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The complexity of text comprehension demands a computational approach to describe the cognitive
processes involved. In this article, we present the computational implementation of the landscape
model of reading. This model captures both on-line comprehension processes during reading and the
off-line memory representation after reading is completed, incorporating both memory-based and
coherence-based mechanisms of comprehension. The overall architecture and specific parameters of
the program are described, and a running example is provided. Several studies comparing computa-
tional and behavioral data indicate that the implemented model is able to account for cycle-by-cycle
comprehension processes and memory for a variety of text types and reading situations.

Reading comprehension is a very complex cognition
that involves many separate cognitive mechanisms and
results in different levels of representations (Fletcher,
1994; Fletcher & Chrysler, 1990; Kintsch, Welsch, Schmal-
hofer, & Zimny, 1990; van Dijk & Kintsch, 1983). In-
variably, comprehension is assumed to involve interpre-
tation of the information in the text, the use of prior
knowledge to do so, and ultimately, the construction of a
coherent representation or picture of what the text is
about in the reader’s mind (e.g., Applebee, 1978; Gerns-
bacher, 1990; Graesser & Clark, 1985; Kintsch & van
Dijk, 1978; Mandler & Johnson, 1977; Rapp, Gerrig, &
Prentice, 2001; Stein & Glenn, 1979; Trabasso, Secco,
& van den Broek, 1984). This representation is the foun-
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dation on which the reader can build for specific reading
purposes and types of comprehension. Furthermore, the
reader can use this representation to do such things as
retelling the text, applying knowledge gathered from the
text, identifying the theme, critically appraising the text,
and so on. In this fashion, comprehension can mean dif-
ferent things to different people, but it always involves a
meaningful representation of the textual information in
the reader’s mind.

Several theoretical models have been developed in an
attempt to illustrate the complexity of comprehension
processes and to describe different aspects of the reading
process (Graesser, Bertus, & Magliano, 1995). Examples
of these models include the construction-integration
model (Kintsch, 1988, 1998), the structure-building
theory (Gernsbacher, 1990), the event-indexing model
(Zwaan, Langston, & Graesser, 1995; Zwaan, Magliano,
& Graesser, 1995), memory-based text-processing mod-
els (McKoon, Gerrig, & Greene, 1996; O’Brien, Rizzella,
Albrecht, & Halleran, 1998), causal network theories
(Langston & Trabasso, 1998; van den Broek, 1990), and
the landscape model (van den Broek, Risden, Fletcher,
& Thurlow, 1996; van den Broek, Young, Tzeng, & Lin-
derholm, 1999). Each of these models is an attempt to
account for text comprehension as a function of the strate-
gic access of information from long-term memory, the
automatic activation of information during moment-by-
moment reading, or some combination of the two processes.

Copyright 2005 Psychonomic Society, Inc.
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Some of these theoretical models have been imple-
mented as computational models. The use of computa-
tional models in text comprehension research has many
advantages. The complexity of on-line processes and off-
line representation makes a computational approach a
very useful tool for keeping track of all the components
within a model and examining their interactions. Goldman,
Golden, and van den Broek (in press) have argued that
computational models are useful in text comprehension
research for at least three reasons. First, computational
models stimulate theory development. When implement-
ing a computational model, researchers need to be explicit
about assumptions, mechanisms, processes, and so on.
This, in turn, refines and improves their theoretical mod-
els. Second, computational models assist in the explana-
tion of surprising behavioral data, because they allow re-
searchers to simulate competing hypotheses and compare
the computational data with behavioral data. Finally,
computational models support communication among
researchers within and across fields.

In this article, we present the computational imple-
mentation of the landscape model of reading (van den
Broek et al., 1996; van den Broek et al., 1999). The aim
of the landscape model is to capture both on-line com-
prehension processes during reading and the off-line
memory representation after reading is completed. In
this model, reading is conceived of as a cyclical process,
in which propositions (or other units of text) fluctuate in
their activation from one cycle to the next. In this article,
we present a C++ implementation of the landscape model
on a Windows-based interface. Our aim is to describe the
architecture of the computational model and its basic
settings and operations.

COMPUTATIONAL IMPLEMENTATION OF
THE LANDSCAPE MODEL

Architecture

The architecture of the landscape model assumes that
a reader proceeds through a text in reading cycles, with
each cycle corresponding roughly to the reading of a new
sentence or proposition (van den Broek, Rapp, & Kendeou,
2005). Across reading cycles, concepts fluctuate in acti-
vation as a function of four sources of information; the
text input in the current processing cycle, residual infor-
mation from the preceding cycle, the current episodic
text representation, and the reader’s prior knowledge.
With the reading of each cycle, particular concepts are
activated and added as nodes to the episodic memory
representation of the text. If a concept is already part of
the text representation and is reactivated, its trace is
strengthened. In addition, coactivation of concepts leads
to the establishment (or strengthening) of connections
between those concepts. These cyclical and dynamically
fluctuating activations lead to the gradual emergence of
an episodic memory representation of the text, in which
textual units and inferences are connected via semantic
relations (such as causal and referential links). At each
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cycle, the network representation constructed during the
preceding cycles influences subsequent activation patterns.
Thus, the model captures the fluctuations of concepts dur-
ing reading, as well as the evolving text representation.

