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What characteristics do learning about causes, natural 
language acquisition, and understanding social interac-
tions have in common? Learning sequential dependencies 
between events is at the heart of each of these learning sit-
uations. In causal learning, the dependencies to be learnt 
are between sequences of causes and effects (Shanks, 
Holyoak, & Medin, 1996). In language learning, depen-
dencies between word categories have to be acquired 
( McShane, 1991; Pinker, 1994). In the social behavior of 
both humans and animals, inferences about and applica-
tions of sequential strategies have been shown to be im-
portant (Colman, 1995). In many instances, these learning 
processes are incidental or implicit; they proceed without 
conscious effort and do not necessarily give rise to knowl-
edge that can be easily articulated. Notably, concept for-
mation and natural language acquisition are mostly devoid 
of directed and conscious efforts (Cleeremans & Jiménez, 
1998). The experimental paradigm that combines both of 
these characteristics is implicit sequence learning, which 
allows one to explore these essential learning processes. 
The end product of these learning processes is sequence 
knowledge, which may be expressed in different ways. 
Sequence knowledge is best characterized by models for 
sequential dependencies, such as hidden Markov mod-
els (HMMs), and similar models, such as belief networks 
and Bayes nets. These are used in the analysis of language 
(Manning & Schütze, 1999; Miller & Chomsky, 1963), 
causality (Glymour, 2003), and social interactions (Col-
man, 1995) precisely because of their flexibility in repre-
senting sequential dependencies.

Implicit learning has been studied increasingly in 
different areas of psychological research, ranging from 
subliminal perception in social psychology (De Houwer, 

Baeyens, & Hendrickx, 1997) to associative learning of 
rules in infants (Marcus, Vijayan, Rao, & Vishton, 1999). 
Implicit learning is usually operationalized as an inciden-
tal, rather than an intentional, task: Subjects are not made 
aware of the contingencies that exist between stimuli, and 
they are not stimulated in any way to detect these. It is 
assumed that the effect of such learning conditions is that 
they produce implicit knowledge—that is, knowledge 
of which subjects are unaware. The basic results of im-
plicit learning have been established not only in normal 
populations with a large age range (Marcus et al., 1999; 
Meulemans, Van der Linden, & Perruchet, 1998), but also 
in clinical populations, such as patients with Korsakoff’s 
syndrome and amnesia (Nissen & Bullemer, 1987). These 
results identify implicit learning as a robust and funda-
mental process in the acquisition of complex knowledge 
and show that this process is different from explicit learn-
ing, which has been central to traditional learning research 
and modeling (Anderson, 1983).

Sequence learning has become the paradigm of choice in 
studying implicit learning. In a typical sequence- learning 
experiment, subjects are presented with a sequence of stim-
uli that is manipulated so that the order of presentation is 
not random, albeit unknown to the subjects. The subjects’ 
task is simply to reproduce the current stimulus; that is, they 
type a unique key for each different stimulus. The behav-
ioral effect of this manipulation is a decrease in reaction 
times (RTs), as compared with a control condition in which 
the order of the stimuli is random. Despite a large research 
effort in the last 15 years (Cleeremans & McClelland, 1991; 
Frensch, Buchner, & Lin, 1994; Jiménez & Méndez, 2001; 
Jiménez, Méndez, & Cleeremans, 1996; Lewicki, Czyzew-
ska, & Hoffman, 1987; Lewicki, Hill, & Bizot, 1988; Nis-

Characterizing sequence knowledge using  
online measures and hidden Markov models

INGMAR VISSER, MAARTJE E. J. RAIJMAKERS, AND PETER C. M. MOLENAAR
University of Amsterdam, Amsterdam, The Netherlands

What knowledge do subjects acquire in sequence-learning experiments? How can they express that knowl-
edge? In two sequence-learning experiments, we studied the acquisition of knowledge of complex probabilistic 
sequences. Using a novel experimental paradigm, we were able to compare reaction time and generation mea-
sures of sequence knowledge online. Hidden Markov models were introduced as a novel way of analyzing gen-
eration data that allowed for a characterization of sequence knowledge in terms of the grammar that was used to 
generate the stimulus material. The results indicated a strong correlation between the decrease in reaction times 
and an increase in generation performance. This pattern of results is consistent with a common knowledge base 
for improvement on both measures. On a more detailed level, the results indicate that at the start of training, 
generation performance and reaction times are uncorrelated and that this correlation increases with training.

Memory & Cognition
2007, 35 (6), 1502-1517

I. Visser, i.visser@uva.nl



CHARACTERIZING SEQUENCE KNOWLEDGE    1503

sen & Bullemer, 1987; Perruchet & Amorim, 1992; Seger, 
1997; Shanks & Johnstone, 1999), the precise nature and 
extent of sequence knowledge resulting from sequence 
learning have remained hotly debated issues.

To gain a better understanding of the nature of sequence 
learning and the resulting knowledge, a number of differ-
ent tasks have been proposed and used, in addition to RT 
measures. Their main purpose is to verify whether, indeed, 
implicit knowledge exists and, if so, in which respects it is 
distinct from explicit knowledge. Reber (1967) used ver-
bal reports to assess subjects’ awareness of the structure of 
memorized sequences. Since the subjects failed to express 
any knowledge about the presented material, Reber (1967) 
concluded that the learning process must be implicit and 
that the resulting knowledge is not open to conscious 
scrutiny. More recently, researchers have argued that the 
verbal report task is not sensitive enough to elicit explicit 
knowledge (Jiménez et al., 1996; Perruchet & Amorim, 
1992; Shanks & Johnstone, 1999) and, therefore, have 
proposed other tests. Among these are the recognition and 
generation tasks, which are analogical to recognition and 
recall tasks in implicit versus explicit memory research 
(cf. Roediger, 1990).

In contrast with the RT task in which subjects reproduce 
the current stimulus, in the generation task subjects are re-
quired to predict the next stimulus or even a sequence of 
upcoming stimuli. Nissen and Bullemer (1987) required 
their subjects to guess the next stimulus at each trial, and 
the subjects were required to continue guessing until they 
guessed the correct stimulus. Using a similar generation 
task, Cleeremans and McClelland (1991) found that sub-
jects score above chance level, but only slightly so. On 
the other hand, both Perruchet and Amorim (1992) and 
Shanks and Johnstone (1999) found large associations 
between RT performance and generation performance in 
their research. Given these contrasting results, the rela-
tionship between different measures of sequence knowl-
edge remains unclear.

In this article, we will address this issue specifically. For 
sequence-learning research to advance, it is essential to 
flesh out the precise relationships between these measures 
and to find out how these relationships develop over the 
course of the learning process. The present article there-
fore had two aims. The first was to design an experiment 
that would allow us to compare generation performance 
and RT performance in detail throughout the experiment. 
The second aim was to introduce a new method of ana-
lyzing generation data that allows for quantification of 
knowledge expressed in the generation task. This method 
is based on Markov models (Manning & Schütze, 1999; 
Miller & Chomsky, 1963; Wickens, 1982). In the next sec-
tion, different measures of implicit and explicit knowledge 
will be reviewed. Then, the HMM will be introduced as a 
model for analyzing generation data. In two experiments, 
a novel generation task was presented and the results were 
analyzed. Finally, the results will be discussed.

Measuring Sequence Knowledge
In the 3 decades since Reber (1967) used verbal reports 

of subjects to assess their awareness of grammatical struc-

ture, many different measures of sequence knowledge 
have been used. In this section, we will discuss these dif-
ferent measures and their advantages and disadvantages in 
measuring sequence knowledge.

A frequently used alternative to verbal reporting as a 
measure of sequence knowledge is the generation task. The 
main result found by Nissen and Bullemer (1987), who in-
troduced the generation task, is that subjects’ performance 
is significantly above chance level (59% vs. a chance level 
of 33%) immediately after the RT phase of a sequence-
 learning experiment. They compared learning under single- 
and dual-task conditions, but they did not contrast genera-
tion performance on structured versus random sequences 
without a distractor task, making it difficult to draw conclu-
sions about the relationships between these measures.

