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Abstract
Conducting a power analysis can be challenging for researchers who plan to analyze their data using structural equation models
(SEMs), particularly when Monte Carlo methods are used to obtain power. In this tutorial, we explain how power calculations
without Monte Carlo methods for the χ2 test and the RMSEA tests of (not-)close fit can be conducted using the Shiny app
“power4SEM”. power4SEM facilitates power calculations for SEM using two methods that are not computationally intensive
and that focus on model fit instead of the statistical significance of (functions of) parameters. These are the method proposed by
Satorra and Saris (Psychometrika 50(1), 83–90, 1985) for power calculations of the likelihood ratio test, and that described by
MacCallum, Browne, and Sugawara (PsycholMethods 1(2) 130–149, 1996) for RMSEA-based power calculations.We illustrate
the use of power4SEM with examples of power analyses for path models, factor models, and a latent growth model.

Keywords Power analysis . Structural equation modeling . Root mean square error of approximation . Likelihood ratio test .

Sample size planning

Before any quantitative study is conducted, one should eval-
uate how large the sample should be for the study to be ade-
quately powered (Cohen, 1992). That is, there should be a fair
chance to reject the null hypothesis (H0) if it is indeed false.
When statistical power is too low to detect a meaningful ef-
fect, a study would essentially waste data on type II errors.
When the power is approximately 100%, a researcher may be
wasting often expensive resources because the effect of inter-
est could have been detected with a smaller sample size. To
prevent under- or overpowered studies, researchers need to
calculate the minimum sample size required to sufficiently
minimize the chance of type II errors before they start
collecting data. For simple analyses such as t tests or simple

regression models, there are user-friendly tools to calculate
statistical power, such as G*Power (Erdfelder, Faul &
Buchner, 1996) or the R (R Core Team, 2019) package pwr
(Champely, 2018). However, for researchers who intend to
apply structural equation modeling to test their hypotheses,
conducting a power analysis is more challenging.

There are three ways to calculate power for structural equa-
tion models (SEMs). One is by performing a Monte Carlo
simulation study (Muthén &Muthén, 2002). This is a compu-
tationally intensive method in which a researcher generates a
large number of data sets from a population model corre-
sponding to an alternative hypothesis (H1), fits the model cor-
responding to the null hypothesis (H0) to all generated data
sets, and calculates the proportion of data sets for which the
statistic or parameter of interest (e.g. χ2 value, regression co-
efficient, or indirect effect) is statistically significant. This
method provides an empirical estimate of power. For instruc-
tions on how to conduct such a study, see the articles by
Muthén and Muthén (2002), Schoemann, Boulton, and
Short (2017), or Wang and Rhemtulla (2020). In this tutorial
we focus on two methods that are not computationally inten-
sive and that focus on model fit instead of the statistical sig-
nificance of (functions of) parameters: the method introduced
by Satorra and Saris (1985) for power calculations of the like-
lihood ratio test (LRT), and that by MacCallum, Browne, and
Sugawara (1996) for the calculation of root mean square error
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of approximation (RMSEA)-based power. Because the origi-
nal articles in which the methods are described are relatively
technical, applying the methods may not be straightforward
for researchers outside the field of statistics. In this paper we
aim to provide a more accessible explanation of power calcu-
lations for SEM, using the two abovementioned methods, for
researchers who need to conduct power analyses but who are
less familiar with the technical side of such analyses. We
provide power4SEM, which is an interactive Shiny app, avail-
able through (https://sjak.shinyapps.io/power4SEM/)1, that
can be used to calculate both the power for a given sample
size, model, and significance level, and the necessary sample
size to obtain a desired power level given the model and
significance level.

Our aim is to provide software and a tutorial directly targeted
to computationally non-intensive power calculations for SEM.
We are not the first to try to make SEM-based power calcula-
tions more accessible. Miles (2003) is a useful resource for an
introduction to the theory behind the Satorra and Saris (1985)
method. Zhang and Yuan (2018) developedWebPower, which
is a general software tool for statistical power analysis, includ-
ing power analyses for SEM. They provide a manual for the
software and a technical report for themethods used.Moshagen
and Erdfelder’s work (2016) led to the development of an R
package and Shiny app called semPower (Moshagen 2018),
which focuses on “compromise power.” Compromise power
involves balancing the risk of committing type I and type II
errors. However, the app can also be used to do the power
analyses as described in this tutorial.

In comparison with the work by Zhang and Yuan (2018)
and Moshagen and Erdfelder (2016), our tutorial is targeted at
an audience with slightly less statistical knowledge. What our
work adds to Miles (2003) is the discussion of RMSEA-based
power analysis, and the addition of the software with instruc-
tions and examples of how to apply it. This tutorial and soft-
ware therefore supplement the existing literature on SEM-
based power analysis. With multiple recourses available, re-
searchers can benefit from the perspectives of different au-
thors explaining the same technique, or choose the one that
best fits their needs.

This tutorial is aimed at users with a basic knowledge of
SEM, who are able to fit models in the R (R Core Team, 2019)
package lavaan (Rosseel, 2012)2. In the next section, we
briefly introduce the concept of statistical power. We then
provide a nontechnical explanation of the method by Satorra
and Saris (1985), which we will call χ2-based power, followed
by example analyses in power4SEM. Next, we explain the
method by MacCallum et al. (1996), which we will call

RMSEA-based power, again followed by example analyses
in power4SEM.

Statistical power

A statistical test can be applied to obtain the probability (the p
value) of finding a test statistic at least as extreme as the one
from the given sample, given that the H0 about the population
value is true. When the p value is smaller than the chosen
significance level (e.g., α = .05), then H0 will be rejected in
favor of the alternative hypothesis (H1). When the H0 is not
rejected while H0 is actually false (so H1 is true), one is mak-
ing a type II error, and the probability of doing so is denoted
by β. It is therefore important to know the probability of
rejecting a false H0, which is the power (1 − β) of a statistical
test. Table 1 presents an overview of the relations between
truth/falseness of the null hypothesis and outcomes of the test.

