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Abstract Finger tracking has the potential to expand hap-
tic research and applications, as eye tracking has done in
vision research. In research applications, it is desirable to
know the bias and variance associated with a finger-tracking
method. However, assessing the bias and variance of a
deterministic method is not straightforward. Multiple mea-
surements of the same finger position data will not produce
different results, implying zero variance. Here, we present
a method of assessing deterministic finger-tracking vari-
ance and bias through comparison to a non-deterministic
measure. A proof-of-concept is presented using a video-
based finger-tracking algorithm developed for the specific
purpose of tracking participant fingers during a psycholog-
ical research study. The algorithm uses ridge detection on
videos of the participant’s hand, and estimates the location
of the right index fingertip. The algorithm was evaluated
using data from four participants, who explored tactile maps
using only their right index finger and all right-hand fingers.
The algorithm identified the index fingertip in 99.78 % of
one-finger video frames and 97.55 % of five-finger video
frames. Although the algorithm produced slightly biased
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and more dispersed estimates relative to a human coder,
these differences (x = 0.08 cm, y = 0.04 cm) and standard
deviations (σx = 0.16 cm, σy = 0.21 cm) were small com-
pared to the size of a fingertip (1.5–2.0 cm). Some example
finger-tracking results are provided where corrections are
made using the bias and variance estimates.
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Introduction

Finger tracking is analogous to eye tracking, which is
readily used for visual-perception research (Yarbus, 1967;
Hayhoe & Ballard, 2005), medical diagnosis (Green et al.,
2009), and human–computer interaction (Jacob & Karn,
2003). However, there has been less emphasis on finger
tracking than eye tracking, although it could find similar
applications. This is particularly true in psychology, where
eye tracking was first used in the late 19th and early 20th
centuries to suggest the cognitive processes that support
reading (results first reported in Huey, 1908). In contrast,
finger tracking has only gained attention in recent decades.
This may be due to the greater complexity associated with
tracking relatively far-moving fingers compared to deter-
mining the orientation of a stationary eyeball. Alternatively,
vision has long been the dominant sense of study in psychol-
ogy, naturally resulting in fewer devices and less research
on finger tracking than eye tracking.

A notable exception is in the field of human–computer
interaction, where the objective is to allow humans to
interact with computers through naturalistic hand gestures.
Gesture analysis typically consists of two sequential phases:
first, relevant image features are extracted and, second, these
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image features are used to compute gesture-recognition
model parameters (Pavlovic et al., 1997). It is within the
first stage of image-feature extraction that a gesture recog-
nition system may involve fingertip detection and tracking,
the methods of which may be extended to finger tracking
for psychological research. Fingertip detection and track-
ing is accomplished through either invasive or noninvasive
means, similar to eye tracking devices, which track gaze
using either non-invasive optical methods or invasive con-
tact lens and eye-coil approaches (Kimmel et al., 2012).
Invasive finger tracking methods ask the participant to wear
electromagnetic or colored markers on the hand or fingers,
which greatly simplifies signal/image processing through
approaches such as hue segmentation (Pavlovic et al., 1997;
Kim & Fellner, 2004; Wang & Popović, 2009). However,
gloves or thimbles that cover the fingers will impeded haptic
perception (Klatzky et al., 1993), making these approaches
undesirable in perceptual research.

Non-invasive optical systems acquire and process video
images of the hand. Fingertip positions can be detected
using template matching, which examines the correlation
between sections of a video image and a fingertip tem-
plate, a detailed or simplified picture of a fingertip or finger
(Zabulis et al., 2009). Alternatively, characteristic features
of the finger may be used for detection. For example, when
reading braille on a clear sheet, the finger may be pressed
against the smooth braille sheet with enough pressure that
it appears white when recorded from below (Breidegard,
2007); or the changing curvature of a finger’s outline, from
low to high to low, can be used as a heuristic for iden-
tifying fingertips (Maggioni, 1995). This latter method is
closest to our approach, which uses the fact that fingertips
are associated with high “ridge” values.