Cleeremans and McClelland (1991), in their first ex-
periment, used verbal reports to assess awareness of 
stimulus contingencies. These reports showed that sub-
jects had limited reportable knowledge. In their second 
experiment, they used a generation task, modeled after the 
Nissen and Bullemer (1987) task. Subjects were told that 
the sequence they had seen was characterized by some 
regularity and were then asked at each trial to predict the 
location of the next stimulus. Feedback was provided at 
each error they made, after which the next trial was pre-
sented. Qualitatively, the results were similar to those in 
Nissen and Bullemer, in that the subjects could better pre-
dict grammatical than nongrammatical trials. However, 
even for grammatical trials, the percentage of correctly 
predicted stimuli was only about 25% versus a chance 
level of 16.7%. This may, in part, be due to there being six 
possible stimuli (vs. four in Nissen & Bullemer’s study) 
and the fact that the sequential structure of the stimuli was 
more complex.

When used to evaluate explicit sequence knowledge, 
the generation task in Nissen and Bullemer (1987) and 
Cleeremans and McClelland (1991) has the important 
drawback that feedback is provided. Feedback has two 
possibly detrimental effects. First, it may result in learning 
during the generation task, instead of measuring knowl-
edge that was learned during the RT phase of the experi-
ment. In Cleeremans and McClelland’s study, there was a 
small, although nonsignificant, increase in the percentage 
of correct predictions during the generation task. Because 
of this learning effect, only the start of the generation task 
can be used to assess knowledge that was acquired dur-
ing the RT phase of the experiment, which limits the reli-
ability of the results. The second important drawback of 
providing feedback is that it may interfere with subjects’ 
memory when trying to predict imminent stimuli.

Perruchet and Amorim (1992) introduced the so-called 
free generation task to eliminate the undesirable effects 
of providing feedback and, so, to arrive at a better test of 
explicit sequence knowledge. Using a 10-trial repeating 
sequence, they found that substantial sequence knowledge 
can be expressed in free generation after only 200 trials. 
They found a close correspondence between free genera-
tion performance and improvement in RT as support for 
“the assumption that there is a common knowledge base 
for RT improvement and introspective knowledge” (Per-
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ruchet & Amorim, 1992, p. 789). In contrast, Destrebecqz 
and Cleeremans (2001) used a free generation task with 
the specific instruction that subjects should refrain from 
typing sequences they had seen in the RT phase of the 
experiment. Despite this instruction, the subjects pro-
duced significant portions of the 12-element sequence 
to which they had been exposed before. From this result, 
Destrebecqz and Cleeremans argued that free generation 
performance is, at least in part, dependent on implicit 
knowledge. It should be noted here that Wilkinson and 
Shanks (2004) failed to replicate the results of Destrebecqz 
and Cleeremans, suggesting that generation performance 
is fully dependent on explicit knowledge. Given these 
opposing results, it remains unclear whether generation 
performance is based on implicit or explicit knowledge. 
One concern with these studies is that the short repeating 
sequences that were used as stimulus material may be easy 
to memorize during both the RT phase and the generation 
phase. The use of such stimulus material may hence facili-
tate explicit learning.

Jiménez et al. (1996) used probabilistic sequences 
generated from a finite state grammar to overcome this 
problem. Such sequences are much more variable and 
complex than the repeating sequences that are typically 
used in sequence learning. It should also be noted that the 
use of probabilistic sequences is more realistic when the 
aim is to provide insight into the learning processes re-
quired in complex domains, such as, for example, natural 
language acquisition and causal learning. Jiménez et al. 
used continuous generation, “in which the next stimulus 
as prescribed by the sequential structure is presented re-
gardless of participants’ prediction response” (p. 952). 
This procedure is identical to that of Cleeremans and 
McClelland (1991), except that no feedback is provided. 
This procedure was chosen so as to maximize compat-
ibility with the RT task. Jiménez et al. argued that such 
compatibility is necessary to ensure maximal sensitivity 
of the task to explicit knowledge. Even so, they found 
that subjects scored only slightly (although significantly) 
above chance level (about 25% correct vs. a chance level 
of 16.7%). Note that these results are identical to the re-
sults found by Cleeremans and McClelland, except that 
the latter study found a slight (nonsignificant) increase in 
generation performance over three blocks of generation 
trials. Even though no direct feedback is given, the con-
tinuous generation procedure provides indirect feedback 
by presenting the next element of the sequence regardless 
of subjects’ responses. This indirect feedback may disrupt 
memory of previous stimuli. One may think that feedback, 
be it direct or indirect, should result in better performance. 
However, remembering previous stimuli is disrupted by 
feedback to an incorrect response (Shanks & Perruchet, 
2002). As a consequence, overall performance may get 
worse, certainly when higher order dependencies between 
generated trials are considered. As a result of this proce-
dure, only single-trial predictions can be used for analy-
sis, which does not provide a detailed picture of subjects’ 
higher order knowledge. For this reason, in the present 
study, neither direct feedback nor indirect feedback was 
given on generation trials.

One further important problem with the generation task 
is shared by all of the versions above that have been used 
hitherto: They have been administered only after the RT 
phase was completed (Cleeremans & McClelland, 1991; 
Jiménez et al., 1996; Nissen & Bullemer, 1987; Perruchet 
& Amorim, 1992). This procedure has two important 
drawbacks. First—for example, in the experiment by Nis-
sen and Bullemer—subjects are told that the accuracy of 
their responses is more important than the speed of re-
sponding. As a result, subjects may adopt a different strat-
egy in responding to the task, as compared with the RT 
task. Second, as a consequence of having the generation 
and RT tasks in two different phases of the experiment, 
there is no means other than the RTs of assessing sequence 
knowledge in the early phases of training.

Online generation. As can be seen from the discus-
sion above, results obtained with different versions of the 
generation task have been far from conclusive in assessing 
the relationships between different measures of express-
ing sequence knowledge. In the present study, a novel 
version of the generation task was introduced, which is 
called  online generation. In online generation, subjects 
are required to generate short sequences of trials, which 
are alternated with sequences of RT trials.

In subliminal semantic-priming research, similar consid-
erations have led to the introduction of online prime iden-
tification trials. Usually, in priming studies, the optimal 
prime threshold is determined by administering a number 
of prime identification trials prior to the main experiment. 
However, concerns about whether the prime threshold 
could change during the experiment—for example, due to 
fatigue and learning effects—have led some researchers to 
devise a method of assessing the prime threshold online by 
administering prime identification trials interspersed with 
the (target) semantic-priming trials (Durante & Hirshman, 
1994; Hirshman & Durante, 1992).

An advantage of the online generation procedure is that 
the generation and serial reaction time (SRT) tasks are pre-
sented concurrently. This prevents problems associated with 
having two different phases in the experiment—the SRT and 
the generation tasks—that may be differentially affected by 
strategic choices, forgetting, and fatigue. Moreover, the pos-
sible associations and dissociations between generation per-
formance and RT performance can thus be studied in detail 
over the course of learning. No feedback is provided so as 
to avoid the associated problems. Feedback on errors in the 
RT phase is also suppressed so as to maximize congruence 
between the RT trials and the generation trials. Complex 
probabilistic stimulus sequences are used in this research 
to make the learning more comparable to natural learning 
situations. Our expectation is that, with this generation task, 
due to the congruence between RT and generation tasks, 
there will be a large association between these measures in 
the absence of verbally reportable knowledge.

Another important and novel aspect of the present re-
search concerns the analysis of generation data. HMMs 
were introduced here as a means of directly comparing the 
rules underlying the sequence of stimuli presented to sub-
jects and their generated sequences. Before presenting the 
experiments, a description of HMMs will be provided.
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Assessing Sequence Knowledge From  
Generation Data

The analysis of (free) generation data, with the aim of 
measuring sequence or grammatical knowledge, can be 
done in several ways. Nissen and Bullemer (1987) com-
puted the percentage correct for single generation trials 
and compared this with chance level, as did Cleeremans 
and McClelland (1991) and Jiménez et al. (1996). An-
other possibility is to compare bigrams, trigrams, and 
so forth of generated sequences between a group that is 
trained on a repeating sequence of structured stimuli and 
a group that is trained on random sequences or differently 
structured sequences (Perruchet & Amorim, 1992; Shanks 
& Johnstone, 1999). However, the choice for comparing, 
say, trigrams rather than bigrams is necessarily somewhat 
arbitrary. In many studies on implicit learning, finite state 
automata (FSAs) are used to generate sequences of stim-
uli (Cleeremans & McClelland, 1991; Jiménez & Mén-
dez, 1999, 2001; Jiménez et al., 1996; Reber, 1967, 1976; 
Seger, 1997). Verbal reports and generation tasks are used 
to assess explicit knowledge in these studies. Mostly, gen-
eration data are compared with chance level1 or with a 
control group. To establish an experimental effect, this is 
sufficient. However, these methods do not directly address 
the question of whether subjects have learned the rules of 
a grammar. The subjects’ performance on the generation 
task was not compared directly with the grammar in any of 
the studies discussed above (except Jiménez et al., 1996; 
see the discussion below). Hence, it is interesting to learn 
how much of the structure of the FSA the subjects learned 
during the experiment.