In applied hypothesis testing, H1 represents a range of
values. For example, H1 may be that two means are unequal,
or that a regression coefficient is larger than zero. However, to
evaluate the power of a statistical test, researchers have to
determine a specific value for H1. In the simple example of a
t test, one may calculate the power to reject the H0 of zero
difference between two group means, given that in the popu-
lation there is a mean difference of 0.5 standard deviations
between groups (i.e., the standardized effect size; Cohen’s
d = 0.50, representing a “medium-sized” effect3). For a given
sample size (N) and significance level, the larger the differ-
ence between the null-hypothesized effect size and the effect
size under H1, the larger the statistical power. So, for example,
the statistical power to detect an effect size of d = 0.80
(representing a “large” effect) will be larger than the statistical
power to detect an effect size of d = 0.50. The statistical power
also increases with increasing sample size and with increasing
significance level (but the latter also increases the probability
of making a type I error). Note that in this example, the hy-
potheses refer to only one parameter: the difference between
two group means. In SEM, many parameters are involved
(e.g. direct effects, factor loadings, residual variances), mak-
ing power calculations more complex.

χ2-based power

Satorra and Saris (1985) developed a method for estimating
the power of the LRT (i.e., a SEM’s χ2 fit statistic) in SEM.

1 The R code needed to run the app locally is available from https://osf.io/
39gx8/
2 For more information on how to specify models in lavaan see http://
lavaan.ugent.be/tutorial/.

3 We used the conventional values proposed by Cohen (1988, 1992) to repre-
sent small, medium, and large effect sizes throughout this tutorial. However, as
Cohen also cautioned, values that should qualify as small, medium, or large
effects depend on the research domain. For example, appropriate values are
found to be smaller than Cohen’s values in organizational psychology (Bosco
et al. 2015) and social psychology (Lovakov & Agadullina, 2017).
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This method can be used to estimate the power to detect over-
all misspecification of SEMs, and to estimate the power to
detect misspecification due to specific parameters. We will
first discuss the power related to overall fit of the model, and
then explain how the same procedure can be used for power
calculations related to specific parameters.

Theoretical background: Power to reject overall exact
model fit

At the population level, the variables in a SEMmay be related
to each other. The population covariance matrix between the
variables is denoted by Σpopulation. A researcher who plans to
use SEM specifies a model that presumably explains the var-
iances and covariances between the variables. The parameters
in that model (for example, factor loadings, factor (co)vari-
ances, and residual variances in a factor model) lead to a so-
called model-implied covariance matrix, denoted byΣmodel. If
the researcher specified the correct model, then the specified
model indeed gives rise to the population covariance matrix,
and Σpopulation =Σmodel. If the specified model is not exactly
correct, there is another model leading toΣpopulation, resulting
in a discrepancy between Σmodel and Σpopulation, so that
Σpopulation ≠ Σmodel. The discrepancy between Σpopulation

and Σmodel is denoted by F0.
The χ2 test of overall fit in SEM tests whether the hypoth-

esizedmodel fits exactly in the population—that is, the H0 that
the population discrepancy F0 is zero. When H0 is true, the
expected value of the χ2 statistic equals the expected sampling
error, which is equal to the degrees of freedom (df) of a model.
The df of a model can be calculated by counting the number of
observed statistics p (the number of unique elements in the
observed covariance matrix and mean vector of the variables)
and the number of model parameters to be estimated, q. The
model’s df is then equal to df = p − q.Calculation of a model’s
degrees of freedom will be illustrated in the example analysis
in the next section.

Fitting the hypothesized model to data leads to an observed
χ2 statistic. The p value associated with the observed χ2 sta-
tistic and the model’s df gives the probability of observing a
sample discrepancy at least as large as the observed one, when

any discrepancy is solely due to random sampling error.When
this probability is smaller than the nominal α level, H0 is
rejected, implying that the model does not hold exactly in
the population. In other words, we conclude that the model
is misspecified.

The H0 thus represents the case that the model fits the data
exactly. When this is true, the expected χ2 value will be equal
to the expected sampling error, i.e. with E() denoting the ex-
pected value: E(χ2) = E(sampling error) = df. The H1 is that
the model does not fit the data exactly. When H1 is true but
the (misspecified) H0 model is fit to the data, the test statistic
also asymptotically follows a χ2 distribution (assuming mul-
tivariate normality and limited misfit), but with a larger mean
and larger sampling variance. As a result, the distribution of
the χ2 statistic under H1 lies more to the right, and is more
spread out, than the distribution of the χ2 statistic under H0.
The expected χ2 value under H1 consists not only of discrep-
ancies due to sampling error, but also discrepancies due to
misspecification, i.e., E(χ2) = E(sampling error) +
E(misspecification error). The expected misspecification error
is called the noncentrality parameter, denoted by λ. Therefore,
under H1, the expected χ

2 statistic equals df + λ. The exact size
of λ depends on the population discrepancy F0 and the sample
size (see Moshagen & Erdfelder, 2016):

λ ¼ n� F0; ð1Þ
where n = N under normal-theory4 maximum likelihood
estimation.

To summarize, under H0 the test statistic follows a central
χ2 distribution, with an expected value (i.e., mean) equal to its
df parameter, and sampling variance equal to 2 × df. Under H1,
the test statistic follows a χ2 distribution that is noncentral,
with a mean equal to its df plus its noncentrality parameter λ—
a nonnegative number that quantifies the degree of
misspecification error—and sampling variance equal to 2df
+ 4λ (i.e., greater misspecification leads to more variability
between replications of a study). Table 2 provides an overview
of the hypotheses, models, and distributions associated with
H0 and H1.

Figure 1 shows a central χ2 distribution with df = 5 in red,
and a noncentral χ2 distribution with df = 5 and λ = 10 in blue.
The noncentral χ2 distribution is the χ2 distribution associated
with H1. The vertical line indicates the critical χ

2 value under
the central χ2 distribution that is associated with the H0 with
α = .05. The H0 will only be rejected if the observed χ

2 value is
larger than the critical value. The blue area under the H1 curve
then shows the statistical power: the probability of rejecting

4 In analyses without mean structure, it is also possible to use Wishart likeli-
hood, in which case n =N − G, where G is the number of groups. Wishart
likelihood is the default in older SEM software (LISREL and EQS), but not in
lavaan, which our Shiny app uses.

Table 1 Overview of the relations between truth/falseness of the null
hypothesis and outcomes of the test

True hypothesis

H0 H1

Outcome
of
statistical
test

H0 rejected Type I error
(α)

Power
(1 −β)

H0 not rejected Correct inference
(1 −α)

Type II error
(β)
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H0 given that H1 is true. This probability is easy to obtain if
one knows the two distributions of the test statistic under H0

and H1. The most challenging part of computing χ2-based
power in SEM is obtaining the noncentrality parameter asso-
ciated with a specific H1.

