
Within divided attention research, one fundamental 
finding is that participants respond faster to redundant 
than to single stimuli (e.g., Hershenson, 1962). Redun-
dancy gain is easily obtainable in simple reaction time 
(RT) tasks, for example, in which participants are asked to 
press the same button whenever at least one target stimulus 
is presented. Performance in conditions with two stimuli 
presented simultaneously (say, condition Cz) is superior 
to performance in conditions in which only one of the two 
possible stimuli is presented (conditions Cx and Cy). More 
technically, the size of the redundancy gain is often deter-
mined by subtracting the mean RT of the redundant target 
condition (say, mean of Z) from the overall mean RT of 
the single target conditions (mean of X and Y). Analogous 
redundancy gains have also been observed in go/no-go 
tasks (e.g., Egeth & Mordkoff, 1991) and choice RT tasks 
(e.g., Krummenacher, Müller, & Heller, 2001).

The first detailed model to account for redundancy 
gains in simple RT tasks was provided by Raab (1962). He 
suggested that each single stimulus triggers the response 
with a latency (X or Y) that varies trial by trial accord-
ing to some distribution. When both stimuli are presented 
simultaneously, according to this model, the response is 
triggered by the faster stimulus that simply wins the race. 

Thus, the race model assumes that both stimuli are pro-
cessed separately and independently of each other. The 
mean latency for the redundant target condition, mean Z, 
is simply the mean of min(X, Y).

Race Model Inequality
In order to assess the race model, Miller (1982) pro-

posed comparing the RT distributions of the single and 
the redundant target conditions (for a rather different, 
nonparametric test see Maris & Maris, 2003). If the race 
model holds true, then the observed cumulative distribu-
tion functions (CDF) of RTs X, Y, and Z should satisfy the 
race model inequality, a special case of Boole’s inequality 
(Billingsley, 1979; Parzen, 1960)

 Fz(t)  Fx(t)  Fy(t), t  0 (1)

for every value of t. To test whether this inequality is satis-
fied, four computational steps are usually used (for a more 
detailed description, see Ulrich, Miller, & Schröter, 2007): 
First, the CDFs for Fx, Fy, and Fz are estimated from the 
observed RTs in the single target conditions, X and Y, and 
the redundant target condition, Z. In the following these 
estimated CDFs are called Gx, Gy, and Gz. Second, the 
sum S of the CDFs Gx and Gy is computed, S(t)  Gx(t)  
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Gy(t) for each participant. Third, at certain prespecified 
probabilities, p, percentile values ŝp and ẑp for S and for Gz 
are estimated according to the percentile definition pro-
posed by Hazen (1914) as this definition fulfils all desir-
able properties for estimating percentiles (see Hyndman 
& Fan, 1996). And fourth, percentile values ŝp and ẑp are 
aggregated over participants, and for each percentile value 
a paired t test is computed to evaluate whether Gz is larger 
than S. The race model is rejected if Gz is larger than S at 
any percentile.1 This procedure is thought to be conserva-
tive in the sense of favoring the race model (Miller, 1982), 
because the inequality describes the absolute maximum 
possible facilitation by redundant signals that would be 
consistent with the race model.

Many studies using this procedure have found viola-
tions of the inequality and have therefore rejected the 
race model (e.g., Gondan, Lange, Rösler, & Röder, 2004; 
Miller, 1982, 1986; Mordkoff & Miller, 1993; Schröger 
& Widmann, 1998). However, this procedure is afflicted 
with two problematic steps: First, estimates of the per-
centiles for Gx, Gy, and Gz are biased. Second, a t test is 
computed at several percentiles, and the computation of 
multiple t tests inflates the overall Type I error rate in test-
ing the inequality across the whole range of percentiles. 
In the first part of this article, we consider the effects of 
biases on testing the race model inequality. In the second 
part of the article, we examine the extent of Type I error 
inflation due to the accumulation of error across multiple 
tests.

PART 1 
 Systematic Biases in Tests of the 

Race Model Inequality

The first part of the paper explores systematic bias in 
percentile estimation and its effects on testing the race 
model inequality. The statistical literature has clearly es-
tablished that percentile estimates are biased (e.g., Gil-
christ, 2000). In general, estimates of the lower percentiles 
of a distribution tend to be larger than the true values and 
estimates of the higher percentiles tend to be smaller than 
the true values. The bias of these estimates depends on 
sample size, i.e., the bias is reduced as the sample size 
increases. For example, the minimum of a sample of 10 
observations from a distribution is an estimate of the .05 
percentile of that distribution. If the original distribution is 
an exponential distribution with mean 1000, then its true 
.05 percentile is 51.3. However, the expected value of the 
minimum of 10 observations from this distribution is 100. 
Thus, with this distribution and sample size, the percentile 
estimate is very strongly biased, with an expected value 
almost double the true value (i.e., 100 vs. 51.3).