Jiménez et al. (1996) correlated conditional prob-
abilities of (a selection of ) generated sequences up to a 
length of four with the conditional probabilities of the 
identical sequences in the grammar, thereby providing 
a comparison between subjects’ generation performance 
and (aspects of ) the grammar. Fitting HMMs directly to 
generated sequences extends this method by simultane-
ously modeling all the observed sequential dependencies 
in subjects’ generated sequences, instead of doing so for 
sequences of different lengths separately. In other words, 
when HMMs are used, the complete information about 
the knowledge of subjects expressed in generation trials 
is used. This results in a model of subjects’ knowledge 
that can be compared both qualitatively and quantitatively 
with the FSA that was used to generate the stimuli.

HMMs have mostly been applied in speech recogni-
tion (Rabiner, 1989; Schmidbauer et al., 1993), biological 
sequence (DNA, RNA) analysis (Krogh, 1998; Salzberg, 
Searls, & Kasif, 1998), and machine learning (Ghahra-
mani & Jordan, 1997; Saul & Jordan, 1995). HMMs can 
be described in two important ways: first, as Markov mod-
els with a probabilistic response function, and second, as 
stochastic FSAs. The latter way of representing HMMs is 
important when applying them to sequence learning. For 
an introduction to HMMs, see Rabiner (1989). We first 
will describe HMMs in the formal manner, in which they 
are derived from Markov models, and then will compare 
them with FSAs.

Markov and hidden Markov models. All of the 
Markov models and HMMs described here are used for 
categorical data such as binary or polytomous responses. 
Both Markov models and HMMs consist of a number of 
states, here denoted as Si, i  1, . . . , n. In applications 
in psychology, these states are commonly interpreted as 
knowledge states, which correspond to different sets or 
levels of knowledge. For example, in early models of 
paired associate learning, there are usually two states, 
called the guessing state and the learned state. Subjects 
start in the guessing state, in which their performance is 
at chance level, and after a number of trials they jump to 
the learned state, in which their performance is perfect. 
This kind of learning is, for the obvious reason, referred to 
as all-or-none learning (Nicolson, 1982; Wickens, 1982). 
The process of moving from one state to the next is mod-
eled by transition probabilities P(Sj | Si), denoted here as 
aij, i, j  1, . . . , n.

The states Si and the transition matrix A  {aij} to-
gether form a Markov model (see Wickens, 1982, for an 
overview of the use of Markov models in psychology). 
Markov models have been applied in many areas, includ-
ing recall and recognition (Kintsch & Morris, 1965), 
paired associate learning (Nicolson, 1982), and conserva-
tion learning (Brainerd, 1979). In a Markov model, the 
response patterns associated with each state are such that 
we can determine with certainty in which state a subject is 
by his or her response. In latent or hidden Markov models, 
this is not the case. At each point, a subject’s state is best 
described as a probability distribution over all the possible 
states of the model.

The outputs of the model are denoted by Oj, j  
1, . . . , m. These outputs are also called observation sym-
bols or responses. In the present application, we will model 
sequences of trials Ot, where each Ot is one of the Ojs. The 
states and observation symbols are linked by observation 
probabilities, alternatively called a response function, B  
{bij}, i  1, . . . , n, j  1, . . . , m. The parameter bij repre-
sents the probability of observing symbol Oj in state Si. In 
addition to transition and observation probabilities, there 
are initial state probabilities i that represent the probabil-
ity of starting in state Si. For example, in the all-or-none 
model, g equals 1.0 and l equals zero, expressing the as-
sumption that subjects at the start of the experiment have 
no knowledge and, hence, start in the guessing state. All 
parameters together are denoted by   (A,B, ).

The  parameter of the HMM can be estimated on the 
basis of a sequence (or a number of sequences) of observed 
responses, using the EM algorithm for optimization of the 
parameter values from Rabiner (1989). In the analysis of 
generation data, the sequences are the responses of dif-
ferent subjects on the generation trials of the experiment. 
We apply the aforementioned optimization procedure in 
fitting HMMs to the generation data and then compare the 
resulting models with the grammar that was used to gener-
ate the sequences for the experiments. To this end, we first 
need an HMM representation of the finite state grammar 
that we used to generate the sequences. This representa-
tion is provided below.
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Finite state automata and HMMs. In the present 
experiments, an FSA was used to generate stimuli for se-
quence learning. This FSA is depicted in Figure 1A. Each 
state of the grammar has either one or two outgoing ar-
rows. Consequently, when there is only a single outgo-
ing arrow, the corresponding symbol is produced with a 
probability of 1.0; when there are two outgoing arrows, 
one of them is chosen with a probability of .5 (in the fig-
ure, these probabilities are represented by fat and thin ar-
rows, respectively). Sequences are generated using this 
FSA by moving from state to state, starting and, eventu-
ally, terminating in State 1/7. For example, the sequence 
ADBD is a grammatical sequence that passes through 
States 1, 3, 4, 6, and 7. The associated probability of this 
sequence is .25—that is, the product of the individual 
arrow  probabilities—starting with a probability of .5 for 
the A (the alternative choice in State 1/7 is a B); then D 
and B are produced with a probability of 1.0, and finally, 
from State 6, the D is produced with a probability of 0.5. 
Similarly, the sequence BCABCD passes through States 
1, 2, 5, 4, 6, 5, and 7 and has an associated probability of 
.0625.

FSAs can also be represented as HMMs (by shifting 
from a vertex representation to an edge representation; 
that is, instead of having labeled arcs, HMMs have labeled 
states (see, e.g., Hopcroft, Motwani, & Ullman, 2001, and 
Lind & Marcus, 1995, for different representations of 
FSAs). In Figure 1B, the grammar is represented as an 
HMM (again, the thin and fat arrows represent probabili-
ties of .5 and 1.0, respectively). The generation of strings 
in the HMM is very similar to the generation procedure 
in FSAs: Starting in a given state, which provides the first 
letter, one leaves the state via one of the present arcs to ar-
rive at the next state, which provides the next letter, and so 
forth. Again, it can be seen that ADBD is a legal sequence, 
as it is in the FSA. The sequence BAC is not legal, since 
there is no sequence of nodes with the labels B, A, and C 
that are connected in that particular order.

To analyze the generation data, HMMs are used in the 
following way. HMMs are fitted to the (short) sequences 
of responses generated by subjects. This results in a model 
of a grammar that the subjects have learned. A grammar in 
this context is understood as an FSA or, rather, the HMM 
representation thereof. Such a grammar encompasses all 
the information inherent in the sequences generated by 

subjects—that is, the frequencies of single symbols, bi-
grams, trigrams, and so forth. The fitted model is then 
compared with the HMM representation of the grammar. 
This is done by computing a distance measure between 
the true grammar and the learned grammar. This distance 
measure, which is formally defined in the Results section, 
indicates how much of the grammar has been learned. If 
sequence learning has an effect on subjects’ ability to gen-
erate grammatical sequences, the distance between the fit-
ted HMMs and the grammar is expected to decrease.

EXPERIMENTS 1 AND 2  
Sequence Learning and Online Generation

Experiment 1 was a standard sequence-learning task 
without a generation task, and in Experiment 2, the on-
line generation task was introduced. The RT data from 
Experiment 1 could thus be used to check whether the on-
line generation task affected RT performance. To assess 
the relationship between generation and RT performance 
during the learning process, in Experiment 2, a sequence-
learning experiment was carried out, in which series of RT 
trials were alternated with series of generation trials. The 
goal of the experiment was to acquire repeated measures 
of generation performance and RT performance concur-
rently, so that these could be compared in each phase of the 
experiment. Moreover, the task was such that the task re-
quirements for the generation and RT trials were as similar 
as possible. No feedback was given on any of the trials.

