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“Facts are nothing without their nuance, sir.”
—Norman Mailer, upon being told by the judge to stick to 
the facts during the 1969 trial of the Chicago Seven

Genetic programming (GP) is a way of using natural se-
lection to program computers (Koza, 1992). Unlike genetic 
algorithms and neural networks, which use idiosyncratic 
and human-unfriendly binary representations of problems 
and their solutions, GP evolves ordinary computer code. 
The output it produces are strings of code in a human and 
machine comprehensible language. Westbury, Buchanan, 
Sanderson, Rhemtulla, and Phillips (2003) suggested that 
this makes GP particularly useful in solving the kinds of 
nonlinear multivariate regression problems that are com-
mon in psychology and other scientific disciplines and 
discussed some of the statistical and conceptual issues 
involved in using such tools in scientific work. In solving 
nonlinear multivariate regression problems, it is it often 
highly desirable to be able to see exactly how multiple 
independent variables relate to a particular dependent 
variable. In this article, we introduce a free new tool that 
has been specially designed for this purpose: NUANCE 
(Naturalistic University of Alberta Nonlinear Correlation 
Explorer). Written in Java, NUANCE will run on most 
computer platforms. It can explore and suggest human-
readable solutions for any problems in which one or more 
predictors may predict the value of a single dependent 
value. It is easy to use, fast, flexible, and powerful, in-

corporating a new rank-order-based fitness function that 
is demonstrably superior to the averaged multitest fitness 
(described below) introduced by Westbury et al.

Our goals in this article are twofold. First, we aim to 
describe the interface of NUANCE, so that anyone will 
be able to use it after reading this article. Second, we aim 
to demonstrate that NUANCE works and that the novel 
algorithm it introduces is superior to averaged multitest 
fitness, which was itself introduced to address problems 
of particular relevance to curve fitting.

How Does GP Work?
The general principles of GP are simple. In this section, 

we describe them in general terms; in later sections, we 
will fill in the details as they apply to NUANCE.

To begin, one needs to define two elements: a function 
set and a fitness value.

The function set consists of the set of computational 
operators that are available for use in any evolved solu-
tions. Although these may be highly specialized for the 
specific problem under consideration, they may also con-
sist simply of a set of plausibly relevant basic mathemati-
cal functions.

The fitness value is a way of quantifying the goodness 
of any evolved solution. These may be a very general mea-
sure, such as a squared error, a percent hit rate, or a corre-
lation of an evolved function’s output with known correct 
values. The function that calculates the goodness of any 
solution is called the fitness function.

Once a fitness function and a function set are defined, 
evolution of solutions may begin. In the first generation, 
many (at least hundreds, more often thousands) of poten-
tial solutions are randomly generated, by conjoining the 
operators in the function set in legal ways. Since these so-
lutions are randomly generated, they are likely to be very 
poor at solving the problem. However, because the fitness 
function is defined, these thousands of poor solutions can 
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be rank ordered for their utility in solving the problem. 
The best functions are identified, by using some selection 
criterion, and retained. The rest of the population is dis-
carded. The selected functions are randomly broken into 
subparts of random size, ranging from a single node to the 
whole tree. The subparts are then randomly conjoined to 
fill the population of the next generation.

In sum, there are three steps to GP: generate functions, 
select the best, and regenerate new functions by mixing up 
the selected best functions. As this brief description sug-
gests, the process used in GP is closely analogous to selec-
tive breeding in biology. In selective breeding, the breeder 
decides which animal is suitable to breed, on the basis 
of what characteristics are desired. In GP, the breeder’s 
choice is automated, instantiated in the fitness function 
and selection criterion. The animals to be bred are math-
ematical equations.

By repeated application of the three simple steps, GP 
can incrementally improve the average and best fitness of 
each succeeding generation (for formal analyses, see Hol-
land, 1992, and Koza, 1992). The process can be stopped 
when a “perfect” solution is found, if such a solution ex-
ists, or it may be stopped because some other completion 
criterion is met: for example, because the slope of the fit-
ness function is close to 0, or because some set number of 
generations has passed.

Multivariate estimation problems of the type handled 
by NUANCE are well suited for GP because they have 
a natural fitness function. In such problems, fitness may 
be simply defined as the absolute value of the correla-
tion of the estimate with the data to be estimated. Because 
correlations are well defined and continuous across the 
bounded range of �1 to 1, it is possible to compare the 
output of any two estimator equations and have the com-
puter unambiguously decide which one is better: the one 
with the larger absolute correlation with the data to be 
estimated.

This brief overview should make clear that understand-
ing any GP system is largely a matter of understanding 
three things: the function set, the fitness function, and the 
selection criteria. In the first section that follows, we con-
sider NUANCE’s function set. In the second section, we 
consider its fitness function and selection criteria, which 
are combined in NUANCE.

UNDERSTANDING NUANCE

Function Set
NUANCE uses a flexible approach to its function set. It 

has a set of functions built in, which users may turn on or 
off. NUANCE also allows users to add their own custom 
functions.

Most of the built-in functions are simple well-known 
functions of one or two inputs: addition, subtraction, 
multiplication, division, natural logarithm, square, cube, 
square root, cube root, absolute value, sine, cosine, and 
tangent. All these functions are enabled by default.

NUANCE does not include a general power func-
tion, since it is too easy to generate overflow errors using 

large (absolute) powers. However, note that all low-power 
and small-root functions can easily be constructed by 
 NUANCE during evolution by concatenating the square, 
cube, square root, and cube root functions. Moreover, such 
power functions may be explicitly added to the user-defined
functions.

NUANCE also includes four multi-input built-in func-
tions. The first is an if/then/else statement. This statement 
takes three arguments. If the first argument is 1, it returns 
the second argument; otherwise, it returns the third argu-
ment. The remaining three functions are the “�” (greater 
than), “�” (less than), and “�” (equals) comparators. 
They each take two arguments, returning 1 if the speci-
fied relationship holds, and 0 otherwise. The use of these 
functions allows NUANCE to evolve radically nonlinear 
solutions, which have discontinuities. However, their use 
also causes huge increases in the size of evolved solu-
tion trees, thereby slowing down the evolutionary process 
and decreasing the probability that the solution will be 
humanly comprehensible. Moreover, it is also possible to 
use nested if/then statements to generate trivial solutions 
to any problem, by building lookup tables that mirror the 
input file. These functions should therefore be used judi-
ciously: Include them whenever there is reason to suspect 
that the solution may be very complex or discontinuous, 
and exclude them by turning them off if not. These func-
tions are off by default.

It is our intention to define all the functions that most 
users will want inside NUANCE, and we will add more as 
they are deemed necessary. However, we have also pro-
vided a means for users to add their own functions. At 
the bottom of NUANCE’s Function Set panel, there is a 
button called Custom Functions. When clicked, users can 
add and delete their own programmable functions. Users 
are required to provide a unique name for each function 
and a description of what the function does. Descriptions 
must be written in prefix notation, with the operator in 
front of its arguments, just like all functions NUANCE 
produces. The input parameters for each function must 
be designated within the function description using spe-
cial symbols (N1, N2, N3, . . . , Nn). When the function is 
used, subtrees attached to the custom function will replace 
these symbols.

For example, the function (� N1 2) will add two to the 
subtrees attached to it. The function (* N1 (* N1 N1)) will 
return the cube of any node it takes as an input value. It 
is allowable to use more than one parameter in a user-
defined function. For example, the function (� (* N1 
(* N1 N1)) (sin N2)) will add the sine of one input to the 
cube of another.

