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Modeling psychometric functions in R
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and Université Claude Bernard Lyon 1, IFR19, Bron, France

We demonstrate some procedures in the statistical computing environment R for obtaining maximum
likelihood estimates of the parameters of a psychometric function by fitting a generalized nonlinear re-
gression model to the data. A feature for fitting a linear model to the threshold (or other) parameters of
several psychometric functions simultaneously provides a powerful tool for testing hypotheses about
the data and, potentially, for reducing the number of parameters necessary to describe them. Finally,
we illustrate procedures for treating one parameter as a random effect that would permit a simplified
approach to modeling stimulus-independent variability due to factors such as lapses or interobserver
differences. These tools will facilitate a more comprehensive and explicit approach to the modeling

of psychometric data.

A psychometric function is used to summarize classifi-
cation performance (such as detection or discrimination)
from a psychophysical experiment. An observer classifies
events within a limited set of response categories over a
series of trials. The psychometric function is a sigmoidal
curve that describes the probability of a correct classifica-
tion as a function of stimulus strength (Falmagne, 1982;
Klein, 2001). If there are n choices, the lower asymptote
should approach 1/n. Typically, the upper asymptote is ex-
pected to approach 1. Given a sufficiently difficult task,
however, the observer might not achieve perfect perfor-
mance over the realizable range of stimulus values (see,
e.g., Higgins, Arditi, & Knoblauch, 1996).

The raw data consist of the numbers of trials on which
the observer correctly and incorrectly classified the stimu-
lus for a discrete number of levels of the stimulus, which
typically is summarized as a proportion. Thus, it is natural
to consider the data as arising from a binomial distribu-
tion. The experimenter would like to adjust the param-
eters of an analytic psychometric function to fit the data,
in order to characterize the threshold or the precision of
the observer’s performance.

Logistic regression and probit analysis are two meth-
ods frequently used to model binomial data. These can be
implemented as generalized linear models (GLMs; Mc-
Cullagh & Nelder, 1989). These models are generalized
because they extend the Gaussian linear model to the more
general exponential family of distributions, of which the
Gaussian and the binomial are special cases. They are lin-
ear because the logit and probit transformations (or link
functions, in the terminology of GLM) are held to trans-
form the response variable so that it is linear in its covari-
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ates, thus permitting the modeling of the dependence of
the psychometric function on the experimental factors as a
linear model. A drawback of the logistic and probit GLMs
for fitting psychometric functions is that it is necessary to
transform the data, using the false alarm rate, so that the
estimated probabilities span the interval (0,1), although
Klein (2001) has demonstrated that when this is done ap-
propriately, it establishes a link between the psychomet-
ric function and the statistics of signal detection theory
(Green & Swets, 1966; MacMillan & Creelman, 1991).

Watson (1979) has proposed a maximum likelihood
method based on a generalized nonlinear model to fit
psychometric functions. The parameters of a sigmoidal
function are adjusted so as to maximize the binomial
likelihood of the responses of the subject. Watson used
a Weibull function to describe the relation between prob-
ability correct (P) and stimulus strength (¢):
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where a is a location parameter of the psychometric function
on the stimulus axis and corresponds to a stimulus strength
that yields a criterion level of performance, /3 is a parameter
that determines how steeply the psychometric function rises,
and v is the lower asymptote. It is convenient to define the
parameter a as the threshold stimulus strength.
Occasionally, observer or experimenter errors result in
misclassifications within a stimulus range over which per-
formance would be expected to be perfect. Wichmann and
Hill (2001) have demonstrated that letting the upper asymp-
tote vary as a nuisance parameter allows these lapses to be
modeled and results in more stable estimates of the steepness
parameter. The modified Weibull function can be written as
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where 4 is the distance of the upper asymptote from 1.
Wichmann and Hill have also made available programs for



fitting psychometric functions incorporating these pos-
sibilities, as well as others, for a wide variety of platforms
(www.bootstrap-software.com/psignifit/).

Often, however, one would like to model the dependence
of the location or steepness parameters as a function of an
experimental manipulation, rather than the psychometric
function itself. It is common to fit the psychometric func-
tions so as to obtain threshold estimates and then to model
the threshold as a function of the experimental manipula-
tion. This procedure, however, discards potentially valu-
able information about observer performance. For example,
suppose that the dependence of the psychometric function
on radiance is assessed for each of several test wavelengths.
The variation of threshold with changes in wavelength is
typically used to define a spectral sensitivity. If the spectral
sensitivity resembles a standard photopigment template,
one might suppose that detection is mediated by a single
mechanism. However, if the steepness of the psychometric
functions changed as a function of test wavelength, it would
indicate a failure of univariance and raise the possibility
that more than one mechanism is active.

It would be more comprehensive to model the entire
psychometric function and how its parameters vary as
a function of the experimental variables. In some cases,
modeling the data in this fashion can considerably reduce
the number of parameters necessary for a good fit between
model and data. Few off-the-shelf tools permit this type of
extended modeling, and it has been traditional to program
such models by using special purpose minimization rou-
tines (Chandler, 1965; Gegenfurtner, 1992) in high-level
languages, such as Fortran or C, or else by using the opti-
mization tools within computational environments, such
as Matlab or Mathematica.

The freeware program R is an implementation of the
S programming language (Becker, Chambers, & Wilks,
1988) that provides a powerful environment for statistical
computation and graphics (R Development Core Team,
2003). The purpose of this report is to demonstrate how
extended modeling of the psychometric function can be
performed easily in R with the use of a few, remarkably
powerful functions from some R modules (or packages)
developed by J. K. Lindsey and available from his Web
page (popgen.unimaas.nl/~jlindsey/rcode.html). The rest
of'this report is divided into five sections that demonstrate
(1) how to perform a maximum likelihood fit of a psycho-
metric function by using a generalized nonlinear model,
(2) how to compare the location parameters of two psy-
chometric functions by using a linear model, (3) how to
introduce differences in the steepness parameters while
testing differences in the location, (4) how to fit a group
of psychometric functions for which the location func-
tion is constrained by a linear model, and (5) how to fit a
psychometric function as a generalized nonlinear mixed
effects model with one random parameter.

The analyses presented require three of Lindsey’s pack-
ages: gnlm, repeated, and rmutil. All calculations reported
here were performed on a Powerbook Mac G4 under OS
10.3.5 using Version R-1.8.1, except where otherwise
noted. It is not the purpose here to present a tutorial on
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Figure 1. Psychometric function based on simulated data. The
points show the proportions of correct responses as a function of
contrast based on random binomial covariates, with » = 160 for
each point and P determined by a Weibull function with the param-
eters indicated in the text. The curve is based on the estimates from
a maximum likelihood fit to the points, obtained using gnlr.

R. Familiarity with its syntax and basic commands is as-
sumed. R comes with extensive documentation, and ad-
ditional documents can be found on the Comprehensive R
Archive Network (CRAN) Web site.