Satorra and Saris (1985) showed that in order to obtain the
noncentrality parameter for the χ2 test in SEM, one can fit the
H0 model to covariances (and means) implied by the popula-
tion model under H1. Because the model is fit to population
moments, the sampling error is eliminated from the model
(E(sampling error) = 0). All resulting discrepancies therefore
arise from misspecification error, so that

E χ2
� � ¼ 0þ E misspecification errorð Þ ¼ 0þ λ: ð2Þ

The χ2 value obtained in this way is therefore the
noncentrality parameter λ under H1.

Practically, a researcher performing a SEM power analysis
first has to formulate the H0 model. This is the model that the
researcher thinks is the correct model. Next, the researcher has
to think about a situation in which the H0 model should be
rejected. That is, they have to define what H1 actually repre-
sents, by formulating a model with one or more additional
parameters that are not zero. They then calculate the statistical

power to reject the H0 model when H1 is true. Although con-
ceptually it is easier to think about the H0 model first, and then
define how the H0 model might be wrong (or what
misspecification one wants to be able to detect with sufficient
power), in order to perform power calculations, one has to
specify the H1 model first, followed by the H0 model.

The following steps are used to obtain the statistical power
(Saris & Satorra, 1993):

Step 1: Calculate the model-implied population covari-
ance matrix under the alternative-hypothesized model
(Model H1). The calculated covariance matrix is treated
as population data in Step 2.
Step 2: Fit the null-hypothesized model (Model H0) to
the model-implied covariance matrix from Step 1.
Step 3: Use the χ2 value from Step 2 as the noncentrality
parameter λ to calculate the statistical power.

We will illustrate these three steps with power analyses for
the overall fit of a path model.

Example 1: Calculating the power of the χ2 test for
overall fit of a path model

As an example, we use the path model that was analyzed by
Ma et al. (2020). It evaluates the effects of role conflict, role
ambiguity, coworker support, and family support on three
outcomes: emotional exhaustion (EE), depersonalization
(DP), and decreased personal accomplishment (DPA). This
path model is shown in Fig. 2, using the thinner black lines
(so the thicker gray lines should be ignored for now). The
model contains seven variances, four covariances, and 10 re-
gression coefficients to be estimated, leading to a total of 21
parameters. The number of unique elements in the observed
covariance matrix equals (7 × 8)/2 = 28. Thus, df = 28 − 21 =
7. With a significance level of α = .05, exact fit of this model
would be rejected if the χ2 value obtained were larger than the

Fig. 1 A central χ2 distribution with df = 5 (dashed red line), and a noncentral χ2 distribution with df = 5 and λ = 10 (blue solid line). The shaded area
corresponds to the statistical power with α = 0.05

Table 2 Overview of the hypotheses, models, and distributions
associated with H0 and H1 of the overall χ

2 test

H0 H1

Hypothesis Σpopulation =Σmodel Σpopulation ≠ Σmodel

Model leading to Σpopulation Model H0 Model H1

Value of population
discrepancy F0

F0 = 0 F0 > 0

Distribution of test statistic Central χ2 Noncentral χ2

Mean of test statistic df df + λ
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critical value of a χ2 distribution with df = 7 and α = .05,
which equals χ2 = 14.067. In order to calculate the power of
the overall χ2 test, we follow the three steps as outlined above.

Step 1 - We have to specify an H1 model that contains
more parameters than the model to be tested (H0). We
have to specify the population values for all parameters
in the model, including the parameters that are also in-
cluded in the model under H0. For this example we use
the standardized parameter estimates obtained by Ma
et al. (2019) as population values for the parameters that
are also included in the H0 model. Figure 2 shows the
path model with the smaller black lines representing these
population parameters. In general, it may be convenient
to specify the parameter values in standardized form, so
one can base values on the guidelines regarding small,
medium, and large effects in the appropriate research do-
main. Next, we have to specify the parameters that are
present under H1, but not under H0. These parameters
define exactly how the model under H0 is misspecified.
As there are many options for defining H1, it may require
quite some deliberation to decide what the exact
misspecification should entail. In principle, we would
advise researchers to think about the parameters that
should really lead to rejection of H0 if they are not zero.
Regarding the value of these parameters, our recommen-
dation would be to choose the minimum value that would
be of interest. In our example, we added two small effects
to the model associated with H1: an effect of .10 for role
ambiguity on EE, and an effect of .10 for family support
on EE. In addition, we added a covariance between the
residuals of family support and coworker support of .30.
Note that specifying only these three extra parameters
implies that we chose population values of zero for the
rest of the parameters, such as the effect of role conflict on
DPA. Figure 2 shows the population values of all

parameters under H1, with the extra parameters indicated
in thicker gray lines. The goal of step 1 of the procedure is
to generate population data based on H1. If one wants to
generate data in R, one can for example specify the pop-
ulation values in designated matrices and use matrix al-
gebra to do so. Appendix 1 provides the R code to calcu-
late the model-implied covariance matrix with matrix al-
gebra for this example. However, the power4SEM app
lets users specify the model in lavaan syntax with all
fixed parameters, and will do these calculations behind
the scenes using functions from the semTools package
(Jorgensen, Pornprasertmanit, Schoemann & Rosseel,
2020). Below, we show the lavaan syntax that specifies
our example model under H1.

All parameters are fixed at the (chosen) population values
using the multiplication operator. For example, the population
direct effect of RoleAmbi on CoSup is specified as being
−.253 using “CoSup ~ -.253*RoleAmbi.” In the app, a
graphical display of the model will appear at the right side of
the dialog box. This figure is created using the semPlot

Fig. 2 Path model for the example power calculations, with population
values for H0 based on empirical results and three extra parameters for H1.
The variables and population values stem from Ma et al. (2020).
RoleConf = role conflict, RoleAmbi = role ambiguity, CoSup = coworker

support, FamSup = family support, EE = emotional exhaustion, DP = de-
personalization, DPA = decreased personal accomplishment. Population
values for (residual) variances are not depicted: RoleConf: 1, RoleAmbi:
1 CoSup: .936, FamSup: .853, EE: .887, DP: .812, DPA: .789
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package (Epskamp, 2019). Although the outline of these fig-
ures may not always be optimal, especially with larger
models, this graphical display can be used to check whether
all population values are indeed specified as fixed parameters.
If themodel syntax still contains unspecified/free direct effects
or (co)variances, these will be displayed in red.