In general, simple combinations of primitive built-in 
functions that are useful to the problem need not be ex-
plicitly defined by the user, since they may be reasonably 
expected to be discovered by the evolutionary process it-
self. In addition, it is possible that the provision of very 
fit custom functions may harm the evolution process. If 
the fitness provided by a custom function is much greater 
than that provided by the basic operators, NUANCE may 
have a tendency to converge on a solution that is nothing 
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more than the custom function, rather than exploring the 
solution space as it is intended to do. Custom functions 
may not necessarily be useful and should be defined only 
if necessary.

Fitness Function and Selection Criteria
In this section, we discuss NUANCE’s fitness function, 

which ranks evolved equations, and its selection crite-
rion, by which a subset of ranked equations is selected for 
breeding to fill the next generation.

Any solution to a problem that generalizes from a small 
set of data to a general relation faces the danger of over-
fitting, by finding solutions that are highly suited to the 
data set on which they were evolved, but that generalize 
poorly to other data sets. We say that such solutions are 
brittle. Brittleness is defined as an evolved solution’s in-
ability to generalize to unseen problem cases that are part 
of the problem of interest but that were not used as a fit-
ness set for the GP system. For instance, if one were to try 
to evolve a control behavior to direct the foraging of an 
artificial ant, an ant’s behavior would be considered brittle 
if it could not forage with competence in an environment 
different from the one it is trained in. For NUANCE to 
have any utility, it must be able to create generalizable 
summaries of the data sets that it models. In other words, 
NUANCE must avoid overfitting its solutions or produc-
ing brittle solutions.

Kushchu (2002) and Moore and Garcia (1997) suggest 
the same solution for avoiding brittle solutions: the use of 
randomized learning cases. If we change the problem that 
is used to assess fitness on each generation, it presents an 
environment that selects for generalization. For example, in 
a scenario of an evolved simulated ant, Kushchu did this by 
randomizing the starting location of the ants on each gen-
eration. He showed that this produced much more adaptive 
behavior to new environments than did having the ants start 
their foraging from the same place each generation.

In NUANCE, we utilize an analogous strategy, by using 
a new random subset of the input data to gauge the fitness 
of each generation. One problem with this method is that it 
runs the risk of culling out evolved functions that actually 
do generalize. This can happen if a subset were generated 
that happened by chance to be highly unrepresentative of 
the problem of interest. Poor fitness with that subset could 
wipe out many evolved functions that actually do general-
ize, thus setting back the evolutionary process.

Westbury et al. (2003) introduced a technique called av-
eraged multitest fitness (AMTF), which lessened, though 
it did not necessarily remove, this problem of losing fit 
functions. AMTF builds cross-validation into its fitness 
function, in a way that is analogous to the k-fold cross-
validation technique (Stone, 1974) that is often used in 
training neural networks. The algorithm takes the average 
correlation of an equation’s output with the measure to be 
predicted over multiple random subsets. It uses this aver-
age as a gauge of an equation’s fitness.

AMTF has the disadvantage of requiring multiple fit-
ness tests for every evolved function. This makes it com-

putationally costly, thereby slowing down the speed at 
which evolution can proceed.

We have recently developed a novel fitness method that 
is superior to AMTF for a number of reasons, which we call 
age-weighted fitness. This is the default method used within 
NUANCE, which we discuss in the Runs section below.

For further discussion of the problem of overfitting, see 
Example 3 below.

USING NUANCE

NUANCE is simple to run. In this section, we describe 
the steps.

NUANCE is written in Java. Java is freely available for 
most common computer operating systems. NUANCE re-
quires Java 1.4.2 or later. If you need a copy of the Java 
Virtual Machine in which NUANCE runs, you can down-
load one for most platforms (java.sun.com/j2se/downloads
.html).

NUANCE can be downloaded from the Psychonomic So-
ciety archive (www.psychonomic.org/archive).  NUANCE 
comes packaged as a Java archive (JAR) file and is run by 
double-clicking on the file icon. Java archives open more 
slowly than regular applications, so be patient.

After opening NUANCE, you will see a graphical in-
terface with three tabs labeled “NUANCE,” “OUTPUT,” 
and “FORMAT CONVERTER.” We will describe each of 
these three panels in turn.

NUANCE Panel
The NUANCE panel is the main panel for using the 

program. On this panel, you can control the main function 
of NUANCE by setting the evolution parameter values 
and the input and output files, choosing which functions 
to allow and turning the evolutionary process on and off.

In the pane to the left, you will see check boxes for 
each of the built-in functions described above. You can 
turn these on or off by clicking on these buttons.

The middle pane on the right, entitled “Input and Out-
put Files,” allows you to specify the input files and output 
directories for NUANCE. The input file must be a tab-
delimited text file. By default, the dataset.txt file goes 
in the same directory as NUANCE. You may change this 
by clicking on the “change” button beside the file path 
field or by typing a new file path directly into that field. 
The first line of the input file must consist of the variable 
names, separated by tabs. Beneath this are the columns of 
data, also separated by tabs. The first column must con-
tain the independent measure to be predicted. The remain-
ing columns must contain predictors. NUANCE does not 
accept missing data; therefore, missing values must be 
replaced with an estimate, or rows that contain missing 
values must be deleted.

You must also specify a directory where NUANCE will 
print its output. This defaults to a time-stamped directory, 
whose name reflects the time NUANCE was started. This 
directory will be written by default inside the “logs” direc-
tory at the same level as NUANCE itself.
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In each output directory, NUANCE will create subdirec-
tories that are numbered for each run: Run 1, Run 2, and 
so on. Each of these output subdirectories contains two 
files: history.txt and log.txt. The history.txt file will con-
tain a log of all the output NUANCE displays on screen. 
The log.txt file contains information about the whole run 
that might be of interest: average time per generation, av-
erage length and age of functions in that generation, the 
best function of that generation, and its age and fitness.

When a specified set of runs is completed, each output di-
rectory also contains four other files: settings.txt, functions
.txt, best_estimates.txt, and graphing_data.txt.

The settings.txt file simply records the parameter set-
tings that were used for those runs.

The functions.txt file contains a list of all functions, 
including custom functions, used during the runs.

The best_estimates.txt file contains the best evolved 
function across all runs, in both prefix and infix notation, 
as well as a list of the output of that function for each data 
point in the input file. It is possible that some cases may 
be undefined. This can happen if a particular case that 
was never selected as part of the testing subset of a given 
function is undefined for that function. Undefined values 
are replaced with “NaN” (i.e., “not a number”).

The graphing_data.txt file contains a different represen-
tation of the same best function. It includes one 10 � 10 
table for each pair of predictors. Each table spans across the 
range of the two predictors in 10 equal steps. Each of the 
100 cells in the 10 � 10 table contains the normalized value 
of the output function over the 10 steps of the two predic-
tors. If there are more than two predictors in the data file, 
the others are fixed at their average value for the purposes 
of building the table. The results in each cell are normalized 
(expressed in z scores) because the output units of evolved 
functions are arbitrary and therefore may be difficult to in-
terpret. The purpose of this table is to facilitate visual in-
spection of the shape of the best function and of the nature 
of the relation between any two predictors. The output table 
can be pasted into any other program with graphing capa-
bilities in order to create the graph. We have included with 
NUANCE an Excel template (GraphingTemplate.xls) for 
creating such graphs.

NUANCE’s leftmost pane lists of all functions and op-
erators used by NUANCE. The default setting is to turn 
all functions on, except for the logical if and the greater, 
less than, and equal operators. This default can be over-
ridden by putting a list of the function names you wish to 
use the functions.txt file located in NUANCE’s directory. 
Custom functions can also be added to this list; the format 
for doing so is to place the function’s name and descrip-
tion on a single line, separated by a tab.

