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A robust finding from the decisioncriterion learning lit-
erature is that observers use a suboptimal decision crite-
rion when the costs and benefits of correct and incorrect
responses are manipulated. For example, if the benefit of
a correct Category A response is 3 points, the benefit of a
correct Category B response is 1 point, and the cost of an
incorrect response is 0 points (referred to as a 3:1 zero-
cost condition,because no loss of points is associatedwith
an incorrect response), the optimal classifier decision cri-
terion, bo = 3, maximizes long-run reward. Under these
conditions, observed decision criterion values fall some-
where between this reward-maximizing criterion (bo = 3)
and the accuracy-maximizing criterion (b 5 1; see, e.g.,
Green & Swets, 1966; Healy & Kubovy, 1981; Kubovy &
Healy, 1977; Lee & Janke, 1964, 1965; Lee & Zentall,
1966;Maddox& Bohil,1998;Ulehla, 1966).This is termed
conservative cutoff placement, because the decision crite-
rion is not shifted far enough toward the optimal value.1
Maddox and Bohil (1998; see also Maddox, 2002; Mad-

dox & Dodd, 2001) suggested that this might be due to ob-
servers’ inability to focus exclusively on reward maxi-
mizationwhile sacrificingaccuracymaximization.Because
the observer must sacrifice some measure of accuracy to
maximize reward when costs and benefits are manipu-
lated, any weight placed on accuracy will lead to the use
of a suboptimal decision criterion. Maddox and Bohil
(1998; Maddox, 2002; Maddox & Dodd, 2001) offered a
competitionbetween reward and accuracy (COBRA) max-
imization hypothesis (Maddox, 2002; Maddox & Bohil,
1998; Maddox & Dodd, 2001) to (at least partially) ex-
plain this result. COBRA postulatesthat observers attempt
to maximize reward (consistent with instructions and
monetary compensation contingencies)but also place im-
portance on accuracy maximization.Because the observer
must sacrifice some measure of accuracy to maximize re-
ward when payoffs are manipulated, any weight placed on
accuracy will lead to the use of a suboptimal decision cri-
terion.

In a recent study, Maddox and Bohil (2001) attempted
to improve decisioncriterion learningwhen costs and ben-
efits were manipulated by reducing the weight placed on
accuracy through manipulation of the trial-by-trial feed-
back. They speculated that observers place importance on
accuracy maximization, in part, because the most common
type of feedback in decisioncriterion learning studies em-
phasizes accuracy. Consider the top panel of Figure 1,
which presents a hypotheticalfeedback display from a typ-
ical decision criterion learning study. Following the ob-
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Biasedcategory payoff matricesengender separatereward- and accuracy-maximizingdecision criteria.
Although instructed to maximize reward, observers use suboptimal decision criteria that place greater
emphasis on accuracy than is optimal. In this study, objective classifier feedback (the objectively cor-
rect response) was compared with optimal classifier feedback (the optimal classifier’s response) at two
levels of category discriminability when zero or negative costs accompanied incorrect responses for
two payoff matrix multiplication factors.Performance was superior for optimal classifier feedback rel-
ative to objective classifier feedback for both zero- and negative-cost conditions, especially when cat-
egory discriminability was low, but the magnitude of the optimal classifier advantage was approxi-
mately equal for zero- and negative-cost conditions. The optimal classifier feedback performance
advantage did not interactwith the payoff matrix multiplication factor. Model-based analysessuggested
that the weight placed on accuracywas reduced for optimal classifierfeedbackrelative to objectiveclas-
sifier feedback and for high category discriminability relative to low category discriminability. In ad-
dition, the weight placed on accuracy declined with training when feedback was based on the optimal
classifierand remained relativelystable when feedbackwas based on the objectiveclassifier.These re-
sults suggest that feedback based on the optimal classifier leads to superior decision criterion learn-
ing across a wide range of experimental conditions.
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server’s response, he or she is presented with information
regarding the actual gain for that trial and the potential
gain had he or she responded with the correct category
label. In this example, the observer generated an incorrect
B response and earned 0 points, whereas a correct A re-
sponse would have earned 3 points. (In our studies, we also
include information regarding cumulativeperformance—
i.e., the total points and the potential point total.) We refer
to this as objective classifier feedback, because the poten-
tial gain is always based on performance of the classifier
that generates the objectively correct response on every
trial and, thus, is 100% accurate. Maddox and Bohil (2001)
compared decision criterion learning for objective classi-
fier feedback with that obtained through optimal classifier
feedback. The bottom panel of Figure 1 presents a hypo-
thetical optimal classifier feedback display. Following the
observer’s response, he or she is presented with informa-
tion regarding the actual gain for that trial and the optimal
classifier’s gain. In this example, the observer generated
an incorrect B response and earned 0 points. Importantly,
the optimal classifier also generated an incorrect B re-
sponse and earned 0 points. Maddox and Bohil (2001)
suggested that optimal classifier feedback might lead ob-
servers to sacrifice accuracy in order to maximize reward,
leading to better decision criterion learning.

Maddox and Bohil (2001) had each observer complete
several blocks of trials in four perceptual categorization
conditions that were constructed from the factorial com-
bination of two types of feedback (optimal vs. objective
classifier) with two levels of category discriminability(d¢ =
1.0 and 2.2). All conditions used the 3:1 zero-cost payoff
matrix, outlined above, and thus the optimal decision cri-
terion was identical across all conditions. Maddox and
Bohil (2001) found more nearly optimal decision criterion

learning (1) in the optimal classifier feedback condition
than in the objective classifier feedback condition, with a
much larger effect resulting for d¢ = 1.0 (where the accu-
racy sacrifice necessary to maximize reward was large—
8%) than for d¢ = 2.2 (where the accuracy sacrifice was
small—3%), and (2) in the d¢ = 2.2 condition than in the
d¢ = 1.0 condition.Maddox and Bohil (2001) applied a re-
cently developedmodel of decision criterion learning that
proposes two mechanisms that determine decision crite-
rion placement. These will be outlined in detail below, but
for now a few brief comments are in order. The first mech-
anism is COBRA, which postulates that observers attempt
to maximize reward but also place importanceon accuracy
maximization.The second mechanism is based on the flat-
maxima hypothesis. The flat-maxima hypothesisstates that
the observer’s estimate of the reward-maximizingdecision
criterion is determined from the objective reward function.
The objective reward function plots long-run reward as a
function of decision criterion placement (see Figures 3–
5). Steep objective reward functions, for which large
changes in reward are associatedwith small changes in the
decision criterion, lead to better learning of the reward-
maximizingdecisioncriterion than do flat objective reward
functions. Several factors influence the steepness of the
objective reward function, including category discrim-
inability and payoff matrix multiplication. Payoff matrix
multiplication refers to one payoff matrix’s being con-
structed by multiplyingall entries of anotherpayoff matrix
by a constant. As we will detail later, the objective reward
function is steeper for intermediate levels of d¢, such as
d¢ = 2.2, than for small values of d¢, such as d¢ = 1.0 (and
large d¢ values above 3), and is steeper for large payoff
matrix multiplication factors than for smaller multiplica-
tion factors.

Figure 1. Hypothetical feedback displays for the objective classifier and op-
timal classifier feedback conditions.
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Maddox and Bohil (2001) instantiated the flat-maxima
and COBRA hypotheseswithin the framework of a hybrid
model that they used to account for decision criterion
placement in their task. Briefly, the model assumes that
the observer’s estimate of the reward-maximizingdecision
criterion is determined from the steepness of the objective
reward function (i.e., the flat-maxima hypothesis). The
observable decision criterion is a weighted function of the
estimated reward-maximizing decision criterion and the
accuracy-maximizing decision criterion. The weight de-
notes the emphasis placed on accuracy maximizationand,
thus, instantiates the COBRA hypothesis. Maddox and
Bohil (2001) applied the model to their data and found
that the model provided a good account of the data by as-
suming that the weight placed on accuracy was larger for
objective than for optimal classifier feedback.

This article reports the results from an experiment that
replicated Maddox and Bohil (2001) by examining deci-
sion criterion learning in the 3:1 zero-cost condition for
the same four feedback 3 d¢ conditions (i.e., objective
classifier feedback/d ¢ = 1.0, optimal classifier feed-
back/d¢ = 1.0, objective classifier feedback/d¢ = 2.2, and
optimal classifier feedback/d¢ = 2.2), and extends Mad-
dox and Bohil (2001) by introducing two additional ma-
nipulations, both of which affect the entries in the payoff
matrix. The first manipulation is a payoff matrix subtrac-
tion manipulation. In short, we include both the 3:1 zero-
cost payoff matrix and a 3:1 negative-cost payoff matrix
derived by subtracting 1 point from all 3:1 zero-cost pay-
off matrix entries. Importantly, payoff matrix subtraction
does not affect the value of the optimal decision criterion,
nor does it affect the steepness of the objective reward
function. However, as was suggested by Maddox and
Dodd (2001; see also Maddox& Bohil,2000), decisioncri-
terion learning is more suboptimal in negative cost condi-
tions than in zero-cost conditions,which may be due to an
increased emphasis on accuracy maximization in negative-
cost conditions.The second manipulationis payoffmatrix
multiplication. In short, we include the 3:1 zero- and 3:1
negative-cost payoff matrices outlined above and two ad-
ditional matrices derived by multiplying each 3:1 zero-
cost and each 3:1 negative-cost payoff matrix entry by a
factor of 6. Like payoff matrix subtraction, payoff matrix
multiplicationdoes not affect the value of the optimal de-
cision criterion; unlike payoff matrix subtraction, it does
affect the steepness of the objective reward function.Mul-
tiplication by a factor of 6 yields a steeper objective re-
ward function. In light of this fact, we will refer to the orig-
inal payoff matrices as the 3:1 zero-cost/shallow and 3:1
negative-cost/shallow payoff matrix conditions and the
two derived from payoff matrix multiplication as the 3:1
zero-cost/steep and 3:1 negative-cost/steep payoff matrix
conditions.

