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ML estimates for each signal level, weighted with the
likelihood of the respective run, can then be compared
with the true PF.

The value of the PF at each signal level was first as-
sumed to correspond to the proportion of correct re-
sponses from the total number of tests at this signal level.
This PF is not necessarily monotonically increasing. The
only deviation from using the raw data was to make the
data of each run monotonic. This is called isotone re-
gression, and the algorithm is called pool adjacent vio-
lators (PAV; see, e.g., Barlow, Bartholomew, Bremner,
& Brunk, 1972). This algorithm pools the data sets from
signal levels that violate the monotonicity (for a more
detailed explanation of the algorithm, see also Miller &
Ulrich, 2001). There are two reasons for applying the
PAV algorithm: First, such deviations from monotonicity
would in general not be thought of as true features of the
PF, and it would be appropriate to apply a PAV algorithm
before presenting one’s data, and especially so if one is
interested in the crossing of the PF with a predefined
threshold probability. Otherwise one might end up with
more than one crossing of the raw PF and threshold
probability. Second, and more importantly, the monoto-
nicity constraint improves the estimates at the borders of
the tested signal range where only few tests occur and
admits to estimate the values of the PF at those signal
levels that have not been tested (i.e., above or below the
tested range). For the present approach this extrapolation
is necessary since the averaging of the PF values can only
be performed if all runs yield PF estimates for all signal
levels in question. It should be noted that the monotonic-
ity constraint is not specific to this approach: Parametric
ML algorithms fit monotonic functions to the data, thus
imposing monotonicity (and further constraints).

The monotonicity constraint leaves a certain range of
possible values for the PF values at levels not tested; if,
for instance, the leftmost value of the monotonized PF is
0.1, the values to the left of it can be anywhere in the
range of zero to 0.1. This continuation uncertainty, how-
ever, occurs outside the center of the PF (where the slope
is measured) and is not important for adaptive proce-
dures. Figure 2A shows the two extreme interpretations
(“conservative,” i.e., taking the most central, close to 0.5,
interpretation and “asymptotic,” i.e., assuming the as-
ymptotic values for all values that have not been tested)
for N = 10. For higher values of N, the continuation un-
certainty gets even smaller.

Figure 2B shows the average of the conservative esti-
mates of the monotonized raw data for N = 10, 20, and
30, as compared with the true PF. Obviously, the general
form of the obtainedPF cannot be relied on. The estimated
PF is steeper than the original one. For example, with
N = 10, the true PF at the intensity level x = 1 is 0.2,
whereas the estimated PF is 0.08 (conservative estimate).

Nonparametric estimates do not provide direct values
for the slope parameter. The slope bias can be estimated,
however, from the linear interpolation of the signal levels
neighboring the central level as compared with the same
interpolation of the true PF. These slope bias estimates
are shown as crosses in Figure 1. They shouldbe compared
with the parametric slope bias estimates obtained by aver-
aging the PF values (triangles in Figure 1); they are smaller
than those estimates for runs of more than 10 trials.

Slope Bias With Stochastic Approximation
It could be suggested that the slope bias is due to the

rigid staircase type of procedure employed hitherto. In
computer simulations, more flexible schemes of data
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Figure 2. Nonparametric maximum-likelihood estimates of the psychometric function. (A) Comparison of the asymptotic and the
conservative estimates. The difference between these two curves stems from the undeterminedness of estimates at signal levels that
were not tested, limited only by the monotonicity constraint. (B) Nonparametric conservative maximum-likelihood estimates for dif-
ferent run lengths, as compared with the true psychometric function. The slope bias derived from linear interpolation of these data
( 0.5 to 0.5) and comparison with the same linear interpolation of the true psychometric function is shown in Figure 1 as crosses.
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placement, such as the stochastic approximation algo-
rithm (Robbins & Monro, 1951), produce less statistical
fluctuation of the threshold estimates with the same
number of trials. In behavioral experiments, most re-
searchers, even when using staircase procedures, alter
the step size once or twice during a run, thereby emulat-
ing stochastic approximation. Could it be that this pro-
cedure would also yield more reliable slope estimates?

For the following demonstration, the same analysis
was done as for Figure 2B, the only difference being that
the data placement followed a rule of stochastic approx-
imation. The starting level was again at X50 = 0, and after
each yes response the signal level was increased by one
step size Dxt, and after each no response it was decreased
by Dxt. In contrast to the previous analysis, the step size
Dxt was not fixed but was a function of the trial number
t. In stochastic approximation, the step width is usually
reciprocally related to the trial number: Dxt = D/t, with a
constant D. To keep the difference between the first few
step widths within a reasonable range usually the first
trials are skipped, or in other words, a constant value is
usually added to the denominator: Dxt = D/(t+t0). In the
present analysis, t0 was set to 3, and the constant D was
chosen in order to give average step sizes across the en-
tire run of N trials that were comparable to the value that
produced the smaller slope bias in Figure 2B (Dx = 0.5).
The following combinations were used: N = 10: D = 3.7;
N = 20: D = 5.2; N = 30: D = 6.6. As with Figure 2B, a
PAV procedure was used to calculate the ML estimate
that would result from each possible run. The average of
these estimates was weighted by the likelihoodfor the re-
spective run (i.e., the expectation values of the estimates
are shown in Figure 3).