In the top pane on the right, you will see a set of all 
NUANCE’s parameters and their values. NUANCE will 
always load its default parameters from the settings.txt 
file (if the file exists) located in the same directory as 
 NUANCE. You can edit this file directly to change the 
default settings that NUANCE loads with, or you can click 
on the Save Settings button to write the displayed settings 
as the default settings for future use. You can also change 

the settings manually in the top right-hand pane. We now 
describe the parameters in detail.

NUANCE’s Population Parameters
Population Size. The Population Size parameter speci-

fies how many equations can be in the evolving population 
at any time. In general, this variable can be fruitfully max-
imized, but with two caveats: (1) the time it takes to run 
with larger populations will increase linearly with popu-
lation size, and (2) NUANCE may require more RAM. 
The default heap size for Java applications is 64 MB. If 
memory needs to be increased, run the program from the 
command line. To do so, type “java -mx###m -jar nuance
.jar,” where ### is the number of megabytes of RAM you 
would like to allocate to NUANCE. One hundred twenty-
eight megabytes of RAM should be sufficient for all pop-
ulations under size 10,000.

The default population size is 2,500, which is prob-
ably fine for most problems. Increase it if you doubt that 
the best solution is being found. A population size above 
10,000 would be very large indeed. We have successfully 
run NUANCE with populations as large as 20,000.

Generations. The Generations parameter specifies 
how many generations you wish to evolve. It is difficult to 
give a general value to be entered here, since the number 
of generations required may vary with the complexity of 
the problem. As with many of the other NUANCE param-
eters, the rule of thumb is the more, the better. Since, in the 
end, you will probably keep only the best solution, you can 
never do worse by running more generations, and you will 
probably (and, in the long run, almost certainly) do better. 
However, running more generations takes more time.

It is possible to estimate if one has run sufficient gen-
erations by looking at the shape of the fitness curve, which 
graphs fitness by generation (for examples, see Figures 1, 
2, 5, and 6). If the curve is nearly flat, then little progress 
is being made in each generation, and it is unlikely that 
further computation will lead to substantial improvement. 
If the curve has a clear positive slope, more computation 
will probably lead to further gains. However, this heuristic 
may sometimes be misleading. The stochastic nature of 
evolutionary search means that it is possible for progress 
to be made after many generations of no progress. An ex-
ample of this phenomenon is shown in Figure 1, which 
shows a NUANCE run, using a public data set, that tried 
to predict average January temperature in 60 cities in the 
United States from average rainfall in those cities. After 
47 generations with an almost flat fitness function (r � 
.11), the run graphed here found a substantially better re-
gion of search space, and in one generation jumped to r � 
.29. Thereafter, fitness steadily increased. For this reason, 
it is advisable to allow leeway in the number of genera-
tions of search. The default value is 100 generations.

Runs. You can set the Runs parameter to any N � 0. 
NUANCE will repeat evolution N times, with all of the 
settings already defined. It is desirable to repeat runs sev-
eral times because of the stochastic nature of evolutionary 
computing. There is no guarantee that any run is the best 
possible. We recommend that you run at least 8–10 times, 
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or more if you can, although clearly the best solution in 
hand may be deemed sufficient for any number of reasons 
at any given time. The default value is 10.

Starting Tree Depth. Users are allowed to specify 
how large their starting functions will be by specifying 
how deep each function tree is. The default starting depth 
is 3, which means an average of 5 or 6 nodes per function. 
The final functions produced by NUANCE rarely exceed 
depths of 10, and this parameter should not be set higher 
than that. Such deep functions are very difficult for hu-
mans to understand.

Although the default starting tree depth should suf-
fice for most purposes, longer and shorter values may be 
of benefit in some situations. Without allowing shorter 
starting trees, it is possible that you may miss some very 
simple solutions. However, this is not a very serious prob-
lem, because you will almost certainly be able to deduce 
the missed solutions from the solutions that NUANCE 
offers (see Example 4C below). In some cases, it may be 
desirable to set the starting depth higher than the default. 
It is possible, when the best solution tree is deep, that short 
solutions may lead to premature convergence to regions 
of solution space that are suboptimal. If you encounter a 
problem in which you feel dissatisfied that a good solution 
has been found, you can try increasing this parameter.

Parsimony Pressure. One of GP’s major limitations is 
that functions may get so large that they are completely in-
comprehensible, intractable to run, or a combination of the 
two. A number of theories have been proposed to explain 
this phenomenon, which is commonly termed bloat (see 
Langdon, 2000; Soule & Foster, 1999; Streeter, 2003). 
Some (Soule & Foster, 1998; Streeter, 2003) speculate 

that large size is actually evolutionarily adaptive, since 
it can lessen the probability that crossover will damage 
offspring. Others (e.g., Langdon & Poli, 1997) suggest 
that bloat may be caused by distribution of fit functions 
in solution space. Solutions with equal fitness can have 
many different physical forms. With variable-length func-
tions and any arbitrary cutoff to separate long from short, 
there are typically more long solutions than short solu-
tions; thus, long solutions have a bias to be found first.

Whatever the cause of bloat, it is undesirable from the 
NUANCE user’s point of view. We have implemented 
parsimony pressure to prevent functions from growing 
excessively large. Parsimony pressure penalizes long so-
lutions. By setting parsimony pressure to a positive value, 
a function’s fitness is decreased by a percent value equal 
to the parsimony pressure times the number of nodes (op-
erators and arguments) in the function. For example, a 
parsimony pressure of 1 would decrease the fitness of a 
function whose length is 100 by 1%. For a length of 150, 
fitness would decrease by 1.5%, for a length of 200, fit-
ness would decrease by 2%, and so forth.

A small parsimony pressure can have a large effect on 
function size, since it discourages increases in function 
length except where a long function is markedly better than 
the best short function. On the data set that is discussed as 
Example 1 below, even the smallest parsimony pressure 
of 1% reduces average function length to less than one 
fifth of its value without such pressure (see Figure 2). The 
default parsimony pressure for NUANCE is 1.

Mutation Rate. Randomly mutating members of 
an evolving population is a way to add diversity to the 
population pool. Many researchers working with GP have 

Figure 1. A NUANCE fitness curve, using Median Pass selection, illustrating 
the danger of over-reliance on the shape of the fitness curve as a measure of 
whether or not one has run sufficient generations. This problem used a data set 
from DASL, at lib.stat.cmu.edu/DASL/Datafiles/SMSA.html, to estimate the 
average January temperature in 60 U.S. cities from average rainfall in those cit-
ies. The fitness curve is almost perfectly flat with a correlation of approximately 
.11 for 47 generations, which might lead one to conclude that no better solution 
was possible. However, a breakthrough at generation 48 led to substantial and 
thereafter increasing improvement on this early estimate. This illustrates why 
it is a good idea to run as many generations as possible.
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deemed mutation to be generally ineffective (Koza, 1992; 
Luke & Spector, 1998). However, it may be a worthwhile 
addition to NUANCE in some specific situations. If 
many solutions become too similar too quickly (i.e., they 
converge to a local optima), evolution may halt. Muta-
tion can help prevent such problems by introducing new 
genes into the population pool. It does so by randomly 
changing some percentage of nodes in the children that 
are seeded into a population. The default mutation rate is 
0, which means that there will be no mutation. Users may 
wish to increase this value if the best function’s fitness 
stops increasing very early in the run. If fitness still fails 
to increase even with mutation on, it is probable that there 
are very few solutions better than the best found. If, on the 
other hand, turning on mutation helps to increase fitness, 
it is likely that there was a problem with getting stuck on 
local optima.

Testing Subsets and Subset Size. As mentioned in 
the introduction to this article, in order to avoid problems 
with overfitting, a GP program can use small portions of 
the data set for testing population members. Overall fit-
ness is the average of the fitness from all subsets. In this 
way, the GP system treats the input data set as if it were 
made up of multiple smaller subsets and tries to find solu-
tions that generalize between these subsets. In NUANCE, 
there are two parameters associated with this ability: Test-
ing Subsets and Subset Size.

