
The mathematical techniques described in this article 
provide important supporting material for applications of 
the responding optimally with unknown sources of evi-
dence (ROUSE) model of short-term priming (Huber & 
Cousineau, 2003; Huber & O’Reilly, 2003; Huber, Shif-
frin, Lyle, & Quach, 2002; Weidemann, Huber, & Shiffrin, 
2005). These descriptions consist of (1) techniques for pro-
ducing parameter confidence intervals and correlations 
between parameters in order to better understand model 
behavior and (2) a new analytic method for obtaining as-
ymptotic behavior for the ROUSE model, which stands 
in contrast to previously used methods of stochastic sam-
pling (Huber, Shiffrin, Lyle, & Ruys, 2001). This order of 
presentation is chosen because the parameter confidence 
techniques are generally applicable to any mathematical 
model and are presented first for a wider audience. The 
analytic method for implementing ROUSE has been uti-
lized in several articles, but this is the first detailed de-
scription of the technique. The techniques for producing 
parameter confidence intervals and parameter correla-

tions are not new but are not typically described in the 
psychological literature (although, for recent discussions 
of these techniques, see Verguts & Storms, 2004; Visser, 
Raijmakers, & Molenaar, 2000).

These two sections are linked in that both of them de-
scribe important computer techniques in support of a grow-
ing number of publications in which the ROUSE model has 
been utilized (e.g., Huber & O’Reilly, 2003; Huber, Shiffrin, 
Lyle, & Quach, 2002; Huber et al., 2001; Huber, Shif- 
frin, Quach, & Lyle, 2002; Ratcliff & McKoon, 2001; Wa-
genmakers et al., 2003; Weidemann et al., 2005). Providing 
some degree of integration across the reported techniques, 
the third section of the article reports the specific applica-
tion of the parameter confidence techniques to the analytic 
implementation of the ROUSE model. These results illumi-
nate previously unreported aspects of the model’s behavior 
and identify complications that can arise when a nonlinear 
model containing local minima is used. The third section 
provides a direct comparison between a bootstrap analysis 
and use of the variance–covariance matrix, finding quali-
tatively similar results for each method, but with slightly 
different quantitative results. Both of these techniques are 
estimates, and each has particular complications and limita-
tions that may give rise to these quantitative differences.

Parameter Confidence Intervals  
and Parameter Correlations

When computational models are fit to behavioral data, 
a range of parameter values often produce fits nearly as 
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good as the best fit. Under the assumption that the model 
is the actual generator of the data (i.e., the model is cor-
rect), the best-fitting parameters should be thought of as 
an estimate of the “true” parameters, because the observed 
data are a sample of the true population. The techniques 
described below can be used to find the parameter con-
fidence region within which the true parameters lie. Al-
though these techniques have been described in detail 
elsewhere (Efron & Tibshirani, 1993; Press, 1992), they 
are rarely employed in the course of data fitting with pro-
cess models (although see Ratcliff & Murdock, 1976; 
Wagenmakers, Ratcliff, Gomez, & Iverson, 2004). In 
contrast, these techniques are often employed in relation 
to more descriptive models, such as structural equation 
modeling (e.g., Gonzalez & Griffin, 2001).

A confidence region is produced by assuming that mea-
surement error (e.g., limited sampling) causes the best-
fitting parameters to deviate from their true values. This 
analysis does not speak to the goodness of one model ver-
sus another, otherwise known as model selection. Model 
selection is beyond the present application, and the inter-
ested reader is referred to Pitt, Myung, and Zhang (2002) 
for a recent discussion of mathematical techniques for 
model selection.

For the following discussion, refer to Figure 1, which 
shows a hypothetical data space (area defined by all the 
possible combinations of observed behavior for each con-

dition) that is linked through sampling noise to a corre-
sponding parameter space (area defined by all the pos-
sible combinations of model parameters). The parameter 
confidence region is a region in parameter space (the el-
lipse in the right-hand panel of the figure) in which the 
true parameters exist with the specified level of confi-
dence. The true parameters correspond to some hypotheti-
cally true data set, which is not necessarily observed, due 
to measurement error. Therefore, the parameters that best 
fit the observed data are said to be estimates of the true 
parameters. Because changes in the observed data cor-
respond to changes in the parameter estimates, the confi-
dence region is found by determining the extent to which 
parameters vary in response to statistically expected varia-
tions in the data.

There is typically some residual error for a best fit to 
a particular data set, termed 2

e when a chi-square error 
measure of accuracy is used. Chi-square is used because it 
is a maximum likelihood estimator (i.e., it maximizes the 
probability of the data, given the model). The confidence 
region is defined as deviations in the data space that are 
significantly worse than this best fit, as determined by the 
criterion 2

c 2
e  2, where 2 defines the chosen level 

of confidence. In other words, traditional confidence lim-
its of observed data can be transformed into confidence 
limits of model parameters. However, the translation from 
a data confidence region to a parameter confidence region 

Figure 1. A confidence region ellipsoid shown both in data space and parameter space. For easy 
2-D viewing, the hypothetical data consist of two conditions, and the hypothetical model consists 
of two parameters. The point in the middle is the result of the best-fitting parameters, where chi-
squared error is minimized. Moving away from this minimum by a specified increase in chi-squared 
error defines the confidence region, with the magnitude of the specified increase determining the 
degree of confidence. In this example, the two parameters are positively correlated, so that increased 
error due to increases in one parameter is partially offset by increases in the other parameter. A 
“naive” confidence interval, obtained by varying one parameter in isolation, underestimates the true 
extent to which a parameter could vary and still remain within the confidence region. Instead, the 
projection of the ellipsoid onto the parameter axis provides an accurate measure of the confidence 
interval for that parameter. The projection of the ellipsoid can be found through a series of steps in 
one parameter (solid lines of the staircase), with error minimization changes in the other parameters 
at each step (dashed lines of the staircase). Alternately, the projection can be found through the error 
variance–covariance matrix, as described in the text.
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is often nontrivial, and the techniques reported below are 
designed to address this translation.

