
A typical adult makes hundreds of categorization judg-
ments every day. Almost all of these are automatic. When 
we sit in a chair, pick up a book, or swerve to avoid a pot-
hole, we are making an automatic categorization judgment. 
Adults sometimes make categorization decisions that are 
not automatic. For example, a dog owner might be learn-
ing to differentiate between Briards and Bouviers. Nev-
ertheless, for most adults, categorization decisions based 
on newly acquired knowledge are far less common than 
categorization decisions made automatically. Despite this 
imbalance, initial category learning has been investigated 
much more extensively than categorization automaticity. 
For example, a search of PsycINFO yields 4,655 articles 
in response to the keywords “category or categorization 
learning,” but only 57 articles in response to “category or 
categorization automaticity”—a ratio of 82 to 1.

Despite the many studies that have examined the abil-
ity of people to learn new perceptual categories, we know 
of only a few that have trained participants for more than 
a session or two on novel categories. In all of these, par-
ticipants received at most a few thousand trials of train-
ing. For example, Maddox, Ashby, and Gottlob (1998) 
reported the results of an experiment in which each par-
ticipant received about 7,000 trials of training. Ashby, 
Waldron, Lee, and Berkman (2001) reported one that 
included 4,000 trials of practice. Nosofsky and Palmeri 
(1997) reported results from an experiment in which each 
participant received 1,800 trials of training. Even so, the 
last two articles examined only a single type of category 
structure, and the former two focused only on asymptotic 
performance.1 Thus, we know of no published studies that 
examined performance changes across a variety of differ-

ent category structures as participants transitioned from 
novice to automatic responding.

This article aims to fill this void in the literature. To-
ward this end, we report the results of three experiments in 
which 36 participants each received more than 10,000 tri-
als of categorization training spread over 20 or more sepa-
rate experimental sessions (for a total of approximately 
480,000 trials spread over 830 experimental sessions). 
The 36 participants each learned one of three qualitatively 
different category structures.

Overview of the Experiments
The three category structures studied in this article are 

illustrated in Figure 1. In all three cases, the two categories 
were each composed of circular sine-wave gratings that 
varied across trials in the width and orientation of the dark 
and light bars (e.g., see the bottom right of Figure 1). The 
dotted lines denote the category boundaries. On each trial 
of Experiment 1, participants were shown one disk ran-
domly selected from one of the two categories. The partic-
ipant’s task was to assign this disk to Category A or B by 
pressing the appropriate response key. Feedback was then 
provided about the accuracy of the response. Every par-
ticipant repeated this procedure more than 10,000 times 
over the course of more than 20 experimental sessions. 
Each participant learned only one of the three category 
structures.

The two category structures shown at the top of Figure 1 
are examples of rule-based categorization tasks, because 
they can be learned via an explicit reasoning process. In rule-
based tasks, the rule that maximizes accuracy (i.e., the opti-
mal strategy) is easy to describe verbally (Ashby, Alfonso-
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rates the disks into the two categories. Nevertheless, many 
studies have shown that people reliably learn such cat-
egories, provided they receive consistent and immediate 
feedback after each response (for a review, see Ashby & 
Maddox, 2005).

Category Learning and Memory
There is a growing consensus that human memory is 

mediated by multiple qualitatively distinct systems (Rolls, 
2000; Squire & Schacter, 2002; Tulving, 2002). A grow-
ing body of recent evidence suggests that category learn-
ing uses many or perhaps all of the major memory sys-
tems that have been hypothesized by memory researchers 
(Ashby & O’Brien, 2005). This section briefly reviews 
some of that evidence (for more thorough reviews, see, 
e.g., Ashby & Maddox, 2005; Ashby & O’Brien, 2005).

 Reese, Turken, & Waldron, 1998). The top-right panel of 
Figure 1 shows the simplest and most widely studied rule-
based task. Note that the optimal 1D rule here is “respond 
A if the bars are thick and B if they are thin.” The top-left 
panel shows a more complex rule-based task in which the 
optimal strategy is to apply the disjunctive rule “respond A 
if the bars are thin or thick; otherwise respond B.”

The bottom-left panel of Figure 1 shows an example 
of an information-integration categorization task. In 
information- integration tasks, accuracy is maximized 
only if information from two or more stimulus compo-
nents (or dimensions) is integrated at some predecisional 
stage (Ashby & Gott, 1988). In many cases, the optimal 
strategy is difficult or impossible to describe verbally 
(Ashby et al., 1998). This is true in the bottom-left panel 
of Figure 1, because no simple verbal rule correctly sepa-
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Figure 1. Category structures used in the experiments. The top panels are rule-based conditions (left  disjunctive rule; right  
simple-1D rule), and the bottom-left panel is an information-integration category structure. The optimal bounds in the top-left panel 
are x1  25 and x1  75. The optimal bound in the top-right panel is x1  50. The optimal bound in the bottom-left panel is x2  x1. 
The bottom-right panel shows an example stimulus.
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if procedural learning is used in information-integration 
tasks, switching the locations of the response keys should 
disrupt performance, but switching the fingers that de-
press the keys should not. In fact, Ashby, Ell, and Waldron 
(2003) reported evidence that directly supported this pre-
diction. They also reported that neither manipulation had 
any effect on rule-based categorization. These results were 
replicated and extended in a number of subsequent studies 
(Maddox, Bohil, & Ing, 2004; Maddox, Glass, O’Brien, 
Filoteo, & Ashby, 2010; Spiering & Ashby, 2008).

Summary. Given that initial categorization per-
formance is different in rule-based and information-
 integration tasks (because they seem to rely on different 
memory systems; Ashby et al., 2003; Waldron & Ashby, 
2001), a natural question to ask is whether these differ-
ences persist after rule-based and information-integration 
judgments have been practiced long enough to become 
automatic. The main goal of the present experiments is to 
answer this question.

Features of Automaticity
Given this goal, it is tempting to adopt some specific 

criteria that can be used to determine whether the cate-
gorization behaviors we are studying have become truly 
automatic. However, for two different but related reasons, 
we adopt instead a conservative position in which we op-
erationally define automaticity simply as the result of ex-
tensive overtraining after the category structures are well 
learned (Moors & de Houwer, 2006; Schneider & Chein, 
2003; Shiffrin & Schneider, 1977).

The first problem with identifying specific criteria to as-
sess automaticity is that many different criteria have been 
proposed in the literature. A number of these have come 
from Schneider and Shiffrin (1977; Shiffrin & Schnei der, 
1977; for an updated list, see also Schneider & Chein, 
2003). Perhaps the most popular of these is that a behavior 
should be considered automatic if it can be executed suc-
cessfully while the participant is simultaneously engaged 
in some other secondary task (i.e., efficiency). Another 
widely used criterion proposed by Shiffrin and Schneider 
is that a behavior should be considered automatic if it be-
comes difficult to modify after training (i.e., behavioral 
inflexibility).

Even so, other authors have proposed different crite-
ria. For instance, Logan (1988) proposed using a process-
based definition of automaticity. According to Logan’s 
(1988) instance-based theory, automatic behavior is the 
result of single-step memory retrieval. Hence, identify-
ing the presence of automaticity becomes a problem of 
detecting the signature (features) of single-step memory 
retrieval in task performance. These features depend on 
assumptions about how memory retrieval is achieved. For 
instance, Logan (1988) assumed, among other things, that 
instances were automatically encoded and that memory 
retrieval was the result of a race among independent 
memory traces. As such, automaticity could be detected 
by the presence of a power law speedup of mean RTs and 
their standard deviations (SDs, with equal rates), item-
specific facilitation for repeated stimuli, and the presence 
of separate memory traces for each stimulus presentation. 

The role of working memory in rule-based catego-
rization. Working memory is the ability to maintain and 
manipulate limited amounts of information during brief 
periods of cognitive activity (Baddeley, 1986). It is heavily 
used in reasoning and problem solving and often associ-
ated with a wide variety of cognitive tasks. Because work-
ing memory is effective only for brief time intervals, it 
cannot store a lasting category representation, but it could 
be the primary mediating memory system in tasks where 
the categories are learned quickly. An obvious candidate 
for working memory is simple rule-based tasks.