Method
In Experiments 1 and 2, subjects were given a four-choice se-

rial RT (SRT) task consisting of a total of 9,480 and 12,000 trials, 
respectively. Trials were administered in four sessions of approxi-
mately 45 min each; the subjects did two sessions a day, on 2 consec-
utive days. On each day, the subjects had a break of 15 min between 
sessions. Each session comprised six blocks of 395 and 500 trials 
in Experiments 1 and 2, respectively. After each block, there was a 
(subject-controlled) break of at least 2 min. At the end of each block, 
the subjects’ performance and financial rewards were presented on 
the computer screen.

Subjects
The subjects were 7 (Experiment 1) and 8 (Experiment 2) under-

graduate psychology students from the University of Amsterdam. 
They were given course credits for their participation in the experi-
ment. The subjects also received financial rewards for fast and ac-

Figure 1. Finite state automaton (A) and hidden Markov model (B) for the 
same grammar. In both panels, the arrows are either thin or fat, corresponding 
to a probability of .5 and 1.0, respectively. See the text for further details.
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curate responding. There was no financial reward for generation 
performance. The maximum reward was about €20.

Procedure and Stimulus Material
During both Experiments 1 and 2, the subjects were seated in 

front of a computer that was divided into four quadrants, as depicted 
on the bottom left-hand side of Figure 2. At each RT trial, an “x” was 
presented in one of the quadrants of the screen. The subjects’ task 
was to press the corresponding key on the numerical keypad of a 
QWERTY keyboard, using the index finger of their preferred hand. 
The response keys were the numbers 1, 2, 4, and 5 on the numerical 
keypad, which have the same layout as the quadrants on the screen. 
Four mappings of grammatical letters to screen positions were used 
in a Latin-square design.

On the bottom right-hand side of Figure 2, the display used for 
the generation trials in Experiment 2 is depicted. At generation tri-
als, an “x” was placed in the quadrant of the previous trial (or in the 
quadrant of the previous generation response if the previous trial 
was also a generation trial). In the other quadrants, question marks 
were shown to indicate that this was a generation trial. The subjects 
were required to press any of the three keys corresponding to the 
quadrants in which the question marks were shown. The rationale 
for indicating the previous response or trial at generation trials is that 
in the sequence of RT trials, no repeating trials occur. In previous 
studies, it was found that subjects become aware of this very quickly 
in the RT task (Visser, Raijmakers, & Molenaar, 2000). In this ex-
periment, the subjects were told in the instructions that this was the 
case, to prevent the generation of two or more identical responses 
in succession.

The sequences of trials for the grammatical blocks were pro-
duced by generating sequences from the grammar in Figure 1A, as 
described earlier. In both experiments, each sixth block consisted of 
random order trials; the others consisted of grammatical trials. The 
only constraint in the random sequences was that there should be no 
repetitions of identical stimuli, as is common in sequence-learning 
experiments. This was done to prevent undesirable repetition prim-

ing effects in the RTs (Cleeremans & McClelland, 1991; Nissen & 
Bullemer, 1987). The last block of each session was used as a control 
in the assessment of the decrease in RTs, because the decrease of 
RTs was partially due to nonspecific training at the task. An addi-
tional decrease of RTs, in comparison with the random blocks, was 
expected due to the subjects’ growing sensitivity to the contingen-
cies inherent in the grammatical sequences.

In Experiment 2, the blocks of 500 trials were divided into se-
quences of RT trials and generation trials according to the following 
scheme (see also Figure 2). Each block consisted of runs of SRT 
trials with lengths of 17–23, alternated with runs of generation tri-
als with lengths of 3–7. There were 19 such runs, resulting in 105 
generation trials per block. Each block began and ended with a run 
of SRT trials, resulting in a total of 20 runs of RT trials, totaling 395 
trials (see Figure 2 for an overview of the relationships between ses-
sions, blocks, and runs of trials).

Instructions
In both experiments, the subjects were told that both accuracy 

and speed were important in this task. In addition, the subjects in 
Experiment 2 were instructed that during generation trials, they 
should “continue pressing at approximately the same rate as during 
the RT trials.” This was done so as to make the generation trials as 
similar as possible to the RT trials. They were told not to “stop and 
think” but, instead, just to “type the response that seemed appropri-
ate, or to guess when they felt there was no appropriate response.” 
The subjects were also made aware of the fact that in the RT trials, 
no repetitions occurred and that at generation trials, they should not 
produce consecutive identical responses.

Postexperimental Interviews
The subjects were interviewed following the last session to es-

tablish the extent to which they could articulate the knowledge they 
had acquired. They were asked a series of increasingly specific ques-
tions. First, they were asked whether they had any idea what the 
experiment was about. Second, they were asked whether they had 

Figure 2. Design of Experiments 1 and 2. SRT, serial reaction time.
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noted anything particular about the stimuli. Third, they were asked 
whether they had found or seen any regularity in the stimuli and, if 
so, whether they could describe or point out that regularity. Fourth, 
after the subjects had been told that there was regularity in the se-
quences, they were asked to reproduce sequences that they thought 
they had seen if they could. Fifth, if they produced fragments of the 
sequence, they were asked at which point during the experiment 
they had first become aware of this. Finally, the subjects were asked 
whether they had used their knowledge in generating sequences at 
generation trials.

Results

Accuracy Data and Outliers
RTs were judged to be outliers if the RT deviated more 

than three standard deviations from the mean. Outlier de-
tection was done for each subject and block separately, 
after the error responses had been removed. In Experi-
ment 2, the first trial after each run of generation trials 
proved to be prone to errors, and the subjects responded 
much more slowly on these trials than on others. Outlier 
detection was done after removing these trials and other 
erroneous trials. In Experiment 1, 679 trials were detected 
as outliers from a total of 66,360 RT trials. The mean ac-
curacy in the RT trials was 96.4%, ranging between 95.5% 
and 98.9% over the 24 experimental blocks. In Experi-
ment 2, 731 trials from a total of 76,000 RT trials were 
detected as outliers. Accuracy on the RT trials averaged 
97%, ranging between 96% and 98% over 24 blocks. In 
the following analyses, the data of 1 subject from Experi-
ment 1 were discarded because, in one of the blocks, his 
mean RT was 100 msec larger than in the preceding and 
following blocks; using the above criteria between blocks, 
instead of within, this block as a whole was an outlier. The 
RT analyses below were conducted with and without this 
subject, leading to the same results.

Reaction Times
In Figure 3, the mean RTs in both experiments are 

shown. As can be seen, the pattern of results was very 
similar for both experiments, and the differences in mean 
RTs between Experiments 1 and 2 were generally small, 
with a mean absolute difference of 5.8 msec. The map-
ping between letters of the grammar and screen positions 
was varied between subjects. There were no significant 
differences between these mappings when included in the 
following analyses of data from either of the experiments 
(all ps  .4). In the following, the multivariate approach to 
repeated measurement analysis (O’Brien & Kaiser, 1985) 
was used whenever possible and unless noted otherwise.2 
However, overall, the results were the same when the uni-
variate statistics were considered.

A two-way ANOVA with repeated measures (gram-
matical vs. random  four levels of practice for each of 
the four sessions) was conducted on the last two blocks 
from each session to compare the mean RTs obtained in 
the grammatical and the random blocks. In Experiment 1, 
this analysis yielded significant main effects for practice 
[F(3,3)  13.270, p  .05, 2

p  .930] and for grammati-
cality [F(1,5)  26.989, p  .005, 2

p  .844]. The same 
analyses for Experiment 2 revealed significant main ef-
fects for practice [F(3,5)  17.685, p  .005, 2

p  .914] 

and for grammaticality [F(1,7)  41.056, p  .001, 2
p  

.854]. Most important, there were significant interactions 
between practice and grammaticality, confirming that RTs 
in the grammatical blocks decreased significantly more 
than did RTs in the random blocks [F(3,3)  43.369, p  
.01, 2

p  .977, and F(3,5)  42.421, p  .001, 2
p  .962, 

in Experiments 1 and 2, respectively]. To test whether there 
were any differences between the experiments, the same 
analyses as those above were done with data from both 
experiments combined. The repeated measures ANOVA 
with grammaticality and practice as  within-subjects fac-
tors and experiment as between-subjects factor (2  4  2) 
yielded no main effect or interaction (Fs  1, ps  .5). 
As can be seen from Figure 3, it seemed that the RTs did 
not decrease anymore in Sessions 3 and 4. This observa-
tion was confirmed by a repeated measures ANOVA on 
the grammatical blocks of Sessions 3 and 4 combined, 
in which F(9,4)  2.297, p  .22. Similarly, within Ses-
sion 2, there was no RT improvement [F(4,9)  2.417, 
p  .125]; however, there was RT improvement between 
Sessions 2 and 3 [F(9,4)  21.868, p  .01].