The curves for different run lengths coincide nearly
perfectly. For N = 10 there are some deviations visible
that are due to the coarse graining of the still large steps

after 10 trials. For larger run lengths, the estimated PFs
get quite smooth and can be perfectly matched by a cu-
mulative normal distribution. This is remarkable since
the ML approach used in this analysis did not specify the
type of function that was used as the true function. The
estimated PFs are, however, quite precisely doubly as
steep as the original PF.

By comparing Figure 3 with Figure 2B, it can be noted
that for staircase procedures (with constant step width),
there is, with increasing N, an asymptotic approach of
the estimated functions to the original function, whereas
for the stochastic approximation, the slope bias is inde-
pendent of N. The ever decreasing step size of the sto-
chastic approximation method seems to favor the slope
bias, whereas the constant step width of staircase proce-
dures has the effect that, for increasing run lengths, lev-
els far from the working point are tested again and again
(see section on data dependency).

Slope Bias With the Spearman–Kärber Method
ML estimation techniques are often considered the

optimum analysis for probabilistic data. They require in-
dependent data gathering (i.e., the number of trials per
intensity level should be fixed and should not depend on
the result of previous trials at this or any other level). If
this precondition is not met, the results of the ML analy-
sis are prone to bias. It could thus be conceived that non-
ML techniquesare superior to ML with regard to the slope
analysis of adaptive data. In the this issue of Perception
& Psychophysics, Miller and Ulrich (2001) evaluate the
Spearman–Kärber method, and find it superior in cases
when the ML assumptions are not met. In addition to a
reduced systematic error, as compared with probit analy-
sis, the method gives information on higher moments of
the distribution such as skewness and kurtosis. However,
the authors evaluated this method with simulations of
constant-stimulus data. Therefore, it was not evident
whether there would be slope bias when adaptive data
were analyzed with this non-ML technique.

We tested whether a Spearman–Kärber analysis of
adaptive data would show the slope bias that was found
for ML techniques.3 A set of 10,000 simulated adaptive
simple up–down runs of 30 trials each (same psychomet-
ric function as for Figure 1; step size S/4) was analyzed
with the Spearman–Kärber method and with ML probit
analysis. The median standard deviation for the ML pro-
bit analysis was 0.86. For the Spearman–Kärber method,
the median standard deviation was 0.71. Given that the
standard deviation of the true psychometric function was
1.188, this translates to slope ratios of 1.188/0.86 = 1.38
for the ML analysis (compare also Figure 1) and of 1.67
for the Spearman–Kärber method. The slope bias found
with the Spearman–Kärber method is nearly twice as
large as that of the ML probit analysis. A possible ex-
planation is that the Spearman–Kärber method weighs
all levels equally, whereas the ML techniques weigh the
levels according to the number of trials and hence, quite
appropriately, give less weight to the border levels that
contribute more to the slope bias.
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Figure 3. The same analysis as for Figure 2B, but using sto-
chastic approximationinstead of a staircase procedure. This time,
the slope bias seems not to decrease with increasing run length.
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EXPLAINING THE SLOPE BIAS

Whereas the previous sections have demonstrated slope
bias under various conditions, the following sections at-
tempt to explain its origin. It will be shown that this bias
is due to the fact that adaptive data have not been collected
independently. Independent data gathering would require
that the experimenter determine in advance the levels to
be tested and the number of tests to be performed at these
levels. Adaptive data are different: The output of previous
trials determines the if and where of subsequent trials. It
is incorrect to treat such data the same way as constant-
stimuli or other independent data, by looking at the out-
come of each individual trial and trying to learn the most
of it about the PF. Their information is in the stimulus
placement, and once this information has been evaluated
(by averaging signal levels), they are—to put it simply—
“wrung out” and should not be analyzed further. Not even
ML techniques can extract any further information.