Once the best-fitting parameters are determined for 
the observed data, the confidence region can be found by 
perturbing the parameters. In the case of only one param-
eter, increasing and decreasing that parameter results in 
the specified increase in error, and the confidence region 
is a line segment. For two parameters, combined changes 
in the parameters result in the specified increase in error, 
and the form of the confidence region is an ellipse. In the 
case of many parameters, the form is an ellipsoid (assum-
ing that error monotonically increases for small changes 
away from the best-fitting parameters, so that it can be ap-
proximated by a quadratic). Within this confidence region 
ellipsoid, a “naive” confidence interval could be found 
by changing a single parameter sufficiently to obtain the 
specified increase in error, while holding the other pa-
rameters fixed. However, this method does not take into 
account covariance between the parameters and will tend 
to underestimate parameter confidence (see Figure 1). In-
stead, what is required is the projection of the parameter 
ellipsoid onto each of the parameters.

There are several commonly accepted methods for 
identifying the shape of the confidence region that prop-
erly incorporate parameter covariance. With the advent 
of high-speed computers, a popular method is the non-
parametric bootstrap (e.g., Efron & Tibshirani, 1993; 
Wichmann & Hill, 2001), which is achieved by repeatedly 
sampling with replacement subsets of the observed data. 
Variations in the best-fitting model parameters to each of 
these sampled data yield an estimate for the shape and ex-
tent of the confidence region. This technique is said to be 
nonparametric because it does not make any assumptions 
regarding the manner in which the data are distributed. A 
related technique is the parametric bootstrap, in which the 
model is used to generate new data according to the vari-
ability inherent in the model. These new data sets are then 
fit, and as with the nonparametric bootstrap, variations 
in the parameters determine the confidence region. The 
advantage of these bootstrap techniques is that they are 
straightforward and relatively assumption free. The dis-
advantages are that they can be computationally intensive, 
and, as will be seen in the third section, are potentially 
misleading when one is dealing with nonlinear models 
containing local minima.

Next, a computationally less intensive method is de-
scribed that directly assesses the shape of the error space 
as determined from a relatively small number of param-
eter combinations. In this method, the variance terms (i.e., 
the diagonal elements) of the chi-square error variance–
covariance matrix are directly related to the projections 
of the confidence ellipsoid onto each parameter. Such a 
relation is allowed if (1) the distribution of maximum like-
lihood error estimates (chi-square goodness-of-fit values 
in this case) as a function of the parameter estimates (i.e., 
best-fitting parameters) is normally distributed across 
the sampled data sets (i.e., for parameters producing data 
within the confidence region) and (2) the parameters are 
combined in a linear manner or the sample size is suffi-

ciently large as to reject linear alternatives (Press, 1992). 
The normality assumption will be addressed next, and the 
issue of linearity will be addressed at the end of the third 
section.

Bayesian and multinomial models are currently popular 
computational accounts of behavioral data (e.g., Batchel-
der & Riefer, 1990; Huber et al., 2001; Ratcliff & McK-
oon, 1997, 2001; Schooler & Anderson, 1997; Shiffrin & 
Steyvers, 1997). However, the parameters in these models 
are probabilities, which are bounded and, therefore, inher-
ently nonnormal. As was stated above, it is required that 
the best-fit likelihood error is normally distributed as a 
function of the parameters in order to map the variance–
covariance matrix onto parameter confidence. Because 
parameter changes near the upper and lower bounds of 
1 and 0 produce much larger changes in model behav-
ior, as compared with equal-sized parameter changes near 
.5, probability parameters inevitably produce nonnormal 
error distributions. However, the assumption of normal-
ity can be approximated by transforming the parameters 
from probabilities to log-odds (i.e., log of the likelihood 
ratio), which serves to eliminate the boundedness of the 
probability parameters. Equation 1 converts probability 
parameters ( p) to the log-odds parameters (L), and Equa-
tion 2 performs the reverse conversion:

 L
p

p
log ,

1
 (1)

and

 p
e L
1

1
. (2)

In employing this transformation, the error minimiza-
tion routines operate in the L-space. This log-odds trans-
formation works to counteract skew for extreme prob-
abilities that are close to 0 or 1. The outcome of normally 
distributed likelihood error as a function of the parameters 
is that the parameters within the confidence region should 
themselves be normally distributed (Fisher, 1922). There-
fore, a check of error normality is achieved by examin-
ing the normality of the parameter distributions for values 
falling within the confidence interval (note that normally 
distributed error produces normally distributed parame-
ters, but the converse is not necessarily true; nevertheless, 
nonnormal parameters conclusively demonstrate a viola-
tion of the error normality assumption). For the particu-
lar example of the ROUSE model reported in the second 
section, which contains parameters that are probabilities, 
10,000 bootstrap samples were performed in order to as-
certain that the log-odds transformation reduced skew. 
Comparing the probability and the log-odds parameter 
distributions, skew and kurtosis were reduced for all three 
ROUSE parameters. More specifically, the average skew 
across behavioral conditions reported in the third section 
was reduced from .69 to .04, and the average kurtosis 
was reduced from 6.7 to 3.3.

