
At issue is the nature of the information used to rec-
ognize whether a stimulus was encountered in a specific 
context. Single-process continuous-state models assume 
that recognition is based on a continuous random variable 
that is often conceptualized as familiarity (see, e.g., Egan, 
1958). The more similar the stimulus is to memory traces 
associated with a specified context, the more familiar the 
stimulus seems and the more likely it is that one will posi-
tively endorse it. Dual-process models assume that rec-
ognition is sometimes based on stimulus familiarity and 
other times based on recalling the details of an event (see, 
e.g., Atkinson & Juola, 1974; Jacoby, 1991; Malmberg, 
Holden, & Shiffrin, 2004; Mandler, 1980; Reder et al., 
2000; Rotello, Macmillan, & Reeder, 2004; Yonelinas, 
1994). If the details retrieved from memory correspond 
to the specified context, the stimulus is endorsed. If de-
tails are not retrieved, recognition is based on stimulus 
familiarity.

The remember–know task (RK task; Gardiner, 1988; 
Tulving, 1983) has been purported to distinguish between 
the single- and dual-process models (Yonelinas, 2002). 
Following a positive yes–no recognition decision, sub-
jects introspectively decide whether their “yes” response 
was based on recollecting episodic details or on a feel-
ing of knowing that they had studied the item. We refer 
to the probability of responding “yes” to a studied item 

(or target) as the hit rate (HR) and the probability of re-
sponding “yes” to an unstudied item (or foil) as the false 
alarm rate (FAR). Likewise, we refer to the probability of 
responding “remember” to a target as the remember HR 
and the probability of responding “remember” to a foil as 
the remember FAR. Accordingly, there typically exist two 
HR–FAR pairs for each condition in a  remember–know 
experiment, and the function relating these data is referred 
to as the remember–know receiver operating  characteristic 
(RK ROC).

Many single-process models of the RK task are exten-
sions of signal detection theory (Donaldson, 1996; Green 
& Swets, 1966; Hirshman & Master, 1997; Malmberg, 
Zeelenberg, & Shiffrin, 2004). Recognition is above 
chance when the mean of the target familiarity distribu-
tion is greater than the mean of the foil familiarity dis-
tribution, and the RK task is modeled by comparing a 
sample from the appropriate distribution to two criteria. If 
the familiarity of the stimulus exceeds a relatively lenient 
yes–no criterion, the response is “yes.” If the familiarity 
of the stimulus subsequently exceeds a stricter RK crite-
rion, the response is “remember”; the response is “know,” 
otherwise. Within the dual-process framework, variables 
affecting remember and know rates, respectively, reflect 
changes in the contribution of recollection and familiarity 
to recognition.

The ratings task has also been purported to distinguish 
between single- and dual-process models (Yonelinas, 2002). 
In a ratings task, subjects determine their confidence that 
they had studied a test item. For each level of confidence 
there is an HR–FAR pair, and the cumulative function re-
lating HR–FAR pairs as a function of confidence is the 
ratings ROC. For many continuous-state models, the rat-
ings ROC is nonlinear, and when it is z- transformed, it 
produces a linear zROC with a slope less than 1.0. Single-
process continuous-state models predict that the ratings 
and RK ROCs are identical, because the only difference 
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between the ratings and the RK models is the number of 
criteria employed to perform the task. 

According to some dual-process models (Yonelinas, 
1994), the highest confidence “old” response is given only 
when recollection is the basis for the old–new decision. 
Otherwise, confidence ratings are based on the test item’s 
familiarity. On this assumption, the HR–FAR pair that 
corresponds to the strictest criterion in a ratings experi-
ment is the same as the probability of responding “remem-
ber” to targets and foils in an RK experiment. Thus, these 
dual-process models predict identical asymmetrical ROCs 
and slightly U-shaped zROCs for RK and ratings tasks. In 
contrast, Rotello et al. (2004) concluded that the ratings 
ROC is more asymmetrical than the RK ROC, on the basis 
of a meta-analysis of more than 300 RK and more than 
100 ratings conditions from a variety of experiments. That 
is, the average slope of the RK zROC was greater than the 
average slope of the ratings zROC. 