Consequently, there are bound to be inherent biases 
in the estimation of percentiles of the distributions Gx, 
Gy, and Gz. Furthermore, it is unlikely that the system-
atic biases for the three estimated distributions Gx, Gy, 
and Gz would fortuitously cancel each other out when S 
is compared to Gz. Instead, a systematic bias is almost 
certainly present in tests of the race model inequality. 
It is impossible to determine the size of this bias on in-

tuitive grounds, however, and indeed it is not even clear 
whether the bias would tend to help satisfy or violate the 
race model inequality. Of course the extent of percentile 
estimation bias depends on the number of RTs observed 
per participant, i.e., on the sample sizes (that is number 
of trials) in conditions Cx, Cy, and Cz. Thus, whatever the 
estimation bias, its effects would be greater for smaller 
samples in each condition. It seems especially useful to 
know how large a sample is needed, i.e., how many trials 
per condition are necessary for race model tests to obtain 
an acceptably small bias.

Determining any systematic biases when testing the 
race model inequality is important for two reasons: First, 
the observed differences between the redundant target dis-
tribution Gz and the sum of the single target distributions S 
are often rather small, i.e., below 10 msec (e.g., Gondan, 
et al., 2004). Therefore, even a small systematic bias in 
either direction could have a strong impact on tests of the 
race model. Second, the sample sizes that have been used 
for the single and the redundant target conditions were 
sometimes rather small as well; sometimes 10 or even 
fewer trials per condition were used to test the race model 
inequality (cf. Miller, 1982, 1991). Thus, previous studies 
using tests of the race model inequality might have been 
subject to systematic biases.

Simulation
Computer simulations were carried out to examine 

the direction and the size of the expected systematic bias 
when testing the race model inequality. The computer 
simulations used the ex-Wald distribution as the under-
lying model for the RT distributions of the single target 
conditions Fx and Fy, because this model is theoretically 
attractive and provides excellent fits to observed RT dis-
tributions (detailed specifications of this distribution are 
provided by Schwarz, 2001, 2002). This distribution is 
composed of the sum of two independent random vari-
ables, one with a Wald distribution and one with an expo-
nential distribution. Accordingly, an ex-Wald distribution 
can be characterized by three parameters: the mean and 
the standard deviation for the Wald component ( w and 

w) and the mean of the exponential component e (see 
Miller, 2006).

Simulation parameters. The parameters of the single 
target conditions were determined according to the fol-
lowing constraints: First, the standard deviation of each 
distribution was 1/5th of the mean, because this ratio is 
typical for simple RT distributions (e.g., Luce, 1986). Sec-
ond, three different relations between the two single tar-
get conditions were realized, i.e., the distributions Fx and 
Fy were equal ( x  y), slightly different ( x  y), or 
rather different ( x  y). For the single target condition 
Cx, the ex-Wald parameters w  340.00, w  53.00, and 

e  60.00 were always used, describing a left skew RT 
distribution with mean 400 msec and standard deviation 
80 msec. For the single target condition Cy, three differ-
ent distributions were considered in order to implement 
three different relations for the conditions Cx and Cy (i.e., 

x  y, x  y, x  y). The first had parameters equal 
to those of Fx; the second had w  357.00, w  55.50, 
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and e  63.00, describing an RT distribution with mean 
420 msec and standard deviation 84 msec; and the third 
had w  382.50, w  59.53, and e  67.50, describ-
ing an RT distribution with mean 450 msec and standard 
deviation 90 msec.

In all simulations, Z was determined in accordance with 
the Fréchet bound (Fréchet, 1951, cited in Devroye, 1986; 
Colonius, 1990), the limiting case of the race model in 
which Z  min(X,Y ), for X and Y with the maximum pos-
sible negative correlation. Specifically the distribution of 
Z was constructed numerically so that
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This distribution was chosen in order to implement the 
race model with the maximum possible facilitation for 
redundant stimuli. Biases would seem to have the larg-
est impact on the results in the case where this limiting 
race model is exactly true [i.e., Fz(t)  Fx(t)  Fy(t)], so 
this seems to be the most important situation in which to 
check for biases. In contrast, when Fz(t) differs substan-
tially from Fx(t)  Fy(t), the outcome of the inequality test 
will tend to be determined more by the actual difference 
and less by statistical biases. It must be stressed, however, 
that the theoretical distribution of Z denotes an extreme 
case of the race model. This case, however, is especially 
convenient for the purposes of this paper, since it allows 
assessing potentials biases without invoking detailed as-
sumptions about the mechanisms of the underlying race 
process, which might further complicate the simulations 
(cf. Ulrich & Giray, 1986). Thus, although the biases 
might be somewhat different if some other model were 
true, it would be less important to determine their sizes 
in that case.

For equal distributions Fx and Fy ( x  y), the result-
ing distribution Fz has a mean of 339 msec and a standard 
deviation of 34 msec, for slightly different distributions 
Fx and Fy ( x  y) the mean of Fz is 347 msec and the 
standard deviation is 35 msec, and for rather different dis-
tributions Fx and Fy ( x  y) mean of Fz is 357 msec and 
standard deviation is 38 msec (for an overview of means 
and standard deviations see Table 1). Figure 1 displays 
the resulting probability density functions (PDFs) and 
CDFs.

Simulation conditions and procedure. For each 
condition Cx, Cy, and Cz, three different sample sizes, 
nx, ny, and nz, were varied orthogonally. We chose each n 
equal to 10, 20, or 40 to reflect the amount of data points 
(number of trials) collected per condition as these are 
typical number of trials per participant per condition in 
actual RT studies, with of course greater statistical accu-

racy when there are more trials per condition. However, it 
is hard to predict the overall bias results when combining 
small and large samples for the conditions Cx, Cy, and 
Cz. In total, then, 81 sets of simulations were run defined 
by a factorial combination of 3 Fx–Fy relations  3 nx  
3 ny  3 nz.