An estimate of the parameter error variance–covariance 
matrix is found by taking the inverse of one half the Hes-
sian (the Hessian is the matrix of second derivatives for 
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each parameter with respect to every other parameter; by 
convention, this matrix is multiplied by .5 to remove the 
factor of two terms). In the event that the Hessian cannot 
be calculated analytically or is not produced in the course 
of parameter optimization, a numerical estimation of the 
Hessian can be found through a Taylor series finite dif-
ference approximation of the second derivatives. Trunca-
tion error is minimized by using the centered difference 
approximation (Haberman, 1998), shown in Equation 3 
for diagonal elements and Equation 4 for off-diagonal ele-
ments (Equation 4 assumes x  y):

 
d f

dx
x

f x x f x f x x

x

2

2 0
0 0 0

2

2
,  (3)

and see Equation 4 at the bottom of the page.
In applying this numerical estimate of the Hessian, it 

may be necessary to adjust the finite difference ( x  
y) in order to avoid zero or negative terms along the 

 variance–covariance matrix. These irregularities can occur 
when the finite difference is too small, resulting in zero 
second derivative terms due to computer roundoff error 
(i.e., small steps away from the best-fitting parameters 
may not produce appreciable error increases). The other 
requirement is that the Hessian is well conditioned (poorly 
conditioned matrices may not have a unique inverse). The 
Hessian is poorly conditioned if the finite difference is too 
large, so that increased error in some directions becomes 
much larger than increased error in the other directions. 
In the applications reported in the third section, these joint 
constraints were satisfied by progressively trying larger fi-
nite differences for the log-odds parameters in increments 
of .01. The Hessian with the lowest condition number that 
did not contain negative terms along its inverse was then 
used to calculate the variance–covariance matrix.

Once a well-conditioned Hessian is found, a confidence 
deviation for each parameter is determined according to 
Equation 5 (Press, 1992):

 i iiC 2 ,  (5)

in which i is the confidence deviation of parameter i, Cii 
is the diagonal element of the variance–covariance matrix 
corresponding to parameter i, and 2 is the specified in-
crease in chi-square error in order to define a confidence 
limit. The is are used to calculate lower and upper confi-
dence limits for the probability parameters by taking the 
best-fitting log-odds parameter (Li), adding and subtract-
ing the appropriate i, and then converting back to prob-
ability space with Equation 2.

In addition to the upper and lower confidence limits 
appearing in Table 1, the error variance–covariance ma-
trix allows determination of the parameter correlation ma-
trix. In this matrix, parameters that increase or decrease 

together in order to maintain a good fit have a positive 
correlation, whereas parameters that trade off against 
each other have a negative correlation. Equation 6 (Press, 
1992) determined the parameter correlation matrices ap-
pearing in Table 2:

 ij
ij

ii jj

C

C C
.  (6)

In the third section, both the error variance–covariance 
and bootstrap techniques will be applied to the ROUSE 
model described next. Table 1 shows the 99.99% confi-
dence limits from the error variance–covariance analy-
ses, as compared with appropriate quantiles from 10,000 
bootstrap samples, and Table 2 shows the error variance–
 covariance correlations, as compared with Pearson’s rho 
from the bootstrap samples.

An Analytic Method for Producing  
ROUSE Predictions

Huber et al. (2001) presented a new theory of short-
term priming called ROUSE, for responding optimally 
with unknown sources of evidence. This theory was devel-
oped in order to explicate an otherwise confusing pattern 
of data obtained in perceptual identification experiments 
with two-alternative forced choice testing (2AFC). Ex-
perimental variables were observed to switch the direc-
tion of prime-induced bias, leading the authors to adopt 
the more theoretically neutral term, preference, instead of 
bias (Huber, Shiffrin, Lyle, & Quach, 2002; Huber et al., 
2001; Huber, Shiffrin, Quach, & Lyle, 2002; Weidemann 
et al., 2005).

Before describing the new method for obtaining ana-
lytic ROUSE predictions, it is necessary to describe the 
basics of stochastic simulations with ROUSE. ROUSE 
is more clearly explained within the context of the forced 
choice priming paradigm (the present application consid-
ers repetition priming, for which the largest preference 
changes were observed). In this task, identification of a 
briefly flashed and masked target word is tested through 
a forced choice between target and foil (see Figure 2). 
Immediately prior to the target flash, two prime words 
are presented that allow priming of neither, one, or both 
of the choice words. The corresponding conditions are 
termed neither primed, target primed, foil primed, and 
both primed. Comparisons of the target-primed and foil-
primed conditions allow measurement of the magnitude 
and direction of preference effects, and comparison of the 
both-primed condition with the neither-primed condition 
allows measurement of unbiased perceptual effects.