Two types of mechanisms guide access to these sources
of activation. The first type is cohort activation. The ar-
chitecture of the model assumes that when a concept is
activated during reading, all other concepts concurrently
activated become associated with it. Thus, each concept
connects with other concepts to form a cohort. This pro-
cess follows a delta learning rule and builds associative
memory traces (Gluck & Bower, 1988; McClelland &
Rumelhart, 1985, 1986). In turn, when one or more of
the individual concepts in a cohort become active, the
other concepts are also activated. This mechanism is pas-
sive and operates under a limited pool of activation.
Thus, cohort activation is memory based and similar to
the activation mechanism described by the resonance
model (Myers & O’Brien, 1998; O’Brien & Myers, 1999;
O’Brien et al., 1998; van den Broek et al., 2005).

The second type of mechanism is coherence-based re-
trieval. Unlike memory-based activations that are based
on, for example, featural overlap, coherence-based re-
trieval is a strategic mechanism by which information is
retrieved with the aim of meeting a reader’s standards or
goals (Linderholm, Virtue, Tzeng, & van den Broek, 2004;
van den Broek et al., 2005). Such retrieval can be from
the episodic text representation constructed so far, from
prior knowledge, or from the text itself (e.g., via look-
backs in a text). This mechanism operates under a lim-
ited pool of activation that can be distributed over con-
cepts and, unlike cohort activation, is strategic. Thus,
coherence-based retrieval is similar to search/effort after
meaning mechanisms described by the constructionist
view of reading (Graesser, Singer, & Trabasso, 1994;
Singer, Graesser, & Trabasso, 1994).

A central factor in the model that determines which
sources of activation are accessed consists of the stan-
dards of coherence that the reader maintains during read-
ing (van den Broek, Risden, & Husebye-Hartmann,
1995). The architecture of the model allows for the adop-
tion of different types of coherence that a reader may es-
tablish (including, but not limited to, referential, causal,
temporal, and spatial connections). Reader standards can
vary as a function of individual differences, text types,
reading goals, and so on (Linderholm & van den Broek,
2002; Narvaez, van den Broek, & Ruiz, 1999; van den
Broek, Tzeng, Virtue, Linderholm, & Young, 2001), but
for narratives and many other types of text, referential
and causal standards of coherence are often central. Dur-
ing reading, a reader’s standards can, at times, be met en-
tirely by the information currently activated in the model
through cohort activation, whereas in other cases, the
reader may need to actively search the episodic text rep-
resentation and/or prior knowledge to maintain these
standards through coherence-based retrieval.

Both memory-based and coherence-based compre-
hension mechanisms closely mimic those proposed in



other psychological theories and are clearly specified in
the landscape model. Thus, both bottom-up and top-
down mechanisms are integrated in a single theoretical
framework. The computational implementation of the
model has a great degree of flexibility by allowing users
to manipulate different components and adopt different
theoretical models. In addition, the model incorporates
several essential features of major theories of compre-
hension, such as the limited capacity of working memory
(Just & Carpenter, 1992). As a result, the computational
implementation of the landscape model has considerable
potential as a research tool in text comprehension re-
search.

Overview of Basic Settings and Operations

The computational implementation of the landscape
model allows users to simulate inferential processes and
memory representations of comprehension on the basis
of a few identified sources of activation. Users need to
parse the text and specify the locations and types of in-
ferences and background knowledge that are hypothe-
sized to be activated according to their theoretical stance
or research purpose. The program takes a matrix format
file as an input. In this input file, each row contains all
activated text units in a processing cycle, and each col-
umn consists of the history of activation patterns for
each particular unit. The program reads the contents of
the input file and converts them into a numerical matrix
in which activation values are set by the researcher’s the-
ory. Each consecutive vector of this input matrix is treated
as a reading cycle by the program, and reading elements
coactivated in a reading cycle will form a cohort and

[Text Area]

[Unit Area]
poor,old,woman
live,forest,husband
walk,hill

[Activation Type Area]

EData -— CAWINDOWS\Desktop\figure _1_of SCiP_paper.lm

Once there was a poor,old woman.
Together with her husband she lived in the forest.
One day she was walking in the hills.

m,m,m,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
e,e,r,m,m,m,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,r,e,e,0,m,m,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
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build memory strengths among one another. The on-line
activation vectors during reading of a text constitute an
activation matrix representing the complete on-line acti-
vation patterns. The final result produced by the program
is the connection matrix, which contains numerical con-
nection strengths of all text units. This matrix represents
how tightly the text units connect together and can be
used for testing retrieval effects. The data produced by the
simulation are in a format compatible with Microsoft Excel,
facilitating data extraction and analysis with spreadsheets
or statistical applications.