For finger tracking in the context of psychological
research, it is important to establish the finger-tracking
method’s bias and variance. Establishing that the bias of a
finger-tracking method is low or near zero ensures that the
method produces valid estimates that correspond well with
“true” fingertip positions. Low variance is also desirable, as
it indicates that real changes in finger position will be appar-
ent in the estimated finger positions, and not obscured by
random estimation error. The bias and variance of the finger
tracking method can be used in interpreting finger-tracking
results, either directly by making numerical corrections to
results, e.g., by correcting location to offset a known bias, or
in tempering the scientist’s interpretation. The precision of
two finger-tracking methods may also be compared directly
based on their bias and variance.

Gesture recognition systems do not report the bias and
variance of finger position estimation, which is an interme-
diate result in the algorithm, and are instead appropriately
evaluated based on the accuracy of the final outputted
gestures. Finger tracking in psychological research often

falls back to reporting the variance associated with the track-
ing apparatus or sensors (van Polanen et al., 2011; Farinella
& Rustico, 2008). However, the variance of the sensor can
only be considered a lower-bound of the fingertip esti-
mation variance. For example, in a scheme that tracks a
marker that is taped to the fingernail, the marker’s position
is a poor estimate of the fingertip’s lateral position when
the finger curls or rotates. In such an event, the marker
is no longer above the fingertip, illustrating that the vari-
ance and bias of the fingertip estimate is not strictly that
of the sensor’s ability to track the marker when not on a
finger.

Rather than report measurements of the sensor, some
finger-tracking reports simply do not address the char-
acteristics of their fingertip estimates’ bias and variance
(e.g., Breidegard, 2007). This is not unreasonable, consid-
ering that it is not obvious how to establish the variance
of a deterministic finger-tracking method. The straightfor-
ward approach to measuring variance would be to run the
method/algorithm on the same finger position data multiple
times. However, being deterministic, there will be no vari-
ance in the estimates across multiple passes on the same
data. In the current report, we overcome this issue by com-
paring the results of a deterministic algorithm to that of a
non-deterministic one with calculable variance. Our algo-
rithm tracks finger position over a two-dimensional tactile
stimulus. This is analogous to the psychological study of
eye movements over two-dimensional visual stimuli pre-
sented on a computer screen. Measurements were compared
to those from a human coder, but any non-deterministic
method could be used for comparison.

The main contributions of this report include the follow-
ing. First, we describe the development of a finger-tracking
algorithm using ridge detection, tailored to finger track-
ing in psychological research. This algorithm is easily
implemented using low-cost materials, and is thoroughly
described so that other researchers may find it easy to imple-
ment. Second, we measure the bias and variance of this
algorithm. Our approach is to compare results from the
deterministic algorithm to that with a known bias and vari-
ance, either known a priori or measurable if the approach
is non-deterministic. Third, we provide several psycho-
logical research applications, with preliminary results, to
illustrate the use of finger tracking with measured bias and
variance.

Methods

Data collection

Our finger-tracking algorithm using ridge detection was
evaluated by applying it to videos collected during a
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psychological study. The data were from four right-handed
sighted participants (two female, ages 26, 32, 35, and
38). Each participant provided informed consent prior to
enrolling in the study, and the protocol was approved by
University of California, Berkeley’s Committee for Protec-
tion of Human Subjects.

The stimuli we used for developing our finger-tracking
algorithm were selected from the Tactile-Map Open Stim-
ulus Set (TMOSS; Morash et al., 2012a, 2012b). These
stimuli are tactile maps, which are similar to line-based
visual maps, but features have been raised and/or textured
to make them accessible to touch. These maps are designed
to the same specifications as tactile maps for users who
are blind. Also, these stimuli have been tightly controlled
to make them useable in randomized psychological experi-
ments (Morash et al., 2013). The tactile maps were laser-cut
from clear acrylic. Each map was 30.5 cm × 30.5 cm in
size and represented a fictitious park, containing an inset
rough-textured area to represent a lake, raised lines to repre-
sent walking paths, and point symbols (raised-line squares,
circles, triangles, Ts, and ovals) to represent locations of
restrooms, trash cans, etc. An example stimulus can be seen
later in the results, Fig. 7.