Note that we started by using the standardized parameter
values as reported by Ma et al., to ensure meaningful interpre-
tation of the size of parameters However, by adding the extra
parameters in the H1 model, we also changed two population
variances of the variables. As a result, the standardized values
of the parameters may also change, compromising the inter-
pretation of specified parameter values according to a stan-
dardized metric. If one clicks the button that says “View H1
values” in the app, a pop-up window appears that contains the
model-implied covariance matrix of the H1 model. The vari-
ances of the variables are on the diagonal of the covariance
matrix. In a path model where all variances equal 1, all pa-
rameters are in the standardized metric. In a factor model, the
same is true when the common factors are scaled by fixing the

factor variances to 1. If the model-implied variances are not
equal to 1, users may want to change some population values
(for example by increasing or decreasing residual variances)
such that the model-implied variances are 1. Users can inspect
the table containing the values of the H1 parameters in the
standardized metric in the pop-up window. In our example,
the model-implied variances of EE and DP are no longer ex-
actly 1, but are close enough to ensure that the difference
between the standardized values of the added direct effects
and the specified values are within rounding error.

Step 2 - The next step is to specify the model under H0. In
our app, the lower input box on the left can be used to add
the lavaan syntax specifying the model to be tested. A
graphical display of the model to be analyzed is shown
next to the input box. Since this model contains free pa-
rameters, this figure contains red parameters. Figures 3
and 4 show a screenshot of the app with the input boxes
and the graphical displays of our example model. If we
hit the green button that says “Calculate NCP,”

Fig. 3 Screenshot of the calculation of the noncentrality parameter in power4SEM
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power4SEM will fit the H0 model to the population data
generated under H1, with the specified intended sample
size, using the function SSpower() from the
semTools package (Jorgensen et al., 2020). The
resulting χ2 value is the noncentrality parameter that we
need to calculate the power. In our example, the
noncentrality parameter equals 26.638.
Step 3 - In the second tab of the app, we can calculate the
power of the χ2 test using the obtained noncentrality pa-
rameter. By filling in the noncentrality parameter (λ =
26.638), df = 7, and α = .05, the two associated χ2 distri-
butions and the calculated power will appear at the right
side. In this example, we see that the power to reject the
overall fit of the path model, given the chosen H1 model,
equals .982. At the lower left part of this tab, the mini-
mum sample size that would be needed to obtain a spe-
cific power level can be calculated. In this example, a
sample of 109 would be needed to obtain a power of .80.

Theoretical background: Power of the χ2 difference
test

The χ2 statistic can be used to evaluate the overall fit of a
model, but it can also be used to test the difference between
two nested models with the χ2 difference (Δχ2) test. For ex-
ample, one may use the χ2 difference test to test whether
removing a certain direct effect in a path model leads to sig-
nificantly worse model fit. A specific model (Model A) is said
to be nested within a less restricted model (Model B) with
more parameters (i.e., fewer df) than Model A, if Model A
can be derived fromModel B by introducing restrictions only.
For example, path model A is nested within path model B by

fixing one of the path coefficients in Model B to zero, or by
constraining two path coefficients in path model B to be equal
to each other. This is known as parameter nesting: any two
models are nested when the free parameters in the more re-
strictive model are a subset of the free parameters in the less
restrictive model.

The H0 for the χ
2 difference test is that the difference be-

tween the population discrepancy values for the two models
(Model A and Model B) is zero: ΔF0 = F0_A − F0_B = 0, or in
other words that the twomodels fit equally well. The H1 is that
the models do not fit equally well, or specifically, that the
more restricted Model A fits worse than Model B, so that
F0_A − F0_B > 0, or equivalently, ΔF0 > 0.

As the test statistic of each of the nested models follows a
χ2 distribution, the difference in χ2 values between two nested
models is also χ2 distributed:

Δχ2 ¼ χA
2−χB

2; ð3Þ
with degrees of freedom for the difference equal to the differ-
ence in degrees of freedom for the two models:

Δdf ¼ df A−df B: ð4Þ

When Model A and Model B fit equally well in the popu-
lation (soH0 is true), then themodels have the same F0, leading
to the same noncentrality parameter λ, such that Δλ = λA
− λB = 0. In this case, the Δχ2 between the models asymptoti-
cally follows a central χ2 distribution. Under H1, so when the
two models do not fit equally well, the noncentrality parameter
of the most restricted model will be larger, such that Δλ = λA −
λB > 0. In this case, under the assumption that neither Model A

Fig. 4 Screenshot of the calculation of the statistical power of the χ2 test in power4SEM
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nor Model B is badly misspecified, the Δχ2 between the
models asymptotically follows a noncentral χ2 distribution
with noncentrality parameter Δλ (Steiger et al. 1985). See
Table 3 for an overview of the hypotheses, models, and distri-
butions associated with H0 and H1 of the χ

2 difference test.
The difference in model fit thus can be tested by comparing

Δχ2 to a χ2 distribution with Δdf, which is called the χ2

difference test. If Δχ2 is significant, the H0 of equal fit for
both models is rejected, so the less restrictive Model B should
be retained. If Δχ2 is not significant, the fit of the restricted
model (Model A) is not significantly worse than the fit of the
unrestricted model (Model B), so the H0 of equal fit cannot be
rejected. In this case, the more restricted model (Model A)
may be preferred based on the parsimony principle.

Note that because all overidentified models (so all models
with df > 0) are nested in the saturated model (the model with
df = 0), the overall (χ2) test is actually a special case of the
Δχ2 test. That is, when Model B is the saturated model, χB

2

and dfB are zero, so that Δχ2 and Δdf are the same as the
overall χ2 and df for Model A.

Power calculations for the χ2 difference test are straightfor-
ward once the noncentrality parameter Δλ is obtained.
Obtaining Δλ involves generating population data from the

less restricted Model B. When the more restricted Model A
is fitted to these data, the model will not fit perfectly and will
yield a nonzero discrepancy value F0_A. FittingModel B to the
population data will lead to a perfect fit, so F0_B = 0 and λB = 0.
Therefore, the noncentrality parameter for the χ2 difference test
equals the noncentrality parameter from Model A: Δλ = λA −
0 = λA (MacCallum, Browne & Cai, 2006). In practice, we do
not need to fit Model B to the data to verify that it will fit
perfectly. Therefore, power calculations for the χ2 difference
test involve the same three steps as before, with the H1 model
(used to generate population data) being the Model B with the
parameter(s) to be tested, and the H0 model (model to be fitted
to the population data) being the more restricted Model A.