System Requirement and Installation

The program designed with C++ programming lan-
guage can run on Microsoft Windows 95, 98, ME, XP,
and 2000 with 64 MB (minimum) of RAM. This pro-
gram can be obtained by contacting the authors of this
article or via a Web site (http://education.umn.edu/
EdPsych/Projects/LandscapeModel/default.html). Users
who have obtained the program can click on the Setup.
exe file, and the package will install the program auto-
matically and generate the Landscape folder in the Pro-
gram Files folder with the executive file, Landscape.exe,
and several demonstration files—Demo1l.lm, and Demo?2.
Im. For now, the interface of the program is in English, but
it will accept any Windows-supported language as input.

HOW TO USE THE LANDSCAPE MODEL
The Model Input

The input to the program consists of a single file that
includes three components that should be labeled [Text

Figure 1. The model input.
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Area], [Unit Area], and [Activation Type Area], includ-
ing the square brackets (see an example in the Appen-
dix). These are the three components that the landscape
model reads and simulates (Figure 1). We will describe
each component in detail below.

Text area. In the [Text Area] component, users can
type any text without affecting the results of the simula-
tion. Users can type in memos, comments, or (as we rec-
ommend) the text they use for the simulation.

Unit area. In the [Unit Area] component, users pro-
vide the cue words for the individual parsed text units
from the text, with each cue word within a single input
cycle separated by a comma. Note that users can decide
the unit of analysis in each cycle according to the theory
under consideration (e.g., propositions, events, idea
units, sentences, and so on). In the example discussed in
this article, we use major propositions as the units of
analysis. In the program, we denote each major proposi-
tion by an individual cue word. So, in the first input cycle
for the example text (see Figure 1), the words poor, old,
and woman represent the propositions poor[old [woman]],
old[woman], and [woman], respectively. Users can define
text units according to their theoretical purposes (e.g.,
concepts, main ideas, sentences, and so on). Reading cy-
cles should be separated by hitting the Enter key. The
final cue word in a reading cycle does not need a comma.
This format must be followed strictly. Each row of this
section is taken as a reading cycle, and each cue word
within the row is taken as a proposition within a cycle.
For a text with n cycles, readers should type in 7 rows in
this area, with each row consisting of its constituent cue
words. The Landscape program will use this input to de-
cide the number of reading cycles for the current text and
the number of propositions within each cycle. In addi-
tion, these cue words will be used as output labels.

Activation type area. In the [Activation Type Area]
section, users indicate the type of activation each unit re-
ceives. These types of activation are labeled using a sin-
gle alphabetic symbol or a string of alphabetic symbols.
In our example in Figure 1, “m” is used for activation by
direct text input (mention), “c” for activation by causal
connection, “r” for activation by referential connection,
and “e” for activation by enabling condition. Units that
are not activated in a given cycle are assigned a 0. As in
the [Unit Area] section, each type of activation unit must
be separated by a comma and each reading cycle by the
Enter key. Units at the end of each reading cycle do not
need a comma.

The number of reading cycles in the [Activation Type
Area] and in the [Unit Area] sections should be the same.
Also, the total number of units across reading cycles in
the [Unit Area] should match the total number of units in
each row of the [Activation Type Area]. For instance,
there are 2 input items (i.e., walk, hill) for the third read-
ing cycle in the [Unit Area] but 25 items in the corre-
sponding [Activation Type Area], because the fotal num-
ber of units across all the cycles in the entire text,
including not-yet-mentioned units, is 25 (in Figure 1, we
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show only the 8 units in the first three cycles). As can be
seen in Figure 1, in the third reading cycle under the [Ac-
tivation Type Area], most of the units are not activated,
as indicated by zero values. The third unit (woman) is ac-
tivated because it is referentially connected (r), and the
fourth and fifth units (/ive and forest) are activated be-
cause they provide enabling conditions (e). The seventh
and eighth units (corresponding to the 2 direct text input
items walk, hill) are activated because they are direct text
input items (m). The other units all have zero activation.
The complete input file can be found in the Appendix.