For each of the 81 sets of simulations, 100,000 inde-
pendent sets of three samples were generated for the three 
conditions Cx, Cy, and Cz, with sample sizes of nx, ny, and 
nz, respectively. For each simulation, the n samples per 
condition Cx, Cy, and Cz were chosen randomly from the 
particular distribution used in that simulation. Based on 
these data, ẑ.05, ẑ.10, . . . , ẑ.95 and ŝ.05, ŝ.10, . . . , ŝ.95 were 
computed. More specifically, for each random sample the 
CDF was estimated by using the formula (3) at the bot-
tom of the page (see Ulrich et al., 2007), where x1, x2, 
. . . , xn denote the random sample of RTs and Gx is the 
associated estimate of the CDF, which corresponds to a 
cumulative frequency polygon. To estimate the percentile, 
tp  G x

1( p), we computed the inverse of Gx. (for further 
details, see Ulrich et al., 2007). The obtained percentiles 
at each pre-specified probability, p, were averaged over 
all 100,000 repetitions. From these averages, the biases 
for the distribution Fz, Bias(zp), and for S, Bias(sp), were 
obtained for each probability, p, by computing the differ-
ence between the averaged estimate and the true percen-
tile, which was computed directly from the known under-
lying distribution.

Consider that the race model inequality is violated when 
Fz is larger than S. Thus, the inequality is violated when 
the RT value for the cumulative probability distribution Fz 
is significantly smaller than the RT value for the S at any 
percentile. Then a positive bias of Fz, Bias(zp), and a nega-
tive bias of S, Bias(sp), work in favor of the race model, 
i.e., these biases make it harder to violate the race model 
inequality. In contrast, a negative bias of Fz, Bias(zp), and 
a positive bias of S, Bias(sp), work against the race model, 
i.e., they make it easier to obtain a violation of the race 
model inequality.

To obtain one single bias indicator per percentile, the 
systematic bias per percentile was defined as Bias  
Bias(zp) Bias(sp). When this bias is larger than zero the   
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Table 1 
Means ( ) and Standard Deviations ( ), in Milliseconds, of the 

Simulated Reaction Time Distributions Fx, Fy, and Fz

Fx Fy Fz

Fx /Fy Relation       

x  y 400 80 400 80 339 34
x  y 400 80 420 84 347 35
x  y  400  80  450  90  357  38
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race model is favored, so the race model test is more con-
servative (i.e., the race model is less likely to be rejected). 
In contrast when the bias is smaller than zero, a violation 
of the race model inequality is more likely, so the race 
model test is more lenient.

Simulation results. Tests of the race model only 
make theoretical sense for smaller percentiles (up to the 
50% percentile). For higher percentiles the race model 

inequality becomes harder to violate as Fx(t)  Fy(t) 
becomes too large relative to Fz(t) (cf. Miller, 1982). 
Accordingly, only the biases for percentiles of up 50% 
have to be considered, and we will confine our discus-
sion of the observed biases to the 0%–50% percentile 
range. But for reasons of completeness the graphs show 
biases for all percentile values ranging from the 5% to 
the 95% percentile.

Figure 1. PDFs (left panels) and CDFs (right panels) for X, Y, and Z used in the simulations. Upper panel: x  y, Middle panel: 
x  y, Lower panel: x  y.
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Figure 2. Bias when testing the race model inequality depicted for prespecified 
probabilites ranging from .05 to .95 for equal distributions, x  y. Positive biases 
favor acceptance of the race model; negative biases favor rejection of the race model. 
The numbers in the legend indicate the sample sizes nx, ny, nz, respectively. Upper 
panel: nx, ny, nz are all at least 20. Middle panel: nx and/or ny is 10 but nz is at least 20. 
Lower panel: nz is 10.
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Equal distributions for X and Y. Figure 2 depicts the 
biases obtained with equal distributions Fx and Fy (i.e., 

x  y). The numbers in the legend indicate the sample 
sizes per condition nx, ny, nz. Altogether 27 combinations 
of sample sizes defined by the factorial combination of 
3 nx 3 ny 3 nz were possible. Because the distribu-
tions Fx and Fy were equal, it makes no difference whether 
nx  ny or nx  ny, e.g., the condition 10, 20, 40 is equal 
to 20, 10, 40. Thus, out of the 27 combinations, 9 combi-
nations with nx  ny are redundant and have been omitted 
from the figures for clarity—their results were virtually 
identical to the results from corresponding conditions 
with nx  ny that are shown. The remaining 18 different 
combinations have been divided across three panels ac-
cording to the pattern of the resulting biases.

For sample sizes of Cx, Cy, and Cz that are all at least 
20, biases tend to work against the race model, but they 
are generally rather small (upper panel). Only in the 5% 
percentile is the bias more negative than 2 msec for 
sample sizes of nx and/or ny equal 20 (crosses and trian-
gles). As expected, the bias decreases if the sample sizes 
of the conditions Cx and Cy increase, i.e., (from 20 to 40). 
Interestingly, larger sample sizes for Cz are not necessar-
ily superior, as the bias is more negative for nz  40 than 
nz  20 (dotted vs. solid lines) for small percentiles. The 
sometimes erratic pattern emerges because there are three 
different biases that are set against each other and may add 
up to a larger overall bias in some settings but also may 
cancel each other out resulting in a small bias in other 
settings. When considering the biases for each condition 
separately, each single bias converges to zero with larger 
sample sizes. Thus, the estimator of bias is asymptotically 
consistent. For larger percentiles (starting from the 25% 
percentile), however, this pattern reverses so that the bias 
is less negative for nz  40 than nz  20.