The first section below demonstrates that the often
suspected distribution of the tests is not at the origin of
slope bias. The next two sections illustrate the effects of
data dependency with simple two-trial examples. With
adaptive data, the dependencyof the data is multiple and
complex, and so are the effects of this dependency. The
outcome of one trial will bias the retest probability at this
same signal level, as well as the test probabilitiesof other
signal levels (with the results of these tests rebiasing the
test probabilities of the original level, and so forth). Al-
though the effect of the entire network of dependencies is
demonstrated in Figure 2B (please remember that this is
an exact calculation), for the purpose of illustration it is
helpful to focus on elementary dependencies as demon-
strated in these sections with two-trial examples. The
last section extends the argument to adaptive sequences
of realistic length.

Effect of the Distribution
of the Tested Signal Levels

The slope bias is not due to the distribution of the sig-
nal levels that are tested. It is often suspected that the fo-
cusing of the testing to the center of the PF (and, in con-
sequence, the sparse data collection at positions that
seem more important to slope estimation) is at the origin
of the slope bias. This is not so.

Andreas Möltner (personal communication, July 26,
1995; cf. Pflug, 1990) suggested that if one were inter-
ested in determining the slope of the PF while using adap-
tive procedures, one should use a kind of duplex proce-
dure, combining the data placementof adaptiveprocedures
with the independent testing of a constant-stimulus ap-
proach. After each trial of the adaptive procedure, one
shoulddo a second trial at the same level (i.e., before chang-
ing the level as required by the procedure) and only use the
data of this second trial. The adaptiveprocedure would de-
termine where the tests are performed, whereas the re-
sponse data to enter the ML algorithm would have been
obtained independentlyof the correctness of the previous

response.This is a useful demonstrationof where the slope
bias effect does not come from.

Figure 4 shows nonparametric ML estimates of the PF
using the same staircase procedure for stimulus place-
ment that was used in the previous section. Again, a
complete analysis of all 2N possible runs was performed.
This time, both conservative and asymptotic estimates
are shown (cf. Figure 2A). At high and low levels, they
differ much more for the adaptively placed constant
stimuli data than they do for the adaptive data (Fig-
ure 2A). The uncertainty as to the PF values outside the
tested range reflects the intrinsic effect of the data-
focusing achieved by the adaptive data placement. This
focusing does not, however, imply slope bias: The two
types of estimates envelop the true PF from both sides,
and for higher N, they do so more closely, without any
systematic bias of the slope. Already for N = 10, the
range of possible estimates at the levels neighboring X50
(x = 0.5: [0.30,0.36]) is close and centered around the
true value (0.33), whereas the estimate for adaptive data
(0.23) is well below this range.

It is interesting to consider why, for adaptive data, the
conservative and the asymptotic estimates differ much
less than for those adaptively placed constant stimuli
data. In the latter case, the difference reflects the range
of outcomes at the bordering levels. With adaptive data
placement, the tests at these levels are used for placing
further trials. If the termination criterion is given in re-
versals, the leftmost test will necessarily have had a neg-
ative result. Otherwise it would not have been the left-
most test. If the termination criterion is given in absolute
trial number and not in reversal number, it might occur
that the run ended at the leftmost level tested and the test
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Figure 4. The same analysis as for Figure 2B, but with adap-
tively placed constant-stimuli data, for run length N = 10, 20, and
30 trials (see text for explanation). The steeper curve for a given
run length shows the asymptotic estimate, the shallower curve
shows the conservative estimate (see Figure 2A). There is no slope
bias in these data: The true PF is enclosed between asymptotic
and conservative estimate.



1394 KAERNBACH

there was positive. These rare cases are at the origin of
the small difference between the asymptotic and the con-
servative estimates observed in Figure 1A.

Retest Probability for a Single Level
The problem that one encounters while trying to ana-

lyze dependent data is best illustrated with extremely
short sequences of one or two trials. Although in adap-
tive sequences successive trials are usually at different
levels, let us, for the moment, consider that there is only
one level under question. Let us first consider ML esti-
mates of independent data. Imagine a sequence of n tri-
als, each with two possible outcomes (positive: , neg-
ative: ). If m trials have a positive result, and if the a
priori distribution of possible probabilities is uniform,
the ML estimate e of p is equal to m/n. Imagine one per-
forms a single trial. In case of a positive result, the ML
estimate for p is e = 1, and after a negative result, it is
e = 0. Due to the limited information that can be gained
from a single trial, these two-valued estimates are only
rough estimates of the probabilistic quantity p . They
are, however, not biased. This can be seen by consider-
ing the expectation value of the ML estimate e:

<e> = p ? e + p ? e = p ? 1 + (1 p ) ? 0 = p . (1)

The same is true if one performs two trials. In this case
there are four possible results, namely , , ,
and . The ML estimates for p as a function of these
results are e = 1, e = e = 0.5, and e = 0. The
expectation value for e is again correct:

<e> = p ? e + p ? e

+ p ? e + p ? e

= p 2 ? 1 + 2 ? p ? (1 p ) ? 0.5

+ (1 p )2 ? 0 = p . (2)