Running the Model

After entering the required information in the three
components [Text Area], [Unit Area], and [Activation
Type Area], users can proceed to run the program by se-
lecting Model—Parse on the menu bar. If all the required
information has been provided, the program will start
running. This is indicated by a running man icon that ap-
pears on the menu. Users can proceed to set the model’s
parameter values by clicking on the running man icon. A
menu will appear (Figure 2) that includes four important
components: Sources of Activation, Free Parameters,
Model Architecture, and Run or Cancel. We will describe
the function of each component below.

Sources of activation. As can be seen in Figure 2, the
program contains several default types of activation (di-
rect text input, through referential inferences, through
causal inferences, and by providing enabling condi-
tions). The default activation values associated with
these sources are on a relative scale and are based on
prior research (van den Broek et al., 1996; van den Broek
etal., 1999). However, users can modify these values for
their own theoretical purposes and can also add other
types of activation by clicking on the “Create more
Sources of activation” icon.

Free parameters. The program contains default val-
ues (based on prior research) for Cohort Effect, Learn-
ing Rate, Activation Threshold, and Retrieval Threshold.
The Cohort Effect parameter determines the cohorts that
are formed among text units; larger cohort parameter
values produce bigger activation cohort effects. During
the process of building cohorts in readers’ working
memory, text unit interconnections are built through a
delta learning rule. This learning mechanism follows an
asymptotic curve as reading elements co-occur more
than once in working memory. The amount of learning
for each co-occurrence among reading elements is de-
termined by the Learning Rate parameter; larger learn-
ing rate parameter values mimic faster learning rates.
Activation Threshold is a value used by the program as
a lower threshold of activation, to avoid a computational
explosion of minute residual activation values. It has no
particular theoretical interest and is chosen at a very low
level. Retrieval Threshold sets the minimum connection
value between text units that drives the process of retrieval.
It determines the number of text units that are retrieved
and, therefore, mimics readers’ criteria of retrieving.
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B |

- Sources of Activation

Create more Sources of activation

Text Input: m IE—
Referential Inferences: r I“_
Causal Inferences: © |4—
Enabling conditions: € IJ_

Free Parameters
Cohort Effect:

[o0:
o

Activation Threshold: [0.0001

Retrieval Threshold: |U

Learning Rate:

—Model Architecture

Delta rule:

IReduced Expectancy L]

Working Memory:

IEnabIe Wi CAP j

CAP Value: |30

Retrieval:

Activation function:  |Sigmoid 'I
Reading Cycle

" Epochs

"~ Cycles (less than 1 Epoch)

Enable retrieval module j

Initial Connection Matrix
" None

¢ Load File |
{~ Current matrix

ﬁRun |

X Cancel I

Figure 2. Running the model.

All free parameter values can be modified according
to the user’s theoretical purposes, but we recommend
using the default ones, unless there is a strong theoreti-
cal reason to do otherwise. For example, users may model
slow or fast readers by changing the value for the cohort
or learning rate parameters accordingly.

Model architecture. The program contains several
default values that determine the model’s architecture.
(1) The Delta Rule is an implementation of the landscape
model’s learning mechanism derived from learning the-
ories (Gluck & Bower, 1988; McClelland & Rumelhart,
1985, 1986) and allows users to choose reduced or normal
expectancy. Expectancy is a property of the delta learn-
ing rule; reduced expectancy results in a more stable per-
formance of the model. (2) Enabling Working Memory
capacity allows users to select a limited working mem-
ory or attentional capacity value. (3) The Retrieval func-
tion allows users to enable a retrieval mechanism that
can be used to simulate recall and so on (note that the re-
trieval mechanism is still under development and, hence,
should be considered experimental). (4) The Activation
function gives users a choice between a sigmoid and a
linear function for the learning curve. This option allows
users to compare the relative utilities of these two func-
tions. The sigmoid learning function typically is pre-
ferred in computational models because it appears to
capture more of the associative learning mechanisms by
reaching an asymptote whenever there is repetitive coac-

tivation of text units. As was noted above, unless there are
strong theoretical reasons to do otherwise, we recommend
using the default options for each of these parameters.

Another important feature in this section is the Read-
ing Cycle options. By selecting Cycles, the user will be
prompted to enter the number of cycles that are read. By
changing this value, readers can model reading of a sub-
set of all possible cycles. For example, there are 12 read-
ing cycles in the sample text (see the Appendix). If the
user enters 10 in this menu, the model will read only the
first 10 cycles. If users intend to model rereading of the
same text for several times, they need to select Epochs.
Users will be prompted to enter the number of epochs.
One epoch corresponds to rereading once, two epochs to
rereading twice, and so on.