ROUSE consists of two mechanisms: source confusion, 
which corresponds to unknown sources of evidence, and 
discounting, which corresponds to responding optimally. 
Source confusion refers to feature activations arising from 

 
d f
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the prime that are mistaken for the target. These feature ac-
tivations result from a stochastic process, requiring averag-
ing across a large number of simulated trials in order to ob-
tain stable predictions. Instead, the new analytic technique 
calculates the asymptotic result of this stochastic process. 
Discounting refers to the assignment of a lowered level of 
evidence to features that may have been activated by the 
primes, rather than by the target. The amount of discount-
ing, as compared with the amount of source confusion, can 
cause a preference for or against choosing primed words.

First, the stochastic nature of source confusion will 
be described. As can be seen in Figure 3, presentation of 
the primes activates primed choice word features with a 
probability of , the target flash activates target features 
with a probability of , and the pattern mask and other 
sources of noise activate any choice word feature with a 
probability of . Allowing for degrees of prime similar-
ity less than identity, the parameter  determines the pro-

portion of features that are shared between a prime and a 
primed choice word, and only these primed choice word 
features are potentially activated with a probability of . 
In this manner, the combination of prime similarity ( ) 
and source confusion ( ) results in more active features 
in primed choice words and, therefore, a preference for 
primed choice words. In addition, this results in both-
primed deficits due to variability (i.e., across simulated 
trials, there will be occasions on which the primes activate 
more features in the foil than in the target).

Next, the discounting of features will be described. 
Knowing which features might have been primed, an op-
timal decision assigns those features a lower level of evi-
dence (i.e., discounting). If the prime could have been the 
source of activation, the probability that the target was the 
source of activation is lessened, resulting in less confir-
matory evidence for primed features. Figure 4 shows the 
feature likelihood ratios for the various possibilities. In this 
2  2 contingency table, features exist in either an active 
or an inactive state, and a prime may or may not have been 
a potential source of activation (i.e., the feature is or is not 
shared with a prime). It is assumed that the decision pro-
cess does not know the actual activation probabilities and 
must use estimates of these parameters (designated by the 
prime symbol). Each activation probability requires an ac-
tual activation parameter and an estimate of that parameter. 
The actual parameters stochastically determine feature ac-
tivation, and the estimates of the parameters determine the 
strength of evidence assigned to each feature. The crucial 
feature likelihood ratio is found in the lower right hand cell 
of Figure 4, which represents the discounted level for an 
active feature that may have been activated by a prime.

If one assumes feature independence, the likelihood 
ratios for all the features in a choice word are multiplied 
to provide a likelihood ratio for that choice word. These 
choice word likelihood ratios are then compared, and the 
larger is chosen. In the event of a tie, a choice is made ran-
domly. In this decision process, the value of discounting 
( ), as compared with the degree of source confusion ( ), 
determines whether there is a preference for or against 
choosing primed choice words.

Huber et al. (2001) simulated ROUSE stochastically, 
with a particular number of activated and shared features 
randomly determined across many simulated trials. In the 
data fits reported by Huber, Shiffrin, Lyle, and Quach 
(2002), Huber, Shiffrin, Quach, and Lyle (2002), and 
Weidemann et al. (2005), an analytic version of ROUSE 
was employed, providing stable asymptotic model behav-
ior in much less computational time.

The analytic version of ROUSE is achieved by calculat-
ing the probability of occurrence for all possible feature 
combinations of inactive (OFF), active-unprimed (ON), 
and active-primed (DIS) feature states across both the tar-
get and the choice words (active features that have been 
primed are discounted; hence, the term DIS). Only these 
three feature states are considered, because the two terms 
for inactive features are identical (see Figure 4). This fea-
ture combination probability space is tallied for those fea-
ture combinations resulting in the correct choice, yield-
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Figure 2. The sequence of visual displays used by Huber, Shif-
frin, Quach, and Lyle (2002), Experiment 1. The task of the par-
ticipant is to choose the word that matches the briefly flashed 
target. The particular words in the figure provide an example of 
repetition priming for the both-primed condition. Varying the 
relationship between the prime words and the choice words, so 
that only the target, only the foil, or neither choice word is primed, 
produces the target-primed, foil-primed, and neither-primed con-
ditions. 2AFC, two-alternative forced choice.
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ing an analytic accuracy prediction. This is functionally 
equivalent to simulating an infinite number of stochastic 
trials and is similar to the application of Luce’s choice rule 
(Luce, 1963) for determining accuracy.

Because features are assumed to be independent, the 
basic calculation for the analytic version of ROUSE is 
a binomial distribution for unprimed choice words (fea-
tures are either ON or OFF) and a trinomial distribution for 

primed choice words (features could additionally exist in 
the DIS state). These distributions are used to determine 
the probabilities of particular combinations of observed 
features for each choice word, and then these probabilities 
are multiplied in order to determine the probability of par-
ticular feature combinations across both choice words.