Procedure Each participant was blindfolded and asked to
search for a landmark on 16 tactile maps. Landmarks were
clusters of symbols on a map, such as a cluster of square
symbols. The participants were trained how to recognize
map symbols and clusters before beginning the study. On
eight of the maps, the participants were allowed to use all
five fingers on their right hand. On the other eight maps,
participants were allowed to use only their right index fin-
ger, and the other fingers were taped to the palm. Collecting
data from both one- and five-finger conditions, which was
done in alternating order, allowed us to assess the per-
formance of our algorithm for extracting index fingertip

Fig. 1 Intrinsic coordinate system (w, v) defined at image points
(xi , yi)

position in both one- and five-finger applications. Although
using all five fingers may appear to be the most natural
for haptic exploration, many participants in haptics studies
will spontaneously use only their index finger (Symmons &
Richardson, 2000).

During a trial, a map was placed in front of the partic-
ipant on a clear table. The participant’s index finger was
placed in approximately the center of the map. The pace of
the study was controlled by a computer, which played audi-
tory instructions for the participant to search for a landmark,
e.g., “Please locate the cluster of squares and say ‘here’.”
The computer then played a beep, after which the participant
could begin searching the map for the landmark. Once the
participant had found the landmark, he or she said “here,”
and removed his or her hand.

As mentioned, the stimuli we used for developing our
finger-tracking algorithm were made from clear acrylic,
which provided the opportunity to video record hand move-
ments from below the stimuli, similar to previous works
on finger tracking in psychology (Millar, 1988; Breidegard,
2007). Below the clear table and tactile map a video cam-
era was positioned (Canon Vixia HF R21, with a Canon
3.28-megapixel full HD CMOS image sensor). It pointed
upwards and was focused to the depth plane of the tactile
map. The camera’s field of view was filled by the tactile
map (30.5 cm × 30.5 cm) plus some additional space on
each side (roughly 8 cm). The video camera recorded at a
1920 × 1080 resolution at 29.97 frames per second (30 Hz).
Above the table was a white shelf that provided the video a
white backdrop. The setup was the same as in Morash et al.
(2013), which contains a detailed drawing of the setup, the
only difference being a different camera model. Exploring
the tactile map stimuli did not consistently result in the
participants’ fingertips “turning white” (as in Breidegard,
2007), possibly due to visual obstruction by the raised and
textured elements on the maps or the participants did not
press down on the stimuli hard enough for their fingertips to
appear white.

Algorithm

The first step in our algorithm is to convert each frame
from red-green-blue (RGB) values to luminance values (i.e.,
grayscale images). Luminance values from a background
image with no hand are then subtracted from each frame’s
luminance values. This removes many of the stimulus fea-
tures from the frame. The subtracted image is then left-right
flipped to compensate for recording from below.

Ridge detection is applied to the subtracted and left-
right flipped image values. Ridge detection is a rota-
tionally invariant detector of light-dark-light transitions
(maximally positive), and dark-light-dark transitions (max-
imally negative). Therefore, it does not matter how the
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light-dark-light portion of the image is oriented. This
involves computing the intrinsic (w, v) coordinate system,
which is aligned to the local image gradient. The w axis
is defined parallel to the luminance gradient, in the direc-
tion of maximum luminance change. The v axis is defined
as perpendicular to the w axis, in the direction of min-
imum luminance change. These coordinates are referred
to as gauge coordinates (ter Haar Romeny, 2003, pp. 91-
136). The change in coordinate system is illustrated in
Fig. 1.

Note that in Fig. 1a, the locally defined w axes lay per-
pendicular to the contours of the hand, while the v axes are
orthogonal to the w axes, and generally follow the contours
of the hand. This is particularly apparent along the right
edge of the hand image.

Conversion from the extrinsic (x, y) coordinate sys-
tem to the intrinsic (w, v) coordinate system is defined

Fig. 2 Ridges and thresholded ridges, different σ s

by rotating the local (x, y) system at point (xi, yi) by
angle θ ,
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L is used, generally, to denote the convolution of a Gaussian
kernel g with the image f , L = g ∗ f (Lindeberg, 1998).
Subscripts of L and g denote the axes and order of differ-
entiation, i.e., Lxαyβ indicates the image convolved with a
Gaussian kernel gxαyβ (Lindeberg, 1998).