The problem starts if one decides to perform a second
trial only if the first trial had a certain result. Imagine,
for example, a teacher who would perform a second test
only if the first test had a positive result. The students
would claim that if they encounter the risk to fail after a
positive test, they should as well have a chance to im-
prove after a negative test. This biased test has three pos-
sible outcomes: , , and . The ML estimates for
these results are e = 1, e = 0.5, and e = 0. The ex-
pectation value for e is biased toward too small values:

<e> = p ? e + p ? e + p ? e

= p 2 ? 1 + p ? (1 p ) ? 0.5 + (1 p ) ? 0

= p p (1 p ) ? 0.5 < p , for 0 < p < 1. (3)

With the opposite rule (perform second trial only if first
trial was negative), the effect will be inverse: The ex-
pectation value will be biased toward high values.

There is no way out of this dilemma. The only possible
choice of estimates e that would give a correct expecta-
tion value for the estimate would be to set e = e = 1.

With this choice of non-ML estimates, one would com-
pletely disregard the result of the second trial. One would
have to assume a probability p of 1 even if the result
was , which is obviously wrong. In the case , we
have more information. We know that we should not as-
sume p to be 1, but we know that by using this informa-
tion, we are prone to obtain on the average a biased result.

Let us assume that the rule is less strict than in the
above example. Let the probabilityof a retest after a pos-
itive result in the first trial be r , and that for a retest
after a negative result be r . The formula for <e> will then
have to deal with six possible outcomes ( , , , ,

, ). From a calculationsimilar to Equation 3, it fol-
lows that

<e> = p (r r ) ? p (1 p ) ? 0.5. (4)

Only if the retest probability does not depend on the out-
come of the first trial (i.e., r = r ), will the expectation
value of the estimate be correct.

The Test-at-All Probability for Two Trials
Involving Three Levels

The last section dealt with two trials that can be per-
formed at the same level. It is more typical for an adaptive
procedure that a second test would take place at a different
level. Let us consider a very simple sequence of two trials
of a simple up–down run. After a positive trial at level L,
the next trial is placed at level L 1, after a negative trial
it is placed at level L11. The two-trial sequence will have
four possible outcomes.Two of these outcomes imply tests
at L and L 1, and the other two runs will test levels L and
L11. Let us consider the estimate at level L 1. If tested,
the outcome will depend on the value of the PF at this
level. If not tested, this is due to a negative trial at level L.
The ML estimate for level L is zero, and assuming mo-
notonicity, the estimate for L 1 also has to be zero.

The situation is similar to that of the biased two-trial
test at the same level that led to Equation 3. There, after
a negative trial at a certain level, no further trial was per-
formed. Instead, the outcome of a second test at the same
level was anticipatedto be negativeas well. With the pres-
ent biased two-trial test, a first test at level L 1 is not
considered after a negative test at level L. Again, it is an-
ticipated to be negative. In contrast to Equation 3 the cal-
culation of the average estimate of the PF at level L 1
involves two levels and their respective probabilities:

<e(L 1)> = p (L 1) ? p (L) < p (L 1). (5)

Note that this is not a specialty of isotone regression:
Parametric ML techniques impose even stronger con-
straints on the form of the PF, including monotonicity.

Data Dependency in Adaptive Psychophysical
Sequences With More Than Two Trials

The slope bias observed when analyzing the data of
adaptive procedures of a realistic length can be attrib-
uted to both of the sources mentioned above:

The retest probability for a signal level below the equi-
librium point is higher after a positive result than after a
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negative result in the previous result at that level. The
reason for this is easy to see: The average drift at inten-
sity levels below the equilibrium point is positive (i.e.,
given that the run is now at this intensity level) and it will
probably soon be at higher intensity levels. A positive re-
sult entails a movement against the current, and so will
soon lead to a retest. A negative result, on the other hand,
leads to intensity levels around the equilibrium point
where the run undergoes stochastic random walk pro-
cesses. In line with Equation 4, this will lead to an un-
derestimation of the PF value at this level. The same rea-
soning will yield overestimation of the PF values above
the equilibrium point.

The test-at-all probability for a signal level below the
starting point is higher after a positive result at its right
neighbor than after a negative result. This is due to the
nature of adaptive rules. Given that the estimate will be
zero if this level is not tested at all, this will lead to an un-
derestimation of the PF values at this level. The test-at-
all effect may be noneffective on one half of the PF, if
the starting point is chosen well apart from the true
threshold. In most psychophysical experiments, the
starting point is well above threshold, and, in this case,
the levels above the equilibrium points are tested during
the initial phase of the run. The situation is, however,
probably different if the step size is altered during the
run; in this situation, not all levels above the equilibrium
point will be tested during the initial phase.