Perhaps the best cognitive evidence that working mem-
ory is crucial for rule-based category learning comes from 
studies in which participants performed a dual task that 
required working memory and executive attention at the 
same time that they learned either simple one-dimensional 
rule-based categories or more difficult information-
integration category structures that required attention to 
multiple stimulus dimensions (Waldron & Ashby, 2001; 
Zeithamova & Maddox, 2006). If the same memory sys-
tem is used to learn both types of category structures, one 
would expect the dual task to interfere more strongly with 
the more difficult categorization task. The opposite result 
was observed. The dual task slowed learning in the one-
dimensional rule-based task by as much as 350% with-
out significantly affecting the difficult three- dimensional 
information- integration task. Thus, a dual task that re-
quires working memory interferes with a simple rule-
based task, but not with a more difficult information-
 integration task.

The role of procedural memory in information-
 integration categorization. Procedural memories are 
the memories of skills learned through practice (Willing-
ham, 1998). Traditionally, these have been motor skills, 
such as those used when playing golf or tennis. Because 
procedural learning requires many repetitions, it is not 
likely to influence performance when the categories 
have a simple structure that can be discovered via logical 
reasoning. Instead, it seems more likely that procedural 
memory might mediate learning in tasks that are not eas-
ily learned via a logical reasoning process. In fact, such 
categories are common in everyday life. For example, the 
set of all X-rays displaying a tumor forms a perceptual 
category, but deciding whether a particular X-ray shows 
a tumor requires years of training, and expert radiologists 
are only partially successful at describing their categoriza-
tion strategies.

Several studies have provided direct evidence that learn-
ing in information-integration tasks is mediated primarily 
by procedural memory. The quintessential paradigm for 
studying procedural learning is the serial reaction time 
(SRT) task (Nissen & Bullemer, 1987), in which partici-
pants press keys as quickly as possible in response to stim-
uli that appear in various locations on the screen. A large 
response time (RT) improvement is observed when the 
stimulus sequence is repeated, even when participants are 
unaware that a sequence exists. In addition, changing the 
location of the response keys interferes with SRT learn-
ing, but changing the fingers that push the keys does not 
(Willingham, Wells, Farrell, & Stemwedel, 2000). Thus, 
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(2004) “experts know more than novices. They can ver-
balize more properties, describe more relationships, make 
more inferences . . .” (p. 378). According to these defi-
nitions, a person who walks into a room and sits down 
in a chair without consciously making a categorization 
decision is showing evidence of automaticity, but such 
behavior by itself provides no evidence of that person’s 
expertise in any furniture categories. Many studies have 
compared the categorization abilities of experts and nov-
ices (e.g., Johnson & Mervis, 1997; Medin, Lynch, Coley, 
& Atran, 1997), but because of the specialized training 
experts receive, these results tell us relatively little about 
normal, everyday categorization automaticity.

EXPERIMENT 1

This experiment studies the effect of extensive practice 
(overtraining) on categorization performance (accuracy 
and RT). As mentioned earlier, many studies have reported 
that the initial learning and performance of information-
integration and rule-based category structures are qualita-
tively different (for reviews, see Ashby & Maddox, 2005; 
Maddox & Ashby, 2004). The goal of this experiment is 
to overtrain participants to eliminate these performance 
differences as much as possible. Each participant in this 
experiment received feedback training on one of the three 
category structures shown in Figure 1 for 10,440 trials 
spread over 18 different experimental sessions. Three of 
these sessions were completed inside an fMRI scanner. 
This article focuses exclusively on the behavioral data 
from this experiment.

Method
Participants. Thirty-seven healthy participants, predominantly 

undergraduate students at the University of California, Santa Bar-
bara, were recruited to participate in Experiment 1. Fourteen partici-
pants were in the disjunctive-rule condition. Six of those participants 
completed 18 training sessions in the laboratory, and the remaining 
8 completed 15 training sessions in the laboratory and 3 sessions 
in a 3T Siemens fMRI scanner. Twelve participants were trained 
in the simple-1D rule condition. Four of those participants com-
pleted 18 training sessions in the laboratory, and the remaining 8 
completed 15 training sessions in the laboratory and 3 sessions in a 
3T Siemens fMRI scanner. Eleven participants were trained in the 
information-integration condition, all of whom participated in 15 
training sessions in the laboratory and 3 sessions in a 3T Siemens 
fMRI scanner.

Each participant was given credit or was paid between $230 and 
$350 for participation (depending on the amount of time spent in 
the fMRI scanner). One participant in the information-integration 
condition was excluded from the experiment due to an inability to 
learn the correct category structures by Session 5.

Apparatus. The stimuli were circular sine-wave gratings of con-
stant contrast and size presented on a 21-in. monitor (1,280  1,024 
resolution). Each stimulus was defined by a set of points (x1, x2) 
sampled from a 100  100 stimulus space and converted to a disk 
using the following equations: frequency  x1/30  0.25 cpd, and 
orientation  9x2/10  20º. This yielded stimuli that varied in ori-
entation from 20º to 110º and in frequency from 0.25 to 3.58 cpd. 
The stimuli were generated with MATLAB using Brainard’s (1997) 
Psychophysics Toolbox, and occupied an approximate visual angle of 
5º. An example is shown in the bottom-right panel of Figure 1.

For the disjunctive-rule condition (top-left panel in Figure 1), Cat-
egory A stimuli were uniformly distributed in two different regions 

In addition, the RT distributions should be Weibull with a 
shape parameter constrained by the rate of the power law 
speedup (Logan, 1992). These criteria have little resem-
blance to Schneider and Shiffrin’s (1977).

In the animal learning literature,2 the most widely used 
automaticity criterion is that the behavior is largely in-
dependent of any ensuing reward (Dickinson, 1985). 
Again, this differs substantially from both Schneider and 
Shiffrin’s (1977) and Logan’s (1988) criteria. In addition, 
automaticity is frequently associated with unobservable 
features such as “unconsciousness” (for a review, see 
Moors & de Houwer, 2006). Lastly, it is unclear whether 
all these criteria need to be simultaneously present or how 
many need to be observed for a behavior to be labeled 
“automatic” (Moors & de Houwer, 2006). In summary, 
there is no single widely accepted criterion for assessing 
automaticity.

A second problem is that many of the popular behav-
ioral criteria of automaticity were proposed before mul-
tiple memory systems were modeled and observed. For 
example, this is true for all of the criteria suggested by 
Shiffrin and Schneider (1977). To our knowledge, there 
have been no careful empirical investigations of whether 
these criteria should apply equally, regardless of the 
memory systems implicated. In fact, there is reason to 
believe that the memory systems do matter. For example, 
as mentioned above, several studies reported that a dual 
task that required working memory and executive at-
tention (a measure of efficiency) interfered with initial 
rule-based category learning but not with information-
integration category learning (Waldron & Ashby, 2001; 
Zeithamova & Maddox, 2006). Also, Ashby et al. (2003) 
reported that switching the position of the response but-
tons (a measure of behavioral inflexibility) interfered 
with initial information-integration performance, but not 
with initial rule-based performance. Therefore, blindly 
applying Shiffrin and Schneider’s efficiency and inflex-
ibility criteria would lead to the erroneous conclusion 
that information-integration categorization is automatic 
after the first training session. Such a conclusion would 
be incompatible with the intuitive notion of automatic-
ity, because accuracy in information-integration tasks 
requires several thousand trials to asymptote.3 For this 
reason, more work is required before the classic behav-
ioral signatures of automaticity can be reconciled with 
multiple-memory-systems theories.

Summary. A second goal of this article is to exam-
ine whether several well-known automaticity criteria hold 
equally for overtrained behaviors that were initially medi-
ated by declarative versus procedural memory systems. 
In particular, Experiments 2 and 3 focus on the Shiffrin 
and Schneider (1977) behavioral inflexibility (i.e., button 
switch) and efficiency (i.e., dual task) criteria (see also 
Crabb & Dark, 2003).