Convolving the subtracted image with a second-order
Gaussian kernel gvv reveals the “ridges” (Lindeberg, 1998).
The scale of the ridge detector Lvv = gvv ∗ f is defined
by the standard deviation (σ ) of the Gaussian kernel. Differ-
ent scales extract different image features. In other words,
if one looks for bumps about 1 to 0.5 cm sized, the fingertip
shows up (Figs. 2a & b). A larger bump is a finger (Figs. 2c
& d). A still larger bump is the hand itself (Figs. 2e & f).

The shape of a second-order Gaussian kernel is shown
in Fig. 3. Convolving this kernel with an image produces
a maximum value when the image transitions from light to
dark to light, along the local v axis, on the same scale as the
kernel. With the right scale (σ = 0.5 cm), this maximum
occurs on the fingertips.

In our implementation, transformation to gauge coordi-
nates and convolution with a second-order Gaussian kernel
were done with a single operation (ter Haar Romeny, 2013),

Lvv = L2
xLyy − 2LxLyLxy + L2

yLxx

L2
x + L2

y

(2)

Therefore, although ridge detection can be conceptualized
as two steps, transformation to gauge coordinates through
calculation of θ , followed by convolution with a second-
order Gaussian kernel, we accomplished ridge detection
with a single operation defined in Eq. 2.

Following computation of the ridge detector (Lvv), the
image was thresholded. This revealed clusters that contained
areas with high ridge values (shown as white in Figs. 2b,
d, and f). Morphological opening (erosion and dilation) was
applied using a disk structuring element to remove noise
from these clusters. This process shrunk and then grew the
clusters, removing any spurious connections between neigh-
boring clusters. The cluster closest to a predicted value of
the fingertip was selected, and its mean was taken as the
estimate of fingertip location.

Prediction played an important role in our algorithm, by
selecting values for the algorithm (the extent of thresholding
and the radius of the structuring element in morphological
opening) in a principled way. Instead of fine-tuning these
values to our specific video parameters, participant hand
size/color, lighting situation, etc., the algorithm applied
multiple values of thresholding and opening, and those that
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Fig. 3 Second-order Gaussian kernel, gvv (μ = 0, σ = 0.5 cm),
shown in one and two dimensions

produced a fingertip location estimate closest to the pre-
diction were accepted. Predicted values were based on the
linear combination (extrapolation) of estimates from the two
previous video frames (mathematically defined in Fig. 4).
In addition to being used to select algorithm values (for
thresholding and opening), the predicted location was used
to select the cluster to associate with the index fingertip,
and ignore spurious clusters or those belonging to the other
fingertips.

Sometimes morphological opening was not enough to
disconnect the fingertip cluster from clusters running along
the length of the finger. Alternatively, sometimes in five-
finger trials the clusters from the index finger and middle
finger merged. These situations were easily detected based
on the width/length ratio and the absolute width of the clus-
ter. When the cluster was much longer than wide (5 times),
it indicated that the cluster ran the length of the finger, and
should be restricted to its top section (25 % worked well). If
the cluster was wider than a finger (2 cm) it indicated that
the cluster belonged to adjacent index and middle fingers,
and should be restricted to its left section (again, 25 %).
These heuristics could be changed in future implementa-
tions, depending on the video parameters, e.g., resolution.
These values could also be chosen in the same manner that
the algorithm chose values of thresholding and opening.
The algorithm could be relatively agnostic, trying multiple
values, ultimately using whichever values produced an esti-
mated fingertip location closest to the predicted fingertip
location.

The complete algorithm using ridge detection for fin-
gertip tracking is outlined in psuedocode in Fig. 4.
We implemented this algorithm in Matlab R2013b (The
MathWorks, Inc., Natick, MA). Code is provided in the
Supplemental Materials.

Application and assessment of algorithm

The 16 videos collected from each of the four participants
yielded 26,040 one-finger video frames and 17,406 five-
finger video frames. There were fewer video frames from
five-finger trials because searching with one finger is slower
than searching with five (Morash et al., 2013). Each video
frame was processed by our algorithm, described in Fig. 4.
The estimates of fingertip position were visually checked,
and rejected if the estimate was not correctly located on
the index fingertip. Therefore, the algorithm was assessed
based on three metrics: rejection rates and, for non-rejected
fingertip position estimates, bias and variance.