Example 2: Calculating the power of the Δχ2 test

Suppose that a researcher wants to know the statistical power
of the Δχ2 test to detect a direct effect of Y1 on Y5 in the
model from Fig. 5. The two nested models that would be
compared with a Δχ2 test in this case are models with and
without estimating the direct effect.

Step 1 - The first step is to calculate the model-implied
covariance matrix from the model with the direct effect,
i.e. the model under H1. Similar to the earlier examples,
one has to choose population values for each parameter in
the model. In this example we chose medium-sized stan-
dardized values for the direct effects that are also included
in the model under H0. We will calculate the power to
detect a small standardized effect of .10 of Y1 onY5. The
(residual) variances are chosen in such a way that the total
variances of all variables are 1, so that the specified ef-
fects are equal to the standardized effects.

Step 1 consists of calculating the model-implied co-
variance matrix based on this model. We entered the

Table 3 Overview of the hypotheses, models, and distributions
associated with H0 and H1 of the χ

2 difference test between two nested
models Model A (most restrictive) and Model B (least restrictive)

H0 H1

Hypothesis Δ F0 = 0 Δ F0 > 0

Fit of Model A and Model B Model A =Model
B

Model A ≠ Model
B

Value of noncentrality
parameter

Δλ = 0 Δλ > 0

Distribution of test statistic Central χ2 Noncentral χ2

Mean of test statistic Δdf Δdf + Δλ

Fig. 5 Path model with population values for power calculations in Example 2
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following code to the first textbox (but see Appendix 2
for the calculation of the model-implied covariance
matrix using matrix algebra). Note that paths that are
omitted from the specification are path coefficients
that are assumed zero in the population, such as the
effect of Variable 1 on Variable 4. One can view the
model-implied covariance matrix by clicking the but-
ton “View H1 values.” The resulting model is graph-
ically shown to the right of the syntax, where all pa-
rameters are displayed in black because they are fixed.

Step 2 - Next, the model under H0, which is the model
without the direct effect, is fitted to the covariance matrix
from Step 1. In the app, the H0 model can be specified in
the textbox at the lower left side using lavaan syntax5.
The H0 model is the model that does not contain the
parameter(s) of interest. So, in our example, the effect
of Y1 on Y5 is fixed at zero. Fitting this model to the
population data with a certain sample size provides a χ2

value, which equals the noncentrality parameter. In this
example, the app fits the H0 model with N = 200, which
results in a noncentrality parameter of λ = 4.007. The
noncentrality parameter is the misfit that arises because
the direct effect of Y1 on Y5 is .10 in the population, but
it is not included in model H0.
Step 3 - The power of the Δχ2 test is calculated by
inserting the values of the noncentrality parameter
(4.007), the degrees of freedom of the test (1; the differ-
ence in the number of parameters between model H0 and
model H1) and the sample size (200) in the second tab of
the app. The result then shows that under the specified
conditions, the power to detect the effect of Y1 on Y5
equals 52%, which is quite low. With the button at the
lower left of this page in the app, one can calculate how
large the sample should be to reach different power
levels. In this example, one would need a sample size of
391 to obtain 80% power for the Δχ2 test.

By calculating the power of theΔ χ2 test, we anticipated a
situation in which one has an a priori hypothesis about this
specific effect, and therefore would test the significance of this
specific effect with the Δ χ2 test with df = 1. Note that the
same noncentrality parameter can be used to calculate the
power to reject the overall χ2 test for exact fit of model H0,
because the overall χ2 test is actually a Δχ2 test against the
saturated model. In this example the H0 model is correctly
specified except for one direct effect, because the other param-
eters that are assumed to be zero in H0 are indeed zero in the
population. Still, the overall χ2 test would have df = 5, because
it is a test relating to all parameters that are not included in the
model, regardless of how many of those parameters are non-
zero in the population. In this example, the overall χ2 test with
df = 5 would have 29.2% power to reject exact fit.

RMSEA-based power

In addition to the χ2 statistic, researchers often use the RMSEA
to evaluate overall model fit. The RMSEA assumes that the
specified model will only be an approximation to reality, and
thus some specification error should be allowed. An advantage
of using RMSEA-based power calculations is that instead of
choosing specific values for all parameters in the H1 model,
one only needs to choose the RMSEA values related to H0 and
H1. Before introducing power calculations with the RMSEA,
we briefly explain how the RMSEA is used in practice.

Theoretical background: RMSEA-based power

The RMSEA and tests of (not-)close fit The rationale behind the
RMSEA measure of fit is that the H0 of exact fit (i.e.,
Σpopulation =Σmodel) is invariably false in practical situations.

5 To limit the number of figures, we do not provide screenshots of the app for
all examples in the article itself, but screenshots for Examples 2–4 can be
found in Appendix C. The appendix also contains an additional example of
a power calculation for a latent growth model.

1393Behav Res (2021) 53:1385–1406



Therefore, the hypothesis of exact fit is replaced by the hy-
pothesis of approximate fit:

Σpopulation≈Σmodel;

where it is assumed that the specified model will only be an
approximation to reality, and thus some specification error
should be allowed such that Σmodel will never be exactly equal
toΣpopulation. The RMSEA is ameasure of approximate fit, and is
computed based on the sample size, the noncentrality parameter
(χ2 − df), and the df of themodel. In the formula for the RMSEA,
the noncentrality parameter is divided by df × n, which makes it
less sensitive to changes in sample size, and produces a measure
of misspecification per df. It therefore also takes model parsimo-
ny into account. The point estimate of the RMSEA is calculated
as follows:

RMSEA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max χ2−dfð Þ; 0ð Þ

df nð Þ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max bλ; 0

� �
df nð Þ

vuut ð5Þ

Note that if χ2 < df, then the RMSEA is set to zero. An
RMSEA of zero indicates that the model fits at least as well
as would be expected if the H0 of exact fit were true. However,
in evaluating the value of the RMSEA, we accept some error
of approximation. Browne and Cudeck (1992) suggested that
an RMSEA < .05 indicates “close fit,” an RMSEA between
.05 and .08 is thought to indicate a “reasonable error of ap-
proximation,” and models with an RMSEA above .10 have
poor fit. MacCallum, Browne, and Sugawara (1996) suggested
that an RMSEA between .08 and .10 indicates mediocre fit.