Automaticity Versus Expertise
It is important to distinguish between automaticity and 

expertise. Expertise typically connotes some extra un-
usual training or experience not shared by most people. 
For example, according to Palmeri, Wong, and Gauthier 
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session and increased to 94.2% in the last session. The 
condition  session interaction was also statistically 
significant [F(34,561)  4.48, p  .001]. Decomposi-
tion of the effect of condition within each level of ses-
sion showed that the conditions differed during Sessions 1 
[F(2,33)  6.37, p  .01] and 3 [F(2,33)  4.32, p  .05]. 
In the first session, the mean accuracies were 93.0% for 
the simple-1D rule group, 82.1% for the disjunctive-rule 
group, and 79.0% for the information-integration group. 
The accuracy of all three conditions was the same in all 
the following sessions [i.e., Sessions 4–18; all Fs(2,33)  
1.89, n.s.]. The condition factor did not reach statistical 
significance [F(2,33)  0.75, n.s.; power  1].

RTs. Because the response environment and response 
keys were different inside the scanner, the RTs from scan-
ning sessions were not analyzed (Sessions 2, 4, and 10 
for the information- integration group, and Sessions 1, 4, 
and 10 for the rule-based groups). Median correct RTs in 
each session were individually computed for each partici-
pant.6 The group-averaged medians of “regular” sessions 
are shown in Figure 2B. As can be seen, the median RTs 
from all three groups diminished with practice. Also, RTs 
seemed similar across conditions.

Because RTs from Session 2 were missing in the 
information- integration condition and the RTs from Ses-
sion 1 were missing from the two rule-based conditions 
(they were “scanning” sessions), the following analysis in-
cluded only “regular” sessions between 3 and 18. A condi-
tion (3, between subjects)  session (14, within subjects) 
ANOVA7 showed that the median RTs diminished with 
practice [F(13,429)  6.90, p  .001]. The mean median 
RT was 565 msec in Session 3 and decreased to 495 msec 
in Session 18. The main effect of condition [F(2,33)  
1.95, n.s.; power  1] and the interaction between the fac-
tors [F(26,429)  1.13, n.s.; power  0.19] failed to reach 
statistical significance.

Model-based analyses. The accuracy-based analy-
ses suggest that performance in the rule-based and 
information- integration conditions was similar; yet it is 
important to know whether each participant eventually 
adopted a decision strategy of the optimal type. To an-
swer this question, we fit three different types of decision-
bound models8 (e.g., Maddox & Ashby, 1993) to the data 
from each individual participant in every session: rule-
based, information-integration, and guessing models (see 
the Appendix for details). The rule-based models assumed 
either a single vertical or a horizontal bound, or that par-
ticipants used either a conjunction or a disjunction rule. 
The information-integration models assumed that the de-
cision bound was either a single line of arbitrary slope 
and intercept or a quadratic curve. Finally, as their name 
implies, the guessing models assumed that participants 
guessed randomly on each trial.

The percentage of participants whose data were best fit 
by a model that assumed a decision strategy of the optimal 
type is shown in Table 1. As can be seen, the responses of 
all the participants in the disjunctive-rule condition were 
best fit by a model that assumed an interval-based strat-
egy, except for 1 participant in the first session (best fit 
by a model that assumed information integration). Like-

separated on the frequency dimension. Category A was defined as 
x1  23 or x1  77. Category B was defined as 27  x1  73. These 
boundaries were chosen so that the areas of the two categories were 
the same. The optimal decision-bound model in this condition is the 
interval-based one-dimensional classifier (IB1D; see the Appendix).

For the simple-1D rule condition (top-right panel in Figure 1), 
the A category stimuli were uniformly distributed as x1  48, and 
the B category stimuli were uniformly distributed as x1  52. The 
optimal decision-bound model in this condition is the 1D model (see 
the Appendix).

For the information-integration condition (bottom-left panel in 
Figure 1), Category A stimuli were generated from a multivariate 
normal distribution with the following parameters (Ashby & Gott, 
1988): A  {40, 60}; A  {185, 170; 170, 185}. The same sam-
pling method was used to generate Category B stimuli: B  {60, 
40}; B  . The optimal decision-bound model in this condition 
is the general linear classifier (GLC; see the Appendix). Note that 
perfect accuracy was possible in all three conditions.

Stimulus presentation, feedback, response recording, and RT 
measurement were acquired and controlled using MATLAB on a 
Macintosh computer. Responses were given on a standard Macin-
tosh keyboard: the “D” key for an A categorization and the “K” key 
for a B categorization (sticker-labeled as either A or B). Auditory 
feedback was given for a correct (high-pitched tone) or incorrect 
(low-pitched tone) response. If a response was too late (more than 
5 sec), participants saw the words “Too Slow.” A participant who hit 
a wrong key heard a distinct beep and saw the words “Wrong Key.”

Procedure. The experiment lasted for 18 sessions over 18 con-
secutive workdays. There were two types of sessions. “Regular” ses-
sions occurred in the laboratory and were composed of 12 blocks 
of 50 stimuli (for a total of 600 stimuli). “Scanning” sessions could 
happen either in an fMRI scanner or in the laboratory (see the Par-
ticipants subsection). In both cases, “scanning” sessions were com-
posed of 6 blocks of 80 stimuli (for a total of 480 stimuli). “Scan-
ning” sessions were Days 2, 4, and 10 in the information-integration 
condition and Days 1, 4, and 10 in the rule-based conditions. The 
remaining sessions were “regular.” It should be noted that all partici-
pants had the same number of training trials. Participants who were 
not scanned still had simulated “scanning” sessions on Days 1, 4, 
and 10. In each session, half the stimuli were As and half were Bs.

Participants were told that they were taking part in a categorization 
experiment and that they had to assign each stimulus into either an 
A or a B category. The participants were allowed to take a break be-
tween blocks if they wished. A trial went as follows: A fixation point 
(crosshair) appeared on the screen for 1,500 msec and was followed 
by the stimulus, which remained on the screen until the participant 
made a response; correct or incorrect auditory feedback was given 
for 1,000 msec; “wrong key” or “too slow” feedback was given for 
2,000 msec. Each participant completed a total of 10,440 trials.4

Results
All the power analyses throughout this article were de-

signed to detect a difference of 2.5% for accuracy and 
20 msec for RTs, with   .05 and a within-subjects cor-
relation of   .5 (Barcikowski & Robey, 1985).5

Accuracy. The mean accuracy across sessions is shown 
in Figure 2A. As can be seen, all groups improved their ac-
curacy with practice. The simple-1D rule condition was 
easiest at first, but accuracy in all three conditions reached 
roughly 95% correct after the third session. This accuracy 
level remained approximately constant throughout the re-
maining 15 sessions.

A condition (3, between subjects)  session (18, 
within subjects) ANOVA showed that the effect of ses-
sion reached statistical significance [F(17,561)  19.15, 
p  .001]. The mean accuracy was 84.9% in the first 
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ated about a steady-state value.9 In the simple-1D rule 
condition, they fluctuated about a (higher) steady-state 
value across all sessions. This was the easiest condition, 
and good performance was possible without having to 
discriminate between the stimuli lying close to the cat-
egory boundary. This may explain the higher amount of 
estimated noise in this condition.

Distance-to-bound analyses. Many studies have es-
tablished that stimuli close to the category boundary are 
more difficult to categorize than stimuli that are farther 
away (i.e., with longer RTs and higher error rates; e.g., 
Maddox et al., 1998). An interesting question is whether 
this distance-to-bound effect diminishes with practice. 
For example, stimuli near the bound might be processed 
less efficiently, because perceptual noise makes cat-
egory membership uncertain. Because perceptual learn-
ing should reduce perceptual noise, it may also reduce 
 distance-to-bound effects.

Figure 4 plots the group-averaged proportion correct 
against distance-to-bound.10 As can be seen, the distance-
to-bound effect diminished with practice for the disjunctive-
 rule and information-integration groups, but not for the 
simple-1D group. This is consistent with the higher noise 
estimates for the simple-1D group (see Figure 3A).

Figure 5 plots the group-averaged median correct RTs 
against distance-to-bound. As can be seen, participants 
in the information-integration condition initially had a 
smaller distance-to-bound effect than participants in the 
two rule conditions. However, the differences between the 
conditions tend to decrease with practice, and the curves 
are strongly overlapping after 14 sessions of training (bot-
tom line in Figure 5); so, even though regular accuracy 
and RT analyses did not show any difference between the 
conditions after 3 sessions of practice, learning continues 
and the conditions become increasingly similar with ex-
tended practice.