For unprimed choice words, there are only two possible 
feature states: OFF features and ON (not discounted) fea-

Target Features Foil Features 
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

T1 O2 T3 O4 O5 T6 T7 T8 O9 T10Related Prime :Target Flash
Primes

Noise

  

Figure 3. Source confusion through stochastic feature activation in ROUSE. For the perceptual 
identification paradigm, three sources of feature activation exist. With a probability of , every fea-
ture in the target word is activated. Features shared between a prime and a choice word are activated 
with a probability of , and a mediating parameter, , probabilistically determines which features 
are shared. Noise activation is applied to all features with a probability of . Ten features per word 
are shown, although 20 features per word were used in the simulations. Because it is unknown by 
which source a feature has become active, this situation results in source confusion and, therefore, a 
preference to choose prime-related words.
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Figure 4. Discounting through feature likelihood ratios in ROUSE. The evidence provided 
by each feature in the decision process can be calculated as a likelihood ratio. These ratios are 
the probability that a feature exists in its observed state of activation given that it is part of 
the target divided by the probability given that the feature is part of the foil. The important 
contingencies are for inactive or active features that did or did not appear in a prime (i.e., 
may or may not have been activated by a prime). The likelihood ratio for active features that 
appeared in a prime (i.e., the lower right-hand cell) represents a discounted level of evidence, 
and with increasing estimates of prime activation,  (i.e., increased levels of discounting), 
this ratio approaches the neutral value of 1.0. The three unique feature likelihood ratios, 
labeled FOFF, FON, and FDIS, correspond to the OFF, ON, and DIS feature states referred to in the 
description of the analytic version of ROUSE, and these are the feature likelihood ratios that 
appear in Equation 9.
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tures. Because the target flash is an additional source of 
activation in the case of the features of the target word, the 
probability parameters for the binomial are different for 
a target than for the foil. For the features of an unprimed 
foil, the probability of a feature remaining OFF is (1  ), 
because noise must have failed to activate the feature. 
The probability of such a feature existing in an ON state 
is one minus this probability ( ). For the features of an 
unprimed target, the probability of a feature remaining 
OFF is (1  )(1  ), because both noise and the target 
flash must have failed to activate the feature, and the prob-
ability of a feature existing in an ON state is one minus 
this probability. Knowing these state probabilities (which 
determine pOFF and pON), the probability of observing each 
possible combination of feature states across the N fea-
tures of an unprimed choice word is calculated with Equa-
tion 7. These N features are broken down into nOFF features 
in the OFF state (each occurring with a probability of pOFF) 
and nON features in the ON state (each occurring with a 
probability of pON):

 p(unprimed word) 
N

n
p p

n n

OFF
OFF ON

OFF ON.  (7)

Similar procedures apply for primed choice words, al-
though a trinomial distribution (Equation 8) must be used 
because features may additionally exist in the DIS state. In 
addition, calculation of the probabilities for primed choice 
words must also include , the probability that a feature is 
shared with a prime (note that probabilistic use of prime 
similarity is appropriate only for situations in which the 
actual proportion of primed features varies from trial 
to trial). A primed foil that is ON (not discounted) is not 
shared with a prime (otherwise, it would be discounted) 
and could have been activated only by noise. Therefore, 
such a feature occurs with a probability of (1  ) . Using 
similar logic, it follows that the probability of a DIS feature 
is [1  (1  )(1  )], since the prime is an additional 
source of activation for such a feature. This equation fol-
lows by considering that the feature must be in a prime 
( ), and it cannot be the case that both the prime (1  ) 
and noise (1  ) failed to activate the feature. Finally, the 
probability of an OFF feature is one minus the sum of the 
other two probabilities. For a feature contained in a primed 
target, the target flash is an additional source of activation 
for the active states (ON and DIS), and therefore, the prob-
ability of an ON feature is (1  )[1  (1  )(1  )], 
the probability of a DIS feature is [1  (1  )(1  

)(1  )], and the probability of an OFF feature is one 
minus the sum of the two other probabilities. Once these 
feature state probabilities are determined, Equation 8 (at 
the bottom of the page) calculates the probability of ob-
serving each possible combination of feature states in a 
primed choice word.

For each possible combination of feature states for a 
given choice word, as occurs with a probability deter-
mined by Equation 7 or 8, there is an associated word like-
lihood ratio that is calculated using the estimates of the 
activation probabilities (i.e., the product of the associated 
feature likelihood ratios). These word likelihood ratios are 
most easily found by taking the log of the product, turn-
ing the situation into a sum of the log feature likelihood 
ratios. As can be seen in Equation 9 at the top of the next 
page, the log of the OFF, ON, and DIS feature likelihood ra-
tios appearing in Figure 4 are multiplied by the particular 
numbers of OFF, ON, and DIS features, producing the log 
word likelihood ratio (W ) for the assumed combination of 
feature types (the terms, FOFF, FON, and FDIS, are adopted for 
the three unique values appearing in Figure 4).

In each priming condition, all possible feature state 
combinations for the target (i.e., different values for nON, 
nOFF, and nDIS) are compared with all possible feature state 
combinations for the foil. For each of these comparisons 
in which the target likelihood ratio (WTAR) exceeds the foil 
likelihood ratio (WFOIL), the target and foil probabilities of 
the particular feature state combinations (as determined 
by Equations 7 and 8) are multiplied, yielding the prob-
ability of the particular combination of feature state types 
across both target and foil ( pTAR pFOIL). This resultant value 
is added to the tally of total correct. If the target likeli-
hood ratio is exactly equal to the foil likelihood ratio, half 
the probability of such an occurrence of feature states is 
added to the tally (this assumes random guessing in a case 
of no differential information). In this way, an analytic 
expression for accuracy is calculated for each priming 
condition, as can be seen in Equation 10 at the bottom of 
the next page.