A confidence interval (CI) can be computed for RMSEA.
Ideally, the lower value of the 90% CI includes or is very near
zero and the upper value is not very large, i.e., less than .08.
Browne andCudeck (1992) proposed the “test of close fit”where
it is tested whether RMSEA is significantly greater than .05 (i.e.,
the H0 is that if we fit our model to the population covariance
matrix, RMSEA≤ .05).We conduct the test by constructing aCI,
using a confidence level that is 2 ×α (so that we can conduct a
one-sided test of our directional hypothesis using the CI). When
the lower confidence limit is larger than .05, we can reject the H0

of close fit (because the entire CI is above the .05 threshold).
MacCallum et al. (1996) extended this idea by “flipping”H0 (i.e.,
that the population RMSEA ≥ .05), which they called a “test of
not-close fit.”When the upper confidence limit of the RMSEA is
smaller than .05, we can reject theH0 of not-close fit (because the
entire CI is below the .05 threshold). The reason that testing not-
close fit may be more intuitive is explained byMacCallum et al.:

The test of not-close fit provides for more appropriate roles
for the null and alternative hypotheses in the context of
model evaluation. When specifying and evaluating a

model, our research hypothesis would normally be that
the model provides a good approximation to the real-
world phenomena under study. As is often pointed out in
introductory treatments of hypothesis testing (e.g.,
Champion 1981), the research hypothesis is most appro-
priately represented by the alternative hypothesis, so that
rejection of the null hypothesis implies support for the
research hypothesis. If the research hypothesis corresponds
to the null hypothesis, then it becomes very difficult to
support the research hypothesis, as is the case in usual tests
of model fit in CSM [Covariance Structure Modeling].
(MacCallum et al., 1996, p. 136)

Figure 6 shows an overview of the RMSEA values and
associated interpretations, with some example confidence in-
tervals. The first confidence interval lies completely outside
the gray area associated with “close fit,” and therefore the
hypothesis of close fit will be rejected. The hypothesis of
not-close fit will not be rejected, because the confidence inter-
val contains values associated with not-close fit. The second
confidence interval falls completely in the area associatedwith
“close fit.” Therefore, the hypothesis of not-close fit would be
rejected, and the hypothesis of close fit would not be rejected.
The last confidence interval contains values associated with
close fit as well as values associated with not-close fit, so
neither hypothesis would be rejected.

Power analysis for the RMSEA test of close fit

MacCallum, Browne, and Sugawara (1996) describe a meth-
od to calculate power for SEM, based on the RMSEA. The
RMSEA index follows a noncentral χ2 distribution. The ad-
vantage of power calculations using the RMSEA is that the
noncentrality parameter (λ) of the χ2 distribution can be de-
rived from the RMSEA by rewriting Eq. 5:

λ ¼ RMSEA2 � df nð Þ ð6Þ

Therefore, the noncentral χ2 distributions for H0 and H1

can be easily derived when we use the RMSEA values asso-
ciated with “close approximate fit” or “reasonable approxi-
mate fit,” making power calculations based on the RMSEA
relatively simple. MacCallum et al. suggested calculating the
power to reject close fit (H0: RMSEA ≤ .05) when in the
population there is not close fit (H1: RMSEA = .08).
Figure 7 shows the noncentral χ2 distributions related to these
two RMSEA values with df = 10 and N = 200. The vertical
dotted line shows the point for which larger observed
RMSEA values are associated with χ2 values that would lead
to rejection of the hypothesis of close fit. The shaded area then
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shows the area under H1, which represents the statistical
power.

Example 3: Power to reject close fit of a longitudinal
factor model

Suppose one wishes to evaluate the power to reject close fit of
the longitudinal factor model without means from Fig. 8. This
model consists of one factor with four indicators, measured at
two time points. With eight observed variables, the number of
observed unique variances and covariances is (8 × 9)/2 = 36.
In a model without any constrained parameters over time,
there will be 21 freely estimated parameters (when scaling
by fixing the factor variances: eight residual variances, four
residual covariances, eight factor loadings, and one factor co-
variance). Thus, for this model, df = 36 − 21 = 15.

We can use the third tab in the app to calculate the power to
reject close fit if in the population there is not-close fit (see the
screenshots in Appendix 3). In the left panel we insert the
RMSEA value associated with H0 (RMSEA = 0.05) and the
RMSEA value associated with H1 (RMSEA = 0.08). We also

fill in the degrees of freedom of the model (15), the intended
sample size (N = 200), and the α level (0.05). Then, to the
right side of the panel we see the two distributions related to
H0 and H1, and the associated power. In this example, the
power to reject close fit when in reality there is not-close fit
equals 0.378. A power of .378 is generally unacceptable, so
based on this result researchers would try to increase the sam-
ple to obtain more power. The app indicates that for 0.80
power, one would need a sample size of 551.

Power analysis for the RMSEA test of not-close
fit

In SEM analysis, we hope that the entire confidence interval is
below the RMSEA= .05 threshold. It would therefore make
more sense to calculate the power to reject a hypothesis of not-
close fit in favor of a hypothesis of close fit. When calculating
the power of a test of not-close fit, the H0 will be that the
model does not fit closely (RMSEA ≥ 0.05), and the H1 model
will be closely fit (for which MacCallum et al. suggest using

Fig. 7 Noncentral χ2 distributions related to RMSEAs of 0.05 and 0.08 with df = 10 and N = 200

Fig. 6 RMSEA values and associated interpretations, with some example confidence intervals and outcome of a test of close or not-close fit
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an RMSEA value of .01). Figure 9 shows the noncentral χ2

distributions related to these two RMSEA values with df = 10
and N = 200. Note that the distribution associated with H0 is
identical to Fig. 7, but for this test the distribution associated
with H1, and the area associated with the statistical power, lies
on the left side of the H0 distribution. The interpretation of the
power of 0.124 is as follows: if in the population the RMSEA
is .01, then the probability of correctly rejecting an H0 of
RMSEA ≥ .05 equals .124.