The final feature in this section is the Initial Connec-
tion Matrix option. This option allows the simulation of
rereading or of reading of multiple texts. Through this
option, the simulation will take a connection matrix as
an input and build a new memory representation, using
the preexisting connection matrix as a starting point. As
a result, the program allows users to open an old con-
nection matrix and take it as an input. When users select
“Current matrix,” they can simulate rereading of the
same text. When users select “Load File,” they can spec-
ify as an input any other matrix. The only limitation here
is that the initial matrix must contain all text units from
both matrices, even those set to zero.
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Run or cancel. After setting the values in the Model
menu, the user hits “Run” to run the program. The program
will take only a few seconds to display the results. If a
user wishes to cancel, he or she needs to hit “Cancel.”

The Model Output

The program gives five output files in an Excel Work-
book format. These files are labeled Parameter, Input,
Activation, Connection, and Retrieval (Figure 3).

Parameter. In this file, users will find all the infor-
mation regarding the settings of the simulation. These
include the text input, the types of connections and their
values, the delta rule, working memory capacity, whether
the retrieval mode was enabled or not, the cohort effect,
the learning rate, and the number of reading cycles. This
file is important as a reference for the user.

Input. In the input file, users will find the input ma-
trix. The input matrix is a matrix that includes all the text
units and their values as defined by the user. The first
column contains all the cue words in the order in which
they were entered in the [Unit Area]. The other columns
correspond to each one of the reading cycles in the order
of input. For example, in the first cycle, the text units
poor, old, and woman were directly mentioned (m). Be-
cause direct text input is given the value 5 in the default
model, these values will appear for each of these three
concepts in this cycle.

Activation. In the activation output, users will find a
matrix table. This table includes all text units and the ac-
tivation values they received in each reading cycle. This
matrix shows comprehension as it unfolds, on line (Fig-
ure 4), and differs from the input matrix, which depicts
only types of activation and the associated values.
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Each row shows the history of activation for each text
unit across the reading cycles. In this example, the text
unit poor received 5 on the first cycle, 3 on the second,
0.437 on the third, and so on. The last column provides
the sum of activation that a unit has received over the
course of reading. For example, the unit poor received
10.52 total activation over the course of reading the en-
tire text. Each column represents a reading cycle and
shows the activation values each text unit received. In
this example, the first reading cycle had a total activation
of 15, evenly distributed among three text units: poor,
old, and woman.

Connection. In this output, users will find a matrix
table that includes the strength of the connections among
all text units (Figure 5). These connections create a net-
work between all text units. Connections between units
vary in strength, as indicated by the different connection
values in the matrix. In this example, the text unit poor
is connected with the other text units at various degrees
(first row). For instance, poor is more strongly con-
nected to old (1.392) than to Aill (0.201). The main di-
agonal is the connection strength value for each concept
with itself. For instance, the autoconnection strength for
old is 1.941, for woman is 6.278, and so on. These auto-
connection values are a function of the total activation
these units received over the course of reading, as well as
of the degree to which they have become connected to
other units.

Retrieval. In this output, the program suggests a re-
trieval order of the text units based on a two-stage re-
trieval mechanism. The program retrieves the first text
unit on the basis of the sum of the total activation values
across all reading cycles. Starting from this retrieved text

" Landscape v1.0 - [Matrix Table] = E3

FE Ele £ii Model Diply Window Help RETEY
T i =
LiFBN S R 2R 7] &
A | B C [ o | E | F | 6 [ H Al
1 |Text Input : Label = m , Activation Value =5 |
2 |Referential Inferences : Lable = r , Activation Value = 4
3 |Causal Inferences : Label = c , Activation Value = 4
4  |[Enabling Conditions : Label = e, Activation Value =3
3 |Delta rule : Reduced expectancy
6 |Working Memory Capacity = 30
7 |Retrieval module take
8 |Cohort effect = 0.03
9 |Leamingrate=0.9
10 |Activation threshold = 0.0001
11 [Retrieval threshold =0
12 |Reading 1% cycles
13
14 =
1|-;|ﬁ Pararneter A IAput A Activation A Connection| <] | LlJ
Frint 7

Figure 3. The model output.
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B2 Matrix Table M=
A B CHTD E F G H | J K L M N 0 -

1 T S 7 B 8 10 11 12 Sumoi Cycle

2 |poor 5 3 0,437 0.284 0231/ 0.186/ 0.151| 0.145| 0.167| 0.409| 0.248| 0.265| 10.52

3 |od 5 3 0,437 0.284 0231/ 0.186 0.151| 0.145| 4.036/ 0.294 0.313| 0.277| 14.35

4 |woman 5 4 4 4| 3,644 3.208 2.737| 3.284) 4.036| 3.527 4 4 45,44

5 |live 0 5 30,398 0.243 0176 0.208 0143 0.162] 0.242 0,344 0.273/ 10.13

G |forest | 1] 5 3/ 0398 0.243 0.176] 0.208) 0.143 0.162| 0.242| 0.344| 0.273/ 10.13