Discussion
The results of this experiment show that participants 

in all three conditions reached a similar level of speed 
and accuracy after extensive practice. All groups were 
performing at the same speed after the second session of 
practice, and had similar accuracies after the third session 
of practice. In addition, the accuracy results in the first 
three sessions suggest that the disjunctive-rule condition 
was as difficult to learn as the information-integration 
condition; so, any difference between these two conditions 
cannot be attributed to task difficulty alone. Meanwhile, 
the simple-1D rule condition was easier than the other 
conditions, as suggested by the high accuracy of the par-
ticipants in the first session. Even so, performance in all 
conditions was similar in the later sessions. Model-based 
analyses showed that the responses of most participants 
in all three conditions were best fit by optimal decision-
bound models, and that perceptual/criterial noise tended 
to decrease with practice. Finally, the distance-to-bound 
effect seemed to diminish with practice. The only excep-
tion was in the simple-1D condition, where participants 
remained relatively poor at categorizing stimuli close to 
the boundary, even after 18 sessions of practice. As de-

wise, the responses of 1 participant in the information-
 integration condition were best fit by a guessing model 
in the first session, but, in all other cases, the best-fitting 
model assumed information integration.

The responses of most participants in most sessions were 
best described by a model that assumed the appropriate one-
dimensional rule in the simple-1D rule condition. However, 
there were some sessions in which the best fits were by mod-
els that assumed other strategies (mostly information inte-
gration; in one case, a conjunction rule fit best). In each one 
of these cases, however, the best-fitting models emulated a 
one-dimensional rule (i.e., the decision bound was a verti-
cal line for the information-integration models, or, for the 
model that assumed a conjunction rule, the horizontal bound 
had a negative intercept on the orientation dimension).

One measure of learning is whether participants eventu-
ally adopt a strategy of the optimal type. Table 1 shows that 
participants in all three conditions successfully met this 
criterion. Another measure of learning is to ask whether 
the consistency with which participants applied this strat-
egy improved with training. This issue can be addressed 
by examining estimates of the noise variance parameter 
from each of the best-fitting models. For every model, 
the noise variance will increase with greater perceptual or 
criterial noise, or if there is trial-by-trial variability in the 
participant’s decision strategy. Noise reductions are there-
fore helpful in improving categorization performance and 
are important factors in the development of automaticity.

Figure 3A shows mean estimates of the noise SDs from 
the best-fitting model for each session of all three condi-
tions. As can be seen, these SDs decreased sharply across 
the first four sessions in the information-integration and 
disjunctive-rule conditions. After Session 4, they fluctu-

Table 1 
Percentages of Participants in Experiment 1  

Whose Data Were Best Fit by a Model That Assumed  
a Decision Strategy of the Optimal Type

Session  Simple-1D  Disjunctive Rule  Information-Integration

 1 92  93  90
 2 100 100 100
 3 100 100 100
 4 92 100 100
 5 92 100 100
 6 100 100 100
 7 92 100 100
 8 100 100 100
 9 100 100 100
10 92 100 100
11 83 100 100
12 100 100 100
13 83 100 100
14 92 100 100
15 92 100 100
16 100 100 100
17 83 100 100
18 100 100 100

Note—In the simple-1D condition, the performance of all participants 
in each session was best described by a model that assumed a vertical 
decision bound. Entries less than 100 denote cases in which a model that 
assumed an information-integration strategy or a conjunction rule fit best. 
In all of these cases, however, the best-fitting model emulated predictions 
from a 1D model (i.e., the best-fitting bound was a vertical line).
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eliminated. The high power values calculated in this ex-
periment (due to the large within-subjects sample sizes) 
strongly suggest that a true accuracy difference of 2.5% 
or a true RT difference of 25 msec would have been de-
tected by these analyses. Thus, the nonsignificant results 
imply that any real difference not detected must almost 
surely be less than these values (and of little importance 

scribed earlier, this was the only condition in which high 
accuracy on stimuli near the category boundary was not 
required for good performance.

This experiment shows that performance in 
information- integration and rule-based categorization be-
comes similar after overtraining. Specifically, the quanti-
tative differences found in early learning were effectively 
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information- integration category learning are still pres-
ent after overtraining. Both dissociations are also popular 
behavioral criteria for automaticity (Moors & de Houwer, 
2006; Shiffrin & Schneider, 1977), so Experiments 2 and 3 
also allow us to test whether these criteria are equally valid 
for tasks that depend on declarative (e.g., rule-based) ver-
sus procedural (e.g., information-integration) memory 
systems.

Several studies reported that switching the location 
of the response buttons interfered with the expression of 
information-integration category learning, but not with 

for testing our hypotheses). However, the categorization 
literature also points to important qualitative differences 
between initial rule-based and information-integration 
categorization (e.g., Ashby & Maddox, 2005; Maddox & 
Ashby, 2004). Experiments 2 and 3 focus on two of these 
dissociations.

EXPERIMENT 2

Experiments 2 and 3 test whether two prominent be-
havioral dissociations found during initial rule-based and 
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Figure 4. Distance-to-bound effect on proportion correct. Circles represent the information-integration condition, squares represent 
the disjunctive-rule condition, and triangles represent the simple-1D rule condition.
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by a button-switch interference) has been proposed as a 
feature of automaticity (Shiffrin & Schneider, 1977; termed 
goal independence by Moors & de Houwer, 2006). This is 
problematic, since it suggests that information-integration 
performance is automatic during the first session. Even 
so, note that the automaticity literature makes the opposite 
prediction—namely, that interference should develop in 
rule-based tasks as a result of overtraining. Experiment 2 
will test between these two predictions.

Method
Participants. The participants in Experiment 2 were a subset 

of the participants from Experiment 1. There were 12 participants 
in the disjunctive-rule condition, 12 participants in the simple-1D 
rule condition, and 8 participants in the information-integration 
condition. There were between one and three additional sessions 
of practice between the end of Experiment 1 and the beginning of 
Experiment 2. For each participant, one of these sessions was a 
“scanning” session, whereas the remaining were “regular” sessions 
(as described in the Method section of Experiment 1). No button-
switch fMRI scanning data were collected. The minimum number 
of practice trials before the button-switch session was 10,920, and 
the maximum number of practice trials was 12,120 (the mode was 
11,520 trials). There was no time lag or break between Experi-
ments 1 and 2.

rule-based category learning (Ashby et al., 2003; Mad-
dox et al., 2004; Maddox et al., 2010; Spiering & Ashby, 
2008). Ashby et al. (2003) included only 100 trials after 
the buttons were switched. This was not long enough to 
examine recovery. In contrast, Maddox et al. (2010) in-
cluded 300 trials of transfer after 300 trials of categoriza-
tion. They reported significant recovery in accuracy over 
the course of these 300 trials. In addition, in all studies, 
model analyses showed that many participants in the 
information- integration condition switched to rule-based 
strategies after the response buttons had been changed. 
This change in strategy did not occur when the partici-
pants were trained for two sessions prior to the button 
switch (Ashby et al., 2003).

These results suggest that switching response buttons 
after overtraining should interfere with information-
 integration categorization. The absence of a button-switch 
interference in rule-based categorization, however, is con-
sistent with the hypothesis that the learning in rule-based 
tasks is of abstract category labels not tied to any response. 
This hypothesis seems to predict no interference from a 
button switch, even after overtraining. On the other hand, 
as mentioned earlier, behavioral inflexibility (as expressed 
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Figure 5. Distance-to-bound effect on median correct response times (RTs). Circles represent the information-integration condition, 
squares represent the disjunctive-rule condition, and triangles represent the simple-1D rule condition.
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subjects) ANOVA confirmed that accuracy did not im-
prove during the button-switch session [F(11,275)  1.21, 
n.s.; power  0.89]. Furthermore, there was no difference 
among the conditions [F(2,25)  0.96, n.s.; power  1] 
and no interaction between the factors [F(22,275)  1.08, 
n.s.; power  0.23]. In Ashby et al. (2003) and Maddox 
et al. (2010), there was an improvement in accuracy after 
the first block of button switch (although the interference 
was not completely canceled).