The quantification of the respective effects of these
two sources of slope bias is difficult. In longer adaptive
runs, Equation 4 does not apply. With 10 trials starting at
level 0 (step size 0.5), the level at x = 1 can be tested
four times. The probability for that level to be tested a
third (fourth) time depends not only on the outcome of
the first trial, but also on that of the second (and third)
trial. As compared with the 6 possible outcomes that
enter Equation 4, this time there are 30 (21 + 22 + 23 + 24)
possible outcomes, and their respective probabilities and
resulting estimates need to be considered. The effect of
the test-at-all probability also involves a much more
complicated formula than Equation 5. The total effect of
data dependency can be calculated (cf. Figure 2), but it
appears to be difficult to disentangle the relative contri-
butions of retest probability and test-at-all probability.4

ADAPTIVE THRESHOLD AND
SLOPE ESTIMATION

Recently there have been suggestions for Bayesian
adaptive procedures that estimate the slope directly
(King-Smith & Rose, 1997; Kontsevich & Tyler, 1999)
instead of deriving it from data from adaptive threshold
estimation procedures. Adaptive slope estimation is not
in contradiction with the tenor of the present paper. In
these Bayesian adaptive slope estimation procedures, a
two-dimensional array of threshold and slope parameters
is maintained, and the value of the next trial is selected
in a Bayesian manner in order to obtain maximum infor-

mation on the parameters. In contrast to that, a threshold
estimation procedure maintains only a threshold estima-
tor, and slope estimation from the data of such proce-
dures is prone to bias.

In this section, I present another adaptive procedure
especially designed for the simultaneous estimation of
threshold and slope. It is simpler than the Bayesian ap-
proaches, modifying threshold and slope estimators ac-
cording to adaptive rules comparable to those for the
threshold estimator in classical staircase procedures. Its
purpose is mainly to serve as an illustration of how an
adaptive procedure for slope estimation should operate.
From this it should then be clear why a classical adaptive
procedure just does not collect the type of data that is
needed for slope estimation.

Adaptive threshold and slope estimation (ATASE) is
based on double trials at two different signal levels, a
high (H) and a low (L) one. The distance S = H L is an
estimator for the spread (i.e., the reciprocal of the slope)
of the PF, whereas the mean T = (H+L)/2 is an estimator
of the threshold. There are four possible outcomes in
each trial. If both tests yield identical results, the thresh-
old estimator should be changed, by moving it either up
(in case of two negative results) or down (positive re-
sults). If the two tests of a trial yield different results, and
if these are in accordance with the position of the tested
levels (i.e., L and H ), it is possible that the spread is
smaller than the spread estimator, and the spread esti-
mator should be lowered. If the two tests yield results that
seemingly do not accord with their positions (L H ),
this is an indication that the spread estimator is too small
and that the probabilities for are comparable at H and
at L, occasionally resulting in L H . In this case, it is
advisable to enlarge the spread estimator.

Overall, eight level adaptations have to be specified
(DL and DH, for all four possible outcomes). In order to
reduce the number of the degrees of freedom, some rea-
sonable constraints can be imposed. The two major con-
straints are that the procedure converge to the desired es-
timates for the threshold and the slope. To this end, the
average drift of the threshold and of the slope estimator
can be calculated, given the probabilities p(H ) and
p(L ) for positive outcomes at the two signal levels, and
given the eight level adaptations. The two constraints
consist then in setting this drift equal to zero for the de-
sired probabilities p(H ) and p(L ). Four further con-
straints can be imposed by demanding that either the
slope or the spread parameter is altered, but not both at
once. This would, for example, imply that DLL H +
DHL H = 0, in order to have no change of the threshold
estimator in case of the L H event (in which a change
of the spread parameter is mandatory). This leaves two
degrees of freedom, corresponding to the two step sizes
for slope and spread convergence.

Table 1 gives a possible reaction scheme, leading to
X50 threshold estimates and X67 X33 spread estimates.
Two positive or negative results are treated as they would
be in a simple up–down procedure, going one step up of
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size a in the negative case, and one step down of the
same size in the positive case. The spread estimator S is
not affected in these cases. Mixed results will not alter T,
since the movements of L and H are in opposite direc-
tions and of the same size. Here, S is either enlarged (if
unexpectedly the test at L was the positive test) or re-
duced. Assuming a symmetric PF, and given that T is ap-
proaching X50, the probabilities for H and L will add
to 1. Enlargement of S will then occur with (1 p)2, and
reduction with p2, with p being the probability for L .
The ratio between enlargement and reduction should
then be equal to (1 p)2/p2 (which is, e.g., 4 in case of p
= 1/3). The last line of Table 1 shows the drift of the two
estimators at the target points, obtained by multiplying
the probability column and the respective adjustment
column and adding across all four possible results. They
are both 0, which is compatible with the two major con-
straints on the eight parameters—namely, that the pro-
cedure converges to the desired target points. Note the
four zero entries in the T and S columns, corresponding
to the four minor constraints of independence of T and S
variation.