Different RK and ratings zROCs are an empirical chal-
lenge for many recognition models, but before we reject 
them, it is important to note that this finding does not align 
with several other recent findings. For instance, Wixted 
and Stretch (2004) reviewed several experiments and 
found that the slopes of the ratings and RK zROCs were 
similar. Dunn (2004) and Malmberg, Zeelenberg, and Shif-
frin (2004) showed that a wide range of RK findings are 
handled by single-process models, and Reder et al. (2000) 
showed that a dual-process model fits RK ROCs. Thus, 
single- and dual-process models describe the RK ROC, 
but it is unclear why the ratings and RK zROCs at least 
sometimes have different slopes. 

Here, we describe and empirically test a simple account. 
It is critical that Rotello et al.’s (2004) meta-analysis was 
based on group mean data, whereas the convention is to 
derive slope estimates from individual zROCs. Rotello 
et al.’s reliance on group mean zROCs was certainly due 
to the heroic nature of undertaking a review of such a large 
number of studies. However, there are well-documented 
dangers associated with relying on the performance of the 
average individual to infer individual performance (Estes, 
1956, 2002). For instance, Macmillan and Kaplan (1985) 
wrote that in situations in which individual performance 
is unknown, careful application of detection theory is re-
quired in order to characterize individual performance 
based on averaged data. It is important to squarely address 
the averaging issue, because if the RK ROC is truly dif-
ferent from the ratings ROC, many otherwise successful 
models are disconfirmed. 

According to the averaging account, at least some of the 
zROCs in the meta-analysis were distorted into an inverted 
U-shaped form by averaging, and their RK zROCs tended 
to have a steeper slope than their ratings zROCs, because 
their RK zROCs were confined to a stricter portion of an 
inverted U-shaped zROC. We further note that nonlinear 
zROCs are often reported, and we describe, within the 
framework of a single-process model, several other ways 
that the form of the zROC can be distorted by decision 
strategies and not by memory processes. 

On the Form of the Recognition zROC
Here we show that the averaging method can drasti-

cally distort the slope of the RK zROC. Consider that the 
relationship between probabilities and z scores is not lin-
ear, and that small changes in probabilities near 0 and 1 
produce very large changes in z-transformed probabilities, 
but equivalent changes in probabilities near .50 produce 
relatively small changes when they are z-transformed. 
Thus, moving equal distances at different points on the 
probability scale does not necessarily produce equivalent 
changes in z scores. We illustrate this with an example.

Assume that one observed two subjects (S1 and S2) in 
an RK experiment. For the first point on the RK ROC, the 
two observations for each subject are the probabilities of 
responding “remember” when targets (S1 � .50 and S2 � 
.70) and foils are tested (S1 � .001 and S2 � .20). Again, 
we will respectively refer to these probabilities as the re-
member HR and the remember FAR. Averaging over S1 
and S2, the mean remember HR is .60 and the mean re-
member FAR is .1005. 

The stricter point on the RK zROC is determined by 
z-transforming the remember HR and FAR. This may be 
done in two ways, but the two ways clearly produce differ-
ent results. The mean of the z-transformed HRs and FARs 
for S1 and S2 is the conventional method. The averaging 
method uses the z scores of the mean remember HR and 
FAR for S1 and S2. The mean z score of the two remember 
FARs is �1.966, whereas the z score of the mean FAR 
(.1005) is �1.278. The mean z score of the remember HRs 
is .261, but the z score of the mean remember HR (.60) 
is .253. Thus, the averaging method creates a shift in the 
remember point on the RK zROC from (�1.966, .261) to 
(�1.278, .253), where the first element of each z score 
pair corresponds to the remember FAR and the second to 
the remember HR. 

Figure 1 illustrates the averaging shift. The means of 
the z scores are plotted with white circles in Figure 1, 
and the z scores of the mean remember HR and FAR are 
plotted with black circles. The arrows that are labeled 
P(remember) indicate that the black circle is shifted far 
to the right of the white circle, but there is only a small 
downward shift in the z scores of the remember HRs. 
Thus, averaging over the remember HRs and FARs before 
z-transforming them severely distorted the location of the 
strictest point on the RK zROC. This distortion can be 
thought of as a type of external noise introduced to the 
zROC. Whether it is internally or externally generated, 
noise always reduces performance; hence, the extreme 
ends of the averaged zROC will approach chance perfor-
mance to a greater extent than will intermediate points on 
the zROC (cf. Macmillan & Kaplan, 1985). 