RTs. The group-averaged median correct RTs are 
shown in Figure 6C. As can be seen, the participants in 
all three conditions were slower in the button-switch ses-
sion. A condition (3, between subjects) session (auto-
maticity vs. button switch, within subjects) ANOVA was 
performed on median correct RTs. As in the analysis of 
response accuracy, the effect of session reached statisti-
cal significance [F(1,29)  40.94, p  .001]. The correct 
median RTs increased from 489 msec (automaticity) to 
612 msec (button switch). The condition factor [F(2,29)  
3.21, n.s.; power  1] and its interaction with session 
[F(2,29)  3.00, n.s.; power  1] failed to reach statisti-
cal significance.11 Recovery of RTs was not explored, as 
in previous studies.

Model-based analyses. In previous studies, when 
the locations of the response buttons were switched 
after a single session of information-integration catego-
rization training, many participants switched from an 
 information-integration response strategy to a rule-based 
strategy (Ashby et al., 2003; Maddox et al., 2010). How-
ever, this tendency was reduced in the one experiment that 
extended the initial (i.e., prebutton switch) training into 
a second session (Ashby et al., 2003). To examine this 
issue with the present data, we fit the same models as in 
Experiment 1 to the data of each participant during the 
button-switch session.

The percentages of optimal best-fitting models for 
the button-switch session are shown in Table 2. As can 
be seen, none of the participants in the information-
 integration and the disjunctive-rule conditions switched 
strategy during the button-switch session. However, there 
were 2 participants in the simple-1D rule condition whose 
responses were best described by a model that assumed a 
conjunction rule. A closer look at the parameter estimates 
showed that the best-fitting conjunction model emulated 
a 1D model (with a negative intercept on the orientation 
dimension). Overall, these observations are consistent 
with the interpretation in Ashby et al. (2003)—that is, that 
extensive practice stabilizes the choice of categorization 
strategy and makes strategy shifts less likely.

The estimated noise SDs during the training and button-
switch sessions are shown in Figure 3B. As can be seen, 
these values increased during the button-switch session 
for all three groups. This increase in perceptual/criterial 
noise reflects the significant button-switch interference 
found in the accuracy of all three conditions (see Fig-
ure 6A). Hence, even though model fitting did not detect 
a shift of categorization strategy during the button-switch 
session, the participants seemed generally less proficient 
at applying their well-practiced strategy.

Apparatus. The material was the same as in Experiment 1, ex-
cept that the response locations were switched (i.e., the A response 
key occupied the location of the B response key, and vice versa).

Procedure. For all the participants in the simple-1D and the 
disjunctive- rule conditions, the button-switch session was a “regu-
lar” session consisting of 12 blocks of 50 trials (for a total of 600 
trials). The participants were instructed at the beginning of the ses-
sion that all stimuli and procedures were identical to those in the 
preceding 20  days, except that the location of the two response 
keys was reversed.

In the information-integration condition, 4 participants had a 
“regular” button-switch session (as described above). The remain-
ing participants started their button-switch session with four blocks 
(200 trials) of categorization with the practiced response-key assign-
ment (as in their first 20  days of practice), followed by eight blocks 
(400 trials) of categorization with the new (switched) response-key 
assignment. The procedures were the same as in Experiment 1.

Results
In all the following analyses, results from the button-

switch session were compared with results from the last 
three sessions of training for each participant. As in Exper-
iment 1, RTs from the “scanning” sessions were excluded 
from the analyses. Also, trials from the button-switch 
session that occurred before the button switch (i.e., with 
the standard button locations) were not included in the 
following analyses (for 4 participants in the information-
integration condition; see the Method section, above).

Accuracy. The mean accuracies from the last 3 days 
of training and from the button-switch session are shown 
in Figure 6A. As can be seen, accuracy was lower in the 
button-switch session for all groups. A condition (3, be-
tween subjects) session (automaticity vs. button switch, 
within subjects) ANOVA showed a significant effect of 
session [F(1,29)  24.25, p  .001], with accuracy de-
creasing from 94.0% correct (automaticity) to 88.8% 
correct (button switch). The main effect of condition 
[F(2,29)  0.93, n.s.; power  1] and its interaction with 
session [F(2,29)  2.17, n.s.; power  1] failed to reach 
statistical significance.

To verify that the interference on accuracy was present 
within each group, separate one-tailed paired t tests were 
performed to compare training and button-switch per-
formance. For the simple-1D group, performance in the 
button-switch session was significantly worse [t(11)  
2.71, p  .01], with performance decreasing from 93.4% 
to 89.3%. A similar result was found for participants in 
the disjunctive-rule group [t(11)  1.79, p  .05], with 
performance decreasing from 94.6% (automatic) to 
91.0% (button switch). Finally, the performance in the 
information-integration group diminished from 94.0% to 
84.9% (for training and button-switch performances, re-
spectively), which reached statistical significance [t(7)  
3.69, p  .01]. Hence, it can be concluded that the inter-
ference caused by introducing a button switch is genuine 
and affects all groups.

Another question of interest is whether the observed 
interference was transient or resilient. Figure 6B shows 
the mean accuracy for automatic performance (Block 0) 
and for each 50-trial block of the button-switch session. 
A condition (3, between subjects) block (12, within 
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ing, switching the location of the response keys interfered 
with both information- integration and rule-based perfor-
mance. Regardless of category structure, switching the 
buttons caused a significant decrease in accuracy and 
increase in RT.

These results suggest that, although rule-based cat-
egory learning initially may be abstract, with enough 
training it eventually comes to include a response-
specific component—just like information-integration 
categorization. Furthermore, in both rule-based and 
information-integration categorization, this response-
specific component becomes such an essential part of 
the behavior that switching the location of the response 
buttons produces an impairment so great that there is no 

Discussion
This experiment introduced a button-switch ses-

sion after automaticity had developed in information-
 integration and rule-based categorization. Past experi-
ments have shown that this manipulation impairs accuracy 
after initial learning in information-integration categori-
zation, but not in rule-based categorization (Ashby et al., 
2003; Maddox et al., 2004; Maddox et al., 2010; Spier-
ing & Ashby, 2008). Furthermore, Maddox et al. (2010) 
reported that this information- integration impairment 
was transitory; 300 trials of practice with the new button 
locations were enough for participants to recover signifi-
cantly from their initial deficit. In contrast to those earlier 
results, our results showed that after extensive overtrain-
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collected in the fMRI scanner. The minimum number of practice 
trials before the dual-task session was 11,520, and the maximum 
number of practice trials was 12,720 trials (the mode was 12,120 
trials), excluding the button-switch trials. There was no time lag or 
break between Experiments 2 and 3.

Apparatus. The materials in the categorization task were the 
same as those in Experiment 1. The same numerical Stroop dual 
task as in Waldron and Ashby (2001) was used. In this task, two 
different digits were randomly chosen on every trial (ranging from 
2 to 8), and displayed on each side of the crosshair (fixation point) 
during the categorization experiment (6.5 cm from the fixation 
point). One of the digits was displayed in a bigger font and oc-
cupied 3.3º of visual angle. The size of the other digit was 1.9º of 
visual angle.

A “congruent” trial in the numerical Stroop task was defined as a 
trial in which the digit with the larger value was displayed in a larger 
font, whereas an “incongruent” trial was defined as a trial where the 
digit with the smaller value was displayed in the larger font. Incon-
gruent trials are similar to the well-known Stroop effect, because 
participants must inhibit the automatic response of identifying the 
value of the digit (Waldron & Ashby, 2001).

The response keys and feedback for the numerical Stroop task 
were the same as for the categorization task. The D key (labeled A) 
was used to indicate left, and the K key (labeled B) was used to 
indicate right (matching their locations on a regular keyboard).

Procedure. As in the other experiments, the participants were 
initially shown a crosshair (fixation point) for 1,200 msec. Next, the 
digits from the numerical Stroop task appeared on both sides of the 
crosshair for 200 msec. The participant needed to memorize the nu-
merical value and physical size of the digits. The digits disappeared, 
but the crosshair stayed on the display for another 100 msec.12 The 
crosshair disappeared and was replaced by the categorization stimu-
lus. The categorization stimulus stayed on the screen until a catego-
rization response was made, and feedback was given (same as in 
Experiments 1 and 2).