To assess the bias (i.e., validity) and variance (i.e., reli-
ability) of the algorithm estimates, we manually estimated
the fingertip location for each frame. This was done twice by
the same coder, who first estimated index fingertip locations
for all frames with no feedback on the algorithm esti-
mates, and then later re-estimated locations for all frames
with no feedback on the previous manual or algorithm esti-
mates. All visual inspection and manual estimation were
completed using custom-made graphical user interfaces
in Matlab.

Each estimate of fingertip location, either from the algo-
rithm or manual estimators, was represented as the true
fingertip location plus systematic bias, specific to the esti-
mator, plus random error (3). The bias, or systematic error,
of an estimator was the mean difference between the true
fingertip location and the estimated fingertip location. That
is, bias = E(dtrue − destimate), where dtrue is a true fingertip
location and destimate is the estimated fingertip location. In
principle, we had no means to measure true fingertip loca-
tion. Some statisticians may even argue that true fingertip
position is only conceptually defined, is ill-defined, or does
not exist. Therefore, we defined the manual estimates of fin-
gertip locations to have zero bias. In other words, validity
(bias) was assessed through comparison to the human-coder
estimates.

We represented each fingertip estimate as dt = (xt , yt )
′,

where t indexed the estimates of the true fingertip location
μt in video frame t . Then,

dt,m = μt + εt,m

dt,a = μt + b + εt,a
(3)

where dt,m and dt,a were the two-dimensional (xt , yt )
′

estimates from the manual and algorithm procedures,
respectively. The algorithm’s two-dimensional bias was
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Fig. 4 Algorithm implementation in pseudocode

b = (bx, by)
′. Lastly, εt,m and εt,a were the indepen-

dent identically distributed two-dimensional errors, with
zero mean and variance–covariance matrices �m and �a ,
respectively. For brevity we will write �dm = �m =
E[(εxm, εym)′(εxm, εym)], and similarly�da = �a ,�dm,da =
�m,a .

We assumed that �m = �m1 = �m2 (for the
first and second manual estimates), and that neither these
covariance–variance matrices, nor bias, were dependent on
(x, y), i.e., the bias and variance of the estimates were not
larger in some areas of the map stimulus or video image
than others. We also assumed that �m2,m1 and �a,m1 were
both zero, i.e., due to independent εt ’s in Eq. 3 across mea-
surements, there were no correlations in errors. Systematic
error across manual estimates, which would typically be

attributed to bias, were instead taken to be accurate finger-
tip locations (because bias was assumed to be zero), which
the algorithm’s bias was measured against.

Note that the algorithm’s bias was defined as b, and the
variance–covariance matrix as �a , and these were the quan-
tities we were interested in estimating. The two manual esti-
mates provided a means to estimate these parameters. The
manual estimates were referred to as dt,m1 = (xt,m1, yt,m1)

for the first manual estimates, and dt,m2 = (xt,m2, yt,m2)

for the second manual estimates, and these were setup
in the following expressions to solve the algorithm’s
parameters.

E(da − dm1) = b

�dm2−dm1 = �m2 + �m1 − 2 × �m2,m1 = 2 × �m

�da−dm1 = �a + �m1 − 2 × �a,m1 = �a + �m

(4)

The variance–covariance relationships in Eq. 4 relied on our
assumption that �m2,m1 and �a,m1 were both zero, based on
independence of εt ’s.

We examined both estimate difference distributions,
manual-manual: dm2−dm1 and algorithm-manual: da−dm1,
for bivariate normality using the Shapiro–Wilk multivariate
normality test (Malkovich & Afifi, 1973). We also com-
puted bivariate skew and kurtosis, and compared these to
those expected from a bivariate normal distribution (Mar-
dia, 1970). Statistical tests were done using R 3.0.2 (The R
Foundation for Statistical Computing, Vienna, Austria).

Results

Rejection of algorithm estimates

For one-finger frames, 0.22 % of frames had estimates that
were deemed unacceptable by a human coder, because the
estimate was not correctly located on the index fingertip.
For the five-finger frames, 2.45 % of frames were deemed
unacceptable. These estimates were excluded from further
analyses. We were unable to detect any specific trend or
artifact that rejected frames had in common. The follow-
ing bias and variance results were calculated using pooled
estimates across all one- and five-finger trials, yielding a
sample of 43,446 frames. Prior to pooling, we did not find
any differences between one- and five-finger estimates, nor
differences between participants.