To summarize, the predictions are as follows. First, we
predict better decision criterion learning with optimal clas-
sifier feedback than with objective classifier feedback,
because there is a sacrifice in accuracy associated with re-

ward maximization in all conditions and optimal classi-
fier feedback should lead the observer to be more willing
to sacrifice accuracy in order to maximize reward. Sec-
ond, we predict an interaction between the nature of the
feedback and category d¢, with a larger effect of feedback
being predicted in the d¢ = 1.0 than in the d¢ = 2.2 condi-
tions. This follows because the accuracy sacrifice neces-
sary to maximize reward is larger for d¢ = 1.0 (8%) than
for d¢ = 2.2 (3%). Third, we predict no interactionbetween
the nature of the feedback and the payoff matrix multipli-
cation, because payoff matrix multiplication does not af-
fect the magnitude of the accuracy sacrifice necessary to
maximize reward. Fourth, we predict better decision cri-
terion learning for zero- than for negative-costconditions,
because observers place more weight on accuracy when
losses are associated with incorrect responding. We have
no a priori prediction regarding an interactionbetween the
feedback and the payoff matrix subtractionmanipulations,
but it is possible that optimal classifier feedback will have
an even larger effect on decision criterion learning for
negative-cost conditions. Finally, we predict better deci-
sion criterion learning for the d¢ = 2.2 than for the d¢ = 1.0
conditions and for the steep payoff matrix multiplication
conditions than for the shallow payoff matrix multiplica-
tionconditions,as would be expectedfrom the flat-maxima
hypothesis. Initial tests of these predictions are provided
by examining trends in performance measures, such as ac-
curacy, points, and decision criterion estimates from sig-
nal detection theory, using analysisofvariance(ANOVA). A
moredetailedunderstandingof the psychologicalprocesses
involved in decision criterion learning under these condi-
tions is provided by applyinga series of models to the data
from all conditions simultaneously, but separately by ob-
server and block.

The next (second) section will outline briefly the opti-
mal classifier and our modeling framework. The third sec-
tion will introduce Maddox and Dodd’s (2001) theory of
decision criterion learning and will generate predictions
from the model for the experimental factors of interest.
The fourth section will be devoted to the experimental
method, and the fifth section to the results and theoretical
analyses. Finally, we will conclude with some general
comments.

THE OPTIMAL CLASSIFIER AND
DECISION BOUND THEORY

Optimal Classifier
The optimal classifier is a hypotheticaldevice that max-

imizes long-run expected reward. Suppose a medical doc-
tor must classify a patient into one of two disease cate-
gories, A or B, on the basis of medical test X, whose
outcomes for Diseases A and B are normally distributed
as depicted in Figure 2. Figures 2A and 2B depict hypo-
thetical disease categories for two levels of discriminabil-
ity, d ¢ = 1.0 and 2.2. The optimal classifier has perfect
knowledge of the form and parameters of each category
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distribution and records perfectly the test result, denoted
x. This information is used to construct the optimal deci-
sion function, which is the likelihood ratio of the two cat-
egory distributions:

(1)

where f (x | i) denotes the likelihood of test result x given
disease category i. The optimal classifier has perfect
knowledge of the costs and benefits in the payoff matrix.
This information is used to construct the optimal decision
criterion:

(2)

where VaA and VbB denote the benefits associated with
correct diagnoses and VbA and VaB denote the costs asso-
ciated with incorrect diagnoses.2 (The category base rates
affect the optimal decision criterion, but in the present
study, the base rates are equal and thus drop out of the
equation.) The optimal classifier (e.g., Green & Swets,
1966) uses lo(x) and bo to construct the optimal decision
rule:
If lo(x) . bo, then respond “B”; otherwise respond “A.”

(3)

Two points are in order. First, when (VaA – VbA) = (VbB –
VaB), bo = 1, the optimal classifier assigns the stimulus to
the category with the highest likelihood.Under these con-
ditions, bo = 1 simultaneously maximizes reward and ac-
curacy. Second, if the payoff for Disease A is three times
the payoff for Disease B—a 3:1 payoff condition [i.e., if
(VaA – VbA) = 3(VbB – VaB)]—then bo = 3.0 (see Figure 2).
In this case, the optimal classifier will generate a Disease
A diagnosis unless the likelihood of Disease B is at least

three times larger than the likelihood of Disease A. Im-
portantly, although bo = 3.0 maximizes reward in this
case, b = 1 maximizes accuracy. Thus, the optimal classi-
fier must sacrifice some measure of accuracy in order to
maximize reward when the payoffs are manipulated.

Decision Bound Theory
The optimal classifier decision rule (Equation 3) has

been rejected as a model of human performance, but per-
formance often approaches that of the optimal classifier
as the observer gains experience with the task. Ashby and
colleagues argued that the observer attempts to respond
by using a strategy similar to that of the optimal classifier
but fails because of at least two sources of suboptimality
in perceptual and cognitiveprocessing:perceptual and cri-
terial noise (Ashby, 1992a; Ashby & Lee, 1991; Ashby &
Maddox, 1993, 1994;Ashby & Townsend, 1986; Maddox
& Ashby, 1993). Perceptual noise refers to trial-by-trial
variability in the perceptual information associated with
each stimulus. With one perceptual dimension, the ob-
server’s percept of Stimulus i, on any trial, is given by xpi =
xi + ep, where xi is the observer’s mean percept and ep is a
random variable denoting perceptual noise (we assume
that spi = sp). Criterial noise refers to trial-by-trial vari-
ability in the placement of the decision criterion. With cri-
terial noise, the decision criterion used on any trial is given
by bc = b + ec, where b is the observer’s average decision
criterion and ec is a random variable denoting criterial
noise (assumed to be univariatenormally distributed).De-
cision bound theory assumes that the observer attempts to
use the same strategy as the optimal classifier, but with
less success, owing to the effects of perceptual and criter-
ial noise. Hence, the simplest decision bound model is the

bo aA bA bB aB= -( ) -( )[ ]V V V V/ ,

1 Ao Bx f x f x( ) = ( ) ( )/ ,

Figure 2. Hypothetical Category A and B distributions for d ¢ = 1.0 and d ¢ = 2.2. The
b = 1 decision criterion, or equal-likelihood decision criterion, is optimal when cate-
gory payoffs are symmetric (i.e., unbiased). The bo = 3 decision criterion is optimal
when the ratio is 3:1.
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optimal decision bound model. The optimal decision
bound model is identical to the optimal classifier (Equa-
tion 3), except that perceptual and criterial noise are in-
corporated into the decision rule. Specifically,
If lo(xpi) . bo + ec, then respond“B”; otherwise respond“A.”

(4)

A THEORY OF DECISION CRITERION
LEARNING AND A HYBRID MODEL

FRAMEWORK

Maddox and Dodd (2001; Maddox, 2002) offered a the-
ory of decision criterion learning and a model-based in-
stantiationcalled the hybridmodel. The theoryproposestwo
mechanisms that determine decision criterion placement.

Flat-Maxima Hypothesis
The first mechanism is based on the flat-maxima hy-

pothesis (Busemeyer & Myung, 1992; vonWinterfeldt &
Edwards, 1982).As hasbeensuggestedbymanyresearchers,
suppose that the observer adjusts the decision criterion (at
least in part) on the basis of the change in the rate of re-
ward, with larger changes in rate being associated with
faster, more nearly optimal decision criterion learning
(e.g., Busemeyer & Myung, 1992; Dusoir, 1980; Kubovy
& Healy, 1977; Thomas, 1975; Thomas & Legge, 1970).
To formalize this hypothesis, one can construct the objec-
tive reward function. The objective reward function plots
objective expected reward on the y-axis and the decision
criterion value on the x-axis (e.g., Busemeyer & Myung,
1992; Stevenson, Busemeyer, & Naylor, 1991; vonWin-
terfeldt & Edwards, 1982). To generate an objective re-
ward function, one chooses a value for the decision crite-
rion and computes the long-run expected reward for that
criterion value. This process is repeated over a range of
criterion values. The expected reward is then plotted as a
function of decision criterion value. Figure 3A plots ex-
pected reward as a function of the deviationbetween a hy-
pothetical observer’s decision criterion ln(b) and the opti-
mal decision criterion ln(bo) standardized by category d¢.
This is referred to as k 2 ko = ln(b)/d¢ 2 ln(bo)/d¢. Note
that for large deviations from the optimal decision crite-
rion, the expected reward is small and that, as the devia-
tion from the optimal decision criterion decreases, the ex-
pected reward increases. Note also that when the deviation
from optimal is zero (i.e., when the decisioncriterion is the
optimal decisioncriterion), expected reward is maximized.