After the feedback, the screen went blank for 500 msec. Next 
came a cue that was either the word “Size” or the word “Value.” If 
the cue was “Size,” the participant needed to indicate whether the 
number of larger size was on the right or the left of the crosshair. If 
the cue was “Value,” the participant needed to indicate whether the 
number of larger value was on the right or the left of the crosshair. 
The cue remained on the screen until the participant responded. 
Feedback was given in the same way as in the categorization task, 
and the procedure started again for another trial.

As in Experiments 1 and 2, half the categorization stimuli were As 
and the remaining were Bs. In the numerical Stroop task, 510 trials 
were incongruent (85%), and the remaining 90 trials were congru-
ent (15%). This manipulation aimed at drawing the analogy with 
the original Stroop task—that is, by opposing the natural bias of 
associating digit size with digit value. Half the correct responses 
were located on the left, and half on the right. Also, the digit with 
the larger value was located on the left for half the trials, and half the 
digits with the larger size were located on the left. Participants were 
instructed to focus on the numerical Stroop task and to perform the 
categorization task with the attentional resources they had left. They 
were told that their data would not be used if they did not perform 
well enough in the numerical Stroop task.

Results
In all analyses, “automatic performance” was defined 

as in Experiment 2.
The numerical Stroop task. The performance in the 

numerical Stroop task was analyzed to confirm that the 
participants took the secondary task seriously. The mini-
mum accuracy was 82%, and the maximum accuracy was 
99% (mean accuracy  92.2%). The mean accuracy was 
90.7% in the information-integration condition, 93.7% in 

significant recovery after 600 trials of practice (as shown 
by the absence of a block effect in the ANOVA on the 
button-switch trials).

However, it should be noted that performance did im-
prove for the simple-1D group [t(11)  3.67, p  .01]. 
The mean accuracy was 85.3% in the first button-switch 
block and increased to 91.3% in the last button-switch 
block. This recovery was complete, since the accuracy in 
the last button-switch block was similar to the accuracy in 
automatic performance [t(11)  0.78, n.s.]. Hence, even 
though the effect of block was not statistically significant 
in the ANOVA, the possibility of button-switch interference 
recovery in the simple-1D group is not ruled out by the data 
(due to limited statistical power of the interaction term).

EXPERIMENT 3

The results of Experiment 2 suggest that overtrain-
ing eliminates one qualitative difference between initial 
rule-based and information-integration categorization—
namely, that information-integration learning includes a 
response-specific component, whereas rule-based learn-
ing does not. Experiment 3 examines another qualitative 
difference between initial rule-based and information-
 integration categorization. As mentioned earlier, several 
studies have shown that a simultaneous dual task that 
requires working memory and executive attention in-
terferes with rule-based category learning, but not with 
information- integration learning (Waldron & Ashby, 
2001; Zeithamova & Maddox, 2006). Experiment 3 ex-
amines how this dissociation is affected by overtraining.

The absence of dual-task interference is also among the 
best known behavioral criteria of automaticity (i.e., effi-
ciency; Moors & de Houwer, 2006; Shiffrin & Schneider, 
1977). Again, however, the absence of dual-task interfer-
ence in initial information-integration learning suggests 
that this is not by itself a sufficient test of automaticity.

Method
Participants. Experiment 3 consisted of a subset of participants 

from Experiment 1. There were 14 participants in the disjunctive-
rule condition, 11 participants in the simple-1D rule condition, and 
6 participants in the information-integration condition. All but 1 par-
ticipant (from the information-integration condition) had one “regu-
lar” session of categorization training between the button-switch 
session and the dual-task session. As in Experiment 2, no data were 

Table 2 
Percentages of Participants in Experiments 2 and 3 Whose  

Data Were Best Fit by a Model That Assumed a  
Decision Strategy of the Optimal Type

  
Session

  
Simple-1D

 Disjunctive 
Rule

 Information-
Integration

 

Button switch 83 100 100
Dual task 82 100 100

Note—In the simple-1D condition, the performance of all participants 
in each session was best described by a model that assumed a vertical 
decision bound. Entries less than 100 denote cases where a model that 
assumed an information-integration strategy or a conjunction rule fit best. 
In all of these cases, however, the best-fitting model emulated predictions 
from a 1D model (i.e., the best-fitting bound was a vertical line).



1026    HÉLIE, WALDSCHMIDT, AND ASHBY

The estimated noise SDs from the best-fitting models 
are shown in Figure 3C. Unlike the button-switch, the nu-
merical Stroop task did not seem to affect the amount of 
perceptual/criterial noise. This further supports the hy-
pothesis that the dual task did not interfere with categori-
zation performance in any condition.

Discussion
This experiment introduced a dual-task condition after 

participants had already completed thousands of trials of 

the disjunctive-rule condition, and 91.2% in the simple-1D 
condition. Thus, every participant in every condition de-
voted sufficient attentional resources to the numerical 
Stroop task to perform at a high level. The results in the 
numerical Stroop task are not discussed further.

Accuracy. Mean categorization accuracy is shown in 
Figure 7A. Note that the addition of the dual task did not 
have much effect on accuracy in any condition. A con-
dition (3, between subjects) session (automaticity vs. 
dual task, within subjects) ANOVA was performed. The 
session factor [F(1,28)  4.02, n.s.; power  1] and its in-
teraction with condition [F(2,28)  2.98, n.s.; power  1] 
failed to reach statistical significance. The mean accuracy 
during the dual-task session was 93.1% (i.e., a drop of 
less than 1%). The condition factor [F(2,28)  0.20, n.s.; 
power  1] also failed to reach statistical significance.

As in Experiment 2, separate paired t tests were 
performed to compare training and dual-task perfor-
mance. Here, two-tailed tests were used, because not all 
the differences had the same signs. None of the accu-
racy changes was statistically reliable. Accuracy in the 
disjunctive- rule condition decreased by 1.3% [t(13)  
1.65, n.s.], accuracy in the information-integration con-
dition decreased by 2.9% [t(5)  1.64, n.s.], and accu-
racy in the simple-1D rule condition increased by 0.7% 
[t(10)  1.02, n.s.]. These more fine-grained analyses 
suggest no clear interference effects of the dual-task ma-
nipulation. Hence, it can be concluded that the dual task 
did not interfere with categorization performance in any 
condition. These results differ from those in Waldron and 
Ashby (2001), who found a highly significant interfer-
ence in a rule-based condition.

RTs. Figure 7B shows the mean median correct RTs 
for automatic performance and during the dual-task 
session. A condition (3, between subjects) session 
(automaticity vs. dual task, within subjects) ANOVA 
was performed on group- averaged correct median RTs. 
The effect of session reached statistical significance 
[F(1,28)  37.84, p  .001]. The correct median RTs in-
creased from 494 msec (automaticity) to 684 msec (dual 
task). Neither the condition factor [F(2,28)  0.14, n.s.; 
power  1] nor its interaction with session [F(2,28)  
1.67, n.s.; power  1] reached statistical significance. 
RTs were not analyzed in any of the previous dual-task 
category-learning studies.

Model-based analyses. The percentages of partici-
pants whose responses were best described by a model 
that assumed a decision strategy of the optimal type are 
shown in Table 2. As can be seen, there was no propensity 
for participants to change their response strategy during 
the dual-task session. The responses of all participants in 
the information-integration and disjunctive-rule condi-
tions were best fit by a model that assumed a strategy of 
the optimal type. For the simple-1D rule condition, the 
responses of 2 participants were better fit by a nonoptimal 
decision-bound model—one was best fit by a model that 
assumed a conjunction rule, and another by a model that 
assumed information integration. Again, a closer inspec-
tion showed that in each one of these cases, these more 
complex models emulated a 1D model.
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median correct response times (RTs) for automatic categoriza-
tion performance and during the dual-task session. The error 
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Shiffrin & Schneider, 1977). Previous research showed 
that switching the location of the response keys early in 
training has no effect on rule-based categorization perfor-
mance (Ashby et al., 2003; Maddox et al., 2004; Maddox 
et al., 2010), and that although there is an initial interfer-
ence in information-integration tasks, participants show 
significant recovery after a few hundred trials of practice 
with the new response locations (Maddox et al., 2010). 
Experiment 2 showed that both of these effects disap-
pear with overtraining; that is, after extensive practice, 
switching the response keys interferes with rule-based and 
information-integration performance. In both cases, there 
is almost no recovery from this switch, even after 600 tri-
als of practice.