Fitting a Psychometric Function With gnlr

The gnlr() function from the gnlm package will fit a
user-specified nonlinear regression to a number of one-
and two-parameter probability distributions. In the case
considered here, the distribution will always be binomial.
For illustrative purposes, we will use the Weibull func-
tion to model the psychometric function; but without a
specific theoretical justification, other reasonable alterna-
tives would perform as well.

Consider the following simulated data, which are bino-
mial random deviates generated in R on the basis of 160
trials at each contrast level and on probabilities generated
by Equation 2, with parameters set to o = 0.04, 8 = 3.5,
y =10.25,1=0.05:

Contrast NumYes NumNo
1 0.010 40 120
2 0.016 47 113
3 0.025 65 95
4 0.040 107 53
5 0.063 155 5
6 0.100 149 11

The proportions correct based on the simulated data are
plotted as circles in Figure 1. To fit a psychometric func-
tion to these data requires two steps. (The code used to
generate this analysis can be found in Appendix A.2.)
First, define a function that describes the psychometric
function with a vector, p, as argument to specify the input
parameters. An example of how this is done in R for Equa-
tion 2 is as follows:
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wb <- function(p) {
p[3] + (1 — p[3] — p[4]) * (I — exp(—((cnt/
I}J[I])Aexp(p[z]))))

We have used here the trick of setting 5 = exp(p[2]), so
that the parameter can vary along the whole real line but
the estimate, B, will always be nonnegative. A similar trick
can be used to confine a parameter between two bounds,
using the atan2 function. An example of this will be shown
in the next section. Second, use the gnlr function to find
the maximum likelihood estimates of the parameters. To
fit the data in Figure 1, gnlr requires a minimum of four
arguments as input: y, the 6 X 2 matrix of the responses
with columns NumYes and NumNo (here, called resp
.mat); distribution, the probability distribution on which
the likelihood will be based; mu, the user-specified re-
gression function (also referred to as the location model
of the probability distribution, to be distinguished from
a, one of its parameters, which was described above as
the location parameter of the psychometric function); and
pmu, a vector of initial estimates for the parameters. Here,
we know the exact values of the psychometric function
that generated these data. Normally, one would choose
these by visual inspection of the data. The call and the
output of the print method are shown below:

sim.fit <- gnlr(y = resp.mat, distribution = “binomial”,
mu = wb,
pmu = ¢(0.04, log(3.4), 0.25, 0.017))

Call:

gnlr(y = resp.mat, distribution = “binomial”, mu = wb,
pmu = ¢(0.04, log(3.4), 0.25, 0.017))

binomial distribution

Log likelihood function:

m <- mul(p)
—sum(wt * (y[, 1] * log(m) + y[, 2] * log(1 — m)))

Location function:

p[3] + (1 = p[3] — p[4]) * (1 — exp(—((cnt/
p[1]) exp(p[2])))

—Log likelihood 16.6
Degrees of freedom 2
AIC 20.6
Iterations 17
Location parameters:

estimate se
p[1] 0.04020 0.001711
p[2] 1.25675 0.197688
p[3] 0.26155 0.032378
p[4] 0.04942 0.012667
Correlations:

1 2 3 4

1 1.0000 0.30439 0.50743 —0.22093
2 0.3044 1.00000 0.66110 0.09098
3 0.5074 0.66110 1.00000 0.03329
4  —0.2209 0.09098 0.03329 1.00000

In this case, the output is stored in a variable that we
have named sim.fit. The output of gnlr is an object of class
gnlm, which contains a wealth of information about the fit
beyond what is printed out above and whose structure can
be examined with the command str(sim.fit). Method func-
tions exist for extracting the final estimates of the parame-
ters, the residuals, and the values fitted to the raw data: co-
efficients(), residuals(), and fitted.values(), respectively.
Other values can be extracted from the object, using the
list extraction operator “$.” For example, sim.fit$maxlike
gives the final maximum likelihood estimate. When at-
tempting to fit more complex models to the data, it may be
necessary to adjust additional arguments—for example,
specifying the number of iterations and the tolerance of
the convergence criterion in order to obtain convergence.
An example in which this was necessary is presented in
the A More Complex Model of a section.

The estimate of 3 is obtained by taking the antilog of
coefficient p[2] which gives 8 = 3.51. To obtain a standard
error for 3, the wb function can be redefined without the
exp applied to the second parameter and the fit repeated
with the current estimate, 3, used in pmu. The results of
the fit are shown in Figure 1 as the smooth curve.

The Akaike information criterion (AIC; Akaike, 1973;
Lindsey, 1999; Myung, 2000; Venables & Ripley, 2002)
is defined here as the negative of the log of the likelihood
plus the number of parameters and can serve as an aid in
model selection. More parameters will always increase
the likelihood. The AIC penalizes the likelihood by the
number of parameters and so, in some sense, represents
a balance between optimizing the likelihood and the par-
simony of the model. Lower AIC values correspond to a
better model. Unlike the likelihood, the AIC can be used
to compare nonnested models. Some texts define the AIC
as twice this value, but this has no effect on the model
selection results.!

Comparing Two Psychometric Functions

Often, psychophysical data will be obtained under two
different experimental conditions, and one would like to
test the hypothesis that the conditions influenced the per-
formance of the observer. For example, such influences
could be changes in the position or the steepness of the
functions, corresponding to changes in sensitivity or pre-
cision, respectively, of the observer. The gnlr function in-
cludes an optional argument, linear, which can be used to
fit a linear model to one of the parameters of the location
function, mu, assuming the other parameters to be con-
stant, to evaluate such hypotheses in a handy and rigorous
manner. To demonstrate its use here and subsequently, we
will introduce a set of data obtained in a dual-judgment
psychophysical task.

Yssaad-Fesselier (2001) collected data from a four-
alternative, forced choice, double-judgment experiment,
using the method of constant stimuli. On a given trial, the
observer first reported in which of four locations (detection)
a low-contrast letter of 50-msec duration was presented.
Subsequently, the observer judged which of four possible
letters (identification) was presented. Within a given ses-



sion, the letter height and the eccentricity of presentation
in the visual field were fixed. Six contrasts were employed,
and the session consisted of 192 trials. Four letter heights at
each of three eccentricities were tested. Each of the 12 letter
height/eccentricity conditions was repeated five times, so
that each psychometric function was based on 960 judg-
ments. The raw data from 1 observer for four letter heights
presented at an eccentricity of 2° can be found in Appen-
dix A.1. The data for the smallest letter height are plotted
in Figure 2 as proportions of correct responses. The circles
correspond to the detection judgments, and the triangles
to identification. The identification proportion correct was
calculated conditionally on a correct detection.