7 |husband 0 5 0322 0.234 0.093 4.011| 0.18 0.186| 0.186 2.645 0.382| 0.315/ 13.55

B |walk 0 0 ] 3/0.359 0.201 0.146] 0.15/ 0,159 2.645| 0.505 0.295| 12.46

9 |hill | 0 0 5 3/0.359 0201 0.146] 0.15/ 0.159] 4.403| 0.463 0.333] 14.23

10 |came upon 1] 1] 1] 5 3644 2406 0.395) 0.452| 0.287| 0.441| 0.479 0.347| 13.45

11 |entrance 0 0 0 5| 3.644 2.406| 3.422| 0.517| 0.363| 0.613 0.595/ 0.391| 16.95

12 |tiger 0 0 0/ 0.003 4.555 2,406 0.358 4.105| 0.321 0.635 0.493| 0.364 13.25

13 |cave 0 0 0 0.003 3.644] 2,406 3.422 0.488| 0.326 053 0.487 0.349 11.71

14 |want | 0 0 o 0] 4555/ 4011 2737| 0.606) 3.229 0.642| 0.605 0.416] 168

15 |whisker ' 0 0 0 0 4555 4.011| 2.737 0.606) 4.036| 3.527 0.618 4] 2409

16 |make a mi 0 0 0 0 0 4011 2.737| 3.284) 3.229| 0.635| 0.53 0.353 14.78

17 |put | 0 0 0 0 0 3.422) 2,463 0.087 0.074 0.054) 0.051 B.151

18 |bowl of foo o 1] 1] 0 1] 3.422| 2.463| 0.087 0.074 0.054 0.051] 6151

19 linfront 1] 1] 0 0 1] 3.422| 2.463 0.087| 0.074 0.054 0.051| 6.151

20 |sang a sor 0 1] 0 0 0 0 4105 2421|0179 0,121 0.123| 6,943

1 putsleepf 0 0 0 0 0 0 4105 2421/ 0,179/ 0,121 0.123| 6,943

'?  |pulled out 0 1] 0 0 0 0 0 4036 3527 0.327 41189

'3 [ran | 1] 0 0 0 0 0 0 0 4,408 40321 8729

24 |pant 0 0 0 0 1] 0 0 1] 0 1 4 )

25 |came hom 0 1] 0 1] 1] 1] 0 0 1] 5 4 3

26 |pleased 0 1] 0 0 0 0 0 0 a i} 5 5

27 |Sum oqu 15 25 21.2] 216 30 3 30 30 30 30 2515/ 28.93

L o

| 2] »

Figure 4. The activation matrix.

unit, the program searches for and retrieves the text unit
with the largest connection strength with the first re-
trieved unit. This searching and retrieving process iter-
ates until it exhausts all the text units or it reaches the re-
trieval threshold. The output gives two columns. The first
column includes the text unit, whereas the second col-
umn includes its connection value. Alternative forms of
retrieval mechanisms are currently being developed.

Saving the Results

We recommend saving the results in the Excel format
and opening the files in Excel for further analysis. To
save the input file with extension .Im (such as the one in
Figure 1), users need to select “File” at the menu bar and
choose “Save As” to specify a file name. Users can open
this file for later editing. To save or edit results of the
landscape model (such as the input matrix, the activation
matrix, the resulting connection matrix, or the retrieval
matrix), they can use “Launch Worksheet Designer”
under the “Display” function of the Menu bar. This will
work like an Excel spreadsheet.

Other Features of the Model

The model has reading delay capabilities that allow
users to simulate the hypothetical situation in which a
reader waits for a while before continuing to read the
next cycle—for example, to reflect on the current sen-
tence. The program allows users to simulate this situa-
tion by attaching an integer enclosed by a pair of paren-
theses at the end of a particular reading cycle (without a
comma between the last text unit and the parenthesis)

under the [Activation Type Area] section. The integer
will qualitatively mimic the waiting time interval, and
this integer will make the program insert a reading cycle
with no new input. Higher integers would result in longer
waiting times. Alternatively, users can simply insert sev-
eral rows of zero activation values at the proper places in
the .Im file and run the program. Depending on the re-
sulting change in activation and connection patterns, the
insertion of delays may have an impact on the results of
the final mental representation of the text. If a delay is
inserted between text statements, it simulates reflection
on the last information in the last input cycle; if it is in-
serted at the end of the text, it simulates the gradual decay
of the final vector after reading of the story is completed.