The second, more lenient point on the RK zROC is 
simply derived from the HRs (S1 � .70, S2 � .90) and 
the FARs (S1 � .20, S2 � .40), whose means are .80 and 
.30, in this example, respectively. The HRs and FARs fall 
more centrally on the probability scale, and hence, the av-
eraging method produces only a small shift, from (�.547, 
.853) to (�.524, .842). This is illustrated in Figure 1 with 
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the largely overlapping white and black circles that are 
labeled P(yes). 

The different methods for creating zROCs can lead 
to RK zROCs with different slopes. One can see this in 
Figure 1 by linearly connecting the two points on each 
zROC. The slope of the zROC constructed using the aver-
aging method is steeper than the zROC based on average 
z scores. Because Rotello et al. (2004) used the averag-
ing method to generate their zROCs, they almost certainly 
overestimated the slope of the RK zROC.

For the ratings task, the averaging method produces 
an inverted U-shaped zROC, because averaging causes 
greater distortions at the extremities of the zROC. Al-
though averaging distorts the form of the ratings zROC, 
it has a relatively small effect on the slope of the ratings 
zROC when compared with the effect of averaging on the 
slope of the RK zROC. To see why, note that the primary 
differences between the RK and ratings ROCs are the 
number of points and the position of the points on the 
inverted U-shaped zROC. Whereas RK zROCs are typi-
cally formed from two points that are positioned on the 
conservative portion of zROC space, there are more points 
on the ratings zROC, and they are more evenly distrib-
uted in zROC space. The wider distribution of points on 
the ratings zROC protects its slope, to some degree, from 
averaging.

The Present Experiment
The preceding analysis shows that the averaging method 

overestimates the slope of the RK zROC, and this might 
explain why the average slope of the RK zROC in Rotello 
et al.’s (2004) study was near 1.0. Furthermore, the ad-

dition of more lenient points to the zROC will attenuate 
the overestimation, meaning that averaging is therefore 
a plausible explanation for the reported difference in the 
slope estimates of the RK and ratings zROCs. The critical 
empirical question is whether analyzing the mean of the 
individual zROC slopes, as opposed to the zROC slope 
generated from the mean HRs and FARs, affects the slope 
estimates in practice. 

METHOD

Subjects
Thirty-nine students enrolled in undergraduate psychology 

courses at Iowa State University participated in exchange for extra 
course credit.

Design and Materials
Each subject studied four 30-item lists consisting of nouns sam-

pled from the Francis and Kučera (1982) norms. The range of nor-
mative word frequencies varied from 1 to over 1,000 per million. 
Assignment of words to lists and the target–foil condition was deter-
mined randomly for each subject. Each word was studied for 1.5 sec. 
Following each study list, a 20-sec distractor task was performed, 
which consisted of mentally adding digits. Following the distractor 
task were 30 target and 30 foil test trials in a random order that was 
determined anew for each subject.

Procedure
The subjects were told that sometimes an item could be recog-

nized as having been studied because they could recall some of the 
details of the study event, and that sometimes they could recognize a 
word because it seemed relatively familiar to them, even though they 
could not recall some of the details of having studied the word. The 
former basis for recognition was likened to meeting a person on the 
street and recognizing that person from a recent party or class one 
had attended. The latter basis for recognition was likened to meet-
ing a person on the street and not remembering where one had met 
this person, but nevertheless knowing that one had met the person 
before. 