The remaining two parameters a and b can be chosen
appropriately so that the convergence process is fast. A
possible advantage of the ATASE procedure is that one
disposes of an on-line estimator of the spread of the PF.
It would appear appropriate to base both a and b on the
actual value of this spread estimator (i.e., on S). Instead
of prescribing adaptations of L and H, one can prescribe
manipulations of S and T, which is equivalent. Since the
spread estimator S should not become negative, the
widening and shrinking of the spread could be done by
multiplication instead of by addition. This would be
equivalent to varying log(S) by additive increments.

There are many issues to consider before employing
this procedure, such as good starting values, step sizes (a
and b), change of step sizes during the run, termination
criteria, and data analysis issues such as the proper
amount of discard. The present paper will not elaborate
on these issues. The purpose of introducing ATASE was
to demonstrate what kind of data an adaptive procedure

should collect to be able to estimate the slope of the PF.
The important difference to classical adaptive proce-
dures is that, here, a spread parameter is varied adap-
tively, and its value can be averaged across the trials of
the adaptive run. For practical purposes, one might
choose a different approach. Table 2 presents eight level
adaptations that fulfill the two major criteria (conver-
gence to the target points, see last row of Table 2) but vi-
olate two of the independence constraints: For identical
positive or negative results, the spread changes. This set
of level adaptations fulfills another type of indepen-
dence: The adaptations of L do not depend on the results
at level H, and vice versa. In other words, the procedure
described in Table 2 is nothingmore than interleaving two
classical adaptive staircase procedures (here: weighted
up–down; cf. Kaernbach, 1991) with two different con-
vergence levels (here: 1/3 and 2/3). After H , level H is
decreased one step, and after H , it is increased two
steps; this leads to a convergence point with p(H ) =
0.67. For L, the opposite rule is applied, leading to a con-
vergence at X33. The advantage of this approach is that
much is known about classical adaptive procedures for
threshold estimation.Levitt (1971) had already proposed
to interleave two runs, aiming at different target points of
the PF in order to obtain spread information. On the
other hand, during the procedure, no use is made of the
spread estimator. Whether or not the independence con-
straints realized in Table 1 or the availability of an
on-line spread estimator for step size adjustment pay off
in any advantage such as smaller and/or independent er-
rors of the threshold and slope estimates remains to be
seen.

It is interesting to compare ATASE and the Bayesian
approaches by King-Smith and Rose (1997) and by Kont-
sevich and Tyler (1999) with classical adaptive thresh-
old estimation procedures. Both the rule-based approach
of ATASE and the Bayesian approaches differ from clas-
sical threshold estimation in the fact that a slope estima-
tor is evaluated during the run. It seems to be the lack of
this feature that prevents bias-free slope estimation from
classical adaptive data. Whereas ATASE performs blocks
of two trials at a certain distance, the Bayesian ap-
proaches perform single trials with a bimodal distribu-
tion of test levels. It is yet unclear how important this dif-
ference is. Slope estimation is not yet as well studied as

Table 1
Adaptive Threshold and Slope Estimation (ATASE)

for Convergence to T = X50 and S = X67 X33

Probability
at Target

Result Points DL DH DT DS
L H 2/9 a a a 0
L H 1/9 4b 14b 0 18b
L H 4/9 1b b 0 2b
L H 2/9 1a 1a 1a 0

Net effect 0 0

Note—DL and DH are the adjustments of the low and the high signal
level, respectively, in response to a certain result of the double trial (first
column). DT and DS follow from S = H L and T = (H1T )/2. The net
effect (last row) is calculated by multiplying the respective column with
the probability column (second column) and summing up.

Table 2
Interleaving Two Adaptive Weighted Up–Down Runs

for Target Points X67 and X33

Probability
at Target

Result Points DL DH DT DS
L H 2/9 2a a 3a/2 1a
L H 1/9 2a 12a 0 14a
L H 4/9 1a a 0 2a
L H 2/9 1a 12a 13a/2 1a

Net effect 0 0
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threshold estimation. It would be highly interesting to
compare the different approaches (including the ap-
proach to measure two different points of the PF) with
regard to their efficiency and reliability.