The first parameter, Testing Subsets, is the number of 
different subsets that the population members are tested on 

each generation. In some cases, any particular subset may 
be unrepresentative of the problem being solved, which 
means that there is always a chance of killing fit functions 
because they cannot accurately predict unrepresentative 
data. Increasing the value of this parameter to some num-
ber greater than 1 allows NUANCE to use the averaged 
multitest fitness described above. Each evolved function 
is tested on multiple subsets. Averaging the function’s 
fitness on all subsets gives the function’s fitness for the 
generation. Data will never be included more than once 
within any given subset. However, they may be included 
more than once across multiple subsets.

The second parameter, Subset Size, is the size of the 
data set(s) that will be used for testing the population 
members on each generation, expressed as a percentage 
of the total data set size.

We consider these two parameters together here because 
their optimal values depend on each other. The general rule 
of thumb is that the Testing Subsets parameter should be 
as high as possible (so each function is tested on as many 
subsets as possible), and the Subset Size parameter should 
be as low as possible (so that each subset is small rela-
tive to the overall data set size). However, these optimal 
settings depend to some extent on how many rows your 
input set has. A Testing Subsets parameter value above 
2 is desirable in order to maximize generalizability, but 
it is better to have at least 15 or 20 rows in each subset 
than it is to have many subsets. If the Subset Size is so 
low that there are very few data points in each subset, no 

Figure 2. Average function length and fitness (*1,000) by generation, with (PP 1) 
and without (PP 0) the minimal parsimony pressure of 1%. This figure shows that 
even a small parsimony pressure (penalty for long functions) can have a marked effect 
on average function length, while having little effect on fitness. In order to show both 
fitness and length on the same graph, we have multiplied fitness values (correlations 
with the predictor) by 1,000. These data are from the ON � FREQ problem discussed 
in Example 1.
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evolution will occur: The system will simply thrash about 
randomly, unable to find an equation with a consistent fit. 
Finally, the number of rows specified by combining these 
two variables should ideally be a relatively small fraction 
of the total data set size. If you specify a Testing Subsets 
size of 2 and a Subset Size of 50%, you will be using your 
entire input data set to assess the fitness of every function, 
which will expose you to the risk of overfitting.

The default values are a Testing Subsets size of 1 and 
a Subset Size of 20%, on the assumption that large data 
sets are rare. These parameters mean that the fitness of 
each function is tested on a random fifth of the input data 
set. If you have more than 100 lines of input, you should 
increase Testing Subsets to 2 and perhaps decrease Subset 
Size to 15%. This will assess every function on two ran-
dom subsets of the input data set, each composed of 15% 
of that data set. Every function will therefore be tested on 
a randomly selected 30% of the input data set.

Fitness Age Weight and Selection Strategy. Large 
data sets are rare. In problems where one cannot collect 
large samples of data, it is impossible to use multiple sub-
sets to prevent unrepresentative data from killing fit popu-
lation members without overfitting. NUANCE therefore 
includes other tools to deal with this problem. By adding 
a bonus to fitness based on a function’s age (the number 
of generations for which it has existed), NUANCE can get 
a measure of how well functions fare when dealing with 
different data. If a very unrepresentative testing subset is 
generated, this age weighting can act as a protective buffer 
for fit functions if they have survived for multiple genera-
tions (presumably because they are, indeed, fit).

The Fitness Age Weight parameter specifies how strong 
the weighting should be. The exact way that age weighting 
affects fitness is as follows:

 �new fitness� � �old fitness�

* (1 � log�fitness age weight�(age)).

The benefits of age weighting are dependent on the 
Selection Strategy parameter—that is, how the program 
decides which functions should be allowed to produce off-
spring at the end of each generation. NUANCE offers two 
selection strategies, which can be chosen by a pull-down 
menu: Greedy Overselection and Median Pass selection. 
Age weighting is useful with the second strategy but can-
not help with the first. In order to understand why, it is 
necessary to understand how each strategy works.

Greedy Overselection was the selection method intro-
duced by Koza (1992) and used by Westbury et al. (2003). 
It is usually called fitness-proportionate selection with 
greedy overselection. Under this selection scheme, the 
population pool that represents 16% of the normalized fit-
ness is selected for reproduction with an 80% probability, 
and the rest of the population is selected for reproduction 
with a 20% probability. Koza (1992, p. 98) specifically 
recommended it for one third of difficult problems in his 
book that required populations of more than 1,000. How-
ever, computer technology has advanced greatly since 
1992. We can think of no reason to ever use a population 

smaller than 1,000, and we suggest using populations sev-
eral times that size.

Greedy Overselection does not work with age weighting 
because it allows too small a proportion of the population 
to survive each generation. It thereby eliminates most of 
the important age information that age weighting needs. 
Because of this limitation, we have implemented Median 
Pass selection. This selection scheme removes the least 
fit 50% of the population in each generation. It replaces 
that 50% with children of the top 50%, in such a way as to 
guarantee that every member of that population will get to 
parent at least one child. The second parent of each child is 
chosen at random from the parenting population.

NUANCE automatically implements a redundancy 
check with both selection schemes. This replaces any 
identical twins in the population with new functions, in 
order to maximize the population diversity and minimize 
computational redundancy.

NUANCE’s default settings use Median Pass selection, 
because it is the more computationally efficient selection 
strategy. There are two reasons for this. One is that Median 
Pass selection is not so dependent on (though it may still 
benefit from) having a large data set that allows averaging 
of multiple measures for each fitness value, because it can 
spread out that averaging across generations. The other 
is that the fitness barrier imposed by Median Pass selec-
tion is more conservative than that imposed by Greedy 
Overselection. The use of age weighting imposes a pen-
alty on new equations that, by chance, just happen to do 
well on the current subset of the input file that is being 
used for assessing fitness. In contrast, when using Greedy 
Overselection as a selection strategy, an equation that does 
well because it happens to be especially fit to the current 
fitness subset will be allowed to seed the next genera-
tion with its children. Median Pass selection is also more 
likely to promote functions that were created earlier, be-
cause age counts. Since older functions are almost always 
shorter than newer functions, equations tend to get longer 
and more complex under Greedy Overselection than they 
do under Median Pass selection. A related result is that 
evolution under Greedy Overselection is usually slower 
than evolution under Median Pass selection.

Greedy Overselection has one advantage over Median 
Pass selection: It tends to perform slightly better at ac-
counting for variance in the dependent variable, for the 
same reason that it is slower (i.e., because larger, more 
complex equations can evolve and be tested). The prices 
to be paid for this increase in explained variance are two-
fold: (1) slower evolution and (2) much more difficulty 
in understanding the evolved equations. Whether or not 
this trade is worthwhile will depend on the nature of the 
problem under consideration.

We have conducted several test runs to try to determine 
what the best value for the Fitness Age Weight parame-
ter should be. Our tests have made clear that large bases 
for the age-logging function tend to be better than low 
bases, which overvalue age relative to fitness. However, 
it has proven difficult to definitively select one large base 
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value over another, since there is much variance in perfor-
mance on different data sets. In the end, NUANCE uses 
(log1000(age�1) � 1) as the default value.

One piece of motivating evidence for this value is shown 
in Figure 3. In this example, we used NUANCE to predict 
lexical decision times using a large set of lexical variables 
as predictors. Figure 3 graphs the probability that a run 
using a given age-weighting factor would contain the most 
predictive equation in each of three consecutive bins of 33 
generations. The probability was maximized in the final 
bin of 33 generations when the weighting scheme used 
a base of 1,000. Moreover, only this weighting scheme 
showed a monotonically increasing probability of having 
the best function across all three bins.