For each test trial, the subjects rated, on a scale of 1 to 4, how 
confident they were that they had studied the test word. Responses 
of  “1” and “2,” respectively, indicated high and moderate confidence 
that they had studied the word, and responses of  “4” and “3,” re-
spectively, indicated high and moderate confidence that they had not 
studied the word. After a positive ratings judgment, subjects gave an 
RK judgment by responding “r,” if they based their initial response 
on remembering that they had studied the item, or “f,” if they made 
their response because the word seemed relatively familiar to them. 
Following a negative ratings judgment, subjects responded “r,” if they 
based their initial response on remembering that they had not studied 
the item (i.e., they last encountered the word before the experiment), 
or “f,” if they made their response because the word seemed relatively 
unfamiliar to them. 

RESULTS AND DISCUSSION

The results of one subject were eliminated from the 
analyses because an incomplete ROC was produced. The 
means of the HRs and FARs for the ratings and RK ROCs 
are plotted in Figure 2. None of the probabilities used to 
construct the RK and ratings ROCs deviate by more than 
.012, indicating that the ratings and RK ROCs are statisti-
cally the same ( p � .05). 

The memory models with which we are working are 
the single-process retrieving effectively from memory 
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Figure 1. The effect of averaging on zROC RK slope estimates. 
Note that the slope of the zROC generated from the average HR–
FAR pairs is greater than the slope of the mean zROC.
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(REM) ratings (Shiffrin & Steyvers, 1997) and RK mod-
els (Malmberg, Zeelenberg, & Shiffrin, 2004).1 The REM 
global-matching RK model assumes a yes–no criterion 
and a stricter RK criterion. To determine whether or not 
the stimulus was studied, its familiarity is compared to a 
yes–no criterion. If the initial response is “yes,” and the 
familiarity also exceeds the RK criterion, the second re-
sponse is “remember”; otherwise, the second response 
is “know.” The ratings task is performed in exactly the 
same way, except that there are more criteria. Thus, the 
REM ratings and RK models predict the same ROC and 
the same zROC. Details of the fit of the single-process 
model to the data, which is quite accurate, are described 
in Figure 2. None of the estimated probabilities deviate by 
more than .015 from the data. 

According to the single-process model, the mean slopes 
of ratings and RK zROCs should be similar and less than 

1.0. These predictions were confirmed. Linear regression 
was performed on the z-transformed HR–FAR pairs for 
each subject. The mean slopes of the three-point ratings 
and RK zROCs were .80 and .72, respectively; both are 
reliably less than 1.0 [t(37) � 4.49, and t(37) � 6.95, both 
ps � .0005], but they are not reliably different from each 
other ( p � .26). A maximum likelihood estimate of the 
slopes using the ROCKIT software program produced 
estimates of .74 and .75 for the RK and ratings zROCs, 
respectively. The slope of the mean REM zROC was .80.

Taken together, the HR–FAR pairs, the fit of the single-
process model, the zROC analyses based on the individual 
subject data, and the maximum likelihood analysis all lead 
to the conclusion that the ratings and RK ROCs are indis-
tinguishable. To determine whether or not the averaging 
method leads to a different conclusion, we performed an 
additional analysis. The slope of the ratings zROC gener-
ated from the mean response probabilities is .81, a value 
that is slightly greater than the .80 mean slope of the in-
dividual ratings zROCs. Thus, the averaging method had 
almost no effect on the slope of the ratings zROC. 

In stark contrast, the slope of the averaged two-point 
RK zROC is .88, which is over 22% greater than the con-
ventional estimate of .72. Thus, the averaging method 
substantially overestimated the mean slope of the single-
 subject RK zROCs. In fact, the group mean estimate re-
versed the numerical relationship between the slopes of 
the RK and ratings zROCs, producing a finding consistent 
with Rotello et al.’s (2004) finding. An overestimate of 
22% produces slope estimates greater than 1.0 for zROCs 
with slopes greater than .82, a value that falls within the 
typical range. 

The slope of the two-point ratings zROC based on av-
eraged HRs and FARs also leads to an overestimate of 
the actual slope of the three-point zROC (.83 vs. .80), al-
though the overestimate was not as great as for the RK 
zROC. The averaged three-point RK zROC produced a 
slope of .69, which is slightly less than the actual three-
point slope of .72, but far less than the slope of the aver-
aged two-point RK slope of .88. The averaged three-point 
ratings zROC produced a slope of .81, almost identical to 
the actual slope of .80. Thus, the nonlinearity that is intro-
duced to the zROC by averaging tends to overestimate the 
two-point slopes (here by an average of ~13%), but has 
little or no effect on the three-point slope estimates (here 
by an average of ~3%). An overestimate of the slope of 
the RK zROC as a result of averaging provides a plausible 
explanation of Rotello et al.’s (2004) findings.