In both experiments, there was a large decrease in mean 
RTs in grammatical blocks, but not so in the RTs in the 
random blocks. This pattern of results replicates the stan-
dard findings in implicit-learning experiments, which 
use probabilistic sequences (Cleeremans & McClelland, 
1991; Jiménez et al., 1996; Seger, 1997). There were clear 
interactions between practice and grammaticality in the 
 ANOVAs above, indicating that the grammatical sequences 
facilitated larger decreases in RTs than did the random se-
quences over practice. Most important, the generation task 
that was used in Experiment 2 did not influence the sub-
jects’ performance on the RTs in any significant way, as is 
clear from the absence of any significant effects when ex-
periment was included as a factor in the analyses above.

Figure 3. Mean reaction times for each experimental block 
for both experiments. Bars around the means indicate within-
 subjects confidence intervals (Loftus & Masson, 1994). Every 
sixth block is a block with random sequences, indicated by the 
filled dots/squares.
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Generation Data
All the following analyses concern only the data from 

the generation task obtained in Experiment 2. To be able to 
compare the results of the online generation task with those 
of an earlier generation experiment by Visser et al. (2000), 
the responses on the first trial of each run of generation 
trials were analyzed to see whether the subjects were able 
to predict the next trial in a sequence. Trials were scored 
as correct if they were predicted according to the sequence 
used to generate the trials, and as incorrect otherwise.3 The 
mean percentages correct were computed for each two 
consecutive blocks of trials (percentages for single blocks 
would be not very reliable, due to the small number of data 
points involved). Prediction accuracy increased from 39% 
(SD  11.0%) in the first two grammatical blocks to 61% 
(SD  7.6%) in the last two grammatical blocks. Note 
that the baseline accuracy was 33%, since there were four 
choices but repetitions did not occur and the subjects were 
made aware of this in the instructions. In the first block, 
the subjects had 35% correct predictions on the first trial of 
each run of generation trials. A repeated measures ANOVA 
with 10 levels of practice (for two consecutive blocks at a 
time) revealed that the increase in prediction ability was 
significant [F(9,63)  9.938, p  .001]. The results agree 
well with earlier findings where the percentage correct on 
single predictions increased from 36% to 52.2% over a 
total of 4,800 trials (Visser et al., 2000).

Fitting HMMs: Procedure. To gain insight into the 
rules that subjects follow during generation trials, HMMs 
were used to analyze the generated sequences. The pro-
cedure was as follows. Generated sequences obtained 
in each block were analyzed separately. The generated 
sequences of all the subjects in a single block formed 1 
data set, resulting in a total of 24 data sets to be analyzed. 
For the fitted models to be comparable to the grammar, 
they had to contain all the transitions between states that 
were part of the grammar. Therefore, as a basis, the HMM 
representation for the grammar in Figure 1B was used. In 
the HMM representation of the grammar, many transition 
probabilities were zero. For example, there was no direct 
transition from the leftmost D to the rightmost A, nor vice 
versa from A to D. Of course, the subjects did not follow 
all the rules of the grammar, so the model had to be able 
to accommodate other sequences. This was achieved by 
setting all the transitions between states to nonzero values 
at the start of optimization. The observation parameters 
were fixed at the values from the grammar. Furthermore, 
for technical reasons, the transitions in the HMMs that 
occurred in the grammar were constrained so that they 
could not become zero in the optimization of the models.4 
This was necessary because, for a model in which transi-
tion probabilities between states were zero for grammati-
cal transitions, it was impossible to compute the distance 
between the fitted model and the grammar. The reason for 
this will be explained below.

In fitting the model to each data set, 300 sets of starting 
values for the parameters were generated, and the result-
ing HMMs were optimized. From those 300 models, the 
best model was selected using an adjusted Bayesian infor-
mation criterion (BIC). The BIC is defined as BIC  2 

log L  log(T )p, where L is the likelihood of the model, 
T is the number of data points used in fitting the model, 
and p is the number of freely estimated parameters (see 
Bozdogan, 2000, for an overview of different model se-
lection criteria). The number of parameters p in the BIC 
is usually the number of freely estimated parameters. In 
this case, that would be all the parameters in the transition 
matrix A and all the initial state parameters i. Since the 
model had seven states and each row of the transition ma-
trix sums to 1, the transition matrix had 7  (7  1)  42 
free parameters. The observation matrix parameters were 
all fixed, and so they did not contribute to the number 
of parameters to be estimated. The 7 initial state param-
eters also summed to 1, and so 6 initial state parameters 
remained to be estimated, resulting in a total of 48 param-
eters to be estimated. In general, in fitting HMMs to data 
generated by FSAs or similar processes, many parameters 
are expected to be zero. In fact, in the HMM represen-
tation of the grammar, only 10 parameters are nonzero. 
Here, an adjusted BIC was used employing the number 
of nonzero parameters, instead of the number of free pa-
rameters. In simulation studies, it has been found that this 
criterion works well in selecting the correct model (Visser, 
Raijmakers, & Molenaar, 2002).

The resulting fitted HMMs were compared with the 
HMM representation of the grammar by computing a dis-
tance measure between the fitted model and the gram-
mar. The expectation was that the distance between the 
subjects’ models and the grammar would decrease due to 
learning. The distances were computed as follows:

 D P O P O Tt f t tlog | log | / , (1)

where Ot, t  1 . . . T is a sequence generated by the true 
model, T is the length of the sequence, log P(Ot | t) is 
the log-likelihood of the sequence Ot given the parameter 
values of the true model t (i.e., the HMM representation 
of the grammar), and log P(Ot | f) is the log-likelihood 
of the sequence Ot given the parameter values f of the 
fitted model. This distance measure indicates how well 
the fitted model can describe data that are generated from 
the grammar, in comparison with how well the grammar 
itself does so. The distance measure can be interpreted as 
a cross-entropy between the models (see chap. 4 in Whit-
taker, 1990, for an introduction to entropy and informa-
tion distance measures).5

Fitting HMMs: Results. HMMs were fitted on the 
generation trials of the 24 blocks in Experiment 2. In Fig-
ure 4, the models are shown for the first grammatical block 
of the first session and for the last grammatical block of the 
fourth session. Figure 4 clearly reveals the improvement. 
Connections that also occur in the grammar have a higher 
probability (indicated by thicker lines), and connections 
that do not occur in the grammar are less pronounced or 
absent in the model from the last block. In the model for 
Block 1, there are 11 ungrammatical transitions, whereas 
in the model for Block 23, there are only 8 ungrammatical 
connections, which have smaller probabilities.

For all models, distances to the grammar were com-
puted using the formula in Equation 1. The distances of 
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the models shown in Figure 4 are .619 and .371, respec-
tively. The resulting distances are plotted in Figure 5. The 
pattern of results for the distances is similar to the results 
for the RTs that are shown in Figure 3. The distances in 
the random blocks are lower than one would expect on the 
basis of chance-level performance, which indicates that 
also in those blocks, the subjects generated sequences that 
deviated from randomness in the direction consistent with 
the grammar. The correlation between the mean RTs for 
each block and the distances for each block is .835 ( p  
.0001). When the random blocks are left out, this correla-
tion is .814 ( p  .0001). There was a large effect of learn-
ing in the first two sessions: The distance drops from .619 
to .485, which is consistent with the drop in RTs during 
those sessions. The correlation between distances and RTs 
over the grammatical blocks of Sessions 1 and 2 is .792 
( p  .01). After that, in Sessions 3 and 4, the RTs hardly 
decreased; the mean RT in Block 13 was 286 msec, and in 
Block 23, it was 278 msec (a nonsignificant difference, as 
reported above in the section on RTs). As a consequence, 
the correlation between RTs and distances over grammati-
cal blocks in Sessions 3 and 4 equals .065 ( p  .86). The 
distances, however, decreased from .499 to .371 in Ses-
sions 3 and 4. A regression analysis of distance on block 
number confirmed that the drop in distance within Ses-
sion 3 was significant (R  .888, p  .05). The similar 
regression for Session 4 did not reach significance (R  

.750, p  .144).
It is possible that much simpler models would fit the 

generation data as well or better. The models that we fitted 
to the generation data were constrained so as to be compa-
rable with the grammar. As a result, it is possible that this 
model was overparametrized. To rule out this possibility, 
we fitted first-order Markov models to the generation da-
ta.6 These are four-state models with a single state for each 
possible observation: A, B, C, or D. The transition prob-
abilities were then optimized as in the analyses above. The 
fitted models had BICs in the range of 2,050–2,300 for 
the 24 experimental blocks. In comparison, all the models 
reported above, which were used for the distance analysis, 
had BICs below 1,950, thus showing that these models fit 
the data much better than did the simpler models.