Note that Figure 3 also clearly shows that lower base 
values perform worse. Bases below 500 have a much 
lower probability of containing the best function relative 
to higher bases.

Notwithstanding this evidence, Figure 4 illustrates why 
we need not worry too much about whether or not we 
have identified the optimal value for the age-weighting 
scheme. This figure graphs the average correlation (on the 
same data set as used in Figure 3) of the best- performing 
function in 20-generation bins for several different age-
weighting schemes. The final performance of the differ-
ent schemes is closely comparable. The correlations of 
the output of best functions in the final generation (Gen-
eration 100) with the value to be predicted range between 
.5399 (using log5000) and .5484 (using log2000), amount-
ing to a negligible difference of 0.06% in the amount of 

variance accounted for in the dependent variable by the 
best and worst evolved equations at Generation 100.

Local Search Priority. GP is designed to be a global 
search technique. It sends multiple agents out into the 
search space, all in their own directions, each trying to get 
to the best point in the fitness landscape around them, rather 
than each population member attempting to get to the best-
known point in the fitness landscape. Because of this, it 
may be the case that the best-known places in the search 
space are not as rigorously explored as they could be.

The Local Search Priority parameter allows the user to 
force “micro-exploration” around the best-known solu-
tion. It does so by generating a number of mutant offspring 
of the best function in the population pool. The number of 
mutants to be created is equal to the value of the Local 
Search Priority parameter. Each mutant is created by re-
placing one random subtree of the best function with a 
new, randomly generated subtree. The fitness of each mu-
tant offspring is compared with that of its parent. If an 
offspring’s fitness exceeds that of its parent, it is added to 
the population pool. Otherwise, it is discarded. This may 
potentially bring the total population size to Local Search 
Priority � N, although this will happen only if all mutant 
offspring exceed the fitness of their parent. Population 
size never increases beyond this size, since each new gen-
eration is reset to the specified population size before any 
mutants are added.

We have not yet been able to document any compelling 
evidence that searching this space with mutation does in 
fact provide an evolutionary advantage. However, since 

Figure 3. Probability of containing best predictor, by generation and age-weight function (aver-
aged across bins of 33 generations). The dependent variable in this example is lexical decision RT 
using 10 predictors.
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the cost of allowing mutation of the best function is low 
and the potential advantages seem clear, we have left it in 
as an option.

It is possible that using too large a value for this param-
eter may lead to exponential growth in the population of 
mutants that are related to the “ancestral” best solution, 
with a resultant underexploration of other fruitful regions 
of the solution space. We therefore suggest that this pa-
rameter be set low relative to the total population size. The 
default value is 20.

Functions to Display. The Functions to Display pa-
rameter allows you to specify how many of the best func-
tions from each generation you want to display. If the value 
is 1, only the single best function of each generation will 
be shown. The optimal value for this display parameter is 
purely a matter of personal taste. The default value is 5.

OUTPUT Panel
The second tab in the graphical user interface takes 

the user to the OUTPUT panel. This is a tool intended 
for testing the goodness of fit and generating graphable 
tables of any evolved function on any data set. It can be 
used to examine functions from NUANCE’s evolutionary 
history, to cross-validate functions from one data set to 
another, and to explore how small changes may impact on 
a function’s fitness.

There are two fields. The Function field, on top, is for 
the function to be examined—it can be pasted or typed in. 
The second, the Dataset field, allows the user to specify 

with which data set the equation in the Function field 
should be used. When the user clicks on the “print output” 
button, the specified equation is applied to the specified 
data set. The output contains the first column of the input 
file (the dependent variables) and the value generated by 
applying the specified equation to each row of that input 
file. Beneath these two columns, their correlation is given. 
Finally, 10 � 10 tables are printed for each pair of predic-
tors. These are the same as the tables, described above, 
that are written to the graphing-data.txt file: Each table 
ranges across the range of the two predictors in 10 equal 
steps, and each cell contains the normalized value of the 
output function over the 10 steps of the two predictors. 
When there are more than two predictors, the others are 
fixed at their average value.

FORMAT CONVERTER Panel
The final panel is the FORMAT CONVERTER panel. 

This contains tools for re-representing NUANCE’s prefix 
equations, which place the operator at the front of its argu-
ments. This representation is uncommon and may be par-
ticularly difficult to decode when the equations are com-
plex because of deeply nested parentheses. The converter 
is easy to use: Simply paste or type a prefix equation into 
the top panel and then click on one of the three converter 
buttons to convert to a new notational system. Three no-
tational systems are available. The first is prefix notation, 
the more commonly used but less consistent representa-
tion that places the operator between its arguments, when 

Figure 4. Correlation of the best evolved predictor equation with a dependent variable, in 20-
generation bins, by age-weighting scheme. The dependent variable in this example is lexical decision 
RTs using 10 predictors.
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there is more than one argument, and before its argument, 
when there is just one argument. The second representa-
tion is that used by the mathematical software, Mathemat-
ica (Wolfram Research, 2003). This notation can be pasted 
directly into a Mathematica notebook, in order to simplify 
the equations using Mathematica’s “simplify” command. 
Finally, prefix equations can be converted to LaTeX nota-
tion. This is a notation that can be pasted into compatible 
programs to produce typeset mathematical output. Many 
LaTeX typesetting programs are available for free.

FOUR EXAMPLES

In this section, we briefly present four examples of how 
NUANCE can be used.

Example 1: Predicting Lexical Decision RTs 
From Two Lexical Variables

Our first example uses the same data set as was used 
in Example 1 of Westbury et al. (2003), which looks at 
how well orthographic neighborhood (ON) and word fre-
quency can predict lexical decision RTs. This data set was 
originally chosen because the relationship between the 
variables has been well studied and is of theoretical inter-
est and because data are easy to obtain. It is of additional 
interest here because it provides us an opportunity to test 
NUANCE against a similar (but more limited) GP system, 
the Common Lisp based on the Greedy Overselection sys-
tem described by Westbury et al.

ON is a measure of how many words in a given lan-
guage are exactly one letter different from a target word. 
For example, the neighborhood of the word free includes 

the words tree, flee, and fret, among others. Decades of 
experimental work (see Andrews, 1997, for a review) have 
demonstrated that ON has an effect on lexical decision 
task RTs. In a lexical decision task, subjects have to decide 
as quickly as possible whether a letter string displayed on 
the screen is a word or a nonword. Decisions to high-ON 
words are made more quickly than those to low-ON words 
when the words are low frequency. ON has no effect on 
high-frequency words. Westbury et al. (2003) showed that 
GP was able to deduce this relationship with a high degree 
of precision by fitting the two parameters to lexical deci-
sion RTs from a large arbitrary set of words. Using eight 
75-generation runs of size 2,500, they evolved equations 
of the two variables whose output correlated with 450 RTs 
at .48 ( p � .01). The equation generalized to 150 unseen 
data points with a correlation of .61 ( p � .01). Relying on 
linear regression equations would cause one to underesti-
mate the size of the effect. Linear fits correlated with the 
input data set with r � .22 ( p � .01) and generalized to 
the unseen data set with r � .20 ( p � .01).

We used NUANCE to estimate the same 450-item data 
set as had been used by Westbury et al. (2003), using both 
Greedy Overselection and Median Pass selection. We ran 
10 runs of 100 generations of population size 5,000. Sam-
ple fitness curves for this problem are shown in Figure 5.

The best evolved predictor correlated with the RTs in 
the fitness set at | r | � .52 using Greedy Overselection 
( p � .0001) and | r | � .48 using Median Pass selection 
( p � .0001), about the same as the best previously found 
solution. The two estimates correlated with each other 
with r � .87 ( p � .0001). They correlated very highly 
( p � .0001) with the best estimates from Westbury et al. 