The solid lines in Figure 2 were obtained by fitting
a Weibull function to the data from each task separately,
just as in the preceding example (the code is given in Ap-
pendix A.3). The parameter estimates are presented as the
first two lines of the ecc2.res.df table in Appendix A.1. The
thresholds differ by about a factor of two, but 3s and ys are
similar and might be taken as equal across the two curves.
The upper asymptotes appear to be different, but this al-
most certainly reflects the fact that no data were collected
at higher contrasts. In fact, in this example, the value of
J was constrained to be in the interval (0,0.05), using an
arctangent transformation of this parameter in the defini-
tion of the Weibull function. Thus, it would be interesting to
fit both data sets simultaneously with all of the parameters
except & constrained to be equal for both curves.

The linear argument of gnlr allows one to perform such
a fit in a simple fashion. To exploit this feature, one could
initially redefine the Weibull function to take an argument,
named /inear, that takes the place of the parameter a:

wb2 <- function(p,linear) {
p[2] + (1—p[2]—atn(p[3]))*
(1—exp(—((cnt/exp(linear)) exp(p[1]))))

Probability Correct
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Figure 2. Psychometric functions based on detection (circles)
and identification (triangles) of letters as a function of contrast
from 1 observer. The solid curves are based on the maximum like-
lihood fits individually to each set of points. The dashed curves
are based on a fit to both data sets simultaneously, with [}, 7, and
2 constrained to be identical for both tasks.
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However, this entails renumbering the other three parame-
ters in the input vector, p. We have used here the exp func-
tion to keep & nonnegative, as for 3. Also, we define an atn
function and its inverse, tn, which are used, respectively,
to bound ] in the interval (0, 0.05), as has been suggested
by Wichmann and Hill (2001), and as a convenience in
specifying the initial values in pmu:

atn <- function(x) {
(atan2(x, 1)/pi + 0.5)/20

tn <- function(x) {
tan(pi * (20 * x — 0.5))

An alternative approach is to define the location func-
tion in the argument of gnlr as an inline function with
named parameters. We will illustrate this approach here
and will follow it for the rest of this article. The advan-
tage of named parameters is that the estimates are labeled
with meaningful names, rather than as array elements in
the printout. The disadvantage is an increasingly complex
argument in the calling function.

Next, we create a factor variable coding the levels of the
two tasks, detection and identification, as they appear in
the response matrix:

(Task <- factor(rep(c(“DET”, “ID”), 6)))
[1]1DET ID DET ID DET ID DET ID DET ID DET ID
Levels: DET ID

This variable will appear in the argument of gnlr in the
form linear = ~Task, which is interpreted as the linear
model a, + @, Task. Thus, in the results, the value of e
will correspond to the threshold for detection, and €40 *
@l will be the threshold for identification. The estimated
standard error of &, can be used to evaluate whether
this coefficient differs significantly from zero—that is,
whether the thresholds differ significantly between the
two curves. Finally, we use gnlr to perform the fit (see the
code in Appendix A.3):

gnlr(y = resp.matl, dist = “binomial”, mu =
~gamma + (1 — gamma — atn(tnlambda)) = (1 —
exp(—((cnt/exp(linear))"exp(logbeta)))), linear =
~Task, pmu = ¢(0.25, tn(0.01), log(0.15), log(2),
log(3)))

—Log likelihood 35.7
Degrees of freedom 7
AIC 40.7
Iterations 29
Location parameters:

estimate se
gamma 0.2496 0.03344
tnlambda —5.7210 6.84493
logbeta 1.0671 0.12392
(Intercept)  —1.9082 0.03638
TaskID 0.8746 0.04576

The common steepness parameter is 2.91, and the upper
asymptote is 0.003. The thresholds are obtained from the
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coefficients (Intercept) and TaskID, as exp(Intercept) =
0.15 and exp(Intercept + TaskID) = 0.36. These are very
close to the values from the individual fits. The small stan-
dard error for the Task coefficient with respect to its magni-
tude attests to the significance of the difference between the
location on the contrast axis of the two curves. The AIC for
the constrained fit (40.7) is larger than the sum of the AICs
for the individual fits (37.2) indicating that the constrained
model with fewer parameters (five instead of eight) does
not describe the data better. The predicted curves shown as
dashes in Figure 2 suggest that a model that lets the slopes
vary between tasks would perform better. We will examine
how to implement this in the next section.

Comparing Ss

The linear parameter could have been used in place of
to test the equality of slopes, but assuming equal values of
a for both curves. The present data do not warrant such a
treatment. Note that gnlr directly supports fitting a linear
model only to one parameter of the location function, mu.
(It also supports fitting a separate linear model to a disper-
sion parameter of the probability distribution, such as the
variance, through an optional argument, shape.)

It is possible to fit multiple values of other variables
by adding parameters in the definition of the location
function, mu. For example, to fit different values of
in the example above, substitute a vector of parameters
c(logb1,logb2) for the single parameter. This vector must
be multiplied by an » X 2 matrix, dm, where 7 is the total
number of data points from both curves and each row is of
the form either 1 0 or 0 1, as a function of the arrangement
of the Task covariate in the response matrix, y. In the pres-
ent case, dm and the argument mu are defined as follows:

dm <- matrix (c(2—as.vector(unclass(Task)),as.
vector(unclass (Task))—1),
ncol = 2)

mu = ~ gamma + (1—gamma—atn (tnlambda]))=
(1—exp(—((cnt/exp(linear)) exp
(dm%=%c(logb1,logb2)))))

The call to gnlr is similar to that in the previous exam-
ple, keeping in mind that now there are initial estimates for
each of six parameters: (y, tnd, a, a,, log 3, log 8,). The
example call and partial printout from fitting the data in
Figure 2 are shown below (see the code in Appendix A.4).
Note that it is generally a good idea to base the initial esti-
mates on those from the fits to the individual curves (first
two lines of the ecc2.res.df table in Appendix A.2).

Call:

gnlr(y = resp.matl, dist = “binomial”, mu =
~gamma + (1 — gamma — atn(tnlambda)) * (1 —
exp(—((cnt/exp(linear))"exp(dm %% c(logbl,
logb2))))), linear = ~Task, pmu = ¢(0.24, tn(0.01),
log(0.15), log(2.2), log(2.28), 1log(3.67)))

—Log likelihood 29.3
Degrees of freedom 6
AIC 353
Iterations 40

Location parameters:

estimate se
gamma 0.2351 0.03189
tnlambda —4.7288 4.87143
logbl 1.2958 0.12459
logb2 0.7421 0.14415
(Intercept) —1.9091 0.03393
TaskID 0.8541 0.04848

The values of 3 are extracted from the antilogs of the es-
timates logb1 and logb2 (3.65 and 2.10, respectively) and
by applying the atn function, defined above, to the second
parameter estimate (0.003). The values of & are extracted
as explained in the previous section (0.148 and 0.348).
The AIC is lower for this model than for the individual
fits, indicating that the best model for the data requires
different values of § for detection and identification. The
technique shown in this section can easily be extended
to estimating parameters of several psychometric func-
tions by adding additional columns to the dm matrix and
parameters to the vector that it multiplies. This technique
might be used to fit an individual 4 to each curve, but an
alternate method will also be presented in the Treating A
as a Random Effect section.