Estimate distributions

The distributions of differences between two manual esti-
mates and between algorithm and manual estimates are
shown in Fig. 5 (only one algorithm-manual distribution is
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Fig. 5 Distributions of estimate differences

shown, because the other is similar and was not used in com-
putation). The manual estimates revealed no bias (between
them), the manual-manual distribution was centered on zero
(Wilcoxon rank-sum test, x values p = 0.39, y values
p = 0.57). The algorithm estimates were biased relative to
the manual estimates, b = (0.08, 0.04) cm, which was sig-
nificantly different from zero (Wilcoxon rank-sum test, x

values p < 0.001, y values p < 0.001).
Both manual-manual and algorithm-manual distributions

appeared roughly symmetric (Fig. 5), however neither dis-
tribution was bivariate normal based on Shapiro–Wilk
multivariate normality tests (manual-manual: W = 0.98,
p < 0.001; algorithm-manual: W = 0.99, p < 0.001).
Furthermore, a multivariate test of skew and kurtosis
(Mardia, 1970) indicated a small skew in the manual-
manual differences, β1,2 = 0.02, significantly different
from zero (p < 0.001), and kurtosis β2,2 = 24.47, signif-
icantly different from normal β2,2 = 8, (p < 0.001). For
the algorithm-manual differences, skew was β1,2 = 0.26
(p < 0.001) and kurtosis was β2,2 = 14.62 (p < 0.001).
Excess kurtosis indicated that these distributions were more

Fig. 6 Marginal distributions of estimate differences

concentrated towards the mean, or more peaked, with fat-
ter tails than normal. Marginal distributions are shown
in Fig. 6.

The covariance–variance values for estimate differ-
ences are shown below, with standard errors (SEs) of the
variance and covariance estimates shown in parentheses.
SEs were estimated by nonparametric bootstrap (Monte
Carlo case resampling), with 100,000 iterations and a sam-
ple size equal to the number of frames.

�dm2−dm1 =
[
24.06 (0.45) 4.12 (0.21)

4.12 (0.21) 52.73 (0.43)

]
× 10−3 cm2

�da−dm1 =
[
37.24 (1.27) 1.50 (0.98)

1.50 (0.98) 69.38 (1.71)

]
× 10−3 cm2

Then, the following were computed using the above expres-
sions and Eq. 4, SEs shown in parentheses.

�m =
[

σ 2
xm

γxm,ym

γym,xm σ 2
ym

]

=
[
12.03 (0.32) 2.06 (0.15)

2.06 (0.15) 26.37 (0.30)

]
× 10−3 cm2

�a =
[

σ 2
xa

γxa,ya

γya,xa σ 2
ya

]

=
[
25.21 (0.29) −0.56 (0.30)

−0.56 (0.30) 43.02 (0.50)

]
× 10−3 cm2

The covariance γxa,ya = −0.56 × 10−3 cm2 was not
significantly different from zero (p = 0.081), but the
covariance γxm,ym = 2.06 × 10−3 cm2 was (p < 0.001).
The variance/covariance values can be rewritten as standard
deviations and correlations (ρx,y = γx,y/σxσy) with more
interpretable units of cm,

σxm = 0.11 cm σym = 0.16 cm ρxm,ym = 0.12
σxa = 0.16 cm σya = 0.21 cm ρxa,ya = −0.02

An example of the outcome of finger tracking, using both
manual and algorithm procedures, is shown in Fig. 7. The
manual and algorithm estimates appear similar and mostly
overlap.

Example applications of finger tracking for haptics
research

This section provides some examples of finger tracking
applications in perceptual psychology, which make explicit
use of the finger-tracking variance and bias calculated
above.