The derivativeof the objective reward function at a spe-
cific k 2 ko value determines the change in the rate of ex-
pected reward for that k – ko value; the larger the change
in the rate, the “steeper” the objective reward function at
that point. Derivatives for three k 2 ko values are denoted
by Tangent Lines 1, 2, and 3 in Figure 3A. Note that the
slope of each tangent line, which corresponds to the de-
rivative of the objective reward function at that point, de-
creases as the deviation from the optimal decision crite-
rion decreases (i.e., as we go from Point 1 to 2 to 3). In
other words, the change in the rate of reward or steepness

declines as the decision criterion approaches the optimal
decision criterion. Figure 3B plots the relationship be-
tween the steepness of the objective reward function (i.e.,
the derivativeat several k – kovalues) and k – ko. The three
derivatives denoted in Figure 3A are highlighted in Fig-
ure 3B. If the observer adjusts the decision criterion on the
basis of the change in the rate of reward (or steepness),
steeper objective reward functions should be associated
with more nearly optimal decision criterion values, be-

Figure 3. (A) Expected reward as a function of the decision cri-
terion (relative to the optimal decision criterion; i.e., k 2 ko),
called the objective reward function. The three lines are the tan-
gent lines at points 1, 2, and 3 on the objective reward function
that denote the derivative or steepness of the objective reward
function at each point. (B) Steepness of the objective reward func-
tion from panel A, along with the three points highlighted in
panel A.
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cause only a small range of decisioncriterion valuesaround
the optimal value have near-zero derivatives (or small
steepness values). Flat objective reward functions, on the
otherhand,will lead to less optimaldecisioncriterion place-
ment, because a larger range of decision criterion values
around the optimal value have derivatives near zero.

Category discriminability, payoff matrix subtrac-
tion, payoff matrix multiplication, and the flat-
maxima hypothesis. Figure 4A displays the objective re-
ward functions for category d¢ = 1.0 and 2.2 with both the
3:1 zero-cost and the 3:1 negative-cost payoff matrices.
Figure 4B plots the relationshipbetween the steepness for

each objective reward function (i.e., the derivatives of
each objective reward function) and k 2 ko. The tangent
lines (labeled “1”) in Figure 4A correspond to the k 2 ko
values associated with the same fixed steepness value for
d¢ = 1.0 and 2.2, respectively. The horizontal line (labeled
“1”) in Figure 4B denotes the same fixed nonzero steep-
ness value, and the vertical lines denote the associated k 2
ko values for each condition. Two comments are in order.
First, note that the four objective reward functions in Fig-
ure 4A collapse onto two steepness functions in Figure 4B
because the steepness of the objective reward function is

Figure 4. (A) Objective reward functions for 3:1 zero-cost and
3:1 negative-cost payoff matrices for d ¢ = 1.0 and d ¢ = 2.2. The
tangent lines (labeled “1”) correspond to the same steepness
value on each function. (B) Steepness of the objective reward
functions for each d ¢ value in panel A (see text for explanation),
along with the points highlighted in panel A.

Figure 5. (A) Objective reward functions for payoff matrix
muliplication (PMM) factors 1 and 6 for d ¢ = 1.0 and d ¢ = 2.2. The
tangent lines (labeled “1”) correspond to the same steepness
value on each function. (B) Steepness of the objective reward func-
tions from panel A, along with the points highlighted in panel A.
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unaffected by payoff matrix subtraction.Second, note that
the deviation between the decision criterion and the opti-
mal value, k 2 ko, differs systematically across category
d¢ conditions in such a way that the decision criterion, k,
is closer to the optimal value, ko, for category d¢ = 2.2 than
for d¢ = 1.0. Thus, the flat-maxima hypothesis predicts
that performance should be closer to optimal for d¢ = 2.2
than for d¢ = 1.0.

Figure 5A displays the objective reward functions for
the steep and shallow 3:1 zero-cost payoff matrices for
category d¢ = 1.0 and 2.2. The objective reward functions
associated with the 3:1 negative-cost payoff matrices are
omitted, since they share equivalentsteepness values with
their 3:1 zero-cost matrix counterparts. Figure 5B plots
the relationship between the steepness for each objective
reward function (i.e., the derivatives of each objective re-
ward function) and k 2 ko. The tangent lines in Figure 5A
(labeled “1”) denote the k 2 ko values associated with the
same fixed steepness value on all four objective reward
functions. The horizontal line (labeled “1”) in Figure 5B
denotes the same fixed nonzero steepness value, and the
vertical lines denote the associated k 2 ko values for each
condition. Note that k 2 ko is smaller for conditions in
which the payoff matrix multiplication factor is 6 and, as
in Figure 4B, for d¢ = 2.2 than for d¢ = 1.0.

Because the flat-maxima hypothesis is based on the ob-
jective reward function, it applies only to learning of the
reward-maximizing decision criterion. The observed de-
cision criterion is assumed to be a weighted average of the
reward- and accuracy-maximizing decision criteria. The
COBRA hypothesis instantiates the weighting process.

COBRA Hypothesis
The second mechanism assumed to influence decision

criterion placement is based on Maddox and Bohil’s
(1998) COBRA maximization hypothesis. COBRA postu-
lates that observers attempt to maximize expected reward
(consistent with instructions and monetary compensation
contingencies) but that they also place importance on ac-
curacy maximization.Consider the univariate categoriza-
tion problem depicted in Figure 6 with a 3:1 payoff ratio.

Note that the reward-maximizing decision criterion, kro =
ln(bro)/d ¢ = ln(3)/d ¢ is different from the accuracy-
maximizing decision criterion, kao = ln(bro)/d¢ = ln(1)/d,
and, thus, the observer cannot simultaneously maximize
accuracy and reward. If an observer places importance or
weight on reward and accuracy, the resulting decision cri-
terion will be intermediate between the reward- and the
accuracy-maximizing criteria. We instantiate this process
with a simple weighting function, k = wka + (1 2 w)kr,
where w (0 # w # 1) denotes the weight placed on accu-
racy. This weighting function results in a single decision
criterion that is intermediate between that for accuracy
maximization and that for reward maximization.3 For ex-
ample, in Figure 6, k1 denotes a case in which w , .5,
whereas k2 denotes a case in which w . .5. An accuracy
weight of w , .5 might correspond to a situation in which
feedback is based on the optimal classifier, and an accu-
racy weight of w . .5 might correspond to a situation in
which feedback is based on the objective classifier.

Framework for a Hybrid Model
Maddox and Dodd (2001) developed a hybrid model of

decision criterion learning that incorporated both the flat-
maxima and the COBRA hypotheses. To facilitate devel-
opment of the model, consider the following equation that
determines the decision criterion used by the observer on
condition i trials (ki):

(5)

The model assumes that the decision criterion used by the
observer to maximizeexpected reward (kr) is determined by
the steepness of the objective reward function (see Figures
3–5). A single steepness parameter is estimated from the
data that determines a distinct decision criterion in every
condition for which the steepness of the objective reward
functiondiffers. The accuracy-maximizingdecisioncrite-
rion, ka, is associated with the equal likelihood criterion.
Before each experimental condition, the observer is pre-
trained on the category structures in a baseline condition
with equal payoffs (described in the Method section),
which pretrains the accuracy-maximizing decision crite-

k wk w ki a r- + -( )1 .

Figure 6. Schematic illustration of the competition between reward and accuracy
(COBRA) hypothesis. The reward-maximizing criterion is denoted by kro. The accuracy-
maximizing criterion is denoted by kao. Criterion k1 represents a criterion that results if the
subject places more weight on reward than on accuracy (i.e., w < .5), whereas criterion k2 rep-
resents the case in which accuracy is more heavily weighted than reward (i.e., w > .5).
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rion. This criterion is then entered into the weighting func-
tion, along with the observer’s estimate of the reward-
maximizing decision criterion, to determine the criterion
used on each trial. The COBRA hypothesis is instantiated
in the hybrid model by estimating the accuracy weight, w,
from the data.

It is important to make a clear distinction between pre-
dictions that can be derived mathematically from the the-
ory and those that are not based on a mathematical de-
rivation but, instead, are based on a body of empirical
evidence or on a sensible assumption. All predictions as-
sociated with the flat-maxima hypothesis are mathemati-
cally derived. For example, as is suggested by Figures
3–5, k 2 ko is smaller for d¢ = 2.2 than for d¢ = 1.0 and is
smaller for steep than for shallow payoff matrices. The
COBRA prediction that the observed decision criterion
must fall somewhere between the accuracy-maximizing,
b 5 1 criterion and the reward-maximizing decision cri-
terion derived from the flat-maxima hypothesis is also
mathematically derived (Equation 5). On the other hand, it
is reasonable to assume (and test) the hypothesis that de-
cision criterion learning is worse when negative costs are
present or for objective classifier feedback, but these pre-
dictions are not derivable mathematically.