A More Complex Model of a

When several psychophysical functions are estimated
as a function of a continuous parameter, the threshold and/
or precision may vary systematically with this parameter.
Accounting for such systematic variation can simplify the
model by reducing the number of parameters, while re-
vealing an underlying relation between the parameters of
the psychometric function and the continuous parameter.
The linear argument of gnlr is easily adapted to perform
this more sophisticated analysis.

Figure 3 shows a more extensive set of conditions
analyzed by Yssaad-Fesselier (2001). The data in the top
panel are based on the detection task, and those in the bot-
tom on identification. Each set of symbols corresponds
to a different letter height. The circles on the far right are
the data from Figure 2. Moving left, each successive data
set corresponds to a larger letter height. Increasing letter
height reduces the contrast necessary for detection and
identification. The solid curves drawn through the data
are based on fitting the Weibull function independently to
each combination of size and task. The results of these fits
are summarized in Appendix A.2.

Figure 4 shows how & (left panel) and j (right panel)
vary as a function of letter height. The circles indicate de-
tection, and the triangles indicate identification. On these
double logarithmic coordinates, the contrast threshold for
both tasks decreases with increases in letter size. Detec-
tion requires less contrast at all letter heights, although
there appears to be a tendency for the values to converge at
large letter heights. There is a slight curvature in the data
that has been confirmed under other conditions, as well
as with other observers (see also Strasburger, Harvey, &
Rentschler, 1991). These observations suggest modeling
the data with a quadratic function. Using a quadratic func-
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Figure 3. Psychometric functions from 1 observer for detection (upper graph) and identifica-
tion (lower graph) of letters. Each symbol type refers to a different letter height: 12.4 min (circles),
20.6 min (squares), 41.3 min (diamonds), and 83 min (triangles). Data were collected at 2° eccentric-
ity in the visual field. The solid curves are based on maximum likelihood fits separately to each data
set. The dashed curves were fit constraining log(@) to be a quadratic function of log(letter height).

tion of size to describe threshold would permit the four es-
timates of « to be described with three parameters. How-
ever, if data from more sizes were obtained, the number
of parameters in the individual fits would increase with
each new size tested, whereas the number of parameters
describing a under the quadratic model would still just
be three, thus gaining parsimony in the description of the
data. The solid curves in the left panel in Figure 4 corre-
spond to quadratic functions fit directly to the values of &
obtained from the individual fits (code in Appendix A.5).

Above, we found that identification required a smaller
value of 5 than did detection for the smallest letter height
tested. The data from other sizes do not lend support to a
generalization of this observation. For this more extended
set of conditions, a constant value of § may suffice, or
perhaps a model that is constant except for the identifica-
tion judgments at the smallest letter size.

The linear argument of gnlr is easily adapted to fitting
a quadratic model, since such a model is linear in its coef-
ficients. The formula becomes

linear = ~log10(size) + I(log10(size)"2),

which corresponds to a polynomial fit with an intercept
and linear and quadratic terms. It could easily be extended
to higher powers, although such higher order polynomials
are rarely necessary to describe data.

Powers in R model formulae are normally used to spec-
ify the order of the highest interaction term when several
factors are crossed. The Asls function, I(), must be applied

to the quadratic term so that the interpretation as a factor
is inhibited and the covariate is squared. Both the detec-
tion and the identification data can be fit simultaneously
with different coefficients by including the Task factor
variable as before, but now defined over the full data set.
A model with only a difference in intercepts would be fit
by linear = ~log10(size) + I(log10(size)"2) + Task. If the
coefficients differ between the two tasks, as will be the
case here, the interaction terms must be included. This
is accomplished by the formula linear = ~(log10(size) +
I(log10(size)"2)) * Task.

Initially, we fit the latter model to the data shown in
Figure 3, with j constrained to be fixed across all sizes
and tasks. The AIC was 140, higher than the summed
AICs over all the independent fits (137). We will show
below the call and partial output from the fit in which
we constrained /3 to be equal across all conditions, except
for identification, at the smallest letter height for which it
was allowed to differ (see the code in Appendix A.5). The
AIC is reduced to 132, indicating that the addition of this
one extra parameter resulted in a better model. When each
curve is fit separately, there are 32 parameters. With the
quadratic constraint on & and the two values of 3, only 10
parameters were needed to account for all the data.

Call:

gnlr(matrix(c(nyes, nno), ncol = 2), dist = “binomial”,
mu = “gamma + (1 — gamma — atn(tnlambda))
* (1 — exp(—((cnt/exp(linear))"exp(dm %*%
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Figure 4.The left panel shows & as a function of letter height for detection (circles) and identification (tri-
angles) tasks. The solid curves are quadratic functions fit directly to these values. The dashed curves result
from constraining log(@) in the psychometric functions to be a quadratic function of log(letter height). The
right panel shows estimates of ﬁ as a function of letter height.

c(logbl, logb2))))), linear = ~(log10(size) +
I(log10(size)"2)) * Task, pmu = ¢(0.23, tn(0.01),
as.vector(pmu.D[1:3]), as.vector(pmu.I[1:3] — pmu.
D[1:3]), log(3.2), log(2)), iterlim = 1000, steptol =
le-05)

—Log likelihood 122
Degrees of freedom 38
AIC 132
Iterations 112
Location parameters:

estimate se
gamma 0.2205 0.01947
tnlambda —5.7676 4.03531
logb1 1.1612 0.06435
logb2 0.7040 0.12334
(Intercept) 2.9763 0.40535
log10(size) —5.7251 0.55418
I(log10(size)"2) 1.1274 0.18209
TaskID 3.0113 0.65604
log10(size): TaskID —2.7778 0.88535
I(log10(size)"2): TaskID 0.7291 0.28787

For this more complex model, we found the results to
be sensitive to the initial estimates, pmu. The six initial
estimates of the coefficients of the linear term were ob-
tained from fitting a quadratic polynomial to the values of
a displayed in the left graph in Figure 4. The other values
were adjusted as well to ensure convergence to the small-
est AIC. Note the inclusion of arguments iterlim and step-
tol to adjust the maximum number of iterations and the
final tolerance of the stepsize in searching for a minimum,
respectively.

The two estimates of log(5) yield j estimates equal to
3.21 and 2.02, respectively, the second applying only to the
identification data at the smallest letter height. The Inter-
cept, log10(size), and I(log10(size)"2) parameters are the
estimates of the constant and the linear and quadratic co-
efficients, respectively, of the quadratic function describ-
ing the variation of log(&) as a function of log(size) for
the detection data. The coefficients for the identification

data are obtained by adding the detection coefficients to
the last three estimates. In other words, the constant term
of the identification quadratic is obtained by the sum In-
tercept + TaskID, the linear coefficient by log10(size) +
log10(size):TaskID, and so forth.