When nx or ny is 10 but nz  20 (middle panel), there 
is also a negative bias that would work against the race 
model, but this bias is now larger especially up to the 
25% percentile. Again, larger sample sizes of Cy result in 
a smaller bias (squares vs. triangle vs. crosses). And the 
bias is larger for nz  40 compared to nz  20 for small 
percentiles, whereas for larger percentiles this pattern re-
verses (dotted vs. solid lines).

For nz  10, the bias pattern is completely different 
(lower panel). There is a strong positive bias (i.e., favor-
ing the race model) in the 5% percentile for large sample 
sizes of Cx and Cy (at least 20, squares). Yet in the 10% 
percentile the bias decreases. When the sample size in one 
single target conditions equals 10 (crosses), there is only 
a slightly negative bias at the 5% percentile. In the 10% 
percentile, the bias is very negative for these three condi-
tions and it decreases for larger percentiles.

Slightly different distributions for X and Y. Figure 3 de-
picts the biases per percentile that result for slightly differ-
ent distributions Fx and Fy (i.e., x  y). In this figure, all 
27 combinations of sample sizes defined by the factorial 
combination of 3 nx 3 ny 3 nz are presented.

A comparison of Figures 2 and 3 shows that the biases 
do not generally differ much for slightly different distri-
butions, x  y, as compared with equal distributions, 

x  y. Close inspection of the middle panel, however, 
reveals a difference at the lowest percentile. Here the bias 
is even more negative for conditions with larger ny than nx 
(triangles) whereas it is somewhat less negative for con-
ditions with larger nx than ny (squares). This pattern be-
comes more pronounced when the distributions are rather 
different, x  y, as considered next, so the biases for the 
case of slightly different distributions will not be consid-
ered in more detail.

Rather different distributions for X and Y. The biases 
per percentile for rather different distributions, x  y, 
are presented in Figure 4. With rather different compared 
to equal distributions, the bias is slightly reduced when 
nx, ny, and nz are at least 20 (see upper panels of Figures 2 
and 4). Again the bias is slightly more negative for nz  
40 than for nz  20 for small percentiles, and the larger 
sample size of Cz goes along with a less negative bias only 
for larger percentiles (dotted vs. solid lines).

When nx or ny is 10 but nz is at least 20, the bias patterns 
for equal, x  y, and different distributions, x  y, dif-
fer remarkably (comparing the middle panels of Figures 2 
and 4). With rather different distributions, x  y, there 
is a substantial negative bias in the 5% percentile when 
nx  10, and this bias is larger when the sample size of Cy 
is larger (see crosses, triangles and squares). In contrast, 
with nx  20 but ny  10 (circles), the negative bias is 
rather moderate in the 5% percentile.

For sample sizes of Cz equal 10, the bias is similar for 
equal, x  y, and different distributions, x  y, (lower 
panels of Figures 2 and 4). Closer inspection just reveals 
that the bias tends to be more positive in the 5% percentile 
for different distributions, x  y, when the sample size 
of Cx is at least 20.

To provide evidence for the generality of the results, 
two further sets of analogous simulations were run replac-
ing the ex-Wald distributions of RTs with ex-Gaussian 
and Weibull distributions with similar means and stan-
dard deviations.2 The same basic results were obtained as 
with the ex-Wald distribution. Not only did all three dis-
tributions yield almost identical overall biases on average 
across the 81 conditions and 19 percentiles, but in addition 
the patterns of biases across these conditions were nearly 
identical too. Comparing the ex-Wald and ex-Gaussian 
distributions, the correlation of obtained biases was .974, 
correlating over all 81 conditions and all 19 percentiles. 
The corresponding correlation was .959 between biases 
obtained with the ex-Wald and Weibull distributions.

One further check on the generality of the results was 
also carried out. In the simulations described previously, 
the same parameter values were used for every simulated 
experimental participant. The results of these simulations 
are informative about the average biases that would be 
expected under a fixed set of conditions. In real experi-
ments, however, one would expect variation between par-
ticipants, that is, the parameters of the underlying distribu-
tions would vary across participants. To check whether the 
observed biases are robust against such parameter varia-
tion, we ran additional simulations with randomly deter-
mined parameters for the underlying distributions Fx and 
Fy for each of the simulated participants. Specifically, for 
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Figure 3. Bias for slightly different distributions, x  y. Upper panel: nx, ny, nz 
are all at least 20. Middle panel: nx and/or ny is 10 but nz is at least 20. Lower panel: 
nz is 10.
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Figure 4. Bias for rather different distributions, x  y. Upper panel: nx, ny, nz are 
all at least 20. Middle panel: nx and/or ny is 10 but nz is at least 20. Lower panel: nz is 
10.
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both Fx and Fy, the parameters w, w, and e were chosen 
randomly from distributions selected to give intuitively 
reasonable variation in parameters across participants. 
For the simulation with equal distributions, x  y, for 
example, the ex-Wald parameter w was generated from 
a gamma distribution with a mean of 340, matching the 
mean w value of the previous simulations, but it also var-
ies across participants with a standard deviation of 26.08. 

e values were selected from a gamma distribution with a 
mean of 60, and a standard deviation of 10.95, and w val-
ues were selected from a chi-square distribution with 53 
degrees of freedom (for the chosen distributions and their 
parameters see Table 2). As before, the distribution Fz was 
determined for each simulated participant as the limiting 
case of the race model. The biases obtained in these “vari-
able parameters” simulations were also quite similar to the 
biases of the previous “constant parameters” simulations, 
producing almost identical mean bias and a .976 correla-
tion of bias scores across conditions and percentiles.