Figure 5. Two typical evolutionary runs of the best evolved predictor, by genera-
tion, for the two selection schemes offered in NUANCE. Median Pass selection with 
age weighting is always less erratic, but Greedy Overselection (which cannot benefit 
from age weighting) almost always performs slightly better at predicting variance. The 
dependent variable in this example is lexical decision RTs using two predictors (see 
Example 1 in the text).
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(2003), at | r | � .86 (Greedy Overselection solution) and 
| r | � .99 (Median Pass selection solution).

In order to examine the extent to which the two evolved 
predictor equations can generalize to unseen data, we tested 
their ability to predict the RTs for 150 words that had not 
been in the fitness set. The best evolved predictor equation 
using Greedy Overselection correlated with the RTs in the 
entire fitness set at | r | � .52 ( p � .0001). The best evolved 
predictor equation using Median Pass selection correlated 
with the RTs in the entire fitness set at | r | � .58 ( p � 
.0001). These two predictions correlated with each other at 
r � .75 ( p � .0001). The Westbury et al. (2003) equation 
produced output that correlated with those unseen data at 
.60 ( p � .0001). The correlation of the present output with 
that earlier estimate is .98 ( p � .0001) for the estimates 
derived by Median Pass selection and .74 ( p � .0001) for 
the estimates derived by Greedy Overselection.

The best evolved equations are shown in their raw form in 
the Appendix, which illustrates the difference in complexity 
of the two solutions. The equation evolved using Greedy 
Overselection is far more complex than the elegant simple 
equation evolved with Median Pass selection. The complex 
solution derived with Greedy Overselection was the best 
one at predicting RTs in the original input set. However, 
it had obvious weaknesses: It was highly complex, and it 
correlated poorly with RTs from a related data set and with 
other solutions evolved on the same data set. The simpler 
Median Pass selection equation is almost as good at predict-
ing RTs in the input data set as the complex equation, but it 
also generalizes very well to the new data set.

Overall, the fitness and test set correlations produced 
by NUANCE are all significantly correlated with those 
reported previously and discussed above, using the same 
data set but an entirely different GP system. The close 
convergence of three different evolved estimates using 

different computers, fitness functions, and methods sug-
gests that we may have a high degree of confidence that 
the solutions discovered are indeed the best solutions that 
may be found using GP.

Example 2: Estimating Leukemia Incidence 
From Per Capita Cigarette Consumption

Our second example uses published data from the Data 
and Story Library (DASL, at lib.stat.cmu.edu/DASL/). 
Originally published in Fraumeni (1968), this data set 
presents the relationship between average cigarette con-
sumption per capita and leukemia deaths per 100,000 
people in 44 states in the U.S. in 1960. The linear cor-
relation between cigarette consumption and leukemia 
deaths in this data set is insignificant, at �.07 ( p � .05). 
A cubic regression yielded the best (but also statistically 
unreliable) correlation we could find using the standard 
regression options in SPSS, with r � .32 ( p � .05). We 
used NUANCE to see whether it could find a transfor-
mation of the cigarette consumption predictor that would 
yield a better prediction of leukemia deaths from cigarette 
 consumption.

We ran 10 runs of 100 generations of population size 
2,500, using the default settings for other values. The aver-
age and best runs are shown in Figure 6. The best equation 
that was evolved was a complex equation that correlated 
with leukemia deaths at .53 ( p � .001). This suggests that 
cigarette consumption may have a stronger relationship 
to leukemia deaths than originally suggested, though the 
relationship may be a complex one.

The NUANCE-evolved estimate and the raw leukemia 
data are graphed, in standardized units, against cigarette 
consumption in Figure 7. This graph suggests hypotheses 
that may shed light on the relationship under consider-
ation. In particular, the idealized NUANCE estimate sug-

Figure 6. Best and average of the 10 NUANCE runs for Example 2, predicting leu-
kemia deaths from cigarette consumption.
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gests that the relationship between leukemia incidence 
and cigarette consumption may be quite linear when the 
number of cigarettes is low (below 23, which is the turning 
point of the sideways parabolic shape of the NUANCE es-
timates in the graph). Above this number of cigarettes, the 
correlation no longer holds and may even be reversed.

This possibility can be easily verified by going back 
to the original data. For the 21 states with average per 
capita consumption of at most 23 cigarettes, there is a 
statistically reliable linear correlation between leukemia 
incidence and cigarette consumption, with r � .50 ( p � 
.05). For the 23 states with average per capita consump-
tion above 23 cigarettes, the correlation between leukemia 
incidence and cigarette consumption is �.06 ( p � .05). 
The suggestion drawn from a brief glance at NUANCE’s 
idealization of the data holds.

The proper interpretation of this fact is outside of our 
own range of knowledge. Perhaps leukemia incidence is 
lower when cigarette smoking is higher because the smok-
ers are dying of other smoking-related disorders before 
they contract leukemia, or perhaps there are other mediat-
ing factors for which cigarette consumption is an appro-
priate proxy variable. For the purposes of this article, we 
merely wish to demonstrate that NUANCE was able to 
quickly create a simplified summary of a complex data 
set, which shed light on the structure of the relationship 
between variables and suggested hypotheses that may be 
worthy of closer study.

Example 3: The Significance of Random Data
One criticism that is often raised against curve-fitting 

programs such as NUANCE is that they generate spuri-

ous solutions by overfitting data. The third example is in-
tended to both illustrate this danger and to discuss how the 
danger may be avoided and appropriately conceptualized 
when using NUANCE.

We used Excel’s random number generator to gener-
ate 500 quadruplets of random numbers. We then ran 
 NUANCE to find a function that used the last three num-
bers to predict the first. We ran 10 runs, with a population 
size of 10,000, using the default settings with Median Pass 
selection, with all primitive functions enabled. The best 
solution found used two of the three predictors to produce 
an equation that correlated with the first column at r � 
.17, which is a highly reliable correlation ( p � .001) for 
500 items.

Since the input was random, this highly reliable cor-
relation may seem dismaying. The fact that curve-fitting 
programs can reliably fit random data is what moves crit-
ics to dismiss their solutions as “spurious” or “overfit.” 
However, the terminology used in such dismissals is mis-
leading as to the real nature of the problem. If NUANCE 
returns an equation that fits random data reliably, it can 
only do so because the relation described by the equation 
actually exists. The algorithm used in NUANCE does not 
allow it to return erroneous fits. The equations returned 
cannot be spurious or overfit (as least with respect to the 
input data set alone; see the discussion below); however, 
they certainly can be misleading or uninteresting. The 
temptation to use the stronger derogatory terminology 
springs from a confusion of description with explanation. 
NUANCE can offer a mathematically guaranteed descrip-
tion of data relations, but it can offer no help at all in ex-
plaining those relations. It is up to human beings to decide 

Figure 7. Predicting leukemia deaths from cigarette consumption. The NUANCE-evolved estimate and 
the raw leukemia data are both graphed, in standardized units, against cigarette consumption.
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whether any particular description of a data set is of any 
theoretical or practical utility.

Westbury et al. (2003) discussed this problem and its 
relation to degrees of freedom and psychological theoreti-
cal concepts in some detail in the concluding discussion 
of their article introducing GP as a tool for psychological 
theorizing. Their conclusion was that

GP is a way of cloning one’s imagination. By providing it 
with hypothetical constructs and operators, one supplies 
the prior understanding that constrains the search for an 
appropriate representation of relationships in the data. The 
fitness function instantiates and provides a quantifiable 
measure of what constitutes a solution worth imagining.