The predicted psychometric functions under this model
are shown as dashed curves in Figure 3 and appear to de-
scribe the data well for all but possibly one curve, the sec-
ond to smallest letter height for the identification task.
Examination of the predicted curves (dashed lines) with
respect to the values of & obtained from the independent
fits on the left graph in Figure 4 reveals this to be an unim-
portant difference, however. The model fits the data very
well with 22 fewer parameters than if each condition had
been fit independently.

Closer examination of the coefficients with respect to
their standard errors raises a question as to the signifi-
cance of the interaction term I(log10(size)"2):TaskID. A
model without this interaction term is easily fit using
the formula ~log10(size) * Task + I(log10(size)"2) but
leads to a higher AIC (134). This model generates identi-
cal parabolic curves for both tasks, which, however, dif-
fer in their vertical and horizontal positions. The larger
AIC of this model is interesting because a similar relation
has been proposed between contrast thresholds for sine-
wave gratings and for discrimination of the presence of
added higher harmonics as a function of spatial frequency
(Campbell & Robson, 1968) and, also, between contrast
detection and reading thresholds as a function of letter
size (Legge, Rubin, & Luebker, 1987).2

Finally, for completeness, we note that eliminating the
quadratic term completely from the model raises the AIC
to 184.

Treating A as a Random Effect

In the analyses in the preceding section, the A parameter
was constrained to be equal across all eight curves. As was
mentioned earlier, Wichmann and Hill (2001) have advo-
cated treating the upper asymptote as a nuisance parameter
that is free to vary for each psychometric function, in order
to stabilize estimates of the steepness parameter. This can



be implemented in the same fashion as was done to fit
simultaneously multiple values of the steepness param-
eter in the Comparing Ss section. First, an n X ¢ indicator
matrix is defined, where # is the number of responses and
q the number of values of 4 to estimate. Then the function
to be assigned to the argument mu is redefined so that the
value of the coefficient for A is replaced by a product of
the indicator matrix and a vector containing the ¢ parame-
ters of A to estimate. The number of additional parameters
will equal the number of curves fit (here, ¢ = 8). Fitting
this model with two values of j, as previously, yields an
AIC = 130.1, lower than that obtained with just one value
of  (see the code in Appendix A.6).

This leads us to consider what would happen if we also
let 3 vary for each curve. Again, we add additional param-
eters in the same way, with an indicator matrix times a
vector of parameters. This model yields an AIC = 132.4,
a less good fit than the model with only two values of 3
(see the code in Appendix A.7). Here, we see an example
of overfitting, in which the increase in the number of pa-
rameters has offset the increased flexibility in the fit to
raise the AIC.

In data with a greater number of conditions, the effect on
the AIC of adding a parameter to each condition could be
even more dramatic, leading to higher AICs just by letting
A vary as we have above. Since one of the reasons that 4
is being treated as a nuisance factor is that it can vary in a
fashion unrelated to the experimental conditions, it might
be better to treat it as a random, rather than as a fixed, effect
parameter. This approach entails estimating the parameters
of the random distribution of A, rather than the individual
values. Then, as the number of conditions increases, the
number of parameters associated with A remains fixed.

Although providing a conceptually elegant solution
to the estimation of A above, the fitting of random pa-
rameters in nonnormal, nonlinear regression problems
presents a daunting challenge in calculation. Estimating
the maximum likelihood values for such models is non-
trivial, because it involves integrating the product of the
conditional probability of the responses and the random
effects (or mixing) distribution to determine the marginal
distribution of the responses at each step of the iterative
fitting process. Analytic solutions exist only in the case of
normally distributed responses with random effects and
in a few other special cases (Lindsey, 1999). Lindsey’s
repeated library contains two functions, gnlmix and hn-
Imix, that permit maximum likelihood fitting of a non-
linear regression including one random parameter with a
specified mixing distribution. We will demonstrate each
in turn below.

gnlmix. The first of these, gnlmix, performs the inte-
gration numerically for the random parameter, which re-
sults in its being rather slow, even for small models. The
function requires several arguments in addition to those
used with gnlr. The mixture argument is used to select one
of 11 mixture distributions. Here, the parameters of the
location function, mu, are g, lambda, linear, logbl, and
logb2. We have defined an atng function to constrain the
value of g to the interval (0.2, 0.3). The random argument
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is used to specify which parameter is to be treated as a
random effect. The initial estimates of the fixed effects
are specified in pmu in the order of their appearance in the
definition of mu. In the present case, this is g, the six val-
ues of linear followed by logb1 and logb2. The pmix argu-
ment specifies an initial estimate for the logarithm of the
dispersion parameter of the mixing distribution. Finally,
the nest argument indexes the observations by the units
to which the different values of the random parameter are
associated. Here, these correspond to the eight combina-
tions of size and task. An example call for a normal mix-
ing distribution is shown below:

gnlmix(matrix(c(nyes, nno), ncol = 2), distribution =
“binomial”, mixture = “normal”, mu = ~atng(g,
0.1) + (1 — atng(g, 0.1) — atn(lambda)) * (1 —
exp(—((cnt/exp(linear)) exp(dm %% c(logb1,
logb2))))), random = “lambda”, pmu = pmul,
pmix = 6, linear = ~(log10(size) + I(log10(size)"2))
* Task, nest = c(rep(1:2,6), rep(3:4, 6), rep(5:6, 6),
rep(7:8, 6)), iterlim = 1000,steptol = 1le—05)

The partial output is shown below (see the code in
Appendix A.8). Initial attempts to perform this fit on a
Powerbook Mac G4 failed to converge after 6 h. The re-
sults shown below were obtained under Red Hat linux,
Version 9.0, with a dual processor running at 1.8 GHz in
just over 2 h. The fit requires 10 parameters, the 9 fixed
effects parameters and 1 parameter for the dispersion of
the mixing distribution. The coefficients are quite simi-
lar to those from the fixed effect model, which required
17 parameters, although the AIC is higher (132.2). Three
other mixing distributions were examined, each giving
nearly identical values of AIC: Cauchy 132.3, logistic
132.3, and Laplace 132.4. Choice of mixing distribution
and an initial estimate for pmix can be guided by ker-
nel density estimation applied to the values of ] obtained
when they are fit as fixed effects.

—Log likelihood 122.1819
Degrees of freedom 38
AlIC 132.1819
Iterations 133
Location parameters:

estimate se
g —0.6237 0.77521
logbl 1.2385 0.05867
logb2 0.7878 0.13487
(Intercept) 2.9848 0.18795
log10(size) —5.7217 0.25307
I(log10(size)"2) 1.1265 0.08355
Task 3.4246 0.75531
log10(size): Task —3.4916 1.00400
I(log10(size)"2):Task ~ 0.9890 0.32158
Mixing dispersion parameter:

estimate se

6.067 1.448

hnlmix. The hnlmix function employs a novel and in-
genious approach to modeling a random parameter that
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avoids having to perform an integration (and thus achieves
convergence much more rapidly than does gnlmix) by in-
terpreting the integral as a penalized likelihood in which
the random effects are estimated as fixed effects, subject
to two constraints: (1) that their sum (product) equal zero
(one) and (2) that their distribution follow as closely as
possible the chosen mixing distribution. The procedure
generalizes the h-likelihood approach of Lee and Nelder
(1996) to nearly arbitrary distributions (distributions with
infinite variance, such as the Cauchy, are excluded) and
yields results quite similar to those obtained by fitting di-
rectly a random effects model (Lindsey, 2006).