Postexperimental Interviews
In the exit interviews, the subjects were asked a series 

of increasingly specific questions to elicit their explicit 
knowledge about the sequence. At the third or fourth ques-
tion, 7 of the 8 subjects mentioned some sequences that 
they thought had occurred in the sequences. These 7 sub-
jects mentioned 17 sequences with a mean length of 3.7, 
of which 14 were legal sequences according to the gram-
mar and 3 were illegal. Of course, the subjects could only 
point out sequences on the screen or keyboard, since they 
did not know the labels from the grammar. The trigrams 
that were mentioned by more than 1 subject were DAD 
and ABC. A wrong trigram that was mentioned twice was 
DAB. The latter trigram corresponds to the loop on the 
right-hand side of the grammar in Figure 1B. All the sub-
jects said that they had not made use of this knowledge in 
the generation task. Two subjects said that they had tried 
to do so at some stage but had found it “easier and less 
tiring” to trust their “feeling” or “intuition.”

Figure 4. Fitted models for Block 1 (A) and Block 23 (B). The solid lines with 
arrows are connections that occur in the grammar; the dashed lines are connec-
tions that are ungrammatical—that is, those connections have a zero probabil-
ity in the grammar, but nonzero probability in the models fitted on the subjects’ 
data. The thickness of the lines correspond with the transition probabilities 
between states. Nongrammatical arrows with a probability of less than .1 are 
left out for reasons of clarity.
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To establish how much knowledge the sequences that 
were mentioned represent, an HMM was fitted to those 
sequences. This was done in the same way as described 
before with the generation data. The distance from the fit-
ted model to the grammar was computed. The result is a 
distance of .706, which is larger than the distance of the 
models fitted to the sequences generated in both the gram-
matical and the random blocks. It is, in fact, close to the 
baseline for the distance measure, which equals .72. This 
baseline distance is computed by generating a random se-
quence without repetitions, to which an HMM is fitted in 
the manner described above. Next, the distance from this 
fitted model to the grammar is computed. The conclusion 
from this analysis is that the knowledge expressed in the 
verbal reports is severely limited, in comparison with the 
knowledge expressed in the generation task.

From the results above, it is clear that there is a strong 
association between RTs and performance on the genera-
tion task. The analyses presented so far, however, show 
only a global correspondence between the RT and genera-
tion tasks. In the next section, we will provide analyses of 
associations and dissociations between RTs and genera-
tion data on a more detailed level.

Relating RTs, Generation Data, and Hidden 
Markov Models

On the basis of the fitted HMMs above, we showed that 
there was a close correspondence between learning to ex-
press grammatical knowledge in the generation task and 
the decrease in RTs. Our aim in this section is to relate RTs 
and generation data in more detail. The important ques-
tion remained as to whether particular sequences of re-
sponses that were generated more often also elicited faster 
responses on RT trials and vice versa. Following similar 
analyses by Jiménez et al. (1996) and Perruchet and Amo-
rim (1992), we analyzed RTs to sequences of different 
lengths. Moreover, we analyzed the relationship between 
parameters of the fitted HMMs and the RTs to find out 
whether the HMMs would better capture the variability in 
RTs than would other statistics derived directly from the 
generated sequences. We believed that HMMs should do 
better because, in the fitted HMMs, the information from 
sequences of different lengths was combined to estimate 
the parameters. In contrast, when analyzing the relation-
ship between RTs and subsequences, one necessarily has 
to analyze either bigrams or trigrams or higher order se-
quences separately.

The following analyses were done only for the grammat-
ical blocks in Experiment 2. First, mean RTs were com-
puted for the last trial of sequences of trials of lengths 2, 3, 
and 4 or for bigrams, trigrams, and quadruples of trials, re-
spectively. For example, the mean RT on an A trial, which 
came after CD, was 346.8 msec in Session 1, whereas in 
the last session, this mean had decreased to 333.0 msec. 
Second, the conditional probabilities of the final trials of 
generated bigrams, trigrams, and quadruples were com-
puted for each session. For example, the conditional prob-
ability of the subjects generating an A after CD was .26 in 
Session 1 and .44 in Session 4. Finally, each RT trial was 
coupled with a specific transition probability from the fit-

ted HMMs.7 These transition probabilities were then aver-
aged for each bigram, trigram, and quadruple of trials in 
Sessions 1–4. For example, the mean transition probability 
corresponding to an A after CD was .36 in Session 1 and 
.43 in Session 4. The resulting values for quadruples of tri-
als in Session 4 are presented in Table 1. In the first row of 
the table, the quadruple concerned is ABCD. The mean RT 
on the last trial of this quadruple is 356.5 msec. The mean 
transition probability from the fitted HMMs equals .262, 
and the conditional probability in the generated sequences 
is .218. This quadruple is not very likely to be produced 
and has a long associated RT. The quadruples that involve 
the sequence DAD, on the other hand, have shorter associ-
ated RTs (e.g., BDAD, 222.6 msec; CDAD, 227.3 msec) 
and higher generation and transition probabilities. As can 
be seen in the table, low HMM transition probabilities cor-
respond with high RTs, and high transition probabilities 
with low RTs. It can also be seen that the five lowest tran-
sition probabilities from the HMMs correspond with RTs 
well above 300 msec, whereas the five highest transition 
probabilities correspond with RTs well below 300 msec. 
Note also that this correspondence does not hold for the 
generated conditional probabilities.

The final step in establishing the relationships between 
RTs, generated sequences, and the fitted HMMs was to 
compute the correlations between the RTs, the generated 
conditional probabilities, and the mean transition param-
eters. For each session (1–4) and for each sequence length 
(2–4), we computed two correlations: the correlation be-
tween RTs and the generated conditional probabilities, 
and the correlation between RTs and the mean transition 
parameters. The resulting correlations are plotted in Fig-
ure 6 for bigrams, trigrams, and quadruples separately.

A number of things are noteworthy about these results. 
First, for the bigrams and trigrams in Session 4, the cor-
relations between conditional probabilities and RTs and 
between RTs and transition parameters are similar to each 

Table 1 
Quadruples (Quad), Transition Probabilities (Trans), 

Generated Conditional Probabilities (Gen), and 
Reaction Times (RTs, in Milliseconds)

 Quad  Trans  Gen  RT  

ABCD .262 .218 356.5
DBCD .270 .260 324.9
CABD .273 .318 376.5
ADBD .291 .141 350.7
DBDB .372 .427 360.1
DBDA .374 .213 282.8
ABDB .381 .347 349.2
DBCA .410 .498 310.0
BCDB .427 .372 301.6
BCDA .433 .416 333.2
ABDA .437 .278 312.6
BCAB .495 .324 202.0
DADB .522 .374 195.1
CDBC .531 .447 255.6
BDAD .540 .247 222.6
CDAD .560 .354 227.3
BDBC .594 .167 264.9
CABC .658 .371 266.7
ADBC .724 .446 282.8

Note—Entries are sorted from low to high transition probabilities.
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other and to those found in other research. For the trigrams 
in Session 4, these correlations are .64 ( p  .05) for 
the conditional probabilities and .81 ( p  .005) for the 
transition parameters. This is very similar to the results of 
Perruchet and Amorim (1992), for example, who found a 
correlation of .79 for trigrams at the end of training. The 
corresponding correlations for the bigrams are .85 and 

.87 (both ps  .05), respectively.
Second, for the quadruples, there is a marked differ-

ence between these correlations: The HMM transition 
parameters are more correlated with the RTs than are the 
generated conditional probabilities. In Session 4, the cor-
relation between generated conditional probabilities and 
RTs is .084 ( p  .73), whereas the corresponding corre-
lation for the HMM parameters is .693 ( p  .005). The 
differences between the correlations are 1  .24, p  
.16; 2  .48, p  .019; 3  .29, p  .071; and 4  .61, 
p  .0047, for Sessions 1–4, respectively.