All of the models developed in this article are based on
the decision bound model in Equation 4. Each model in-
cludes two noise parameters (one for d¢ = 1.0 and one for
d¢ = 2.2) that represent the sum of perceptual and criterial
noise (Ashby, 1992a; Maddox & Ashby, 1993). Each

model assumes that the observer has accurate knowledge
of the category structures [i.e., lo(xpi)]. To ensure that this
was a reasonable assumption, each observer completed a
number of baseline trials and was required to meet a strin-
gent performance criterion (see the Method section). Fi-
nally, each model allows for suboptimal decision criterion
placementwhere the decision criterion is determined from
the flat-maxima hypothesis, the COBRA hypothesis, or
both following Equation 5. To determine whether the flat-
maxima and the COBRA hypotheses are important in ac-
countingfor each observer’s data, we developedfour mod-
els. Each model makes different assumptions about the kr
and w values. The nested structure of the models is pre-
sented in Figure 7, with each arrow pointing to a more
general model and models at the same level having the
same number of free parameters. The number of free pa-
rameters (in addition to the noise parameter described
above) is presented in parentheses. (The details of the
model-fittingprocedureare outlined in the Results section.)

The optimal model instantiates neither the flat-maxima
nor the COBRA hypothesis. It assumes that the decision
criterion used by the observer to maximize expected re-
ward is the optimal decision criterion (i.e., kr = ko) and that
there is no competition between reward and accuracy
maximization (i.e., w = 0). The flat-maxima model in-
stantiates the flat-maxima hypothesis,but not the COBRA
hypothesis, by assuming that the decision criterion used
by the observer to maximize expected reward (kr) is de-
termined by the steepness of the objective reward func-

Figure 7. Nested relationship among the decision bound models applied simultane-
ously to the data from all experimental conditions. Each arrow points to a more gen-
eral model. Note: All models assume two free noise parameters (one per d ¢ ).
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tion, as in Figures 3–5, and that there is no competitionbe-
tween reward and accuracy maximization (i.e., w = 0). A
single steepness parameter is estimated from the data. The
flat-maxima model contains the optimal model as a spe-
cial case. The COBRA model instantiates the COBRA hy-
pothesis, but not the flat-maxima hypothesis by assuming
that kr = ko, while allowing for a competition between re-
ward and accuracy maximization by estimating the Equa-
tion 5 w parameter from the data. This model contains the
optimal model as a special case. The hybrid(w) model in-
stantiates both the flat-maxima and the COBRA hypothe-
ses by assuming that kr is determined by the steepness of
the objective reward function and that there is a competi-
tion between accuracy and reward maximization. This
model contains the previous three models as special cases.
Three more general versions of the hybrid model were
applied to the data to test specific predictions.The hybrid
(wObjective ; wOptimal) model estimated two accuracyweights:
One was applied to all objective classifier feedback con-
ditions, and the other to all optimal classifier feedback
conditions.This model was developed to test the main pre-
diction that optimal classifier feedback leads to better
decision criterion learning by reducing the weight placed
on accuracy maximization. The hybrid (wObjective/d ¢=1.0;
wOptimal/d¢=1.0; wObjective/d ¢=2.2; wOptimal/d ¢=2.2) model esti-
mated four accuracy weights: one for the objective classi-
fier feedback/d¢ = 1.0 conditions,a second for the optimal
classifier feedback/d¢ = 1.0 conditions, a third for the ob-
jective classifier feedback/d¢ = 2.2 conditions,and a fourth
for the optimal classifier feedback/d ¢ = 2.2 conditions.
This model was developed to test the prediction that theef-
fect of optimalclassifier feedback, relative to objectiveclas-
sifier feedback,would be larger for d¢ = 1.0 than for d¢ = 2.2.
Finally, the hybrid(8w) model estimated the same four ac-
curacy weightsas thoseoutlinedin the hybrid(wObjective/d¢=1.0;
wOptimal/d¢=1.0; wObjective/d ¢=2.2; wOptimal/d¢=2.2) model but esti-
mated one set of four accuracy weights for the steep pay-
off matrix multiplication conditions and a separate set of
four weights for the shallow payoff matrix multiplication
conditions,yieldinga totalof eight accuracyweights. Since
we did not predict an interaction between payoff matrix
multiplication and feedback condition, we did not expect

this model to provide a statistically significant improve-
ment in fit over the more restricted hybrid(wObjective/d ¢=1.0;
wOptimal/d ¢=1.0; wObjective/d ¢=2.2; wOptimal/d ¢=2.2) model.

EXPERIMENT

The overriding goal of this experiment was to examine
the differentialeffects of objective-versus optimal-classifier
feedback on decision criterion learning in 3:1 zero-cost
and 3:1 negative-cost conditionsat two levels of category
discriminability for two payoff matrix multiplication fac-
tors. Each observer completed 16 perceptual categoriza-
tion tasks constructed from the factorial combinationof 2
types of feedback (optimal classifier and objective classi-
fier) with 2 payoff matrix subtraction conditions(3:1 zero
cost and 3:1 negativecost), 2 levels of d¢ (1.0 and 2.2), and
two payoff matrix multiplication conditions (multiplica-
tion by a factor of 1 or 6). Each task consisted of three
120-trial blocks of training in which trial-by-trial feedback
was based on the optimal classifier or the objective clas-
sifier, followed by a 120-trial test block, during which
feedback was omitted. Table 1 displays the payoff matrix
values, optimal points, optimal accuracy, and optimal de-
cision criterion value for each experimental condition for
a single block of trials.

Method
Observers

Eight observers were recruited from the University of Texas com-
munity. All observers claimed to have 20/20 vision or vision cor-
rected to 20/20. Each observer completed 16 sessions, each of which
lasted approximately 60 min. Monetary compensation was based on
the number of points accrued across the whole experiment.

Stimuli and Stimulus Generation
The stimulus was a filled white rectangular bar (40 pixels wide)

presented on the black background of a computer monitor. The bar
rested upon a stationary base (60 pixels wide) that was centered on
the screen, and bar height varied from trial to trial. There were two
categories, A and B, whose members were sampled from separate
univariate normal distributions. The sampled values determined the
height of each presented bar stimulus. Category mean separation
was 21 and 46 pixels for d¢ = 1.0 and d¢ = 2.2 conditions, respec-
tively. The standard deviation was 21 pixels for each category. Sev-

Table 1
Category Payoff Matrix Entries, Points, Accuracy, and Optimal Decision

Criterion Value (Based on 120-Trial Blocks) for Each Experimental Condition

Payoff Matrix Entries

Condition VaA VbB VbA VaB Points Accuracy bo

d ¢ = 1.0
3:1 zero-cost/shallow 3 1 0 0 186 60.99 3
3:1 negative-cost/shallow 2 0 21 21 66 60.99 3
3:1 zero-cost/steep 18 6 0 0 1116 60.99 3
3:1 negative-cost/steep 12 0 26 26 396 60.99 3

d ¢ = 2.2
3:1 zero-cost/shallow 3 1 0 0 212 82.94 3
3:1 negative-cost/shallow 2 0 21 21 92 82.94 3
3:1 zero-cost/steep 18 6 0 0 1272 82.94 3
3:1 negative-cost/steep 12 0 26 26 552 82.94 3
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eral random samples of a size of 60 were taken from each distribu-
tion, and the samples that best reflected the population means, stan-
dard deviations, and objective reward function were selected to yield
a set of 120 unique stimuli for each level of d¢.

Procedure
Prior to the first experimental session, the observers were informed

that they would be participating in a series of simulated medical diag-
nosis tasks and that, on each trial of the experiment, they would see
a bar graph presented on the computer screen. They were told that
the bar represented the result of a hypothetical medical test that was
predictive of two possible diseases and that their job was to try to di-
agnose the patient on the basis of this test result (i.e., the height of
the bar). The observers were told that each trial represented the test
result for a new patient and that they would earn a certain number of
points for each trial, depending on how they responded. They were
instructed to try to maximize their point total over the course of the
experiment, since this would determine their monetary compensation.

The order of presentation for the 16 experimental conditions was
determined by Latin square, and the observers completed one ex-
perimental condition during each daily session. To teach the ob-
servers the category distributions prior to any payoff manipulation,
as well as to minimize carryover effects, each experimental condi-
tion was preceded by the completion of a minimum of 60 baseline
trials, in which category costs and benefits were unbiased (i.e., VaA =
2, VbB = 2, VbA = 0, and VaB = 0) and the feedback and category dis-
criminability matched that of the ensuing experimental condition.
After completing 60 baseline trials, performance was examined. If
the observer reached an accuracy-based performance criterion (re-
sponse accuracy not more than 2% below optimal), those 60 trials
were fit by two decision bound models (see Maddox & Bohil, 1998,
for details). The optimal decision criterion model assumed that the
observer used the optimal decision criterion (i.e., bo = 1) in the pres-
ence of perceptual and criterial noise (explained in the Results and
Theoretical Analyses section below), whereas the free decision cri-
terion model estimated the observer’s decision criterion, along with
perceptual and criterial noise, from the data. Because the optimal
decision criterion model is a special case of the free decision crite-
rion model, likelihood ratio tests were used to determine whether the
extra flexibility of the free decision criterion model provided a sig-
nificant improvement in fit. If the free decision criterion model did
not provide a significant improvement in fit over the optimal deci-
sion criterion model, the observer was allowed to begin the experi-
mental condition. If the free decision criterion model did provide a
significant improvement in fit, the observer completed 10 additional
trials, and the same accuracy-based and model-based criteria were
applied to the most recent 60 trials (i.e., Trials 11–70). This proce-
dure continued until the observer reached the appropriate criterion.
Including these baseline trials and these fairly conservative accuracy-
based and model-based performance criteria ensured that each ob-
server had accurate knowledge of the category structures before ex-
posure to the payoff manipulation and minimized the possibility of
within-observers carryover effects from one experimental condition
to the next. In addition, a different set of disease (i.e., category) la-
bels was used in each experimental condition.