Huber, Shiffrin, Quach, and Lyle (2002, Experiment 1) 
did not use similar choice words, and so a fixed num-
ber of diagnostic features is used in the next section (it 
is assumed that the 20 features of each choice word are 
unique). In other experiments, choice word similarity was 
manipulated, in which case the analytic procedures de-
scribed above are repeated for each possible number of 
diagnostic features (i.e., each possible N ), with the results 
weighted according to the probability of occurrence of that 
number of diagnostic features. If one assumes that choice 
word similarity varies probabilistically across stimuli, the 
probability of observing a particular number of diagnos-
tic features is determined through a binomial distribution 
with one minus the choice word similarity parameter de-
termining the probability of a diagnostic feature.

A Specific Application of the Techniques From 
the First and Second Sections

Huber, Shiffrin, Quach, and Lyle (2002) found that 
prime exposure duration (Figure 1) causes a change in 
the magnitude of the preference for primed choice words. 
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This result is shown in Figure 5 and will serve as a test 
bed for the reported techniques. In the short condition, the 
two primes were presented for 500 msec in boldface font 
(this is the same as the passive-priming condition found in 
Huber et al., 2001). In the long condition, the two primes 
were presented for 2,500 msec in boldface font. In the 
long-switch condition, the two primes were presented for 
2,000 msec in regular face font, followed by a swap of 
position and a final presentation for 500 msec in boldface 
font (this mimics the prime presentations that occurred in 
the active-priming conditions of Huber et al., 2001). The 
key finding was a reduction in the difference between the 
target-primed and foil-primed conditions in moving from 
short, to long, and then to long-switch, despite robust 
both-primed deficits for all three prime durations.

Because the sample size was large for this experi-
ment (528 total data points for each of the conditions), 
chi-square fitting error increases rapidly with changes in 
the ROUSE parameters, even though the model behavior 
changes only slightly. In other words, small changes in 
the parameters produce small changes in the absolute dif-
ference between observed and predicted data, but these 
small differences are easily rated as significant increases 
in error, due to the statistical power employed in the exper-
iment. Therefore, a large increase in chi-square was used 
in defining the parameter confidence region in order to 
produce sizable confidence limits, making it easy to visu-
ally compare the confidence limits of each of the param-
eters. This was achieved through an increase in chi-square 
of 23.5 (i.e., 2  23.5; calculated on the basis of four 
degrees of freedom for the four priming conditions), cor-
responding to a 99.99% chance that the true parameters lie 
within the confidence region.

The best-fitting ROUSE behavior shown in Figure 5 
was produced using the analytic method for producing 
ROUSE predictions and the Simplex algorithm (Nelder & 
Mead, 1965) for optimizing parameters so as to minimize 
chi-square error (the best-fitting parameters are shown in 
boldface in the upper rows of Table 1). The number of fea-
tures in a choice word was fixed at 20. As was discussed 
by Huber et al. (2001), both the noise activation probabil-
ity ( ) and the estimate of noise activation ( ) were fixed 
at .02, and the estimate of target perception ( ) was set 
to its true value. Because the three prime durations were 
likely to induce different levels of target perception ( ), 
due to changes in forward masking and attentional differ-
ences with primes of different durations, prime activation 
( ), due to changes in the level of source confusion, and 
estimates of prime activation ( ), due to changes in the 
availability of prime information, these three parameters 
were allowed different values for each prime duration, re-

sulting in three free parameters for each set of four prim-
ing conditions. If one takes into consideration the number 
of free parameters, relative to the number of conditions, 
this is not a critical test of ROUSE, but it is useful for dem-
onstrating the reported techniques and for investigations 
of the model’s behavior more generally. Other work has 
provided more diagnostic tests of ROUSE, as compared 
with other theoretical accounts of priming data (e.g., 
Huber, Shiffrin, Lyle, & Quach, 2002).

In order to ascertain the reliability of the techniques for 
producing a parameter confidence region, both the error 
variance–covariance analysis (the upper rows of Table 1) 
and a bootstrap analysis (the lower rows of Table 1) were 
performed. In this situation with subject-averaged accuracy 
data, there is essentially no difference between a parametric 
bootstrap (sampling model predictions) and a nonparametric 
bootstrap (sampling observations). Sampling from either the 
model or the data is the result of a single Bernoulli process 
for each experimental condition, and furthermore, the best 
fit to the data is nearly perfect, and so the Bernoulli process 
suggested by the data is nearly identical to the one produced 
by ROUSE. To produce variability in accord with the error 
variance–covariance chi-square confidence region, the boot-
strap was performed by sampling 10,000 times from appro-
priate binomial distributions for each of the experimental 
conditions. These binomial distributions were defined by 
using the observed accuracy probabilities and the observed 
number of data points. With 10,000 samples, the 99.99% 
confidence interval is defined by the range of the bootstrap 
parameters when the quantile method is used.1

As can be seen in Table 1, the upper and lower 99.99% 
confidence limits associated with the  parameters are 
close to the best-fitting parameter values. In contrast, the 
confidence limits associated with  and  parameters 
deviate more from the best-fitting values. These patterns 
are observed regardless of the technique for assessing pa-
rameter confidence. Because the number of features and 
the effect of noise ( ) were set to fixed constants, only 
the activation of features due to the target flash ( ) deter-
mines the overall performance level across all four prim-
ing conditions, and so  is greatly constrained by the data. 
The data also highly constrain the relationship between  
and  (i.e., the amount of discounting, as compared with 
the amount of source confusion); for underestimates of , 
target-primed is greater than foil-primed (e.g., the short 
condition) whereas for overestimates of , target-primed 
is less than foil-primed (e.g., the long-switch condition). 
However, the absolute magnitudes of  and  are not as 
important for producing these situations as are the relative 
magnitudes of  and . For this reason, a range of  and 

 values produce reasonable fits.