CONCLUSION

In prior research, the computational implementation
of the landscape model has been validated by comparing
simulations and human data for the reading of narratives.
With regard to on-line measures, the model generates
patterns of activation of propositions over the course of
reading that can be used to predict the degree of acces-
sibility of those text elements at each point. Indeed, the
model’s predicted activation values have been found to
be strongly related to the activations reported by human
readers (r = .73, p < .01; van den Broek et al., 1999).
With regard to off-line measures, the model produces
memory traces of text propositions that allow prediction
of what information is likely to be recalled. In several
studies, predicted recall of text propositions has been
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1 looor old  womarlive  forest husbarwalk hill  came ientranitiger cave want whiske make_|
2 |poor 1.37/1.382|1.792| 067| 067 0687 0.174/ 0.201 0125 0.145/0.102, 0.09| 0.124| 0.203 0.09¢
3 |old 1.392/1.941| 2.26| 0635/ 0685 0.694| 0.167 0.207 0.163]0.192| 0.142 0.133| 0.559| 0.742 0.542
4 |woman™ 1.768| 2.347 | 6.278| 1.537| 1537 1.B87) 1.843 2.077 1.884) 2.237| 1.737 1.458| 2.137| 3.105 1.862
q  |live 0627 DB5(1.494( 1311|1311 1054/ 0671/ 0686 0146 0.172] 01 0095/ 0126/0.188 0°
6 [foresti 0.615| 0.638) 1.467| 1.311] 1.275 1.02 0663 0673 0.146 0.172] 0.1 0095/ 0.126/0.183 0.
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8 |walk 0.168/ 0.179| 1.736 0.643| 0643 0.387| 1561, 1.73 0.71/0.744/0.181 0.16|0.199 0.503 0.15¢
3 |hill 0.195/ 0.197 | 1.501) 0.646| 0.646| 0.555| 1.727| 1.967 0.729/0.772|0.221 0.19%| 0.237| 0.717| 0.192
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12 |tiger 0.101] 0.145| 1.622] 0.101] 0101 0.486| 0.179 0.219 0.913/ 0.965) 1656 0.99 1.311) 1.424  0.96¢
13 |cave 009/ 0135{1.341| 00260096 047(0157/ 0194 076 1.139) 0982 1.163| 1.349| 1.455 083
14 |want 0.126] 0.585|1.977] 0.13] 0.13/ 0.735| 0.204) 0.244 1.029] 1.337| 1.305 1.381| 1.965| 2.165  1.34¢
15 |whisker 0.21 0763| 2.83) 0197|0197 1.041| 0515 0745 1109 1.436) 1.4 1474/ 2165 305 152
16" [make'ami 0.093 0544 1.651) 0.101]0.101 0.712 0.155] 0.195 0471/ 0.7768/ 0932 079 1.25| 1.443 162¢
17 |put 0.036 0048 0635 0.043 0043 0.043 0042 0045 009 0453 042 04553 0335 0.4 064
18 [bowloffod 0.035 0.048| 063 0.043| 0043 0048 0042/ 0048 0.09 0.448 0417 0.454| 0.352| 0.397 064«
19 [infront | 0.036| 0.048) 0.625 0.043|0.043 0.048 0.042 0.0456 0.09 0.443 0.414 0.449 0.379|0.394 063¢
20 |sangasor 0.042 0.372|0.815| 0.041/ 0.041 0.064| 0,058 0,062 0,097 0,11/ 0641 0.105/ 0352 0.45 0.752
21 |putsleep| 0.042 0.37|0.508| 0.041|0.041 0.064| 0.058| 0.062 0,097 0.11| 0629 0.105| 0.35 0.447 0.74:
22 |pulledouty 0.12) 0.647|1.423] 0.1| 0.1 0.405|0.398] 0.622 0.149] 0.182] 0.18 0.173| 0.563| 1.492 0.56f
23 |ran 0.107/0.094| 1,079 0.033/0.093 0.467| 0.48 0.741 0.141] 0168|0176 0.167| 0.185 064 0177
24 |pant 0.086| D.096| 1.205| 0.105/ 0.105 0.113/0.135/ 0131 0136 0.16/0.143 0.14|0.163| 0.635 0.14f
257 [camehom 0.056| 0096 | 1.176) 0.105/ 0105 0113/ 0134 0131 0136 016/ 0142 0139|0163 0.625 0.14¢
26 |pleased | 0.049/0.0458| 06| 0051|0051 0.055 0.053 0.059 0.061 0.057 0.064 0.062| 0.059 0.637 0.06
27 _|Sum §.289| 12.38| 40.95) 9.431| 9.395 13.94| 11.26/ 13.13 13.15] 16.7| 14.51 1274/ 17.74| 25.03 16.0
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Figure S. The connection matrix.

found to be strongly related to actual recall by human
readers (7 values = .53—-.69, all p values < .01; Kendeou
& van den Broek, 2004; van den Broek, Kendeou, Sung,
& Chen, 2003). In addition to frequency, the model pre-
dicted the order of recall by human participants, with the
most strongly represented concepts being recalled first
and the strengths of semantic relations determining sub-
sequent recall (R? = .49; van den Broek et al., 1999).
Thus, the computational implementation of the land-
scape model has been found to capture important aspects
of the cognitive processes that take place during reading
of narratives and of the resulting representation of these
texts in memory. The strong correspondence between
predicted and observed data indicates that the model
captures comprehension processes and memory for texts
in a wide range of reading situations and, therefore, has
considerable psychological validity.