A typical trial proceeded as follows. The stimulus was presented
on the screen and remained until a response was made. The ob-
servers were instructed to categorize each stimulus by pressing the
appropriate button on the keyboard. Five lines of feedback, which
stayed on the screen until the observer pressed a key to move on to
the next patient, followed each response. Figure 1 presents hypothet-
ical feedback displays for optimal classifier and objective classifier
feedback conditions. The top line of feedback indicated the disease
possessed by the hypothetical patient (instead of the categorization
response, which was depicted in Figure 1 for illustrative purposes).
Fictitious disease names were used (e.g., “valinemia” or “brucel-
losis”), and a different pair of disease labels accompanied each ex-

perimental condition. The second line indicated the number of
points gained or lost for the given response. In objective feedback
conditions, the third line displayed the potential gain for a (objec-
tively) correct response on the trial. In other words, if the observer’s
response was correct on the basis of a priori category membership,
lines two and three of the feedback presented the same number of
points. If the observer’s response was incorrect, the third line showed
what could have been earned had a correct response been given. In
optimal classifier feedback conditions, however, the third line of
feedback presented the number of points that the optimal classifier
earned. In this case, if the observer made an (objectively) incorrect
response on the basis of a priori category membership of the stimu-
lus but gave the correct response in relation to the optimal criterion,
both the observer and the optimal classifier would be incorrect for
that trial, and lines two and three would present the same number of
points gained or lost (see Figure 1). The fourth line showed the num-
ber of points that the observer had accumulated to that point in the
experimental condition, and the fifth line showed the number of
points accrued by the objective or the optimal classifier, depending
on feedback condition. There was a 125-msec intertrial interval, dur-
ing which the screen was blank, between removal of the feedback
and presentation of the next stimulus. The observers were given a
break every 60 trials, during which the monitor displayed their ac-
cumulated point total for the condition and the optimal point total
(i.e., the point total that the optimal classifier would earn in the ex-
perimental condition).

Results and Theoretical Analysis
Before we turn to the model-basedanalyses, a few words

are in order regarding some basic trends in the signal de-
tection theory decisioncriterion estimates (Green & Swets,
1966), point totals, and accuracy rates.

Performance Trends
Because decision criterion estimates, points, and accu-

racy are each measured on a different scale, we trans-
formed each of these measures onto a common scale that
allowed us to compare the observer’s performance with
that of the optimal classifier. Specifically, we computed
the following three measures:

deviation from optimal decision criterion

= k – ko = ln(b)/d¢ 2 ln(bo)/d¢, (6)

deviation from optimal points

(7)

and

deviation from optimal accuracy

(8)

The k – ko values (averaged across blocks) are displayed
separately for each of the 16 experimental conditions and
observers in Table 2. A 2 feedback (objectiveclassifier vs.
optimal classifier) 3 2 category discrminability (d¢ = 1.0
vs. 2.2) 3 2 payoff matrix subtraction (zero-cost vs. neg-
ative cost) 3 2 payoff matrix multiplication (multiplica-
tion by a factor of 1 vs. 6) 3 4 block ANOVA was con-
ducted separately on the decision criterion, point, and

= -
-

(observed accuracy optimal accuracy)
(optimal accuracy)

.

= -
-

(observed points optimal points)
(optimal points points for 0%)

,
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accuracy deviation scores. We predicted a main effect of
feedback type and a feedback type 3 category d¢ interac-
tion in which the magnitude of the feedback effect was
predicted to be larger for d¢ = 1.0 than for d¢ = 2.2. The
main effect of feedback type was significant for the deci-
sion criterion measure [F(1,7) = 7.29, MSe = 3.63, p ,
.05], was significant at the p = .08 level for the point mea-
sure [F(1,7) = 4.09, MSe = 0.01, p = .08], but was non-
significant for the accuracy measure. The feedback type 3
category d¢ interaction was significant for both the deci-
sion criterion and the point measures [decision criterion,
F(1,7) = 10.13,MSe = 0.36, p , .05; point, F(1,7) = 10.56,
MSe = 0.01, p , .05] and revealed a larger feedback effect
for d¢ = 1.0 than for d¢ = 2.2. This effect can be seen graph-
ically in Figure 8, which depicts the decision criterion,
point, and accuracy measures for objective and optimal
classifier feedback separately for the two levels of cate-
gory d¢ and payoff matrix subtraction.We predicteda main
effect for payoff matrix subtraction, with better perfor-
mance being predicted in the zero-cost conditions.This ef-
fect was significant only for the point measure [F(1,7) =
7.83, MSe = 0.002, p , .05] but was qualified by a signif-
icant payoff matrix subtraction 3 category d¢ interaction
for the decision criterion measures [decision criterion,
F(1,7) = 6.51, MSe = 0.03, p , .05] and a significant in-
teraction at the p = .09 level for the pointmeasure [F(1,7) =
3.75, MSe = 0.002,p = .09]. Similar to the feedback type 3
category d¢ interaction,the payoff matrix subtraction3 cat-
egory d¢ interaction revealed a larger effect of payoff ma-
trix subtraction for d¢ = 1.0 than for d¢ = 2.2, with worse
performance resulting for the negative-cost conditions.
This result is depicted in Figure 8. We also predicted a
main effect of category d¢ in which performance was pre-
dicted to be closer to optimal for d¢ = 2.2 than for d¢ = 1.0.
This effect was significant for all three performance mea-
sures and is depictedin Figure 8 [decisioncriterion,F(1,7) =

186.86,MSe = 0.16, p , .001; point,F(1,7) = 45.83,MSe =
0.01, p , .001; accuracy, F(1,7) = 37.49, MSe = 0.02, p ,
.001]. Finally, we predicted a main effect of payoff matrix
multiplication,which was observed for the decision crite-
rion and point measures [decision criterion, F(1,7) =
13.76, MSe = 0.05, p , .01; point: F(1,7) = 6.34, MSe =
0.003, p , .05]. As was predicted, performance was
closer to optimal when the payoff matrix multiplication
factor was 6 (deviation from optimal decision criterion =
2.51; deviation from optimal points = 2.057) than when
the payoff matrix multiplication factor was 1 (deviation
from optimal decision criterion = 2.58; deviation from
optimal points = 2.069). A main effect of block was also
observed for the decision criterion and point measures
[decision criterion, F(3, 21) = 4.68, MSe = 0.09, p , .05;
point,F(3, 21) = 3.49, MSe = 0.003,p , .05]. Performance
gradually improved across the three training blocks, then
showed a small decrement in performance in the final test
block. We speculated that an interactionmight emerge be-
tween feedback type and payoff matrix subtraction,but an
interactionwas not found for any of the three performance
measures. Other interaction effects were observed, but
these rarely held for more than one performance measure
and were not of theoretical interest.

These ANOVA results provide good initial support for
the many predictionsoutlined in the introductionand pro-
vide a foundation for the stronger model-based analyses
that we turn to next.

Model-Based Analyses
Each of the models shown in Figure 7 was applied si-

multaneously to the data from all 16 experimental condi-
tions separately for each block and observer. Each block
consisted of 120 experimental trials, and the observer was
required to respond “A” or “B” for each stimulus. Thus,
each model was fit to a total of 1,920 response probabili-

Table 2
Deviation From Optimal Decision Criterion (k – ko) for Each

of the 16 Experimental Conditions and 8 Observers (Averaged Across Blocks)

Observer

d¢ Decision Criterion Condition 1 2 3 4 5 6 7 8

1.0
objective 3:1 zero-cost/shallow 21.00 20.99 20.99 21.08 21.09 20.51 20.87 21.41

3:1 negative-cost /shallow 20.95 21.05 21.06 21.14 21.13 20.65 21.11 21.32
3:1 zero-cost/steep 21.03 20.65 21.01 20.93 20.85 20.38 21.01 21.17
3:1 negative-cost /steep 21.02 20.69 20.77 20.88 21.00 20.45 21.03 21.15

optimal 3:1 zero-cost/shallow 20.90 20.71 20.30 20.28 21.07 20.39 20.71 0.20
3:1 negative-cost /shallow 20.97 20.71 20.46 20.36 20.37 20.43 20.53 20.58
3:1 zero-cost/steep 20.73 20.80 20.27 20.49 20.38 20.54 20.85 20.13
3:1 negative-cost/steep 20.91 20.88 21.08 20.54 20.99 20.40 20.73 20.32