 p c p p p p
W WW

( ) .TAR FOIL TAR FOIL
TAR FOILTAR

1
2WWFOIL
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The error variance–covariance and bootstrap analyses 
are in agreement for the confidence limits on , but for the 

 and  parameters, the confidence limits for the boot-
strap version are somewhat larger. In the particular case of 

 for the short and long-switch conditions, the bootstrap 
analysis produced a very different median best-fitting pa-
rameter, as compared with the parameter that best fit the 
observed data. Figure 6 helps explicate these differences 
by plotting the error landscape in ROUSE, demonstrat-
ing the role of local minima. Both panels of Figure 6 plot 
the relationship between  (source confusion) and  (dis-
counting) for long-switch prime presentations. The left 
panel plots the 10,000 bootstrap samples (collapsing over 

), and the right panel plots chi-square error based on the 
observed data as  and  are varied while  is held fixed 

at its global best-fitting value. Better fits to the observed 
data are shown as darker shades of gray.

Figure 6 reveals that there are several local minima (sev-
eral modes) in the parameter space, mostly lying along the 
diagonal where  and  are approximately equal. Only the 
long-switch condition is displayed, but similar multimodal 
landscapes exist for the short and long prime presentations. 
The multimodal nature of this error landscape is due to the 
accrual of differing numbers of prime-activated features 
as  increases (e.g., moving from a situation in which the 
prime is likely to produce two additional active features 
to a situation in which the prime is likely to produce three 
additional active features). With each somewhat discrete 
change in the number of prime-activated features, the 
amount of discounting ( ) must also increase if the ob-
served preference is to remain constant.

There are potential complications for both the bootstrap 
technique and the error variance–covariance technique, 
due to these local minima. The error variance–covariance 
(exemplified by the right-hand panel) is calculated over 
the global minimum for the observed data (the darkest 
patch), and so this analysis does not include the neighbor-
ing local minima. Because the bootstrap analysis is sensi-
tive to these nearby minima, due either to noise in the sam-
pling process or to a failure to find the global minimum 
in the course of parameter optimization, the confidence 
limits for the bootstrap analysis are larger for the  and  
parameters. In the case of the long-switch condition (as 
well as for the short condition), there was a further com-
plication revealed by the presence of two nearby regions 
of the parameter space that were nearly identical in their 
goodness of fit. For both these regions,  is approximately 
.05, whereas  can be either .05 or .075. For the observed 
data, setting  at .075 produced a slightly better fit (hence, 
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Figure 5. Observed and simulated results from Huber, Shiffrin, Quach, and Lyle (2002, Experi-
ment 1). The short duration presented primes for 500 msec and is the same as the passive priming 
conditions in Huber, Shiffrin, Lyle, and Ruys (2001), and the long-switch prime duration mimicked 
the active priming conditions by presenting the primes for 2,000 msec, followed by switching the po-
sitions of the two primes and presenting them for an additional 500 msec. The long prime duration 
presents the two prime words for 2,500 msec without a position switch. The error bars are plus and 
minus one standard error of the observed means. The filled circles are the result of analytic ROUSE 
with best-fitting parameters.

Table 1 
Huber, Shiffrin, Quach, and Lyle (2002, Experiment 1):  

Best-Fitting ROUSE Parameters With Lower and Upper 
99.99% Confidence Limits, Shown to the Left and Right of the 

Boldface Best-Fitting Parameters

Condition

Parameter  Short  Long  Long-Switch

 (prime actual) .039 .074 .135 .069 .144 .276 .023 .049 .101
.028 .072 .238 .069 .142 .283 .019 .048 .138

 (prime estimate) .034 .059 .099 .102 .135 .175 .056 .075 .099
.011 .048 .216 .050 .137 .266 .018 .046 .161

 (target flash) .032 .045 .064 .042 .057 .077 .045 .059 .077
.034 .045 .058 .043 .057 .071 .047 .059 .070

 2 (error) .728 1.510 2.247

Note—For each parameter, the top row shows the error variance–covariance 
analyses, and the bottom row the bootstrap analyses. The boldface values 
for the bootstrap are calculated using the quantile method at .00005, .5 (the 
median), and .99995. The sum of chi-square error in the bottom row is the 
best fit to the observed data.
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this is where the error variance–covariance analysis was 
centered), but statistically expected variations in the data 
are commonly fit by setting  at .05 (a similar situation 
occurred for the  parameter in the short condition).