The example call, shown below, is very similar to that
of gnlmix, with two exceptions (see the code in Appendix
A.9). First, the pmix argument represents the dispersion
and not its logarithm, as in gnlmix. If this argument is not
specified, its value is estimated during the fitting process.
Second, an initial estimate of the random effect must be fur-
nished by means of the prandom argument as either a single
value or a vector with one estimate for each condition. In
this case, the last estimate is ignored. Recall that the sum of
the random effects will be constrained to equal zero.

hnlmix(matrix(c(nyes,nno),ncol = 2), distribution =
“binomial”, mixture = “normal”, mu = ~atng(g) +
(1—atng(g)—atn(lambda)) * (1 —exp(—((cnt/exp
(linear))"exp(dm%*%c(logb1,logb2))))), linear =
~(log10(size) + I(log10(size)"2))*Task, pmu =
pmul, pmix = 408, prandom = tn(0.01), random =
“lambda”, nest = c(rep(1:2,6),rep(3:4,6),rep(5:6,6),r
ep(7:8,0)), iterlim = 1000,steptol = le—6)

The output of hnlmix, obtained on a Powerbook Mac G4
in seconds, rather than in minutes or hours, is shown below.
The AIC was 129.0, lower than that for any of the other
models. The model required 15 parameters, which is still
less than the fixed effects model that treated A as a fixed ef-
fect, nuisance parameter. Nine of these parameters were due
to the fixed effects. The eight random effects contributed
only 6 parameters, one being used for the sum constraint
and the other in the estimation of the mixing distribution.

—Log likelihood 114
Penalty 32.8
Degrees of freedom 33
AIC 129
Iterations 270
Location parameters:

estimate se
g —1.6924 4.65970
logb1 1.2495 0.06143
logb2 0.8032 0.13129
(Intercept) 2.9636 0.39339
log10(size) —5.6953 0.53713
I(log10(size)"2) 1.1185 0.17639
Task 2.9349 0.68404
log10(size): Task —2.7994 0.92318
I(log10(size)"2): Task 0.7567 0.30032

Fixed mixing shape parameter: 408

Variances: conditional = 18.7, mixing = 129

Random effect parameters:

effect se
1 —3.69862 3.1144
2 28.73601 10.7282
3 —7.74941 5.8836
4 —0.05468 0.7343
5 —8.02126 6.8539
6 0.11232 0.9269
7 —8.31563 6.6738
8 —1.00873 NA
Discussion

One objective of this article has been to demonstrate
how an explicit modeling strategy can lead to a compre-
hensive description of the data with a minimum number
of parameters. We have only scratched the surface of what
is possible with the tools demonstrated above from R. For
example, random effects could be used to model individ-
ual differences between subjects or variation across days
within a subject. Currently, Lindsey’s tools permit only a
single random effect, but it would not be difficult to mod-
ify them to include multiple random effects (J. K. Lindsey,
personal communication, 2004). The major limitation will
be the computational time required for convergence.

Random sources of variability can be modeled in other
ways. For example, if the observer cannot maintain a stable
criterion (because of the difficulty of the task or perhaps be-
cause of learning effects), the probabilities estimated over
sessions may vary. This situation can result in overdisper-
sion; that is, the variability of the estimated probabilities
is greater than that predicted by a binomial distribution. In
such a case, one alternative is to model the likelihood as a
beta binomial distribution. The three functions described
above permit this, as well as several other mixture distribu-
tions (including user-defined likelihood functions), to be
used in place of the binomial distribution. The AIC provides
a convenient index for comparing different distributions ap-
plied to the same data (Lindsey, 1999).

More elaborate models than those shown above may be
specified. Of course, modeling the data for their own sake
is not the ultimate goal. The approaches demonstrated here
are most powerful when they permit the differentiation of
experimental hypotheses. Yssaad-Fesselier (2001) con-
ducted similar experiments at several eccentricities in the
visual field. The regression equations in the models above
can be extended to include a parameter-coding eccentric-
ity, in this fashion permitting an evaluation of whether the
same model is applicable across the visual field, which
corresponds to a test of a certain model of the organization
of the visual system.

A second objective of this article has been to dem-
onstrate the ease with which the type of modeling dis-
cussed here is performed in R. There are particularities
of Lindsey’s functions, however, that some might view
as drawbacks. As the complexity of the model increases,
so does the difficulty in choosing initial estimates that
avoid converging to a local minimum of the negative log



likelihood. This, in fact, is a problem that is common to
all nonlinear minimization routines. It is always wise to
run such minimizations from multiple starting points in
order to maximize the likelihood of finding the global
minimum. A second particularity is that the way Lindsey’s
functions are implemented, the only variables that can be
passed to the regression function are those that the func-
tions themselves will manipulate. Other quantities that
one might want to have vary across calls, such as the cnt
variable in our examples, must be defined in the global en-
vironment. This means that these functions will not work
correctly when called from within a function, unless the
ancillary variables are defined as global variables (e.g.,
using the <<— operator). Such a situation would arise,
for example, in the implementation of a bootstrap function
using gnlr in which it was necessary to call it over and over
again. This is less a limitation, however, than a question of
programming esthetics.

In summary, we have demonstrated how several func-
tions from a suite of tools available in R can be exploited
to model psychometric functions as a generalized non-
linear regression. A parameter can be specified as a lin-
ear model, which permits comparisons of psychometric
functions across experimental conditions. In addition, the
introduction of a random effect may provide an effective
procedure with which to treat nuisance parameters, such
as the lapse rate.
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NOTES

1. Alternative measures for model selection, such as the Bayesion in-
formation criterion and the minimal description length may be more
appropriate under certain circumstances (Myung, 2000). Since the ob-
ject of this article is not to compare such measures, we will consider
only the AIC, for simplicity. It is usually rather simple to calculate other
measures, and in a formal analysis, they should be given serious consid-
eration. In the case of nested (or hierarchical) models, as here, the AIC
(or other measure) can be used to identify a candidate best model, and
nearby models can be evaluated using a likelihood ratio test (Venables
& Ripley, 2002).