2.2
objective 3:1 zero-cost/shallow 20.21 20.33 20.40 20.14 20.32 0.04 20.45 20.25

3:1 negative-cost/shallow 20.20 20.45 20.59 20.50 20.34 0.08 20.57 0.04
3:1 zero-cost/steep 20.19 20.13 20.32 20.20 20.41 20.20 20.27 20.20
3:1 negative-cost /steep 20.29 20.09 20.32 20.36 20.33 0.08 20.10 20.29

optimal 3:1 zero-cost/shallow 20.35 20.43 20.10 20.48 20.36 20.13 20.45 20.10
3:1 negative-cost /shallow 20.34 20.46 20.42 20.32 20.17 20.08 20.22 20.33
3:1 zero-cost/steep 20.33 20.26 20.17 20.21 20.33 20.12 20.32 20.10
3:1 negative-cost /steep 20.39 20.12 20.33 20.43 20.15 20.01 20.13 0.02
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ties from each block (120 trials 3 16 conditions). Maxi-
mum likelihood procedures (Ashby, 1992b; Wickens,
1982) were used to estimate the model parameters, and
likelihoodratio (G2) tests were used to determine whether
a more general model provided a significant improvement
in fit (with a = .05) over a more restricted, nested model.4
Because the models were applied separately to each block
of trials, we could identify the model with the fewest free
parameters that could not be improved upon (statistically)
by a more general model, referred to as the most parsi-
monious model, for each observer in each block.However,
our interest was in identifying the most parsimonious
model overall for each observer. Since decision criterion
shifts across trials are likely large early in learning but are

much smaller later in learning and during the test block,
we decided to determine the most parsimonious model
from the final training block and the test block. Thus, the
G2 tests were based on the fit of each model summed over
the last two blocks. (Using the cumulative fit across all
four blocks did not change the overall pattern of results.)
Even so, we do examine the parameter values separately
for each block in order to better characterize decision cri-
terion changes with experience.

On the basis of likelihood ratio (G2) tests of the maxi-
mum likelihood f it values, the hybrid(wObjective/d ¢=1.0;
wOptimal/d¢=1.0; wObjective/d ¢=2.2; wOptimal/d¢=2.2) model that pre-
dicted an interaction between the type of feedback and
category d¢ in the weight placed on accuracy maximiza-

Figure 8. Deviation from optimal decision criterion (top panel), points (mid-
dle panel), and accuracy (bottom panel) for the objective and optimal classifier
feedback conditions by zero versus negative cost and category d ¢ condition av-
eraged across payoff matrix multiplication, block, and observer. Standard
error bars are included.
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tion provided the most parsimonious account of the data
from 4 of the 8 observers. The hybrid(w) model that as-
sumed a fixed accuracy weight in all conditionswas most
parsimonious for 2 of the 8 observers, and the hybrid(8w)
model that assumed a three way interaction between the
type of feedback, category d¢, and payoff matrix multipli-
cation was most parsimonious for the remaining 2 ob-
servers. The fact that the hybrid models were superior for
all 8 observers suggests that both hypotheses—the flat-
maxima and the COBRA hypotheses—are necessary to
provide an adequate account of human decision criterion
learning. The relatively poor showing of the most general
hybrid(8w) model supports the prediction that payoff ma-
trix multiplication does not interact with the effects of
feedback type and category d¢. It also suggests that the
models are capturingmeaningful trends in the data and are
not just over-fitting the data, as one might expect when the
most general model provides a consistently superior ac-
count of the data. The strong showing for the hybrid
(wObjective/d¢=1.0; wOptimal/d ¢=1.0; wObjective/d ¢=2.2; wOptimal/d¢=2.2)
model suggests that an interactiondid emerge between the
type of feedback and category d¢.

To determine how the observer’s estimate of the reward-
maximizing decision criterion changed across blocks, we
examined the steepness parameters from the hybrid
(wObjective/d¢=1.0; wOptimal/d ¢=1.0; wObjective/d ¢=2.2; wOptimal/d¢=2.2)
model. These values are displayed in the top panel of Fig-
ure 9. To determine the magnitude of the weight placed
on accuracy, how it was affected by the nature of the feed-
back and category d¢, and how it changed across blocks,
we examined the accuracy weight, w, parameters from
the hybrid(wObjective/d ¢=1.0; wOptimal/d ¢=1.0; wObjective/d ¢=2.2;
wOptimal/d ¢=2.2) model. These values are displayed in the
bottom panel of Figure 9. A one-way ANOVA on the
steepness values suggested no effect of block. A 2 feed-
back type (objective classifier vs. optimal classifier) 3 2
category discriminability(d¢ = 1.0 vs. d¢ = 2.2) 3 4 block
ANOVA was conducted on the accuracy weight values.
Several results stand out. First, there was a main effect of
feedback type [F(1,7) = 5.50, MSe = 0.13, p = .05], re-
vealing a smaller accuracy weight for optimal classifier
feedback (w = .46) than for objective classifier feedback
(w = .60). Second, there was a main effect of category d¢
[F(1,7) = 15.62, MSe = 0.07, p , .01], revealing a smaller
accuracy weight for d¢ = 2.2 (w = .44) than for d¢ = 1.0
(w = .62). Third, there was a feedback type 3 block in-
teraction [F(3,21) = 3.80, MSe = 0.02, p , .05] that sug-
gested a gradual decline in the accuracy weight across
training blocks (which did not hold into the test block) for
optimal classifier feedback, but not for objective classi-
fier feedback. This is an important findingbecause it sug-
gests that observers became more willing to sacrifice ac-
curacy as they gained experience with the task when
feedback was based on the optimal classifier. Perhaps,
given enough exposure to optimal classifier feedback, ob-
servers could eventually learn to completely sacrifice ac-
curacy maximization, like the optimal classifier. Fourth,
the most striking finding from an examination of Fig-

ure 9B was that the weight placed on accuracy was (sta-
tistically) equivalent in the d¢ = 1.0 and d¢ = 2.2 optimal
classifier feedback conditions and the d¢ = 2.2 objective
classifier conditionbut was significantly larger in the d¢ =
1.0 objective classifier condition. This finding supports
the prediction that the effect of optimal classifier versus
objective classifier feedback should be greatest when the
accuracy sacrifice necessary to maximize reward was
large. Finally, it is important to note that the fit of the
model was quite good with the hybrid(wObjective/d ¢=1.0;
wOptimal/d ¢=1.0; wObjective/d ¢=2.2; wOptimal/d ¢=2.2) model, ac-
counting for 85.7%– 93.0% of the responses in the data
from the 8 observers.

Two Alternative Explanations
The good fit of the hybrid(wObjective/d¢=1.0; wOptimal/d ¢=1.0;

wObjective/d¢=2.2; wOptimal/d¢=2.2) model to each observer’s data
supports the claim that optimal classifier feedback leads
observers to sacrifice accuracy in the interest of reward
maximization. Even so, at least three alternative explana-
tions are available (we are indebted to Ido Erev [August,
2002, personal communication] for suggesting these al-
ternatives). We outline and address each in turn.

Release from equal category response frequency
hypothesis. As was outlined earlier, conservative cutoff
placement is commonly observed when either base rates
or costs–benefits are manipulated. One possibility is that
observers have a tendency to be fair and unbiased in their
responding. Specifically, observers have a bias to give
each categorization response with equal frequency and,
thus, are biased toward b = 1. Optimal classifier feedback
might “release” observers from this bias, allowing them to
generate one response more than the other and leading to
more nearly optimal decision criterion learning. When
costs and benefits are manipulated, as in the present ex-
periment, the equal response frequency decision criterion
and the accuracy-maximizing decision criterion are iden-
tical and are set at b 5 1. Since the release from equal cat-
egory response frequency hypothesis assumes that opti-
mal classifier feedback allows the observer to shift away
from b 5 1 and since COBRA assumes that optimal clas-
sifier feedback leads the observer to place less weight on
accuracy maximization, both hypotheses make identical
predictions. However, when category base rates are un-
equal, the two hypotheses make different predictions.
When base rates are manipulated, the equal response fre-
quencydecision criterion is set at b 5 1, but the accuracy-
and reward-maximizing decisioncriteria are identical and
are set at b 5 3. Thus, the release from equal category re-
sponse frequency hypothesis continues to predict better
decisioncriterion learning for optimal classifier feedback,
whereas the COBRA hypothesis predicts no effect of opti-
mal versus objective classifier feedback on decision crite-
rion learning,because theaccuracy-and reward-maximizing
decision criteria are identical, effectively eliminating com-
petition (see Maddox & Bohil, 1998, for a detailed dis-
cussion). To summarize, the release from equal category
response frequency hypothesis predicts better decision
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criterion learning with optimal classifier feedback relative
to objective classifier feedback for 3:1 cost–benefit con-
ditionsand 3:1 base rate conditions.COBRA, on the other
hand, predicts better decision criterion learning with op-
timal classifier feedback relative to objective classifier
feedback for 3:1 cost–benefit conditions, but no perfor-
mance difference across optimal and objective feedback
types for 3:1 base rate conditions.