Discussion
The results of these simulations show that there can be 

substantial systematic biases in tests of the race model 
inequality, depending on the sample sizes for the three 
conditions Cx, Cy, and Cz and, to a lesser extent, on the 
similarity of the distributions Fx and Fy. These biases are 
mostly negative, thus they tend to produce violations of 
the race model inequality. Therefore, one has to consider 
rejections of the race model somewhat suspiciously when 
they were obtained in studies with sample sizes less than 
20 for at least one of the target conditions.

Furthermore, the simulations reveal that a rough rule of 
thumb like “the smaller the sample size, the larger the sys-
tematic bias” does not always hold true, because the biases 
associated with Gx, Gy, and Gz may sometimes counteract 
one another and diminish the resulting overall bias. For 
example, smaller sample sizes of Cz go along with less 
negative biases (or sometimes even with positive biases) 
for small percentiles. The simulations revealed somewhat 
erratic patterns, especially when the single target distribu-
tions Fx and Fy (i.e., x  y) were rather different, so it 
is not easy to predict in general how biases might change 
with sample size when these distributions differ.

For future studies, we recommend testing the race 
model with at least 20 trials per target condition. And 

even then, one should be careful about rejecting the 
race model if significant differences are obtained only 
for the 5% and/or 10% percentiles. If it is not possible 
to collect so many trials per condition, the bias should 
be considered separately for each percentile when test-
ing the race model inequality. Fortunately, it is not nec-
essary to compute the bias per percentile separately for 
each participant but it is sufficient to consider the biases 
for the experimental group in average as the biases for 
constant and variable parameter simulations differ only 
to a small degree. A program called RMIBIAS that esti-
mates the bias per percentile depending on sample sizes 
and distribution of the single target conditions X and Y 
can be freely downloaded via links at the first author’s 
Web page www.psychologie.uni-wuerzburg.de/i3pages/ 
kiesel.html. This program can be used to estimate the bias 
at each percentile point, and the observed difference at 
each percentile can be compared statistically to the dif-
ference attributable to bias.

Differential statistical biases may also have an influence 
on the results of experiments evaluating redundancy gain 
with different condition probabilities. For example, Mord-
koff and Yantis (1991) noted that redundancy gain tends to 
be large when redundant trials have high probability and 
single-stimulus trials have low probability, as compared 
with the reverse probabilities. They noted that this pattern 
could be explained in terms of interstimulus contingencies 
within their interactive race model. Given that statistical 
bias depends on the number of trials (which is itself di-
rectly related to condition probability), however, differen-
tial statistical biases as a function of condition probability 
could certainly also contribute to probability effects on 
tests of the race model inequality. Mordkoff and Yantis’s 
results were probably little affected by such differential 
biases, because they included quite a few trials even in the 
low probability conditions, but such a confound should 
certainly be considered in any study comparing conditions 
with different numbers of trials.

PART 2 
Type I Error Accumulation in 

Tests of the Race Model Inequality

In this section we address the second problem in tests 
of the race model inequality: the accumulation of Type I 

Table 2 
Parameters w, w, and e Chosen Randomly From the Listed Distributions 

With Indicated Means ( ) and Standard Deviations (SD)

Fx /Fy Relation  Parameter  Randomly Chosen From   SD

x  y w 170-step Gamma (rate  0.50) 340.00 26.08
w Chi square (df  53.00) 53.00 10.30
e 30-step Gamma (rate  0.50) 60.00 10.95

x  y w 182-step Gamma (rate  0.5098) 357.00 26.46
w Chi square (df  55.50) 55.50 10.54
e 31-step Gamma (rate  0.4921) 63.00 11.32

x  y w 213-step Gamma (rate  0.5569) 382.50 26.21
w Chi square (df  59.53) 59.53 10.91

  e  34-step Gamma (rate  0.5037)  67.50  11.58

Note— s of the distributions are similar to the parameter values used for the constant-
parameter simulations.
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error that stems from conducting separate tests at different 
percentiles. In theory, the race model inequality is violated 
when Fz(t) is larger than the sum of Fx(t)  Fy(t) for any 
value of t (see Equation 1). In practice, paired t tests are 
usually used to check whether the RT value for the cumu-
lative probability distribution of Z is smaller than the RT 
value for the sum of the cumulative probabilities of X and 
Y at several (freely chosen) percentiles, commonly in equal 
steps of 5% or 10%, and the race model is rejected if a 
significant violation is found at any percentile. Due to the 
computation of multiple t tests, the overall Type I error rate 
for testing the inequality is necessarily somewhat larger 
than the Type I error rate for a single test—i.e., there is an 
accumulation of Type I error. However, because the t tests 
are highly correlated across percentiles, this accumulation 
of Type I error has generally been ignored as being small 
and unimportant (cf. Ulrich et al., 2007). Because of this 
dependence, one would expect common procedures for ad-
justing Type I error rate (e.g., Bonferroni correction) to be 
too conservative, and such conservatism seems especially 
inappropriate because the race model inequality is in itself 
already a rather conservative test. Nonetheless, rather than 
relying on intuition and verbal arguments about the extent 
of Type I error rate accumulation, it seemed appropriate to 
run another set of computer simulations to determine the 
overall Type I error when testing the race model inequality 
across a range of percentiles.