DISCUSSION AND CONCLUSIONS

The present paper has demonstrated slope bias effects
when the slope was estimated from data of adaptive
threshold estimation procedures. Slope bias was found
for staircase procedures with constant step size, as well as
for a stochastic approximation algorithm with decreas-
ing step size. Parametric ML fits showed slope bias, as
did nonparametric ML fits and Spearman–Kärber analy-
sis. Slope bias with adaptive threshold estimation data
seems to be a general phenomenon and not to be re-
stricted to certain adaptive methods or analysis methods.

Two sources of this slope bias have been identified
and illustrated with simple two-trial examples: The
retest probabilityat a certain level depends on the results
of previous trials at this level, and the probability to test
a certain level at all (the test-at-all probability) depends
on the results of trials at the neighboring levels. These
two mechanisms should not be considered to be different
in nature, but to be representing two aspects of the same
source for slope bias (i.e., of serial dependency of data).

It is often suspected that the slope bias is due to the
uneven distribution of the test levels: Adaptive proce-
dures focus tests in the threshold region and thus give
only sparse information on those regions of the PF that
might be of interest to slope estimation. The present
paper demonstrates that this is not so. Constant-stimulus
data that show the same uneven distribution of tested lev-
els do not give rise to slope bias (see Figure 4 and corre-
sponding text). Only if the data that served for stimulus
placement are used at the same time for slope estimation
will slope bias occur. This is a clear indication that slope
bias is due to data dependency.

It is difficult to quantify slope bias exactly. In simula-
tions, one can determine the distribution of the slope es-
timates of parametric ML fits and compare it with the
true slope of the underlying PF. It is, however, not clear
which comparison represents the best measure for slope
bias. The distribution of slope parameters cannot simply
be averaged, since some ML slope estimates are infinite.
The median of this distribution will underestimate the
effect due to the skewness of the distribution. Averaging
PF values instead of PF parameters will (at least for
short-run lengths) underestimate the effect even more,
because PFs with different threshold estimates will
smooth out the slope of the average PF. On the other
hand, this approach is useful since it can be applied to
nonparametric ML fits. Moreover, it is more accessible
to attempts to explain slope bias because the probabili-
ties in question are subject to equations like Equa-
tions 1–5, whereas the connection to parametric ML
slope estimates is more complicated. Both measures

(median of slope parameters, and slope determined from
averaged PF values), however, indicate clearly that there
is a slope bias when determining the slope from adaptive
threshold data.

For longer runs, there is less slope bias for nonpara-
metric ML fits than for parametric ML fits (see Figure 1).
This difference is not well understood. If confirmed, this
finding would indicate that it would be better to estimate
the slope from the monotonized raw data than from the
parametric fits. It should be noted, however, that this
would at best reduce the problem, not solve it.

Slope bias is larger for smaller step sizes (or, as Leek
et al., 1992, put it, for a constant step size, slope bias in-
creases with lower true slope of the PF). With constant
step size, the amount of slope bias decreases with in-
creasing run length. However, long adaptive runs are in
general performed with small step sizes, at least during
their later parts. In the same line, data from stochastic
approximation show a constant slope bias that does not
decrease with increasing run length (see Figure 3). The
run lengths needed to get slope estimates with less than
10% error are rather high. Leek et al. (1992) suggest runs
of at least 200 trials. For shorter runs, they suggest cor-
rection factors. Given that it is not the ML technique that
is to blame but the data, it does not seem possible to cor-
rect for the bias by simply multiplying with a factor.
Consider the discussion following Equation 3: The only
possible correction that would avoid bias was to disre-
gard the result of those trials that were performed or not,
dependingon the outcome of earlier trials. In other words,
the bias can be overcome only by disregarding that part
of the data that is dependent on earlier data. The correc-
tion factors may work for some sets of PF types and step
sizes and may not work for other combinations.

If the slope of the PF is of interest, one can measure
two different points of the PF by performing two runs
with different target levels. The slope could then be de-
termined by determining the two different target points
with classical methods and calculating the slope from
these values. The present paper suggests a different ap-
proach to determining threshold and slope simultane-
ously, by performing double trials at two different lev-
els. In contrast to adaptive threshold-only estimation,
two estimates are updated from double trial to double
trial, one for the threshold and another one for the slope
(or spread) of the PF. Further studies could reveal whether
any advantage can be derived from on-line spread esti-
mation.

The present reasoning suggests that at the target per-
formance of an adaptive procedure the ML estimate of
the probability should be correct, and this is in line with
the findings of Treutwein and Strasburger (1999) that the
ML threshold estimates were not biased. However, it has
not been proven up to now that ML threshold estimates
are more reliable than other ways of calculating the
threshold, such as averaging the reversal points or signal
levels following an appropriate amount of discard.
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Moreover, it may appear inelegant to evaluate the com-
plete form of the PF, knowing it is wrong, in order to ex-
tract a single value from it, which might be the only
value of the PF estimate that is not biased.