Here, we have focused on the relation between the rat-
ings and two-point RK zROCs, but it is worth noting that 
Rotello et al.’s (2004) finding is not unique. For instance, 
Hintzman (2004) and Proctor (1977) reported that the 
slope of the ratings zROC is significantly less than the 
slope of the zROC generated from judgments of frequency 
(JOFs). It is beyond the scope of the present short article 
to delve into this issue in detail, but we simply note that 
like the two-point RK zROC, the JOF zROC is mostly con-
fined to the strict portion of zROC space, because there 
are far more points associated with frequency judgments 
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Figure 2. Results of the experiment and a fit of the single-
 process REM model. The ROCs are the cumulative probabilities 
of responding at different levels of confidence for the ratings ROC 
or remembering versus knowing for the  remember–know (RK) 
ROC. The HR–FAR labeled 1 corresponds to the probability of 
using the highest confidence “old” response for the ratings ROC 
and the probability of an “old remember” judgment on RK ROC. 
The HR–FAR labeled 2 corresponds to the probability of using 
the highest confidence “old” response or the lowest confidence 
“old” for the ratings ROC and the probability of an “old remem-
ber” judgment or an “old know” judgment on RK ROC. The 
HR–FAR labeled 3 corresponds to the probability of using the 
highest confidence “old” response or the lowest confidence “old” 
or the lowest confidence “new” response for the ratings ROC and 
the probability of an “old remember” judgment or an “old know” 
judgment or a “new know” judgment on RK ROC. Because these 
are cumulative ROCs, the fourth point must correspond to an 
HR–FAR of 1.0, 1.0; therefore it is not plotted, as is the standard 
convention. The slope of the z-transformed REM ROC is .80. The 
fit is based on a Monte Carlo simulation of 10,000 subjects on 30-
item lists. The parameters used for the REM fit are u* � .28, w � 
20, t � 1, c � .70, g � .42, and criteria � .30 (remember–know 
new, .65 (old–new), and 1.60 ( remember–know old).
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�1. If for some reason the zROC is concave-down, then 
one would expect the slope of the JOF zROC to be greater 
than the slope of the ratings ROC. In the next section, we 
demonstrate how noisy decision processes can affect the 
form of the ROC.

Decision-Noise Models of Nonlinear zROCs
Whereas averaging almost certainly contributed to Ro-

tello et al.’s (2004) findings, it is also possible that some 
of the ratings zROCs included in their meta-analysis might 
have actually been nonlinear prior to averaging. It is com-
monly stated that the recognition memory ratings zROC 
is linear (see, e.g., Glanzer, Hilford, & Kim, 2004), but 
the evidence indicates that its form is highly variable. For 
instance, numerous ratings zROCs have been reported 
that are inverted U-shaped. Heathcote (2003) reported 28 
zROCs, of which about 20 are slightly inverted U-shaped, 
and several nonlinear, single-subject ratings zROCs were 
reported by Ratcliff, McKoon, and Tindall (1994). Non-
linear zROCs are sometimes attributed to “noisy” data. If 
this were the case, they should be randomly shaped. How-
ever, the forms of Heathcote’s and Ratcliff et al.’s nonlin-
ear zROCs appear concave-up, concave-down, or nearly 
linear, and this suggests a systematic influence. 

By definition, slopes calculated at different points on 
a nonlinear zROC will be different. At the strict end of 
an inverted U-shaped zROC, for instance, the slopes will 
tend to be greater than slopes obtained from the entire 
zROC. However, inverted U-shaped zROCs have been ob-
served that could not have been distorted by averaging. 
Importantly, the averaging account cannot predict nonlin-
ear  single-subject zROCs (see, e.g., Ratcliff et al., 1994) 
unless some form of within-subjects averaging was em-
ployed, and hence the question remains: Why are so many 
ratings zROCs inverted U-shaped? 