Simulation
Each iteration of these simulations required the genera-

tion of data for a full simulated experiment and the com-
putation of t tests across participants at each of a specific 
set of percentiles. The individual RT values, however, 
were generated by methods as similar as possible to the 
simulations of Part 1 examining the biases in tests of the 
race model inequality. As before, the single target condi-
tions Cx and Cy were modeled according to the ex-Wald 
distribution, and the redundant target condition Cz was 
determined consistently with the race model. In the new 
simulations, however, nx, ny, and nz were large (i.e., 40) in 
order to obtain the overall Type I error without having to 
consider large systematic biases.

In practice, the race model is rejected whenever at least 
one t test at any percentile indicates that zp is significantly 
smaller than sp. As violations of the race model inequality 
can be obtained only for relatively small percentiles, we 
considered only t tests up to the 50% percentile in deter-
mining the overall Type I error rate for rejection of the 
race model.3

Simulation parameters. The sample sizes nx, ny, and 
nz, were fixed at 40. The same parameters as before were 
used for the ex-Wald distributions for the single target 
conditions, but now only two different relations between 
the two single target conditions were realized, i.e., the dis-
tributions of X and Y were equal ( x  y) or rather differ-
ent ( x  y). Initial simulations used a 5% (two-tailed)4 
significance level (i.e., the Type I error rate) for the t test 
at each percentile. As will be discussed later, we also ex-
amined the strategy of lowering this significance level to 
counteract Type I error accumulation.

Simulation conditions and procedure. The simula-
tion was run with two different numbers of participants. We 
chose number of participants as 20 or 40. Furthermore, the 
percentiles that were tested were varied. In one set of simu-
lations t tests were computed at the 5%, 15%, 25%, 35%, 
and 45% percentiles, resulting in 5 separate t tests within 
the range of 0%–50%. In another set of simulations t tests 
were computed at the 5%, 10% . . . , 45%, 50% percentiles, 
resulting in 10 separate t tests within this range. In total 
eight sets of simulations were run defined by a factorial 
combination of 2 Fx Fy relations 2 numbers of experi-
mental participants 2 numbers of percentiles tested.

For each simulated experiment, the 40 samples per 
condition Cx, Cy, and Cz were chosen randomly from 
the particular distribution. Based on these data, ẑp and ŝp 
were computed for each simulated experiment. For each 
p-value, two-tailed t tests for dependent measures were 
then computed across the simulated number of partici-
pants. Whenever at least one t test indicated mean ẑp was 
significantly smaller than mean ŝp, the race model was 
considered as being rejected for that simulated experi-
ment. 100,000 experiments were simulated for each of 
the eight sets of simulation conditions to obtain an esti-
mate of the overall Type I error probability under those 
conditions.

Simulation results. The overall Type I error, testing 
the race model across the percentile range from 5% to 
50%, is shown in Table 3 as a function of the X and Y dis-
tributions ( x  y vs. x  y), the number of partici-
pants, and the number of percentiles tested. Given that a 
two-tailed t test was used to check whether the race model 
inequality was violated at each percentile, the theoreti-
cally expected Type I error rate for each t test was 2.5%. 
Thus, the simulation results reveal that there is a substan-
tial accumulation of Type I error, with approximately 10% 
overall Type I error rates for rejection of the race model 
when tested across the full range of percentiles 5%–50%. 
As would be expected, the accumulation of Type I error is 
larger when more percentiles are tested. It is also some-
what larger when more participants were simulated, pre-
sumably because the larger number of participants pro-
vides increasing power to obtain a significant effect of 
the small bias that remains even with sample sizes of 40 
per condition (see Part 1). The relation of the single target 
distributions Fx and Fy seems to have little or no impact on 
the overall Type I error probability.

Table 3 
Overall Type I Error Rate (in Percentages) for Race Model Tests 
Across the Range of Percentiles From 5% to 50%, As a Function 

of Number of Participants and Number of Percentiles Tested 
for Equal ( x  y) and Different ( x  y) Distributions of the 

Single Target Conditions Cx and Cy

Number of Percentiles Tested

5 10

Number of 
Participants

Number of 
Participants

 Fx /Fy Relation  20  40  20  40  

x  y 9.58 10.62 11.86 13.01
 x  y  9.48 10.20 11.66 12.84 
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Like in Part 1, further sets of analogous simulations 
were run with ex-Gaussian and Weibull distributions to 
provide evidence for the generality of the results. These 
simulations revealed similar Type I error rates ranging 
from 9.53% to 12.48% for ex-Gaussian distributions and 
from 9.67% to 13.58% for Weibull distributions. Simula-
tions with variable parameters for the ex-Wald distribu-
tion like reported in Part 1 also revealed similar results 
with Type I error ranging from 9.48% to 12.49%.