Equating a search through relation space to imagining ways 
of representing a problem is not a rejection of the role of 
theory or of the hypotheticodeductive method in science. 
It is simply a recognition of the fact that theoretical claims 
and empirically based descriptions of the relations between 
theoretical elements must be separate. Theories can postu-
late which hypothetical constructs may play a role in any 
particular phenomena and may certainly attempt to specify 
the precise nature of that relation. However, when it comes 
to questions of the real nature of the relation between those 
constructs, theoretical claims cannot trump empirical facts. 
If a systematic relation between hypothetical constructs can 
be reliably demonstrated, by any means, theory is not in a 
position to rule this empirical finding in or out; it can only 
adapt to the finding, as it must adapt to any other relevant 
empirical evidence. (p. 215)

The question of practical importance is: How can we 
decide whether any evolved solution is “worth imagining” 
or not? There can be no general answer to this question, 
because what counts as a worthwhile relation must depend 
largely on the current state of knowledge with respect to 
the issues under examination, the goodness of fit of the 
solution, and other specifics of each case. However, West-
bury et al. (2003) offered two heuristics for assessing the 
worthiness of solutions evolved with GP.

The first suggestion is to avoid giving the method inputs 
that might have a spurious relation to the problem—that 
is, to avoid using GP for wild fishing expeditions (West-
bury et al., 2003, p. 215). If we restrict ourselves to using 
NUANCE to describe relationships in which we have a 
preexisting interest, then the question of how to interpret 
reliable random relationships simply does not arise.

If we choose to ignore this heuristic by using NUANCE 
to search for relationships in which we have no a priori 
interest (and we admit to having given in to this tempta-
tion ourselves), then it is incumbent on us to temper the 
conclusions drawn from such an undertaking and to seek 
independent sources of confirmation for any conclusions 
we may wish to draw. When used for fishing expeditions, 
curve-fitting programs such as NUANCE must be only a 
starting point, not an end point.

The second suggestion can help us to temper our con-
clusions appropriately. This is the suggestion (following 
Stone, 1974) that we cross-validate any curve-fitted solu-
tions by holding back some of the data that we give as 

input to our curve-fitting program and then testing the
best predictor equation on this unseen data set. NUANCE 
has within-data-set cross-validation built into its selec-
tion mechanism; it judges the fitness of evolved solu-
tions on random subsets of the input data set. However, 
it can still find solutions that capture data-set-specific 
variance, thereby overestimating the general goodness of 
fit of the evolved solution. What it really means for a so-
lution to be overfit is precisely that the solution relies on 
data-set-specific variance. Data-set-specific solutions will 
by definition perform very badly when tested on a data 
set different from the one from which they were derived. 
To illustrate this, we took the best-fitting equation to our 
random data set above and used it to predict a different 
random data set of 600 items. The fit was not reliable (r � 
�.009, p � .05), clearly demonstrating what we already 
knew: There is no general solution to the problem of fit-
ting randomly generated data.

Together, these two suggestions make clear why we 
need not be worried to discover that there are statistically 
reliable relations in a random data set. Since the relation is 
of no theoretical or practical interest, and since it fails to 
generalize to a related data set, we have no reason to waste 
any calories in pondering it.

Example 4: Four Simple Problems
The three examples above suggest that NUANCE can fit 

data in complex ways. Does NUANCE choke when the fit 
is not complex? Is GP too powerful for its own good, ob-
scuring the possibility of a simple equation through brute 
computational force? The answer to both questions is no. If 
there is a simple, shallow equation that is a very good de-
scription of the fit, NUANCE usually finds it very quickly. 
Indeed, it offers an embarrassment of riches, by represent-
ing the solution in various different ways. The four simple 
examples in this section illustrate this for several sets of 
perfect and noisy data. All were run on an 867-MHz Power 
PC G4 Macintosh with 640 MB under System 10.3, while 
a variety of other processes were running.

The first example used the equation

 x � sin(sqr(a)). (4A)

We built a data set of 500 pairs (with random values for a 
between 0 and 1) that fit this equation and presented the 
problem to NUANCE, with a population size of 10,000 
and AWF to assess fitness. In the first generation (i.e., 
by random search, before any evolution has occurred), 
 NUANCE found the perfectly correlated solution:

((sin a) * (cos a)) [� .5 * sin(sqr(a))].

It also reported the trivially equivalent solutions (sin(a * a)) 
and sin(sqr(a)) in that generation. Since a perfect solution 
had been attained, the experiment was halted at this point, 
having taken 40 sec.

We repeated the same experiment with noise added to 
x, so that the correlation between sin(sqr(a)) and the value 
of x was .929. NUANCE returned all three of the solu-
tions above in the first generation, after 29 sec. We let the 
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program continue for 10 runs of 100 generations. The best 
fit after that time was

(sin ((sin(a)/cos (6)) * (cos a))),

or

(sin ((sin(a)/0.96) * (cos a))).

This correlated with the dependent variable at r � .932, 
adding a minuscule correction factor to the target function 
sin(sqr(a)), with which it correlated at .9999.

The second example used two predictors a and b, re-
lated by the representationally shallow (if conceptually 
deep) equation made famous by Einstein:

 x � a * sqr(b). (4B)

We used the same NUANCE parameters as above.
When the data were perfectly clean, the following exact 

solution was returned in Generation 1, after 8 sec, before 
evolution had begun:

((sqr b)/(/ 1 a)) [� 1/a/ sqr(b), or a * sqr(b)].

We added noise to the equation, so that x correlated with 
the target function at .818. After 9 sec of computing, all 
five of the top five equations returned from Generation 1 
were perfectly correlated with this solution: one stating 
it precisely, and the other four merely including an addi-
tional irrelevant constant. At the end of 100 generations, 
the best solution offered was a more complex equation 
that correlated with the target variable only slightly bet-
ter, at .821. That equation correlated with the “canonical” 
solution at .999, suggesting that it was indeed picking up 
on the same variation.

As its name suggests, NUANCE was developed mainly 
to aid in finding the shape of nonlinear relations between 
variables. Excellent tools already exist for characterizing 
the parameters of relationships that are definitely known 
to be linear. Such tools are better suited for characteriz-
ing those linear relationships than NUANCE, since they 
are designed specifically to return the solution in its ca-
nonical linear form, which NUANCE is not. Nevertheless, 
 NUANCE is able to recognize and characterize linear rela-
tionships as easily as any other relationships. Moreover, in 
doing so, it may open our eyes to the new ways of constru-
ing those linear relationships.

The final two examples we consider here are randomly 
chosen linear equations with two variables. We continued 
to use the same NUANCE parameters as in the above two 
examples.

The first equation was

 x � 1.3a � 144.2b � 163.5. (4C)

We began again with non-noisy data, with both a and b 
given random values between 1 and 100. The best equa-
tion to appear from the first generation, which took 14 sec 
to run, was

(� (/ 1.25 a) (� 5.46 b)) 

or, in prefix notation, 1.25/a � 5.46b. Within the range of 
a (1–100), the value of 1.25/a is likely to be very small on 

average, so this equation already suggests what we know 
to be true from the target equation: The role of a must be 
small or nonexistent.

By Generation 22, after a few minutes of computation, 
the best equation correlated with the entire set at .999999, 
which is probably good enough for anything except a test 
with a known perfect answer.

The following perfect solution evolved at Generation 65:

(� (sin 8.77) (� (� (* b (sqr 10.23)) 
(� (* b 6.08) (cbrt 1.09))) a)).

Ignoring the constant values that have no effect on the 
goodness of a correlational fit, this is easily simplified to

a � 110.92b.

This is the original equation divided by 1.3.
We added noise so that the correlation between the ca-

nonical output of the equation and the dependent measure 
given to NUANCE was .711. After 100 generations, the 
best equation correlated with the entire test set slightly 
better, at | r | � .724. In order to assess whether this solu-
tion was the correct one, we correlated the evolved solu-
tion with the 500 real values of the predictor equation. The 
correlation was very high (| r | � .97), indicating that the 
evolved solution was indeed functionally similar to the 
target equation.