As a test of these hypotheses,we collecteddata from 40
observers who each completed one session (i.e., a mini-
mum of 60 baseline trials, followed by three 120-trial
blocks of training, and one 120-trial test block) in a 3:1
base rate condition. Ten observers participated in each of
four conditions constructed from the factorial combina-
tion of optimal versus objective classifier feedback with
d ¢ = 1.0 versus d ¢ = 2.2. Because we used a between-
observers design, the models shown in Figure 7 could not
be applied to the data. Even so, we examined the deviation
from optimal decision criterion (k 2 ko) values from the

3:1 base rate study and compared these values with those
observed in the 3:1 zero-cost/shallow payoff matrix from
the experiment outlined above (within-observers design)
and with those observed in Maddox and Bohil’s (2001)
Experiment 1 (between-observers design). These values
are displayedgraphically in Figure 10, averaged across the
final two blocks (i.e., the final training block and the test
block) and d¢ levels. The most important finding was the
performance advantage for optimal classifier feedback,
relative to objective classifier feedback, in the two 3:1
payoff experiments that was not observed in the 3:1 base
rate condition.This pattern of results supports the COBRA
hypothesis over the release from equal category response
frequency hypothesis.

A related hypothesis can be developed that assumes a
competition between reward maximization and probabil-
ity matching instead of a competitionbetween reward and
accuracy maximization (COBRA). Equation 5 instantiates
the hypothesis that there is a competition between reward

Figure 9. (A) Steepness values and (B) accuracy weight, w, values from the
hybrid(wObjective/d ¢=1.0; wOptimal/d ¢=1.0; wObjective/d¢=2.2; wOptimal/d ¢=2.2) model for the
three training blocks and the test block, averaged across observers. Standard
error bars are included.
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and accuracy maximization, with the reward-maximizing
decision criterion being determined from the objective re-
ward function and the accuracy-maximizing decision cri-
terion being set at ka = 0 in a cost–benefit condition or at
ka = kr in a base rate condition. An alternative hypothesis
is that there is a competition between reward maximiza-
tion and probability matching in which ka in Equation 5
would be replaced with km, which denotes the decision cri-
terion associated with probability matching. In a cost–
benefit condition, km = ka, since probability matching is
associated with the decision criterion that yields equal re-
sponse frequencies. In a base rate condition, on the other
hand, km Þ ka, and instead, km is determined from the base
rate ratio and category discriminability. Thus, the COBRA
and the probability matching hypotheses make identical
predictions in cost–benefit conditions but make different
predictionsin base rate conditions.[Note that thisprobability-
matching hypothesis is not an alternative to the hypothe-
sis that more weight is placed on reward maximization
when feedback is based on the optimal classifier but,
rather, is an alternative to the accuracy maximizationcom-
ponent of COBRA.]

A rigorous comparison of these two hypotheses is be-
yond the scope of this article, because it would require that
each observer participate in unequal cost–benefit and un-
equal base rate conditions. If data of this sort were avail-
able, each model could be applied simultaneously to the
data from the cost–benefit and the base rate conditions
separately for each observer. Despite the fact that the req-
uisite data are unavailable,we decided to undertake a very
preliminary comparison of the two hypotheses. Our ap-
proach was as follows. First, we averaged the kr and
four w values estimated from the hybrid(wObjective/d ¢=1.0;
wOptimal/d ¢=1.0; wObjective/d ¢=2.2; wOptimal/d ¢=2.2) model across
the 8 observers and across the final training block and the
test block of the experiment described above. Second,
holding these values constant, we generated predicted de-
cision criterion values for the 3:1 base rate condition out-

lined in the previous section from the Equation5 COBRA
model with ka (i.e., where ka = kr) and the Equation 5
probability-matchingmodelwith km. Third,we comparedthe
predicted decision criterion values averaged across d¢ =
1.0 and 2.2 with the values displayed in Figure 10 (also
averaged across the two d¢ conditions). The observed k 2
ko values (taken from Figure 10) are presented in Table 3,
along with the predictions from the Equation 5 COBRA
model and the Equation 5 probability-matching model.

Several comments are in order. First, neither model pro-
vides a good account of the data, with both models pre-
dicting greater suboptimality in decision criterion place-
ment than was observed. Second, in line with the data, the
Equation 5 COBRA model predicts no effect of optimal
versus objectiveclassifier feedback,whereas the Equation5
probability-matchingmodel predicts an effect that is some-
what counterintuitive, predicting slightly more optimal
decision criterion placement for the objective classifier
feedback.Thispatternwas observedbecause the probability-
matching decision criterion, km, was closer to optimal than
was the estimated reward-maximizing decision criterion,
kr. We hesitate to draw strong conclusions from this find-
ing, since it is likely due to that fact that we are estimating
parameters from one set of observers and are predicting the
data from a separate set of observers and it is very possible
that one set of observers learned the reward-maximizing
decisioncriterion better than did the otherset of observers.

Table 3
Deviation From Optimal Decision Criterion (k 2 ko) From the

3:1 Base Rate Experiment and Objective Classifier Versus
Optimal Classifier Feedback (Displayed in Figure 10), Along

With Predictions From the Equation 5 COBRA Model
and the Equation 5 Probability-Matching Model

Equation 5 Equation 5
Classifier Observed COBRA Probability Matching

Objective 20.37 20.65 20.51
Optimal 20.36 20.65 20.55

Figure 10. Deviation from optimal decision criterion (k 2 ko) from the 3:1 base rate,
between-observers design, 3:1 zero-cost/shallow payoff matrix, between-observers de-
sign (Maddox & Bohil, 2001, Experiment 1), and 3:1 zero-cost/shallow payoff matrix,
within-observers design, averaged across d ¢, the final training and test block, and ob-
servers.
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Taken together, these analyses do not provide strong sup-
port for one model over the other, althoughthe results pro-
vide somewhat stronger support for the COBRA model,
since it predicts no effect of objective versus optimal clas-
sifier feedback, as was observed in the data, whereas the
probability-matching model does predict an effect. Even
so, additionalexperimental work is needed in which cost–
benefits and base rates are manipulated simultaneously
within a single study and each model is applied simulta-
neously to the data from both conditions.

Criterion placementvariabilityhypothesis. A second
alternative explanation is that optimal classifier feedback
reduces overreaction to the objective feedback. Because
the objective classifier is, by definition, correct on 100%
of the trials, and since no decision criterion exists that can
achieve this level of performance, in hill-climbing (e.g.,
Busemeyer & Myung, 1992) and error correction models
(e.g., Erev, 1998;Erev, Gopher, Itkin, & Greenshpan, 1995;
Roth & Erev, 1995), the errors for objectiveclassifier feed-
back mightbeunderstoodas indicativeof a need to continue
adjusting the decision criterion. Although it is unclear
why this would always lead to greater conservatism in cut-
off placement for objective classifier, relative to optimal
classifier, feedback, we tested this notion in two ways.
First, we compared the fit of the hybrid(wObjective/d ¢=1.0;
wOptimal/d ¢=1.0; wObjective/d ¢=2.2; wOptimal/d ¢=2.2) model with
four accuracy weights and two criterion variability para-
meters (one for d¢ = 1.0 and another for d¢ = 2.2) with an-
other version of the hybrid model that assumed two accu-
racy weights (one for d¢ = 1.0 and another for d¢ = 2.2) and
four criterion variability parameters (d ¢ = 1.0/objective,
d¢ = 1.0/optimal,d¢ = 2.2/objective,d¢ = 2.2/optimal).Note
that the former model assumes that the nature of the feed-
back affects the accuracy weights (i.e., the COBRA hy-
pothesis), whereas the latter model assumes that the type
of feedback affects variability in criterion placement (i.e.,
the criterion placement variabilityhypothesis).Note, also,
that both models contain the same number of parameters.
For 6 of 8 observers the hybrid model with four accuracy
weights outperformed the four criterion placement vari-
ability model, suggesting that the effect of feedback type
was bettermodeled by a difference in the weight placed on
accuracy maximization than by a difference in criterion
placement variability. Even so, the criterion placement
variability estimates suggested greater variability in crite-
rion placement for objective classifier feedback relative
to optimal classifier feedback.Second, to determinewhether
there might be increased variability for objectiveclassifier
feedback in addition to greater weight being placed on ac-
curacy, we compared thehybrid(wObjective/d¢=1.0; wOptimal/d ¢=1.0;
wObjective/d ¢=2.2; wOptimal/d ¢=2.2) model with four accuracy
weights and two criterion variability parameters with a
more general model that assumed the same four accuracy
weights and four criterion variability parameters (d ¢ =
1.0/objective, d¢ = 1.0/optimal, d ¢ = 2.2/objective, d ¢ =
2.2/optimal). For 5 of 8 observers, the latter model pro-
vided a statistically significant improvement in fit (based
on G2 tests), providing some support for the notion that
objectiveclassifier feedback leads to greater variability in

criterion placement, in addition to a reduction in the weight
placed on accuracy (for related work from the decision-
making literature see Barkan, 2002; Barkan, Zohar, &
Erev, 1998; Gilat, Meyer, Erev, & Gopher, 1997).