Discussion
Simulations reveal that Type I error is accumulated to 

a remarkable degree despite the fact that the t tests are 
highly correlated across percentiles (e.g., correlations be-
tween adjacent percentiles range between .77 and .95 for 
the conditions with 10 percentiles tested, i.e., a distance of 
5% between adjacent percentiles, and they ranged between 
.61 and .87 for the conditions with 5 percentiles tested, 
i.e., distance of 10% between adjacent percentiles).

In order to combat the Type I error accumulation and 
to adjust the Type I error rate for the overall test of the 
race model to the desired level of 5%, there are at least 
five possible strategies: First, the experimenter may desig-
nate in advance a single specific percentile point at which 
the race model is to be tested, so that only one t test is 
conducted. This approach might be useful when previous 
results indicate exactly which percentile point should be 
used, but it would seem difficult to apply when testing the 
race model inequality in general (e.g., with a new stimu-
lus set). Second, independent replication of experiments 
decreases Type I error. For example, if Type I error rate 
in each experiment amounts to 12.5%, two replications 
yield a cumulative error rate below 1.6%. Third, instead of 
restricting the race model test to one single percentile, the 
researcher might use a restricted range of percentiles to 
evaluate the race model. Quite often violations of the race 
model have been observed within the range of percentiles 
10%–25%, thus running t tests in this limited range may 
be a reasonable strategy for a wide range of experiments. 
Fourth, the Type I error for the t test at each percentile can 
be decreased by using a stricter significance level. This 
approach is analogous to the Bonferroni correction in that 
the p value for each test is reduced in order to attain the 
desired overall p value for the full set of tests. As noted 

earlier, however, the actual Bonferroni correction would 
be too conservative here because these tests are not inde-
pendent. Thus, it would be necessary to find—presumably 
by simulation—an appropriately adjusted p value to attain 
the desired overall Type I error rate. Fifth, rejection of the 
race model can be restricted to experiments where k or 
more significant t tests are observed, where the value of 
k  1 would also have to be chosen via simulation.

The last three possibilities were contrasted within the 
simulation that produced the largest overall Type I error, 
i.e., with the parameters of 10 percentiles tested, 40 par-
ticipants, and similar distributions for X and Y ( x  y).

The effect of restricting the range of percentiles can be as-
sessed in Tables 4 and 5, which list the overall Type I error5 
for all possible percentile ranges between 5% and 50% for 
significance levels of 5% (Table 4) and 1% (Table 5) for the 
single two-tailed t tests. For example for the significance 
level of 5%, the overall Type I error decreases to 6.24% 
when restricting the range of percentiles to 10%–25%, be-
cause fewer multiple t tests (4 instead of 10) contribute to 
the accumulation of Type I error, and because these tests 
are more highly correlated as a result of spanning a nar-
rower percentile range. This seems to be quite a satisfactory 
Type I error rate, and—given that this is where most viola-
tions are to be expected anyway, it would seem to be a very 
sensible strategy for controlling Type I error.

Table 4 
Type I Error (in Percentages) As a Function of Percentile Range for t Tests With a 

Significance Level of 5% at Each 5% for the Simulation Parameters’ 10 Percentiles 
Tested, 40 Participants, and Similar Distributions for X and Y ( x  y)

Lowest Highest Percentile

Percentile  5%  10%  15%  20%  25%  30%  35%  40%  45%  50%

5% 4.27 5.45 6.58 7.64 8.61 9.59 10.47 11.26 12.15 13.01
10% 2.69 4.01 5.19 6.24 7.27 8.20 9.04 9.97 10.86
15% 2.73 4.02 5.14 6.21 7.18 8.05 9.00 9.92
20% 2.96 4.20 5.33 6.34 7.23 8.22 9.15
25% 3.16 4.41 5.49 6.43 7.44 8.41
30% 3.40 4.61 5.62 6.68 7.68
35% 3.62 4.77 5.89 6.96
40% 3.77 5.05 6.18
45% 4.05 5.32
50%                    4.29

Table 5 
Type I Error (in Percentages) As a Function of Percentile Range 

for t Tests With Significance Level of 1% at Each 5% for the 
Simulation Parameters’ 10 Percentiles Tested, 40 Participants, 

and Similar Distributions for X and Y ( x  y)

Lowest Highest Percentile

Percentile 5%  10% 15% 20% 25% 30% 35% 40% 45% 50%

5% 0.91 1.18 1.46 1.75 2.03 2.32 2.56 2.81 3.09 3.32
10% 0.51 0.81 1.12 1.41 1.71 1.95 2.20 2.49 2.72
15% 0.53 0.85 1.15 1.45 1.70 1.96 2.25 2.48
20% 0.60 0.92 1.24 1.49 1.76 2.05 2.29
25% 0.65 0.98 1.25 1.53 1.82 2.07
30% 0.73 1.04 1.32 1.62 1.87
35% 0.74 1.06 1.38 1.64
40% 0.78 1.13 1.40
45% 0.85 1.14
50%                    0.87
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Alternatively, t tests within the whole percentile range 
from 5% to 50% could be considered, but the Type I error 
for each individual two-tailed t test could be reduced from 
5% to 2%, reducing the overall Type I error from 13.01% 
to 6.14%, or it could be reduced to 1%, reducing the over-
all Type I error rate to 3.32%. Finally, if researchers de-
mand two or three significant t tests within the 5% to 50% 
range before rejecting the race model, the overall Type I 
error falls to 7.74% or 5.12%, respectively.