Although the model initially was implemented to sim-
ulate the most commonly investigated phenomena in
narrative reading, it has since also been applied to other
text genres and reading situations. For instance, the model
has been used successfully to simulate expository texts
and, within expository texts, refutation texts (van den
Broek et al., 2003). The model has also been used to sim-
ulate more subtle effects in narrative reading, such as the
effects of the emotional value of text statements (Moli-
nari, 2004), of an individual’s purpose for reading, of the
detection of inconsistencies in a text (Linderholm et al.,
2004), and of readers’ prior knowledge (Kendeou & van

den Broek, 2004). Furthermore, the model has been ap-
plied to contrast different theoretical frameworks, such
as memory-based and constructionist views of reading
(van den Broek et al., 2005).

The scientific investigation of text comprehension can
greatly benefit from endeavors to specify models in pre-
cise quantitative terms and develop user-friendly soft-
ware tools to test and validate these models. In general,
computational models stimulate theory development,
allow tests of competing hypotheses, and facilitate com-
munication (Goldman et al., in press). In the context of
text comprehension research, computational models
allow one to track the simultaneous and, possibly, inter-
active impact of multiple factors that are typically inves-
tigated in isolation. For example, although there are nu-
merous investigations of different types of coherence
(causal, referential, and others), computational imple-
mentations such as that of the landscape model allow one
to test hypotheses about the relative and combined con-
tributions of each of these types. As a second example,
top-down and bottom-up explanations have been pro-
posed as competing accounts of exactly what determines
activation during reading and of how coherence is estab-
lished during reading; by integrating these two ap-
proaches into a single framework, the model opens the
door for considering the relative, and possibly collabo-
rative, impacts of these two accounts. As a third exam-
ple, the computational model facilitates the investigation
of individual differences in working memory capacity,



the importance of various types of coherence, learning
curves, and so on. As a final example, computational
models such as the landscape model allow one to inves-
tigate the impact of on-line factors and their interactions
on the resulting off-line memory representation.

The computational implementation of the landscape
model provides a user-friendly tool for modeling com-
prehension and testing various hypotheses, because it
has many unique features that can shed light on different
aspects of comprehension processes, in reading as well
as in other communicative settings. In addition, it incor-
porates important features of several models of compre-
hension and, therefore, has the potential for implement-
ing and contrasting different theoretical frameworks.
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APPENDIX

[Text Area]

Once there was a poor, old woman.

Together with her husband she lived in the forest.

One day she was walking in the hills.

She came upon the entrance to a tiger’s cave.

She wanted one of the tiger’s whiskers.

She wanted to make a medicine of the whisker for her husband.
She put a bowl of food in front of the entrance to the cave.
She softly sang a song which put her the tiger to sleep.

The old Woman quickly pulled out one of the whiskers.
Very quickly, she ran down the hill.

Panting, she came home.
She was very pleased.

[Unit Area]
poor,old,woman
live,forest,husband
walk,hill

came upon,entrance,tiger,cave

want,whisker

make a medicine
put,bowl of food,in front
sang a song,put sleep
pulled out

ran

pant,came home

pleased

[Activation Type Area]

m,m,m,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
e,e,r,m,m,m,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,r,e,e,0,m,m,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,¢,0,0,0,e,e,m,m,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,r,0,0,0,0,0,c,c,m,r,m,m,0,0,0,0,0,0,0,0,0,0,0
0,0,¢,0,0,m,0,0,¢,e,e,e,m,m,m,0,0,0,0,0,0,0,0,0,0
0,0,r,0,0,0,0,0,0,m,0,m,c,r,c,m,m,m,0,0,0,0,0,0,0
0,0,¢,0,0,0,0,0,0,0,m,0,0,0,r,e,e,e,m,m,0,0,0,0,0
0,m,m,0,0,0,0,0,0,0,0,0,c,m,r,0,0,0,e,e,m,0,0,0,0
0,0,¢,0,0,e,e,m,0,0,0,0,0,¢,0,0,0,0,0,0,c,m,0,0,0
0,0,r,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,r,m,m,0
0,0,¢,0,0,0,0,0,0,0,0,0,0,¢,0,0,0,0,0,0,c,0,r,r,m
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