The best evolved equation was complex. Rather than 
simplifying it as above, we will demonstrate an alterna-
tive way of approaching the simplification process when 
using NUANCE. This method uses the evolved solution 
and NUANCE’s normal output to find a better model. 
Having the best solution in hand sets a bound that enables 
us to easily search for a simpler model of our phenomenon 
that is more easily comprehensible and almost as good. In 
NUANCE’s log file, we found (among several other can-
didates worth considering) the very simple function b * 
ln(b), which NUANCE reported to be correlated with the 
predictor variable almost as well as the final best evolved 
equation: | r | � .70. The difference in the variance ac-
counted for by these two models—that is, from the best 
evolved equation versus the extremely simple equation, 
x � b * ln(b)—is less than 1%.

If this were a real problem, we could surmise from this 
finding that predictor a is not a relevant factor in predict-
ing the dependent variable. In this toy example, since we 
have the true values of the phenomenon being modeled, 
we are able to test whether b * ln(b) is a good model. The 
values of b * ln(b) correlate with the output of the equa-
tion to be predicted at | r | � .997. Since we have a math-
ematically precise definition of the phenomenon under 
study, we are also able to establish whether or not this 
is a good general solution, by again conducting Monte 
Carlo simulations as we did above. Over 20 random sets 
of 500 pairs, the average absolute correlation between b * 
ln(b) and the output of the original linear equation de-
fined over two variables is .997 (SD � .0001). Knowing 
the equation as we do, it is not surprising that this is such 
a good model. In fact b alone, which is very highly cor-
related with b * ln(b)), is an even better model. NUANCE 
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is unlikely to find single-node solutions, so it missed the 
simpler and better model b. However, it was nevertheless 
able to quickly guide us to see that it is only variable b that 
really matters in this example.

In the final example, we look at a less skewed linear 
relation with integral coefficients:

 x � 5a � 8b � 6. (4D)

We again used random values between 1 and 100 for a 
and b. The best equation from the first generation was

(� (/ a 10) (sqrt b))

or, in infix notation, a/10 � sqrt(b). This correlated with 
the 500 target values at .982.

A perfect solution was found at Generation 28 of the 
first run and expressed succinctly as

(� (� (* b 4) a) (� a (/ a 2))).

We simplified by inspection to

2.5a � 4b.

This is the original equation divided by 2.
We added noise so that the actual dependent values 

correlated at .672 with the target values. The best func-
tion over 100 runs correlated with those target values only 
slightly better, at .677. The correlation between the output 
of this evolved equation and the values given by the origi-
nal equation was .988, suggesting, as the previous noisy 
examples did, that the best solution captures the same 
variance as the original target equation.

We simplified the best function by analogy, as above, by 
finding a simpler function in NUANCE’s log files that did 
almost as well as the best equation. The following equa-
tion correlated with the target values at .676:

(� 2.44 (� (� (� b a) (� a (� (� b b) b))) 
(� (� b a) (tan a)))).

This equation was selected because it can be easily simpli-
fied by inspection (ignoring the constant) to

3a � 5b � tan(a).

This equation is a good model of this data set, since it 
produces output that correlates with the actual values of 
the original target equation in the input at .991. However, 
it is somewhat specialized to that particular file: A Monte 
Carlo simulation over 20 sets of 500 sets of two random 
numbers related by the target equation shows that its av-
erage correlation with the original target equation is .70 
(SD � .09). However, since the file itself contained values 
that correlated at only .68 with that target equation, we 
may not reasonably expect an exact reconstruction of that 
target equation.

Together, these four final examples illustrate two main 
points. The first is that NUANCE is always able to find 
the exact solution to fit data that have a known simple 
characterization. This gives us confidence in the solutions 
it offers to real problems, where the characterization of 

the problem is not known in advance. The second point is 
that the evolutionary history reported by NUANCE can 
be a fruitful source of hypotheses, potential models, and 
general “mathematical commentary” on the phenomenon 
under study. By looking for equations that are both attrac-
tive to the human mind and as successful at explaining 
variance as any known model, we may come up with new 
ways of conceptualizing our problems and the data we 
have collected on them.

CONCLUSION

The purpose of this article is to introduce a computer 
program called NUANCE, the Naturalistic University of 
Alberta Nonlinear Correlation Explorer. We have contrib-
uted this program to the archival Web site of the Psycho-
nomic Society (www.psychonomic.org/archive), from 
where it may be freely downloaded. As its name suggests, 
NUANCE is a tool for exploring arbitrarily complex rela-
tionships between a set of predictor variables, and a depen-
dent measure to be predicted. Written in Java in order to 
be platform-independent, NUANCE explores the space of 
possible relationships using genetic programming, which 
computes using natural selection. Our program makes use 
of a new age-weighted fitness function that is superior 
to existing published fitness functions. We have briefly 
introduced the concepts underlying genetic programming, 
explained the parameters and use of NUANCE itself, and 
presented some examples of its possible uses.

We believe that NUANCE is a useful tool for anyone faced 
with understanding complex relationships in a data set with 
one or more predictors and a single dependent variable.
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ARCHIVED MATERIALS

The following materials and links may be accessed through the Psycho-
nomic Society’s Norms, Stimuli, and Data archive, www.psychonomic
.org/archive.

To access these files or links, search the Archive for this article using 
the journal (Behavior Research Methods), the first author’s name (Hol-
lis), and the publication year (2006).

FILE: Hollis-BRM-2006.zip
DESCRIPTION: The compressed archive file contains five files:
dataset.txt, sample data set for modeling.
function.txt, list of functions enabled for the model.
GraphingTemplate.xls, example for graphing model output.
nuance.jar, java source for the model.
settings.txt, control settings for the model.

AUTHOR’S E-MAIL ADDRESS: chrisw@ualberta.ca.

AUTHOR’S WEB SITE: www.ualberta.ca/~chrisw.

APPENDIX
The Two Best Solutions, in Prefix and Standard Notation, as Evolved for a Problem (Considered in

Example 1) Relating ON and Word Frequency to Lexical Decision RTs for Words

Greedy Overselection best solution (| r | � .52):

(/ (abs 2.0) (� (� (/ (abs (� (� OFREQ (� (sqrt (sqrt (sqrt (abs 2.0)))) (� (� (� OFREQ (abs (� (sqrt (sqrt 
OFREQ)) 9.0))) (� (� (sqrt ON) OFREQ) ON)) (� 0.0 (� 9.0 OFREQ))))) (sqrt OFREQ))) (� (� OFREQ 
(� (� (/ OFREQ (� (� (� OFREQ OFREQ) 9.0) 7.0)) (� (� (abs OFREQ) OFREQ) (sqrt 7.0))) (� 0.0 
(� 9.0 9.0)))) 9.0)) (� ON OFREQ)) (� 9.0 OFREQ))), or

2
10 09 9 2

OFREQ ON
Abs OFREQ OFREQ OFREQ ON

+ +
− + + + + +. ++⎡

⎣⎢
⎤
⎦⎥

−

ON

24.35 1.06 OFREQ

Median Pass selection best solution (| r | � .48):

(/ 1 (� ON (� OFREQ (� 10.0 OFREQ)))), or

1
10 2+ +OFREQ ON

Note: Both estimates correlate highly with each other and with the best estimate reported in Westbury et al. 
(2003), which was evolved using a different GP system. We have reproduced the raw NUANCE output here for 
illustrative purposes, as well as simplifications derived from Mathematica. The first equation was also simpli-
fied by hand. See the text for further discussion.

(Manuscript received October 5, 2003;
revision accepted for publication January 5, 2005.)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