2. This statement requires further elaboration. Campbell and Robson
(1968) compared contrast threshold for detecting a sine-wave grating
with that for discriminating whether a third harmonic at one-third con-
trast had been added to the same spatial frequency. The multichannel
model that they were considering predicted that discrimination would
be possible when the contrast of the third harmonic reached its own
threshold, independently of the contrast of the fundamental. Thus, the
frequency dependence of the discrimination task would follow that of the
contrast threshold for a single frequency, but shifted vertically and hori-
zontally by a factor of three along both log contrast and log frequency
axes. Legge et al. (1987) performed a similar analysis in which they
compared the contrast sensitivity for gratings with the contrast threshold
for reading. They believed that optimal reading depended on the sensi-
tivity to spatial frequencies up to an octave above a measure that they
defined as the fundamental frequency of the letter size of the text. Thus,
they expected that the reading thresholds would be shifted by a factor of
two along the log frequency axis with respect to the contrast sensitivity
for sine-wave gratings. Suppose that the data treated here are replotted in
terms of reciprocal contrast (sensitivity) as a function of reciprocal size (a
measure comparable to spatial frequency). We note that the identification
curve is similar but is shifted to higher inverse sizes than is the detection
curve and is of lower sensitivity. If letter identification were based on the
contrast thresholds of frequencies in a fixed band above the frequencies
necessary for detection, we might find that the two curves had the same
shape on these axes but were simply shifted vertically and horizontally.

(Continued on next page)
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APPENDIX

A.1.The Data
Detection and letter identification data at 2° eccentricity: ecc2

O 00NN A W~

alpha
0.1483
0.3283
0.0707
0.1263
0.0380
0.0560
0.0215

Contr task size
0.059 DET 12.4
0.059 1D 12.4
0.088 DET 12.4
0.088 1D 12.4
0.133 DET 12.4
0.133 ID 12.4
0.199 DET 12.4
0.199 1D 12.4
0.299 DET 12.4
0.299 1D 12.4
0.449 DET 12.4
0.449 1D 12.4
0.028 DET 20.6
0.028 1D 20.6
0.043 DET 20.6
0.043 1D 20.6
0.064 DET 20.6
0.064 1D 20.6
0.097 DET 20.6
0.097 ID 20.6
0.146 DET 20.6
0.146 D 20.6
0.219 DET 20.6
0.219 1D 20.6
0.015 DET 41.3
0.015 ID 413
0.021 DET 41.3
0.021 D 41.3
0.032 DET 41.3
0.032 1D 41.3
0.046 DET 41.3
0.046 ID 413
0.068 DET 41.3
0.068 D 413
0.100 DET 41.3
0.100 1D 41.3
0.014 DET 83.0
0.014 ID 83.0
0.018 DET 83.0
0.018 1D 83.0
0.023 DET 83.0
0.023 1D 83.0
0.030 DET 83.0
0.030 ID 83.0
0.039 DET 83.0
0.039 1D 83.0
0.050 DET 83.0
0.050 1D 83.0
Results of fits to individual conditions: ecc2.res.df
beta gamma lambda
3.67 0.236 3.29¢-03
2.28 0.241 5.00e-02
3.18 0.181 7.57e-05
4.04 0.228 3.14e-02
3.94 0.272 7.39¢-05
3.32 0.262 1.79e-02
3.78 0.249 7.24e-05
2.73 0.207 7.44e-05

0NN N bW~

0.0297

task
Det

Det
1D
Det
ID
Det
1D

size
12.4
12.4
20.6
20.6
41.3
413
83.0
83.0

AIC
17.9
19.3
14.4
17.6
16.9
17.2
16.4
17.7

ML
13.9
153
10.4
13.6
12.9
13.2
12.4
13.7
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APPENDIX (Continued)

A.2. Fit With Simulated Data

> library(gnlm)

> beta <- log(3.5)

> gamma <- 0.25

> lambda <- 0.05

> alpha <- 0.04

> p <- ¢(alpha, beta, gamma, lambda)

> num.tr <- 160

> cnt <- 10"seq(—2, —1, length = 6)

> wb <- function(p) {

b PBLE S pBT D (1 exp( (1)) xp(p(2D)
+

> NumYes <- rbinom(length(cnt), num.tr, wb(p))

> NumNo <- num.tr — NumYes

> phat <- NumYes/(NumYes + NumNo)

> resp.mat <- matrix(c(NumYes, NumNo), ncol = 2)

> sim.fit <- gnlr(y = resp.mat, distribution = “binomial”,
+ mu = wb, pmu = ¢(0.04, log(3.4), 0.25, 0.017))

A.3. Simple Covariate
> atn <- function(x) {

+ (atan2(x, 1)/pi + 0.5)/20

+3

> tn <- function(x) {

+ tan(pi * (20 * x — 0.5)

+3

> wb2 <- function(p, linear) {

+ p[2] + (1 — p[2] — atn(p[3])) *

+ (1 — exp(—((cnt/exp(linear))‘exp(p[1]))))

+3}

> ecc2 <- read.table(“ecc2.dat”, header = TRUE, sep = “\t”)
> subdata <- subset(ecc2, size == 12.4, select = Contr:nno)
> names(subdata) <- ¢(“Contrast”, “Task”, “NumYes”,

+ “NumNo”)

> resp <- subset(ecc2, size == 12.4 & task == “DET”,

+ select = ¢(NumYes, NumNo))

> cnt <- subset(ecc2, size == 12.4 & task == “DET”)$Contr
> fit10D <- gnlr(y = resp, distribution = “binomial”,

+ mu = wb, pmu = ¢(0.15, log(3.5), 0.25, tn(0.01)))
> resp <- subset(ecc2, size == 12.4 & task == “ID”,

+ select = ¢(NumYes, NumNo))

> cnt <- subset(ecc2, size == 12.4 & task == “ID”)$Contr
> fit10I <- gnlr(y = resp, distribution = “binomial”,

+ mu = wb, pmu = ¢(0.3, log(3.5), 0.25, tn(0.1)))

> Task <- subset(ecc2, size == 12.4)$task

> cnt <- subset(ecc2, size == 12.4)$Contr

> resp.matl <- as.matrix(subset(ecc2, size == 12.4,

+ select = ¢(NumYes, NumNo)))

> fit10DID <- gnlr(y = resp.matl, dist = “binomial”,

mu = “gamma + (1 — gamma — atn(tnlambda)) * (1 —
exp(—((cnt/exp(linear))"exp(logbeta)))),

linear = ~Task, pmu = ¢(0.25, tn(0.01), log(0.15),
log(2), log(3)))

++ 4+

A.4. Comparing s

> dm <- matrix(c(2 — as.vector(unclass(Task)),

+ as.vector(unclass(Task)) — 1), ncol = 2)

> TwoBeta.fit <- gnlr(y = resp.matl, dist = “binomial”,

mu = “gamma + (1 — gamma — atn(tnlambda)) * (1 —
exp(—((cnt/exp(linear))"exp(dm %*% c(logbl,
logb2))))), linear = ~Task, pmu = ¢(0.24,

tn(0.01), log(0.15), log(2.2), log(2.28),

log(3.67)))

++ 4+ ++
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APPENDIX (Continued)

A.5. Quadratic Model with Task Interaction

> attach(ecc2.res.df)