Third, it should be noted here that similar analyses, 
such as those in Jiménez et al. (1996) and Perruchet and 

Amorim (1992), were done using data from a generation 
task after the RT phase of the experiment had been com-
pleted; that is, subjects’ knowledge was measured at the 
end and then compared with their RT performance from 
the start to the end of the learning process. At this point, 
our analyses diverge from theirs. Our analyses reveal that 
the magnitude of the correlation between HMM transi-
tion parameters and RTs increases with training. The use 
of the online generation task made this analysis possible. 
For example, for the trigrams, the correlation between 
RTs and HMM transition parameters for Session 1 is only 

.21 (n.s.), whereas it increases to .81 for Session 4 
( p  .005). The differences between the correlations for 
Sessions 1 and 4 for the HMM transition parameters are 

b  .52, p  .086; t  .59, p  .026; and q  .336, 
p  .087, for bigrams, trigrams, and quadruples, respec-
tively, with marginal significance for the bigrams and qua-
druples and significance for the trigrams.

Fourth, the global correlations between HMM distances 
and RTs show a reverse pattern when compared with the 

Figure 6. Correlations between reaction times and conditional probabilities 
of generated sequences (dashed lines) and between reaction times and mean 
transition probabilities (solid lines) for bigrams (upper panel), trigrams (mid-
dle panel), and quadruples of trials (lower panel) for Sessions 1–4. See the text 
for details.
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correlations on a detailed level: The correlations between 
HMM distances and RT were rather high for Sessions 1 
and 2, and they were comparatively lower for Sessions 
3 and 4. In contrast, the correlations between HMM pa-
rameters and RTs based on sequences of trials increase in 
magnitude with training.

DISCUSSION

In sequence learning, differences in RTs on grammati-
cal and ungrammatical trials are seen as the main indica-
tor of the effect of manipulating the sequential structure 
of the stimuli. The verbal report task has been used as a 
measure of explicit knowledge, but it has been disquali-
fied, because of its alleged lack of sensitivity (Jiménez 
et al., 1996; Perruchet & Amorim, 1992). Other measures 
of sequence knowledge, such as the normal, free, and con-
tinuous generation tasks, have been used, but their inter-
pretation and validity have been the subject of debate. In 
the present study, we introduced an online generation task 
to overcome two major problems with generation tasks. 
First, memory and task set requirements are very different 
in (free) generation from those in the RT task (Shanks & 
Perruchet, 2002), but less so in online generation. Second, 
online generation provides the possibility of comparing 
generation performance and RT performance during the 
entire learning process, whereas other generation tasks are 
always administered at the end of training.

HMMs were introduced as a novel way of analyzing 
generation data. The main advantage of using HMMs is 
the possibility of directly comparing subjects’ genera-
tion ability with the grammar underlying the sequences 
in the RT task. This was done by computing the distance 
between fitted HMMs and the grammar.

The results indicate that RT and online generation per-
formance show a close global association. The correla-
tion between RTs and HMM distances was found to be 
very high. This correlation concerns the acquisition pro-
cess of responding more quickly to grammatical trials and 
the process of getting better at generating grammatical 
sequences. More detailed analyses revealed that the cor-
relation between RTs and transition parameters is small 
(and nonsignificant) at the start of training and increases 
to .81 at the end of training for the trigrams. These cor-
relations concern subjects’ knowledge in each session of 
the experiment; hence, a low correlation is expected to 
be found at the start of training, because at that point the 
generated sequences are basically random or very close to 
it. The analysis of correlations between transition param-
eters, RTs, and conditional probabilities revealed that the 
transition parameters capture the variability in RTs better 
than do the conditional probabilities.

Sequence Representation
Apparently, the results indicate that the HMMs capture 

the generation data better than do the conditional prob-
abilities. What is the implication of our results for the 
validity of using HMMs in analyzing generation data? 
As we argued in the section on FSAs and HMMs, ana-
lyzing generation data using subsequence frequencies or 

conditional probabilities, as was done by Perruchet and 
Amorim (1992), Jiménez et al. (1996), and others, has 
an inherent arbitrariness. The choice to analyze either bi-
grams or trigrams, say, does not do justice to the genera-
tion data. These analyses implicitly assume that subjects 
learn chunks of trials of a certain length and express these 
in the generation task. The analyses that we presented 
suggest, rather, that subjects gradually grow sensitive to 
increasingly higher order dependencies in the stimuli, and 
HMMs seem to be able to capture this nicely.

The simple recurrent network (SRN) model for sequence 
learning (Cleeremans, 1993; Cleeremans &  McClelland, 
1991) incorporates the following learning mechanism: 
The SRN learns to become sensitive to ever higher depen-
dencies between consecutive stimuli in a gradual man-
ner. Just as is the SRN, HMMs are naturally suitable for 
modeling degrees of dependence between consecutive 
stimuli. In addition to that, HMMs can be optimized for 
a given data set by using maximum likelihood estimation 
of the parameters. This is not possible for SRNs, because 
in typical applications of the SRN in implicit learning, the 
models that are employed are overparametrized. For ex-
ample, Cleeremans and McClelland (1991) used an SRN 
with 15 hidden units, resulting in a total of 270 network 
weights that had to be trained. In comparison, the HMMs 
that we fitted to the generated sequences had only about 
20 parameters. Moreover, these parameters were directly 
interpretable as the probability that a subject would gen-
erate a certain symbol, given a specific context of previ-
ously generated trials. The weights in SRNs do not lend 
themselves to such direct interpretation. Given that both 
HMMs and SRNs can represent finite state grammars 
(Cleeremans, Servan-Schreiber, & McClelland, 1989), 
the use of HMMs to analyze generation data does not 
disqualify the SRN as a model of sequence learning but, 
rather, adds precision and interpretability.

The use of HMMs also enabled us to quantify knowl-
edge expressed in the verbal report task. The results in-
dicated that verbal reporting is at chance level. An ex-
planation for the results in the verbal report task may 
be found in the fact that it is administered at the end of 
the experiment. It is possible that subjects are aware of 
stimulus sequences during the learning phase and that the 
use of concurrent verbal reports can bring out much more 
explicit knowledge (Ericsson & Simon, 1980; Perruchet, 
Vinter, & Gallego, 1997). However, the use of concurrent 
verbal reporting is not well suited for use in a speeded RT 
task, and it would be likely, therefore, to interfere with 
the learning processes that were the focus of the present 
study. Specifically, probing subjects for concurrent verbal 
reports during the learning phase of the experiment might 
lead them to search for patterns in the stimuli.

Alternatively, it may be argued that the HMM is not 
a robust model in the face of the limited amount of data 
provided by verbal reports; after all, the subjects had 14 
out of 17 reported sequences correct. Therefore, another 
explanation for the results in the verbal report task may be 
found in the nature of finite state grammars. The analy-
sis of the verbal report data points to the fact that even 
with a substantial number of grammatical sequences 
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mentioned by subjects, the knowledge expressed therein 
is very limited vis-à-vis the finite state grammar. Which 
sequences of symbols are legal and which are not is only 
a small part of the contingencies that are encoded in such 
grammars. In addition to this, the relative frequencies of 
sequences of symbols are an essential characteristic of 
such grammars. The generation and RT tasks are able to 
capture performance differences that are based on these 
more subtle differences, whereas the verbal report task 
cannot. Adaptation of the verbal report task in such a way 
that subjects are pressed to indicate how often they have 
seen certain sequences of stimulus positions may alleviate 
this problem.

Even though our results support the notion of a com-
mon knowledge base for improvement in RT and genera-
tion performance, rather than separate knowledge bases, 
a number of dissociations were found as well. First, gen-
eration performance kept improving after the RTs ceased 
to decrease. This is shown by the decreasing association 
between RTs and distances over the four sessions of Ex-
periment 2. Second, within sessions, the correspondence 
between RT and generation performance was less pro-
nounced than the overall correspondence. In particular, 
as the correlations between HMM parameters and RTs 
showed, the correspondence between RTs and generation 
was very low at the start of training and increased signifi-
cantly over the course of the experiment. Whereas gen-
eration performance improved within Sessions 2–4, RT 
performance leveled off within these sessions, and there 
was RT improvement between Sessions 2 and 3. The level-
ing off of the RT improvement in Sessions 3 and 4 could 
be due to a floor effect. It may be the case that there is a 
minimal time required for executing keypresses and this 
minimum was reached after approximately 6,000 trials in 
our experiment. There is no such limit for the generation 
task; according to the HMM distances, there is still ample 
room for improvement on the generation task. Moreover, 
fatigue may also affect RT performance more than it does 
generation performance.