Example 4: Power to reject not-close fit of a full SEM
model

Suppose that one wants to evaluate the power to reject not-close
fit of the full SEM model (without means) in Fig. 10. With 15
observed variables, there are 15 × 16/2 = 120 unique observed
statistics. The model contains 25 freely estimated parameters,
being 15 residual variances of indicators, 10 factor loadings
(one factor loading per factor will be fixed for scaling), five

(residual) factor variances, one factor covariance, and four direct
effects. Therefore, this model has 120 − 25 = 95 df.

For the test of not-close fit, we assume a population
RMSEA of .01, and we test the H0 of RMSEA ≥ .05 with an
intended sample size of 200 and an alpha level of .05. The
resulting power to reject not-close fit equals 0.854. The app
indicates that for a power of 0.80, we would need a sample
size of 183.

χ2 -based power with H1 based on the RMSEA

As explained before, the χ2 test of exact fit assumes that the
population value of the RMSEA is zero. This means that one
can also calculate the power to reject exact fit using the tab for
RMSEA-based power, by setting the RMSEA for H0 to zero.
The RMSEA value for H1 then defines the noncentrality pa-
rameter. An advantage of this procedure is that the power of
the overall χ2 test can be evaluated without specifying popu-
lation values for all parameters. To illustrate the relation

Fig. 8 The longitudinal factor model from Example 3

Fig. 9 Noncentral χ2 distributions related to RMSEAs of 0.05 and 0.01 with df = 10 and N = 200
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between χ2-based power and RMSEA-based power with H0

representing zero misspecification in the population, consider
the following two examples (where we use α = 0.05
throughout).

The power to reject an H0 RMSEA of zero when the H1

RMSEA is .08 with df = 7 and N = 200 equals 0.555. For an
RMSEA of .08, the noncentrality parameter λ equals 8.9152,
obtained by plugging in 0.08 in Eq. 6. Using this λ in the
second tab of the app (again using N = 200 and df = 7) shows
a power of 0.555 to reject the χ2 test of overall exact fit. So, for
the null hypothesis of exact fit (i.e., RMSEA equals zero),
power calculations using the χ2 procedure or the RMSEA
procedure actually coincide. The difference between the two
procedures lies in the way the alternative hypothesis is de-
fined: using an RMSEAvalue or by defining specific popula-
tion values for the H1 model.

The relation can also be shown the other way around. In
Example 1, using a model with df= 7 and N = 200, the power
to reject overall exact fit, obtained by defining the H1 model
explicitly, was .982. The noncentrality parameter (λ) for this
power analysis was 26.638. We can calculate the RMSEAvalue
using this noncentrality parameter using the formula for the
RMSEA provided in Eq. 4. The RMSEA value based on this
noncentrality parameter is sqrt(26.638/(7 × 199)) = 0.138. Using
H0 = 0 and H1 = 0.138 for the RMSEA-based power calculation
again leads to statistical power of .982 to reject exact fit.

Discussion

In this article we presented a tutorial and app to facilitate
power analyses for researchers who plan to use SEM to ana-
lyze their data. When designing the app, we aimed at finding a
good balance between providing enough functionality to be
able to do power analyses, and keeping the app user-friendly
and intuitive in use. There are situations in which researchers

should use software other than power4SEM for power analy-
ses. These situations are explained below. After that, we dis-
cuss some practical issues regarding power analysis for SEM.

Features that are not implemented
in power4SEM

Power4SEM only allows the evaluation of single group
models. For power analyses with multi-group models, we ad-
vise researchers to use the SSpower() function in the pack-
age semTools directly. In this case the function needs a list of
population means, a list of population covariances, and vector
with sample sizes for each group, and fits the provided H0

model to the provided moments for each group. The help page
of the function (accessible using the command ?SSpower in
R) shows an example of a multi-group SEM power analysis.

The Satorra–Saris method is not suitable for power calcula-
tions regarding specific indirect effects. If one wants to obtain
the power to detect a nonzero indirect effect in SEM, one
should use a Monte Carlo analysis (Zhang, 2014).
Schoemann, Boulton, and Short (2017) created a Shiny app to
facilitate power analyses for some specific mediation models.
Alternatively, one can use WebPower (Zhang & Yuan, 2018)
to conduct power analysis for any mediation model.

Our app does not facilitate power analyses for multilevel
SEM. We are not aware of software that is specifically de-
signed to do power calculations for multilevel SEM; therefore,
to our knowledge, the only option for determining the neces-
sary sample size in such a scenario would be to conduct a
Monte Carlo simulation study. The article by Muthén and
Muthén (2002) may be useful for setting up such a study.

The R functions behind the app use normal theory maximum
likelihood estimation, and therefore assume multivariate normal-
ity. If one expects to fit SEMs on non-normal data, one should
also conduct a Monte Carlo analysis. WebPower (Zhang &

Fig. 10 The full SEM model from Example 4
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Yuan, 2018) allows one to draw a path diagram for the H0model
and the H1 model, define the population levels of skewness and
kurtosis, and run theMonte Carlo analysis to determine the pow-
er or necessary sample size.

The implemented method fits the null-hypothesized model to
a covariance matrix to obtain the noncentrality parameter of the
χ2 distribution pertaining to H1. Fitting a model to a covariance
matrix assumes a covariance matrix that is calculated from com-
plete data. If researchers expect missing data, they should fit the
model on the raw data. Therefore, in order to calculate the power
for missing data scenarios, population raw data corresponding to
H1 are needed. Power calculations for the LRTwith data missing
completely at random (MCAR) are described by Dolan, van der
Sluis, andGrasman (2005). Such population data can be obtained
using transformation methods that are described by Bollen and
Stine (1993). The difficulty with missing data is that population
data need to be generated separately for each group of cases with
a different missing data pattern. If there are five variables, there
may be 25 = 32 patterns of missingness, each associated with a
specific portion of the sample. The sample size of a specific
group may be smaller than the number of variables, possibly
leading to nonpositive definite covariance matrices in such
groups. Moreover, this method is only applicable for data
MCAR, which may not be realistic. Therefore, we chose not to
implement this method in our app. Researchers who wish to
evaluate power for specific missing data patterns may conduct
a Monte Carlo simulation instead. Alternatively, a future analyt-
ical method might be developed based on similar methods used
byRhemtulla, Savalei, and Little (2016), which (like the Satorra–
Saris method) would be less computationally demanding than a
Monte Carlo simulation.