Experiment 3 included a dual-task manipulation. The 
results showed that the numerical Stroop task did not in-
terfere with categorization accuracy in any of the condi-
tions (see Figure 7A). This contrasts sharply with results 
from early performance, where a number of studies have 
shown that a dual task requiring executive attention and 
working memory strongly interferes with rule-based but 
not with information-integration categorization perfor-
mance (Waldron & Ashby, 2001; Zeithamova & Maddox, 
2006). The absence of dual-task interference has been 
used as a criterion to assess the presence of automaticity in 
previous research (efficiency; Moors & de Houwer, 2006; 
Schneider & Shiffrin, 1977; Shiffrin & Schneider, 1977).

Theoretical Implications
The data presented in this article have important impli-

cations for the development of theories of automaticity in 
categorization. The main finding is that the initial quan-
titative and qualitative differences between rule-based 
and information- integration categorization that have 
been observed in many studies (for a review, see Ashby 
& Maddox, 2005) are reduced after overtraining. This is 
consistent with a theory assuming separate rule-based 
and information-integration learning systems but a com-
mon “automatic” processing mode.

Hélie and Ashby (2009) recently proposed a model of 
rule maintenance and application. In the new model, rule 
application initially relies on rule maintenance in work-
ing memory, which is eventually replaced by associative 
processing (i.e., a direct stimulus response association). 
The Hélie and Ashby model readily predicts the absence 
of an initial button-switch interference in rule-based cate-
gorization (because rule application is controlled by work-
ing memory) and the presence of a button-switch interfer-
ence after the development of automaticity (because of 
the stimulus response associative processing). Also, be-
cause the numerical Stroop task occupies working mem-
ory, the model predicts the initial presence of dual-task 
interference and its disappearance after the development 
of automaticity. In the Hélie and Ashby model, working 
memory is required only for early rule application.

Ashby, Ennis, and Spiering (2007) proposed a compu-
tational model of automaticity for information-integration 
categorization tasks. The SPEED model suggests that 
information- integration categorization is a procedural 
process and that the stimulus response association be-

categorization training. The numerical Stroop task did not 
produce interference in any condition. This conclusion 
was supported by model-based analyses, which showed no 
change in response strategy and no additional perceptual/
criterial noise. This result contrasts sharply with results 
obtained with untrained participants in rule-based tasks 
(Waldron & Ashby, 2001; Zeithamova & Maddox, 2006). 
As in Experiment 2, the behavioral dissociation of dual-
task interference found between information-integration 
and rule-based categorization disappeared after automa-
ticity had developed.

GENERAL DISCUSSION

This article presents results from three experiments 
that explored the effects of overtraining on categorization 
performance. A major goal was to determine whether the 
qualitative differences known to occur during the early 
learning and performance of rule-based and information-
integration category structures persist as these categoriza-
tion judgments become automatic. A secondary goal was 
to test whether several popular automaticity criteria are 
equally valid for behaviors that were initially learned via 
declarative versus procedural memory systems. Experi-
ment 1 showed that, consistent with previous results (e.g., 
Ashby & Maddox, 2005; Maddox & Ashby, 2004), par-
ticipants displayed behavioral differences during the ini-
tial training sessions, depending on whether they learned 
rule-based or information-integration categories. Even so, 
after the third session, almost no significant differences 
could be discerned among any of these groups. More spe-
cifically, all groups showed similar accuracy levels and 
similar RTs (see Figure 2), and the performance of all par-
ticipants in every condition was best described by a model 
emulating an optimal decision strategy (see Table 1). The 
only exception was found in distance-to-bound analyses, 
which suggested that participants in the simple-1D rule 
condition improved less than did participants in the other 
two conditions on stimuli close to the category boundary. 
This result suggests that participants learn more difficult 
stimuli only if absolutely necessary (Simon, 1972). To-
gether, all these results show that quantitative behavioral 
differences between information- integration and rule-
based categorization can be eliminated with overtraining.

Experiments 2 and 3 focused on previously re-
ported behavioral dissociations between rule-based and 
information- integration categorization performance. 
Experiment 2 showed that switching the location of the 
response keys after more than 10,000 trials of practice 
produced interference in all conditions (on both accuracy 
and RT), and that there was almost no recovery from this 
interference over the course of 600 trials (see Figure 6). 
Model-based analyses suggested that this interference 
was not the result of a strategy shift but instead was due 
to an increase in the estimated perceptual/criterial noise 
(see Table 2 and Figure 3B). Interference stemming from 
switching the location of the response keys suggests a lack 
of control (or inflexibility) of response production, which 
has been used as a criterion for assessing automaticity in 
past research (Logan, 1988; Moors & de Houwer, 2006; 
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resistance to recovery in a visual search task. After 2,100 
trials of practice, a change of target mapping in the consis-
tent mapping condition produced interference that lasted 
for roughly 2,500 trials. Together, all these results sug-
gest that the duration of interference due to a button (or 
stimulus mapping) switch increases with the duration of 
preswitch training. Hence, the duration of the interference 
or the rate of recovery can be a good indicator of the extent 
of behavioral automaticity. Further research is needed to 
evaluate the generality of this conjecture.

Enduring behavioral inflexibility provides some insight 
into the nature of the interference in Ashby and colleagues’ 
models (Ashby et al., 2007; Hélie & Ashby, 2009). Because 
the interference was only partial (i.e., the performance 
was better than that of untrained participants), the data 
suggest that the participants did not revert to their initial 
processing strategy; it therefore appears that interference 
results from a partially unsuccessful attempt at controlling 
the automatic processing. This can be done by modify-
ing the stimulus component of the associative processing 
responsible for automatic behavior (e.g., making it more 
specific to take context into consideration). Tentatively, 
stronger associations (resulting from more training trials) 
might be harder to modify than weaker associations. More 
work is needed to fully understand the nature of interfer-
ence following the development of automaticity.

Unfortunately, there does not appear to be a similarly 
straightforward way to augment the efficiency criterion. 
Experiment 3 found that a dual task did not interfere with 
any of our tasks. One problem is that several studies have 
reported that this same dual task interferes only minimally 
with initial information-integration learning (Waldron & 
Ashby, 2001; Zeithamova & Maddox, 2006). Thus, the 
absence of a dual-task interference could mean either that 
the behavior has become automatic or that the behavior 
is mediated by procedural memory. This conclusion as-
sumes that the dual task requires working memory and ex-
ecutive attention. It is possible that a dual task that instead 
depends primarily on procedural memory might interfere 
with initial information-integration learning. However, 
this is a difficult hypothesis to test, because most clas-
sic procedural memory tasks include a motor component 
that would make it difficult for participants to respond to 
the categorization stimulus (e.g., mirror tracing). Clearly, 
more work is needed on this problem.

Future Work
This article presents a detailed study of the development 

of automaticity in categorization. The presentation of the 
results was purposefully made atheoretical, since the data 
themselves present a challenge for proponents of existing 
and future theories of automaticity. Future work should 
be devoted to a detailed exploration of how existing theo-
ries of automaticity can account for the data, as well as 
the (possible) development of new detailed theories that 
can simultaneously account for the learning differences 
and similarities in automatic performance reported herein. 
Also, it is likely that the results presented here are depen-
dent on the memory systems involved in the categoriza-
tion task; other tasks involving the same memory systems 

comes more direct (i.e., less flexible) after extensive train-
ing. The reliance on procedural and associative processing 
readily predicts the presence of button-switch interference 
and the absence of dual-task interference (because work-
ing memory is not used). Together, the Hélie and Ashby 
model and the SPEED model might allow for a natural 
explanation of automaticity in categorization.