Future Research
We showed that there is a large overall association be-

tween RT and generation performance. Taken together 
with the results on the verbal report task, it could be argued 
that generation performance is, in large part, implicit be-
cause of its association with RTs and the dissociation with 
verbally reported knowledge. There are two (theoretical) 
arguments in favor of this interpretation of the generation 
task. First, the SRN model, which has been successfully 
applied in implicit learning (Cleeremans & McClelland, 
1991; Dienes, Altmann, & Gao, 1999; Jiménez et al., 
1996; Reber, 1993) and related fields (Chang, Dell, Bock, 
& Griffin, 2000; Elman, 1993; Kinder & Shanks, 2003), 
predicts a close correspondence between RT and genera-
tion performance, without invoking the notion of explicit 
knowledge (see the discussion below about the random 
walk model on how to explain remaining dissociations 
between generation and RT performance). Second, the 
relationship between RT and generation performance 
could be similar to the relationship between language pro-

duction and generation. Competent language use is not 
usually accompanied by the ability to express grammati-
cal rules (Pinker, 1994), whereas expressing such rules 
is certainly the hallmark of explicit knowledge (Reber, 
1967; see Berry & Dienes, 1993, for a similar argument). 
On the other hand, due to lack of sensitivity of the verbal 
task, no definite conclusions can be reached about this 
issue. Improved versions of the verbal report task should 
be able to shed more light on this issue. Regardless of the 
implicit/explicit dichotomy that is referred to here, differ-
ent versions of the verbal report task could very well help 
clarify the extent and nature of sequence knowledge as it 
is gathered in sequence-learning experiments.

Chunk models, such as that proposed by Servan-
Schreiber and Anderson (1990), have possibilities similar 
to those of HMMs for capturing sequence knowledge. In 
chunk models, (sub)sequences have discrete individual 
representations, and the learning process is conceived as 
a gradual increase in chunk strengths due to repeated pre-
sentations. If subjects learn discrete chunks or fragments 
of sequences, the generation task does not seem to be the 
best way to get at that knowledge. The reason for this 
is that in the generation task, subjects produce not only 
chunks but also combinations of chunks, and the subjects 
are likely to have either implicit or explicit knowledge 
about the order in which such chunks should be combined. 
Chunk models could be and have been adapted to this by 
including hierarchically organized chunks (Boucher & 
Dienes, 2003; Servan-Schreiber & Anderson, 1990).

Sequence knowledge possibly consists of a probability 
distribution over a potentially infinite number of strings or 
chunks. For a chunk model, this would mean representing 
an infinite number of chunks and their associated chunk 
strengths. By using HMMs, it is possible to represent such 
an infinite probability distribution with a limited number 
of parameters that can be estimated on the basis of genera-
tion data. To the best of our knowledge, such an effort has 
not been undertaken for chunk models. Such modeling 
would need to impose specific constraints on the relation-
ships between chunk strengths, in order to be able to esti-
mate parameters on the basis of finite data. Hence, doing 
that and comparing the results with those of HMMs could 
show whether there are principled differences between 
chunk models and HMMs. Comparing these models may 
also answer the question of whether subjects learn just 
bigrams or trigrams or higher order dependencies. This 
could be tested by computing the order of dependence 
statistics in the generation data (Wickens, 1982; see also 
Perruchet & Pacton, 2006, for a recent discussion about 
models for statistical-learning and chunk-based models).

The dissociations that we found may provide interesting 
topics for future research. When one assumes that both 
online generation and RTs measure a common knowledge 
base, the tasks may still differ in sensitivity. In compar-
ing recognition ratings and priming effects, Shanks and 
Perruchet (2002) have argued that a single underlying 
parameter may explain the dissociations that they found. 
Such dissociations come about because different response 
processes are employed in explicit and implicit tasks. In 
online and free generation, a subject has to (more or less 
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consciously) decide which response is appropriate at each 
trial, instead of simply reproducing the current stimulus 
with an appropriate keypress. It may be argued that the 
variability in these response processes in RT and genera-
tion trials is quite different, whereas the sequence knowl-
edge entering the response process is identical. The se-
quence knowledge—that is, knowledge about sequential 
dependencies between stimuli—could be modeled using 
an SRN or an HMM. The response process could, for ex-
ample, be implemented by using a diffusion process or a 
random walk model (Luce, 1986). A random walk model 
is a process model for generating responses and RTs, 
which are determined by two parameters: the drift rate 
and the distance to the boundaries (see, e.g., Lamberts, 
Brockdorff, & Heit, 2003, for a recent application of the 
random walk model in recognition memory). At each step, 
the drift rate determines how far and in which direction the 
process moves, and a response is given when one of the 
boundaries is crossed; the RT is related to the number of 
steps at which this happens. In sequence learning, the drift 
rate may be interpreted as subjects’ anticipation about the 
next stimulus, which can be derived from the HMM. The 
boundary corresponding to the correct response could be 
set to a lower value at an RT trial. This would give rise to 
comparatively slower responses at generation trials and 
comparatively fast and accurate responding at RT trials. 
More generally, the application of latent variable models 
allows one to flesh out the exact relationships between 
implicit and explicit measurement while, at the same time, 
establishing their reliability and sensitivity (see Buchner & 
Wippich, 2000, and Meier & Perrig, 2000, for discussions 
of the role of reliability in implicit and explicit memory 
research; for similar discussions about implicit measures 
of attitudes, see Fazio & Olson, 2003, and Cunningham, 
Preacher, & Banaji, 2001).

HMMs were introduced as a means of analyzing gen-
eration data, which are especially suitable for modeling 
sequential dependencies. The results illustrate the useful-
ness of HMMs in the analysis of sequential data—in this 
case, generation data. HMMs provide a more detailed ac-
count of subjects’ responses than do other analyses, such 
as regression and counting of generated trigrams (cf. 
Destrebecqz & Cleeremans, 2001; Jiménez et al., 1996; 
Nissen & Bullemer, 1987; Perruchet & Amorim, 1992). 
Particularly relevant to the field of sequence learning 
is the possibility of comparing generation data with the 
underlying rules of the grammar that was used to gener-
ate the stimuli. In addition to extending HMMs to model 
RTs, HMMs may be useful in other fields of research. In 
other work, we applied HMMs to the analysis of concept 
formation (Visser et al., 2002). Another possible appli-
cation is with data from the random number generation 
task (Towse, 1998; Wagenaar, 1972), which has become 
popular in research in connection with executive function-
ing. HMMs can be used to provide an omnibus test for 
deviances from randomness in generated sequences of 
numbers. Similarly, in causal learning and evaluative con-
ditioning (De Houwer et al., 1997; Shanks et al., 1996), 
HMMs may prove useful in future research as a trial-by-
trial analysis tool in modeling sequential dependencies.

CONCLUSION

In two experiments, subjects were given a four-choice 
RT task, in which complex probabilistic sequences were 
presented as stimuli. The results thus shed light on the ac-
quisition process of complex sequential material, such as 
natural language. The results indicate that subjects display 
considerable learning of complex sequential structures. 
HMMs were shown to capture variability in RTs at least as 
well as, and in some aspects better than, the use of condi-
tional probabilities derived from generated sequences. At 
the same time, the HMMs were used to provide an overall 
statistic for comparing improvement in generation perfor-
mance and RTs. This combination of characteristics—and 
the model’s equivalence with commonly used FSAs—make 
the HMM a valuable tool in the field of implicit learning. 
The strong overall associations that we found point to a com-
mon knowledge base for performance on RT and generation 
trials. Furthermore, we argued that the remaining dissocia-
tions between RT and generation performance may spark 
interesting new research, as may the application of HMMs 
in implicit- learning research and related fields of inquiry.
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NOTES

1. Note that comparing performance with chance level may provide 
results that are hard to interpret. In doing so, one assumes that subjects 
can perform at this level, which is seldom found to be the case in random 
number generation experiments (Towse, 1998; Wagenaar, 1972).

2. The multivariate approach does not assume sphericity of the data, 
which is often violated in repeated measurements (O’Brien & Kaiser, 
1985) and is, hence, more general (see Loftus & Masson, 1994, and 
Stevens, 1996, for discussions of this approach).

3. Note that in some states of the grammar, there are two possible 
continuations of the sequence. Hence, this way of scoring the correctness 
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