Suboptimal decision processes can affect the form of 
ROCs (Broadbent, 1966; Erdfelder & Buchner, 1998; 
Krantz, 1969; Larkin, 1965; Malmberg, 2002; Nachmias 
& Steinman, 1963; Ratcliff et al., 1994; Wixted & Stretch, 
2004), and we refer to these as decision-noise models. 
Malmberg (2002) showed how suboptimal decision strat-
egies can affect the shape of the ratings ROC when they 
are generated from threshold models, and Ratcliff et al. 
(1994) demonstrated that adding a small amount of deci-
sion noise to a continuous-state model produces an in-
verted U-shaped zROC. 

Here, we focus on the influence that a noisy decision 
process has on the form of the continuous-state ratings 
zROC. Figure 3 plots two REM ROCs and two REM 
zROCs. An uncontaminated REM function (i.e., no deci-
sion noise has been introduced) is represented with white 
circles. The function represented with black squares was 
generated using Ratcliff et al.’s (1994) method for intro-
ducing decision noise. This is accomplished by first adding 
n/100 to each of the HRs and FARs on an ROC obtained 
from the uncontaminated REM model, and then normal-
izing these probabilities by dividing each by 1.0 � n/100 
(Ratcliff et al., 1994). In this case, n � 10. The Ratcliff 
et al. decision-noise model produces a shifted ROC and an 
inverted U-shaped zROC. If subjects sometimes adopt this 
decision strategy, this would account for at least some of 
the inverted U-shaped zROCs that have been reported. 

On the other hand, subjects are often instructed to use 
all available ratings or to evenly distribute responses to 
ratings in order to ensure that a full HR–FAR datum is 
obtained for each level of confidence. In contrast, the as-
sumption underlying the Ratcliff et al. (1994) model is 
that noise is added only to the strictest rating. Thus, the 
Ratcliff et al. model might be used only infrequently. Nev-
ertheless, the instructions to evenly distribute responses to 
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ratings might cause subjects to adopt a different, noisy de-
cision strategy, one that assumes that noise is distributed 
across the ROC. Subjects make a valid decision with prob-
ability n; otherwise, they choose a rating randomly. We 
refer to this model as a random  decision-noise model. 

Figure 4 plots three ROCs and the corresponding three 
zROCs, each distorted by 50% random decision noise. 
The ROCs and zROCs assume the same set of criteria: 
0.1, 0.37, 2.0, 3.0, and 12.0, but each ROC represents a 
different level of performance (accomplished by vary-
ing the REM u* parameter at three levels: .04, .07, and 
.10). The shape of the random-noise zROC is influenced 
by performance level. At the lowest level of performance 
(u* � .04), the zROC is inverted U-shaped. There are very 
few responses assigned to the extreme ratings; hence, this 
is where the impact is greatest from the random assign-
ment of noise, driving the ends of the zROCs down toward 
chance. At the highest level of performance (u* � .10), the 
zROC is U-shaped. Now the extreme ratings are receiv-
ing relatively more valid responses, and some of these are 
being introduced in the form of noise to the intermediate 
ratings, driving these points down toward chance levels. 
At the middle level of performance (u* � .07), the zROC 
appears to be linear. 

The random decision-noise model predicts a distinctive 
pattern in the form of the zROC as a function of overall 
performance. When a random decision-noise model is 
assumed, changes in sensitivity result in changes in the 
form of the zROC. When performance of the average sub-
ject is relatively high, there will be a tendency to observe 
U-shaped zROCs. When average performance is relatively 
low, there will be a tendency to observe inverted U-shaped 
zROCs. It is tempting to conclude that such a pattern of 

data reflects a heightened contribution of recollection or 
some threshold-like process to recognition when perfor-
mance is relatively high (Yonelinas, 2002). However, it 
is also possible that subjects are using a noisy decision 
strategy.
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NOTE

1. Readers may refer to the primary sources for detailed descrip-
tions of the single-process models (Malmberg, Zeelenberg, & Shif-
frin, 2004; Shiffrin & Steyvers, 1997).
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