GENERAL DISCUSSION

When the payoff matrix is biased, as in a 3:1 payoff ma-
trix condition, the optimal classifier uses a decision crite-
rion to maximize reward that does not simultaneously
maximize accuracy. Thus, the optimal classifier must sac-
rifice accuracy in order to maximize reward. The magni-
tude of the accuracy sacrifice necessary to maximize re-
ward is strongly affected by category discriminability,
with the magnitudeof the accuracy sacrifice increasing as
discriminability decreases. For example, when category
d ¢ = 1.0, the accuracy sacrifice is from 69% to 61%,
whereas when category d¢ = 2.2, the accuracy sacrifice is
from 86% to 83%. Human observers are unwilling (or un-
able) to sacrifice accuracy to the same degree as the opti-
mal classifier and, thus, use suboptimal decision criteria.
Maddox and Bohil (2001) conducted a study to determine
whether trial-by-trial feedback based on the optimal clas-
sifier would result in better decision criterion learning
than when trial-by-trial feedback was based on the objec-
tive classifier (as in most decision criterion learning stud-
ies) by leading observers to sacrifice accuracy. They ex-
amined decision criterion learning for a 3:1 zero-cost
condition at two levels of category d¢. They found a large
performance improvement for optimal classifier feedback
relative to objective classifier feedback that was larger for
category d¢ = 1.0 than for d¢ = 2.2.

The present study tested the generality of the objective
versus optimal classifier feedback effect by replicatingand
extendingMaddox and Bohil (2001) through the introduc-
tion of two additionalmanipulations, both of which affect
the payoff matrix. The first was a payoff matrix subtraction
manipulation that compared situations in which there was
no loss of points associated with incorrect responding (a
zero-cost payoff matrix) with situations in which there was
an actual loss of points for incorrect responding(a negative-
cost payoff matrix). Previous research (Maddox & Bohil,
2000; Maddox & Dodd, 2001; see also Higgins, 1987;
Kahneman & Tversky, 1979) suggests that decision crite-
rion learning is worse for negative-cost payoff matrices
because observers place more emphasis on accuracy max-
imization when points are lost for incorrect responding.
Thus, optimal classifier feedback should improve decision
criterion learning for negative- and zero-cost conditions.
The second was a payoff matrix multiplicationmanipula-
tion. This was instantiatedby taking the 3:1 zero-cost and
3:1 negative-cost payoff matrices and multiplying each
payoff matrix entry by a factor of 6. Payoff matrix multi-
plication should improve decision criterion learning, be-
cause it leads to a steeper objective reward function, but
should not interact with the nature of the feedback, since
payoff matrix multiplication does not affect the value of
the optimal decision criterion or the magnitude of the ac-
curacy sacrifice associated with reward maximization.
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These predictions were supported by an examination of
performance trends in decision criterion and point esti-
mates and by the applicationof a series of models based on
Maddox and Dodd’s (2001) theory of decision criterion
learning.The deviationfrom optimal decisioncriterion and
the deviation from optimal point measures revealed better
decision criterion learning (1) for optimal classifier feed-
back, especially in the category d¢ = 1.0 conditions,(2) for
zero-cost than for negative cost conditions, especially in
the d¢ = 1.0 conditions, (3) for d¢ = 2.2 than for d¢ = 1.0,
and (4) for payoff matrix multiplicationby a factor of 6 than
by a factor of 1. For all 8 observers, a version of the hybrid
model provided the most parsimoniousaccount of the data,
suggesting that both the flat-maxima and the COBRA hy-
potheses are important in accounting for decision crite-
rion learning. The hybrid (wObjective/d ¢=1.0; wOptimal/d ¢=1.0;
wObjective/d ¢=2.2; wOptimal/d ¢=2.2) model provided the most par-
simonious account of the data from half of the observers
and provided a good overall account of the data (88.2% of
the responses in the data, averaged across all 8 observers).
As was predicted, the accuracy weight parameters from
this model suggested that the weight placed on accuracy
was smaller for optimal than for objective classifier feed-
back and was smaller when the accuracy sacrifice neces-
sary to maximize reward was small (i.e., in the d¢ = 2.2
conditions relative to the d¢ = 1.0 conditions). Interest-
ingly, the accuracy weights associated with optimal classi-
fier feedback declinedmonotonicallyacross the three train-
ing blocks, suggesting a gradual increase in the observer’s
willingness to sacrifice accuracy.

Two alternative hypotheses were also examined. The
first assumes that optimal classifier feedback releases ob-
servers from an a priori bias to generate categorization re-
sponses with approximately equal frequency. This hy-
pothesiswas tested against the COBRA hypothesis, using
data from a 3:1 base rate condition.The results supported
COBRA. The second assumes that objective classifier
feedback leads observers to continue adjusting their deci-
sion criterion even after they have reached the optimal
value, leading to greater criterion placement variability.
This hypothesis did not provide a better account of the
feedback effect when pitted directly against the COBRA
hypothesis. However, there was evidence that optimal
classifier feedback led to a reduction in the weight placed
on accuracy and less criterion variability.

Relations to Other Models
The present models assume that the observer uses a sta-

tic decision criterion in the presence of criterial noise. The
models provide informationabout “average” performance
within a block of trials, and by applying the models sepa-
rately to each block of trials, they provide information
about the effect of learning. This is a useful approach, be-
cause changes in parameter values across blocks of trials
provide useful information regarding the flat-maxima and
COBRA hypotheses.Other models have been proposed in
the literature that model trial-by-trial changes in the deci-
sion criterion. These include, among others, Busemeyer

and Myung’s (1992) hill-climbingmodel and Erev’s (1998)
criterion reinforcement learning (CRL) model (see also
Wallsten & Gonzalez-Vallejo’s, 1994 stochastic judgment
model). These models have important similarities and dif-
ferences that are beyond the scope of this article. For illus-
trative purposes, we focus the present discussion on
Busemeyer and Myung’s hill-climbing model. In short,
Busemeyer and Myung’s hill-climbingmodel makes many
of the same predictions as those outlined in this article.
For example, it can be straightforwardly shown that the
model predicts better decision criterion learning for opti-
mal classifier feedback than for objective classifier feed-
back and for d¢ = 2.2 than for d¢ = 1.0. The model also pre-
dicts the payoff matrix multiplication effect, if one
assumes that the size of the decisioncriterion shifts across
trials is larger for the larger payoff matrix multiplication
factor. The one prediction that the present implementation
of the model has trouble with is the payoff matrix sub-
traction manipulation. The present version of the hill-
climbing model predicts no effect of payoff matrix sub-
traction, whereas worse decision criterion learning has
been observed for negative-cost than for zero-cost condi-
tions. Despite this one shortcoming, our feeling is that the
hill-climbing model has merit and might provide a nice
framework for implementing the flat-maxima hypothesis
on a trial-by-trial basis.

Training Implications
This work has implications for many real-world

problems—in particular, for training situations. It is im-
portant to acknowledge that decision makers are generally
unwilling to make the accuracy sacrifice necessary to max-
imize reward and that this unwillingness is increased when
the cost of an incorrect response is negative,when category
discriminability is low, and when trial-by-trial feedback
emphasizes the accuracy of one’s responding (objective
classifier feedback). It is important to develop trainingpro-
cedures that reducedecisionmakers’ emphasis on accuracy
maximization.Training procedures based on the behavior
of the optimal classifier offer a promising approach.

Summary
In conclusion, the present study suggests that the per-

formance advantage observed for optimal classifier feed-
back relative to objective classifier feedback is quite
general, holding across manipulations of category dis-
criminability, payoff matrix subtraction, and payoff ma-
trix multiplication.
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NOTES

1. Conservative cutoff placement is also generally observed when cat-
egory base rates, instead of costs and benefits, are manipulated. Inter-
estingly, under these conditions the reward- and accuracy-maximizing
decision criterion values are identical (e.g., Maddox, 1995; Maddox &
Bohil, 1998). Category base rates are discussed briefly later.

2. The optimal decision criterion is constructed from the “objective”
or “true” payoff information, whereas much work suggests that people
base their decisions on subjective values that are directly related to the
objective values (e.g., Kahneman & Tversky, 1979; Stevenson, Buse-
meyer, & Naylor, 1991; Tversky & Kahneman, 1974, 1980, 1992;Yates,
1990). Within the framework of decision theory, each of our Vi J terms
should be converted into a subjective utility denoted u(Vi J), where u de-
scribes the functional relationship between the subjective and the objec-
tive values. In the case of points converted to money, it is reasonable to
assume that increasing value is approximately linearly associated with
increasing utility.

3. Another possibility is that an intermediate decision criterion is not
used and, instead, the two decision criteria might compete on each trial
for the opportunity to generate the categorization response (for related
proposals, see Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Mad-
dox & Estes, 1996). More work is needed to determine which of these
approaches is more valid. The present approach is taken because it is
easy to instantiate and has met with reasonable success (Maddox &
Dodd, 2001).

4. These results should be interpreted with caution, since the maxi-
mum likelihood fit values assume an independence in the data that is
likely violated.

(Manuscript received June 9, 2002;
revision accepted for publication September 23, 2002.)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