Thus, in principle any one of these five strategies can be 
used to address the problem of Type I error accumulation. 
The choice among them might depend on circumstances 
but should be guided by considerations of maximizing 
power—that is, producing the greatest probability of re-
jecting the race model when it is false. Based on these 
considerations, we suggest that the best strategy is to test 
the race model within the rather restricted percentile range 
of 10%–25%. This is the range in which most violations 
have previously been observed, so focusing on this range 
would seem to sacrifice little realistic chance of falsify-
ing an incorrect race model. In contrast, decreasing the 
Type I error for each individual t test would clearly tend 
to decrease power by making it more difficult to reject 
the race model at each percentile. Likewise, insisting on 
significant violations at two or three percentile values also 
seems likely to reduce power substantially.

Interestingly, when testing the race model in the limited 
10%–25% percentile range, increasing the number of t tests 
does not result in a sizeable increase of Type I error. For 
example, when computing 7 t tests at the percentiles 10%, 
12.5%, . . . , 22.5%, 25% or when computing 11 t tests at 
the percentiles 10%, 11.5%, 13%, . . . , 23.5%, 25%, simu-
lations reveal overall Type I errors of 6.60% and 6.72%.

To assess error rate accumulation, a second program 
called RMIERROR can be freely downloaded via links 
at the first author’s Web page www.psychologie.uni 
-wuerzburg.de/i3pages/kiesel.html. This program can be 
used to estimate the overall Type I error for different ex-
perimental conditions and to determine suitable Type I er-
rors for the single t tests or suitable numbers of significant 
t tests that are required to reject the race model.

CONCLUSION

The present article considered two problematic steps 
in tests of the race model inequality: First, biases can 
emerge when estimating the cumulative probabilities used 
to test the inequality. Second, Type I error can accumulate 
when separate t tests are carried out at each of multiple 
percentiles. Simulations indicate that each of these prob-
lems could potentially be serious enough to compromise 
studies using this statistical procedure. Fortunately, the 
simulation results also point to effective methods for ad-
dressing both problems.

With respect to the issue of biases, simulations revealed 
that estimating the cumulative probabilities for small sam-
ples in the single and the redundant target conditions re-
sult in systematic biases that mostly work against the race 
model. With at least 20 samples per target condition, how-

ever, these biases are acceptably small, so this minimum 
sample size is recommended for tests of the race model.

With respect to the issue of Type I error rate accumula-
tion, the simulations have shown that such accumulation 
can be fairly substantial if t tests are carried out at a large 
number of percentiles. Therefore, researchers must either 
(1) test the race model in a limited percentile range, (2) ad-
just the Type I error for single t tests to a level that can 
keep the overall Type I error rate at the desired 5% level, or 
(3) require significant t tests at multiple percentile points 
in order to reject the race model. Computer programs are 
provided to provide simulation-based estimates of the sys-
tematic biases and the overall Type I error level to assist in 
performing fair tests of the race model inequality.
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NOTES

1. The relation between the race model inequality Fz(t)  S(t) and the 
way this inequality is usually tested is not completely straightforward. 

The inequality actually applies to probabilities at a fixed point in time t. 
The proposed test of this inequality, however, fixes p and focuses on the 
time domain, i.e., on ŝp and ẑp. This is as {Fz(t)  S(t)}  {sp  zp} for 
t  0 and 0  p  1.

2. For these simulations we used the ex-Gaussian distribution with 
G  340.00, G  52.90, and e  60.00 for the simulation of x  
y, G  357.00, G  55.50, and e  63.00 for the simulation of x  
y, and G  382.50, G  59.53, and e  67.50 for the simulation 

of x  y. The CDF of the Weibull distribution is defined as F(t) 
1 exp[ (t origin) /scale)power]. For the Weibull distribution we used 
scale  172.70, power  2, and origin  246.90 for x  y, scale  
181.30, power  2, and origin  259.50 for x  y, and scale  194.30, 
power  2, and origin  277.80 for x  y.

3. Furthermore, the way we modeled Fz (see Equation 2) is only 
potentially realistic for smaller percentiles. For higher percentiles, the 
simulated Z values are not representative of typical RT distributions, 
because—for example—they do not exhibit a long positive tail.

4. We chose two-tailed t tests because this is standard practice in this 
field of research. One might prefer one-tailed t tests because of the di-
rectional nature of the hypothesis; that is, the race model is only rejected 
if zp is significantly smaller than sp. Additional simulations with one-
tailed t tests demonstrate that the basic pattern of results is unchanged 
(of course with higher overall Type I error level).

5. The diagonal of the table represents Type I error probabilities for the 
single t test at each percentile. Despite computing two-tailed t tests at the 
5% level, the resulting Type I error sometimes exceeds 2.5% because of 
the small bias that remains even with sample sizes of 40 per condition 
(see Part 1).

(Manuscript received March 24, 2006; 
revision accepted for publication June 11, 2006.)
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