> sz <- unique(size)

>pmu.D <- Im(log(alpha[seq(1, 8, 2)]) ~ log10(sz) +

+ I(log10(sz)"2))$coefficients

> pmu.l <- Im(log(alpha[seq(2, 8, 2)]) ~ log10(sz) +

+ I(log10(sz)"2))$coefficients

> detach(ecc2.res.df)

> Dbl <- c(rep(c(1, 0), 6), rep(1, 36))

> dm <- matrix(c(bl, 1 — bl), ncol = 2)

> Task <- ecc2$task

> attach(ecc2)

> cnt <- Contr

> TxQ <- gnlr(matrix(c(nyes, nno), ncol = 2), dist = “binomial”,
mu = “gamma + (1 — gamma — atn(tnlambda)) * (1 —
+ exp(—((cnt/exp(linear))"exp(dm %*% c(logbl,

+ logb2))))), linear = ~(log10(size) +

+ I(log10(size)"2)) * Task, pmu = ¢(0.23, tn(0.01),

+ as.vector(pmu.D[1:3]), as.vector(pmu.I[1:3] —
+

+

>

+

pmu.D[1:3]), log(3.2), log(2)), iterlim = 1000,
steptol = 1e-05)
detach(ecc2)

A.6. 2 Unconstrained as a Fixed Effect

> bl <- ¢(rep(c(1, 0), 6), rep(1, 36))

>bm <- matrix(c(bl, 1 — bl), ncol = 2)

> c¢dm <- matrix(c(rep(c(1, 0), 6), rep(c(0, 1), 6)),

+ ncol = 2)

> dm <- cbind(rbind(cdm, matrix(0, 36, ncol = 2)),

+ rbind(matrix(0, 12, ncol = 2), cdm, matrix(0,

+ 24, ncol = 2)), rbind(matrix(0, 24, ncol = 2),

+ cdm, matrix(0, 12, ncol = 2)), rbind(matrix(0,

+ 36, ncol = 2), cdm))

> wb8d <- function(p, linear) {

+ p[3] + (1 — p[3] — atn(dm %*% c(p[4], p[5], p[6],
+ p[71, pI81. p[91. pl 101, p[11])) * (1 —

+ exp(—((cnt/exp(linear))"(exp(bm %*% c(p[1],

+ p[2D)))

+

> pmu <- ¢(log(3.38), log(2.21), 0.23, tn(ecc2.res.df$lambda),
+ as.vector(pmu.D), as.vector(pmu.l — pmu.D))

> attach(ecc2)
> cnt <- Contr
> d8 <- gnlr(matrix(c(nyes, nno), ncol = 2), dist = “binomial”,

+ mu = wb8d, linear = ~(log10(size) + I(logl0(size)"2)) *
+ Task, pmu = pmu, iterlim = 1000, steptol = 1e-05)
> detach(ecc2)

A.7. pand A Unconstrained

> cdm <- matrix(c(rep(c(1, 0), 6), rep(c(0, 1), 6)),

+ ncol = 2)

> dm <- cbind(rbind(cdm, matrix(0, 36, ncol = 2)),
rbind(matrix(0, 12, ncol = 2), cdm, matrix(0,
24, ncol = 2)), rbind(matrix(0, 24, ncol = 2),
cdm, matrix(0, 12, ncol = 2)), rbind(matrix(0,
36, ncol = 2), cdm))

++ 4+
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> wb8d8 <- function(p, linear) {

+ p[9] + (1 — p[9] — atn(dm %*% c(p[10], p[11],
+ p[12], p[13], p[14], p[15], p[16], p[17]))) *

+ (1 — exp(—((cnt/exp(linear))"(exp(dm %*%

+ c(p[1], p[2], p[3], p[4], p[5]. p[6],

I } p[71, p[8D)))

> pmu <- ¢(log(ecc2.res.df$beta), 0.23, tn(ecc2.res.df$lambda),
+ as.vector(pmu.D), as.vector(pmu.l — pmu.D))

> attach(ecc2)

> cnt <- Contr

> bd8 <- gnlr(matrix(c(nyes, nno), ncol = 2), dist = “binomial”,

+ mu = wb8d8, linear = ~(log10(size) + I(log10(size)"2)) *
+ Task, pmu = pmu, iterlim = 1000)
> detach(ecc2)

A.8. Mixed-Effect Model Fit With gnlmix
> library(repeated)

> Task <- ecc2$task

> atng <- function(g, rg) {

+ (0.25 — rg/2 + (atan2(g, 1)/pi + 0.5) *rg
+}

> tng <- function(g, rg) {

+ tan(pi * ((g — (0.25) — rg/2))/rg — 0.5))
1

>pmul <- ¢(tng(TxQS$coef[3], 0.1), TxQS$coef[4:9], TxQ$coefl1:2])

> attach(ecc2)

> cnt <- Contr

> dI <- ¢(rep(c(1, 0), 6), rep(1, 36))

> dm <- matrix(c(dl, 1 — dI), ncol = 2)

>TxQg <- gnlmix(matrix(c(nyes, nno), ncol = 2), dist = “binomial”,
mixture = “normal”, mu = ~atng(g, 0.1) + (1 — atng(g, 0.1) —

+ atn(lambda)) * (1 — exp(—((cnt/exp(linear))"exp(dm %*%

+ c(logb1, logb2))))), random = “lambda”, linear = ~(log10(size) +
+ I(log10(size)"2)) * Task, pmu = pmul, pmix = log(420),
+

+

>

+

nest = c(rep(1:2, 6), rep(3:4, 6), rep(5:6, 6),
rep(7:8, 6)), iterlim = 1000, steptol = 1e-06)
detach(ecc2)

A.9. Mixed-Effect Model Fit With hnlmix

> Task <- ecc2$task

> attach(ecc2)

> cnt <- Contr

> dI <- c(rep(c(1, 0), 6), rep(1, 36))

> dm <- matrix(c(dl, 1 — dI), ncol = 2)

> atng <- function(g) 0.225 + atn(g)

> tng <- function(g) tn(g — 0.225)

>pmul <- ¢(tng(0.23), TxQS$coef[5:10], log(3.5), log(2.2))

> TxQh <- hnlmix(matrix(c(nyes, nno), ncol = 2), dist = “binomial”,
+ mixture = “normal”, mu = ~atng(g) + (1 — atng(g) —

+ atn(lambda)) * (1 — exp(—((cnt/exp(linear))"exp(dm %*%
+ c(logb1, logb2))))), random = “lambda”, linear = ~(log10(size) +
+ I(log10(size)"2)) * Task, pmu = pmu, pmix = 408,

+ prandom = tn(0.01), nest = c(rep(1:2, 6), rep(3:4,

+ 6), rep(5:6, 6), rep(7:8, 6)), iterlim = 1000,

+ steptol = 1e-05)

> detach(ecc2)

(Manuscript received October 22, 2004;
revision accepted for publication January 17, 2005.)
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