Practical recommendations for power
analysis using power4SEM

Specifying sensible population values

Specifying the values for the population parameters in the H1

model for power calculations of χ2 tests is probably the hardest
part of conducting such a power analysis. A researcher needs to
have a feeling for what parameter values are typical for themodel
and variables under consideration, as well as a clear idea about
the number and size of the parameters that should quantify the
model misspecification. The general recommendation is that re-
searchers should use all available relevant information to make
informed estimates of the parameter values (MacCallum et al.,
2006). The available relevant information can for example come
from earlier research involving the same (or similar) variables
and models, from the analysis of pilot data, or from strong theo-
retical hypotheses. This implies that χ2-based power analysis is
most practical for research domains that include a large body of
prior research on the topic. In situations where it is impossible to

come up with sensible population values for the H1 model, one
could quantify the misspecification using an RMSEA value, as
shown in the last example of this paper.

Determining which power analysis is needed

Naturally, we recommend conducting a power analysis on the
analysis that one will use to answer the research question. To
evaluate the exact fit of a hypothesized model, a power anal-
ysis concerning the overall χ2 test is appropriate. Similarly, to
test a hypothesis about the difference between two models, a
power analysis for the χ2 difference test will be informative.
χ2-based power results based on explicit choices about param-
eter values associated with H1 are attractive because interpre-
tation of the resulting statistical power is quite intuitive. For
example, the power estimate of .70 in Example 1 is directly
related to the detection of two direct effects and a covariance
that were specified as additional parameters in the H1 model.
In Example 2, we calculated the power to detect a standard-
ized direct effect of .10 in a specific path model. When H1 is
not formulated explicitly, but the misfit is based on an
RMSEA value, conducting power analyses is easier, but in-
terpretation of the result is less intuitive because the specified
misfit is less targeted. For example, obtaining 80% power to
detect an overall misspecification as defined by an RMSEA of
.08 is less intuitive than obtaining 80% power to detect a
specific direct effect of .10.

A drawback of the χ2 test of exact fit is that the H0 of exact
fit will invariably be false in practice, because no model is a
perfect representation of reality (Box, 1976). With samples
large enough to have large power, models that are only wrong
to an irrelevant degree will be rejected by the χ2 test.
Therefore, many researchers focus on approximate fit indices.

We recommend that if a researcher intends to use the RMSEA
to judge model fit, then RMSEA-based power calculation is
needed. Given the relative simplicity of the procedure, we rec-
ommend power analyses for both the test for close fit and the test
for not-close fit. When researchers intend to use different
RMSEA values for the evaluation of model fit from those used
in this tutorial, then the RMSEA values associated with H0 and
H1 can be changed accordingly. For example, when a researcher
is satisfied with the model when the RMSEA value is below .08
instead of .05, they could do a power analysis where the RMSEA
for H0 represents bad fit (say, RMSEA= .12), and RMSEA for
H1 equals .08. This leads to a power estimate of the rejection of
bad fit when in reality there is mediocre fit.

Conclusion

Conducting a power analysis for SEM is not easy. With this
tutorial and with the Shiny app power4SEM, we try to facil-
itate the statistical part of conducting a power analysis.
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However, probably the most difficult aspect of doing a power
analysis is that it requires careful thinking about the hypothe-
ses to test, the parameter values one expects, and the questions
that need to be answered. Although this may seem to be a
drawback of power analysis, it is of course a good thing in
itself if researchers think about their analysis plan carefully
before collecting data. Moreover, a carefully conducted power
analysis will prevent wasting expensive resources on under-
or overpowered studies.

Open practices statement The R code needed to run the app locally is
available from https://osf.io/39gx8/
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Appendix 1

Calculating the model-implied population covariance matrix
under H1 of Example 1

Appendix 2

Calculating the model-implied population covariance matrix
under H1 of Example 2
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Appendix 3

Screenshots of power4SEM for all examples and one addi-
tional example

Example 2: Calculating the power of the Δχ2 test

Obtaining the noncentrality parameter:
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Calculating power and minimum sample size:

Example 3: Power to reject close fit of a longitudinal
factor model
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Example 4: Power to reject not-close fit of a full SEM
model
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Extra example: Calculating the power of the χ2 test for
overall fit for a latent growth model

Suppose one is interested in calculating the power of the
overall χ2 test for a linear growth curve model on four
measurements. This model has five degrees of freedom,
so with an α-level of 0.05, exact fit of the H0 model
would be rejected if the observed χ2 were larger than
11.071. The H1 model is defined as a specific just-
identified model, where one again has to choose values
for all population parameters (but one can still assume
population values of zero for parameters). In this example
we specify small nonzero residual covariances between
adjacent time points and zero covariance between nonad-
jacent time points. In addition, we specify nonzero inter-
cepts at year 3 and year 4, leading to nonlinear growth
instead of linear growth. The lavaan syntax for the H1
model is then:

Step 1 – The figure below shows the part of the Shiny app
where we entered the lavaan syntax for the H1 model in the
upper left textbox. The app then provides a graphical display
of the model next to the syntax. In the graphical display, all
fixed parameters are represented in black, and all free param-
eters are in red. In the population model under H1, all param-
eters should be specified as fixed values, so all parameters in
the graph should be black.

Step 2 - The textbox at the lower left part contains the
syntax for the H0 model, which contains free parameters. In
this case, the estimated parameters are the growth factor
means, variances, and covariance, and the residual variances
of the indicators. The graphical display at the right side shows
the freely estimated parameters in red. Note that the residual
covariances that were specified to be present in the population
(under H1) are not estimated in the model under H0.
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In this example the noncentrality parameter based on N =
200 is 11.52. Given this noncentrality parameter, we know
that under H1, the test statistic follows a noncentral χ

2 distri-
bution, with df = 5 and λ = 11.52.

Step 3 - The power is found by determining the area
under the H1 distribution that lies to the right of the crit-

i-

cal value under the H0 distribution. For a central χ2 dis-
tribution with df = 5 and α = .05, the critical value is
11.07. In the second tab of the app, one can provide all
necessary information on the left side, and then one will
see the resulting power and the associated χ2 distributions
on the right side.
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In this example, the power to reject exact fit is .749. The
app also lets researchers calculate the minimum sample size
needed to obtain a desired power level. In this example, we
would need N = 223 obtain 0.80 power.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included
in the article's Creative Commons licence, unless indicated otherwise in a
credit line to the material. If material is not included in the article's
Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.
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