The convergence of performance in the three conditions 
can also be explained by Logan’s (1988, 1992) instance 
theory of automaticity. According to Logan, algorithms 
that can achieve the task compete (race) with a single-
step memory retrieval process to provide a response on 
each trial. Each category structure might be processed 
by a different algorithm, which would explain the perfor-
mance differences early in training (when the response 
is algorithm driven). However, the responses become 
memory- driven after extensive practice, and memory re-
trieval would be similar regardless of category structure 
(because the stimuli were the same). Note that respond-
ing gradually becomes more stimulus specific with both 
Logan’s memory retrieval explanation and Ashby and col-
leagues’ associative processing explanation; hence, only 
learned material is automatized. This suggests that stimuli 
that have not been learned (e.g., the stimuli close to the 
boundary in the simple-1D rule condition) are not autom-
atized. This could partially explain the recovery found in 
this condition in Experiment 2.

The results in this article also provide an initial opportu-
nity to expand the use of some classical behavioral criteria 
of automaticity to tasks that depend on multiple memory 
systems. Experiments 2 and 3 focused on two features of 
automaticity—namely, behavioral inflexibility and effi-
ciency (Moors & de Houwer, 2006; Shiffrin & Schnei der, 
1977). Our results suggest that both features hold, regard-
less of whether the behavior is initially learned by declara-
tive or procedural memory systems. Even so, earlier results 
suggest that neither feature by itself is sufficient to distin-
guish automatic from controlled processes. For instance, 
information-integration data from Ashby et al. (2003) and 
Waldron and Ashby (2001) displayed behavioral inflexibil-
ity (e.g., button-switch interference) and efficiency (e.g., 
the absence of dual-task interference) after minimal train-
ing. These features were observed even though the partici-
pants’ performance had clearly not reached asymptote and 
was not the result of single-step memory retrieval.

The results of Experiment 2 suggest that behavioral in-
flexibility could be improved as a criterion for establishing 
automaticity if it were augmented with resistance to recov-
ery (e.g., so that it becomes enduring behavioral inflex-
ibility). For instance, Maddox et al. (2010) trained their 
participants for 300 trials before the button switch and 
found significant recovery after 300 button-switch trials. 
In Experiment 2, participants were trained for more than 
10,000 trials before the button switch, and most partici-
pants did not show any sign of recovery after 600 button-
switch trials. Thus, with information-integration tasks, the 
presence of a button-switch interference does not change 
with overtraining, but the recovery from this interference 
slows considerably as participants become more and more 
practiced. Shiffrin and Schneider (1977) reported a similar 
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NOTES

1. As another example, Nosofsky (1986) reported the results of an exper-
iment in which each participant completed many thousands of trials. Even 
so, there were only 2 participants, each of whom completed five separate 
tasks (one identification, and four different categorization). In each catego-

should, therefore, show similar effects. Finally, more work 
is needed to link these findings with computational mod-
eling as well as with neurological findings.
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where xi is the mean of group i, x is the grand mean, ni is the number of 
participants in group i, k is the number of groups, s2

i is the variance of 
group i, and mi is the number of data used to calculate s2

i.
6. All RT analyses described in this article were also performed on 

mean correct RTs. The results of the ANOVAs on mean correct RTs were 
the same as the results of the ANOVAs on median correct RTs, except 
when mentioned otherwise. Only the analyses on median correct RTs 
are reported throughout.

7. Sessions 4 and 10 were also excluded from the ANOVA, because 
they were “scanning” sessions in all three conditions (and are not shown 
in Figure 2B).

8. It should be noted that decision-bound models are used here for de-
scriptive purposes only; no claim is made as to whether the participants 
are using decision bounds or other categorization strategies.

9. Which, coincidentally, roughly corresponds to the Euclidean dis-
tance between the nearest exemplars in contrasting categories in Figure 1 
(i.e., 6 units in the 100 100 space).

10. Distances were binned by calculating the Euclidean distance 
between the optimal boundary and each stimulus in the 100 100 
space (from Figure 1). The resulting distances were divided by 10 and 
rounded up.

11. This is the only analysis where the mean correct RTs gave a slightly 
different result than the median correct RTs. For mean correct RTs, the 
interaction was statistically significant [F(2,29)  4.57, p  .05]. The 
significant interaction suggests that the slowest automatic performance 
(i.e., information-integration) suffered the most interference (239 msec), 
and that the fastest automatic performance (i.e., simple-1D) suffered the 
least interference (64 msec; with the disjunctive-rule condition lying in 
the middle with 154 msec).

12. Overall, the fixation point/crosshair stayed on the display for 
1,500 msec, as in Experiments 1 and 2.

rization task, Nosofsky’s participants had about 1/3 as much training as in 
our Experiment 1, and Nosofsky focused only on asymptotic accuracy.

2. In the animal learning literature, automatic behaviors are often 
called habits.

3. In Ashby et al. (2003) and Waldron and Ashby (2001), each stimu-
lus was seen only once in each session. Hence, it is very unlikely that the 
stimuli were memorized and that performance resulted from single-step 
memory retrieval after one session of training.

4. For sessions in the fMRI scanner, the feedback was visual (because 
of the noise in the magnet). A green check mark was used on correct 
trials, a red X was used on incorrect trials, and a black dot was used on 
trials that took too much time. (It was not possible to use an incorrect re-
sponse key in the scanner.) Visual feedback in the scanner was displayed 
for 2,000 msec.

5. For an F test, the effect size is

2
2

2
m ,

where 2
m is the variance of the group means and 2 is the error variance 

(Hélie, 2007). The precision of the measures was taken into consider-
ation for power calculation. Hence,
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APPENDIX

Here, we briefly describe the decision-bound models. For more details, see Maddox and Ashby (1993).

Rule-Based Models
Three models assume that the observers use an explicit rule-based strategy.
The one-dimensional model (1D). This model assumes that the observer sets a criterion on a single percep-

tual dimension and then makes an explicit decision about the level of the stimulus on that dimension (Ashby & 
Gott, 1988). It has two free parameters: a decision criterion on the relevant perceptual dimension and the vari-
ance of internal (perceptual and criterial) noise. This strategy is optimal with the simple-1D category structure 
(top-right panel in Figure 1).

The conjunction model. Another possible rule-based strategy is that the observer uses a conjunction rule 
in which s/he makes separate decisions about the levels on the two dimensions and then selects a response on 
the basis of the outcomes of these two decisions. Conjunction models have three parameters (i.e., two decisions 
criteria on separate dimensions and internal noise).

The interval-based one-dimensional classifier (IB1D). A rule-based strategy can also be used to create a 
disconnected response region in the stimulus space. The interval-based one-dimensional classifier includes two 
decision criteria on the same dimension and the variance of internal noise. Hence, the IB1D has three param-
eters. This strategy is optimal with the disjunctive-rule category structure (top-left panel in Figure 1).

Information-Integration Models
The general linear classifier (GLC). This model assumes that the decision bound between each pair of 

categories is linear. This produces an information-integration decision strategy, because it requires linear inte-
gration of frequency and orientation. The GLC has three parameters (slope and intercept of the linear bound and 
the variance of the internal noise). This strategy is optimal with the information-integration category structure 
used in this article (bottom-left panel in Figure 1).

The general quadratic classifier. A natural extension of the GLC is to assume that the observer uses a qua-
dratic, rather than a linear, decision bound. This model also produces an information-integration strategy, but 
the integration of frequency and orientation is nonlinear. The general quadratic classifier has six free parameters 
(five describing the form of the decision bound and the variance of the internal noise).

Guessing Models
Guessing models simply assume that the participant blindly responds A on proportion p of the trials without 

using the stimulus information (and responds B on proportion 1  p of the trials). Here, we fit two versions of 
the guessing model. The pure guessing model assumes that p  .5 and has no free parameters. In contrast, the 
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biased guessing model allows p to vary between zero and one and has one free parameter. As implied by its 
name, the biased guessing model can be used to account for any prior response bias that a participant can have 
before the beginning of the experiment.

Model Fitting
Each of these models was fit separately to the data for every observer in each session. The model parameters 

were estimated using maximum likelihood (Ashby, 1992; Hélie, 2006), and the goodness-of-fit statistic was

BIC  r ln(N )  2 ln(L),

where N is the sample size, r is the number of free parameters, and L is the likelihood of the model given the 
data (Hélie, 2006; Schwarz, 1978). The BIC statistic penalizes a model for bad fit and for extra free parameters. 
To find the best model among a set of competitors, one simply computes a BIC value for each model and then 
chooses the model with the smallest BIC.

(Manuscript received September 16, 2009; 
revision accepted for publication January 15, 2010.)
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