It appears that the bootstrap analysis is more informa-
tive because it captures the other modes of the parameter 
space. However, the existence of local minima can be par-
ticularly problematic for a bootstrap analysis. Unlike the 
error variance–covariance analysis, which produced posi-
tive parameter correlations, initial attempts at bootstrap 
sampling produced negative correlations. This occurred 
because the error minimization routines often failed to 
discover the global best fit when the global best fit var-
ied to nearby modes (starting values for the parameters 
were chosen on the basis of the parameters that best fit 
the observed data, and these starting values prevented the 
optimization routines from discovering the global mini-
mum). By first determining more appropriate starting 
values for the parameters, this pitfall was avoided in the 
reported bootstrap analyses. To determine these starting 
values,  was optimized to fit the sampled neither-primed 
condition (which does not depend on  or ). Next,  
was optimized to fit the sampled both-primed condition 
(which does not depend on  for repetition priming). Fi-
nally,  was optimized to fit the sampled target-primed 
and foil-primed conditions (which critically depend on the 
relationship between  and ). With these new starting 
values, all three parameters were then optimized simulta-
neously to fit all four conditions. In the absence of these 
procedures, the bootstrap analysis was misleading, pro-
ducing greatly reduced confidence intervals and negative, 
rather than positive, parameter correlations.

The parameter correlation matrices in Table 2 are in 
agreement with the discussion above. The correlations for 
the error variance–covariance analyses were calculated 
according to Equation 6, and the correlations for the boot-
strap analyses are traditional Pearson’s rho values. In either 
case, all of the parameter correlations are positive and, in 
most cases, have similar quantitative values. The positive 
relationship between  and  was discussed above and is 
explained by the need to match the level of discounting 
to the level of source confusion in order to produce a par-
ticular magnitude of preference. The positive correlations 
between  versus  and  versus  are also sensible. If 
statistically expected variations in the data produce overall 
better accuracy, this can be accommodated by increases 
in . However, with more target-activated features due to 
higher , there needs to be more prime-activated features 
( ), in order to produce sizable priming effects, and more 
discounting ( ), in order to accommodate more prime 
activation features.

The strong correlations between parameters highlight 
the nonlinearities inherent in ROUSE. A linear reparam-
eterization of ROUSE would more adequately meet the 
requirements necessary for relating the error variance–
 covariance matrix to confidence values and parameter 
correlations. In particular, this could be accomplished 
by assuming that performance is related to three additive 
terms: a positive term for the amount of target perception 
(similar to ), a negative term for the amount of prime-
induced noise (similar to ), and a term for the amount 
of preference (which would take on positive or negative 
values). The last term would be similar to the comparison 
of  with , representing the combined effect of source 
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Figure 6. Source confusion ( ) and discounting ( ) parameters for the long-
switch condition as produced by 10,000 bootstrap samples (left panel) and the 
error landscape calculated from the observed data (right panel). The boot-
strap samples collapse over values of , and the error landscape was calculated 
with  fixed at its best-fitting value. These graphs demonstrate that ROUSE is 
multimodal in the parameter space, with several local minima lying along the 
diagonal (i.e., discounting matched to the level of source confusion). Because 
of these local minima, the error variance–covariance confidence limits under-
estimate the range of acceptable parameter values, and a bootstrap analysis 
is potentially misleading if care is not taken to make sure the global best fit is 
found for every sample (see the text for details).
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confusion and discounting. Such a linear alternative could 
handle these data, although it would do so in a purely de-
scriptive manner. More specifically, Huber, Shiffrin, Lyle, 
and Quach (2002) found that the efficacy of discounting is 
modulated by experimental factors affecting overall per-
formance levels and prime similarity. These results were 
a priori predictions of ROUSE but would be inexplicable 
for a linear alternative model.
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NOTE

1. The quantile method for producing confidence intervals from boot-
strap samples is nonparametric, making no assumptions regarding the 
shape of the parameter distribution. However, this method is appropriate 
only when taking at least 1,000 bootstrap samples, which is the case for 
the reported analyses. In addition, the quantile method may be biased, 
producing a confidence interval that is somewhat shifted, as compared 
with the original parameters fit to the observed data. Instead, a biased-
corrected method can be employed by determining an offset factor for 
this bias, analyzing the proportion of bootstrap parameters lying below 
the original parameters. For the reported analyses, such proportions were 
within a few percentage points of .5 in nearly all the conditions, suggest-
ing little or no bias (if the proportion is exactly .5, the quantile method 

Table 2 
Huber, Shiffrin, Quach, and Lyle (2002, Experiment 1):  

Parameter Correlation Matrices

Short Long Long-Switch

Parameter          

1.000 .679 .597 1.000 .829 .483 1.000 .485 .444
1.000 .529 .380 1.000 .424 .402 1.000 .170 .376
.679 1.000 .393 .829 1.000 .276 .485 1.000 .215
.529 1.000 .176 .424 1.000 .314 .170 1.000 .159
.597 .393 1.000 .483 .276 1.000 .444 .215 1.000
.380 .176 1.000 .402 .314 1.000 .376 .159 1.000

Note—For each parameter, the top row shows the error variance–covariance analyses, and the 
bottom row shows Pearson’s rho calculated from the bootstrap parameter values.
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is equivalent to the biased-corrected method). A related measure of bias 
is a comparison of the median of the bootstrap samples with the original 
parameters. For the bootstrap analyses, Table 1 reports median bootstrap 
parameters, and for the error variance–covariance analyses, Table 1 re-
ports the original parameters that best fit all the empirical data. With two 
exceptions, these values are within .002 of each other, suggesting little 
or no bias for most cases. For these reasons, and because the biased-

 corrected method includes an assumption of normality in employing 
the z-transform, the biased-corrected method was not used. See Mooney 
and Duval (1993) for a detailed discussion of the various techniques for 
producing confidence intervals from bootstrap samples.

(Manuscript received April 9, 2003; 
revision accepted for publication July 19, 2005.)
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