REFERENCES

Bar l ow, R. E., Bar t hol omew, D. J., Br emner , J. M., & Br unk, H. D.
(1972). Statistical inference under order restrictions. Chichester,
U.K.: Wiley.

Gr een, D. M., Richa r ds, V. M., & For r est , T. G. (1989). Stimulus
step size and heterogeneous stimulus conditions in adaptive psycho-
physics. Journal of the Acoustical Society of America, 86, 629-636.

Kaer nbach , C. (1991). Simple adaptive testing with the weighted
up–down method. Perception & Psychophysics, 49, 227-229.

King-Smit h , P. E., & Rose, D. (1997). Principles of an adaptive method
for measuring the slope of the psychometric function. Vision Re-
search, 37, 1595-1604.

Kont sevich , L. L., & Tyl er , C. W. (1999). Bayesian adaptive estima-
tion of psychometric slope and threshold. Vision Research, 39, 2729-
2737.

Leek, M. R., Hanna , T. E., & Mar shal l , L. (1992). Estimation of psy-
chometric functions from adaptive tracking procedures. Perception &
Psychophysics, 51, 247-256.

Levit t , H. (1971). Transformed up–down methods in psychophysics.
Journal of the Acoustical Society of America, 49, 467-477.

Mil l er , J., & Ul r ich , R. (2001). On the analysis of psychometric func-
tions: The Spearman–Kärber method. Perception & Psychophysics,
63, 1399-1420.

Pfl ug, G. C. (1990). Non-asymptotic confidence bounds for stochas-
tic approximation algorithms with constant step size. Monatshefte für
Mathematik, 110, 297-314.

Robbins, H., & Monr o, S. (1951). A stochastic approximationmethod.
Annals of Mathematical Statistics, 22, 400-407.

St r a sbu r ger , H. (2001a). Converting between measures of slope of
the psychometric function.Perception& Psychophysics, 63, 1348-1355.

St r a sbur ger , H. (2001b). Invariance of the psychometric function for
character recognition across the visual field. Perception & Psycho-
physics, 63, 1356-1376.

Tr eu t wein, B., & St r asbu r ger , H. (1999). Fitting the psychometric
function. Perception & Psychophysics, 61, 87-106.

NOTES

1. For the ML estimate of the PF, both threshold and slope parameters
were varied. This corresponds to the normal experimental situation in

which one does not know the true threshold. In simulations, one knows
the true threshold and can make use of this knowledge. ML fits based
on the true threshold (i.e., varying only the slope parameter) show much
less slope bias (about a quarter) than ML fits where both parameters are
varied. If only the slope parameter is varied, one introduces a further
kind of slope bias that, being negative, counteracts the positive slope
bias from data dependency:Runs that would lead to threshold estimates
far from the true threshold will have remarkably low slope estimates
when the PF is forced to cross 0.5 at the true threshold (i.e., often out-
side the region that has been tested).

2. Please note that this effect, although similar to that presented in
Note 1, is different in nature and extent. The PFs that enter the averag-
ing are determined by varying both threshold and slope parameters (i.e.,
no use is made of the knowledge of the true threshold). Whereas for
runs with 30 trials (step size 0.5) the slope bias goes down from 39% to
9% when use is made of the knowledge of the true threshold, it goes
down to 34% when the PF is averaged. Moreover, although the effect of
making use of the knowledge of the true PF persists for all run lengths,
the reduction by averaging the PF is only effective for runs of up to 30
trials.

3. Jeff Miller and I are grateful to Stanley Klein for this suggestion.
The simulated adaptive runs were prepared in Leipzig, and the ML pro-
bit and Spearman–Kärber analyses were done by Jeff Miller.

4. One could think of disentangling these two mechanisms by re-
peating the analysis that was done for Figure 2B, but this time abstain-
ing from imposing monotonicity and not extrapolating to the untested
region. The remaining slope bias could be considered to represent the
share of the retest probability, because the second mechanism, the test-
at-all probability, cannot be effective when no extrapolation takes place.
This estimate of the share of the retest probability increases with in-
creasing run length (10: 40.4%; 20: 54.9%; 30: 62.6%). This is in ac-
cordance with intuition:With longer runs, the importance of the test-at-
all effect should decrease (as nearly all relevant levels will be tested),
and the importance of the retest effect should increase (as retests will
take place more frequently). However, it should be noted that averaging
without extrapolating implies a selection bias: For levels below the
equilibrium point, the averaging will skip those runs in which the level
in question was not tested (i.e., those runs that would normally be in-
terpreted as demonstrating a low performance at the level in question).
More generally, it might be questioned whether it makes sense to dis-
entangle these two effects that might well be considered two aspects of
the same bias source (i.e., serial dependency).
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