Positional variation explained by index finger During
five-finger haptic search, the hand may be held in a static
pose, with the fingers kept a fixed distance from one
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Fig. 7 Example of finger tracking on 421 video frames

another. Alternatively, the fingers may move more indepen-
dently, causing whole-hand or local contractions and expan-
sions (Morash et al., 2013). If the fingers move together, the
position of one finger could be perfectly predicted by the
position of another. This implies the regression equation,
f1 = α + βf2 + ε, where f1 and f2 are the positions of
the two fingers, α and β are constants, and ε is the residual
error.

We regressed the positions of thumb, middle, ring, and
little fingers onto the position of the index finger (using the
algorithm to extract each finger’s position). The explained
variance, 1 − Var(residuals)/Var(total), could vary from 0,
indicating no linear relationship, to 1, indicating a perfect
linear relationship. However, due to the algorithm’s vari-
ance, a value of 1 is impossible, and it may therefore be

Table 1 Average proportion of variance explained (with SEs) by the
position of the index finger for other finger positions in five-finger
search trials

Thumb Middle Ring Little

Uncorrected for algorithm variance

x 0.83 (0.05) 0.90 (0.04) 0.85 (0.06) 0.76 (0.08)

y 0.76 (0.07) 0.94 (0.01) 0.91 (0.01) 0.88 (0.01)

Corrected for Algorithm Variance

x 0.84 (0.04) 0.92 (0.04) 0.86 (0.06) 0.77 (0.08)

y 0.77 (0.07) 0.95 (0.01) 0.92 (0.01) 0.89 (0.01)

desirable to apply a correction for the algorithm’s known
variance.

Proportion variance explained was calculated for each
trial, then averaged across trials within participant to form
participants’ means, which were used to create overall
averages with SEs, shown in Table 1. No finger’s posi-
tion was completely explained by the index finger’s
position, even after correcting for the algorithm’s vari-
ance. This suggests that the fingers’ movements are at least
partially independent during five-finger search, and the
hand is not held in a static pose that is moved around the
stimulus.

Index finger position on stimulus features Visual search
includes primarily two states of eye position: fixations on
image features, associated with small fixational eye move-
ments (microsaccades, etc.), and saccades, quick jumps
between fixations (Bogartz & Staub, 2012). Therefore, the
vast majority of gaze positions are located on task-relevant
image features, and not in the space between image features,
which are quickly passed over during saccades (Yarbus,
1967). To investigate whether finger locations are similarly
located mostly on symbols (our stimuli’s main features),
we computed the percentage of index-finger locations that
were within 0.75 cm (about half a fingertip width) of

Table 2 Average (with SEs) finger positions within 0.75 cm of a map
symbol

% Locations on Symbols

Participant One-Finger Five-Finger

1 12.44 (10.22) 1.01 (0.23)

2 6.17 (38.77) 0.57 (0.10)

3 5.56 (1.89) 0.93 (0.25)

4 5.10 (2.52) 0.65 (0.08)

Ave. 7.32 (1.72) 0.79 (0.11)



780 Behav Res (2016) 48:772–782

map symbols, shown in Table 2. Prior to this computation,
we corrected for the fingertip-location bias by subtracting
(0.08, 0.04) cm from each estimated location.

A relatively small percentage of index finger positions
were located within 0.75 cm of a map symbol, on average
7.32 % for one-finger trails and 0.79 % for five finger tri-
als. Therefore, the majority of index-finger locations were
located in “open space,” away from the map symbols. This
was even more true in five-finger than one-finger searches,
perhaps due to the exploration of symbols by non-index
fingers.

Discussion

This report presents a method to assess the bias and variance
of a deterministic finger-tracking algorithm. Through com-
parison of our algorithm’s estimates to those from a variable
method (human coding), we were able to determine our
algorithm’s bias and variance. We consider our approach of
estimating bias and variance the greatest contribution of this
work. Specifically, we have demonstrated how these statis-
tics can be measured despite the fact that the finger-tracking
method was deterministic and did not produce different
estimates from the same input image/data. Although we
accomplished this through comparison to a human coder,
comparison to any method with known or measurable bias
and variance would suffice. Therefore, future work may
measure the bias and variance of a future finger-tracking
method by comparing its estimates to those from the current
report’s algorithm.

Measurements of bias and variance can be used to com-
pare different finger-tracking methods, such as our algo-
rithm and human coding. The algorithm’s estimates were
biased to be slightly larger in both x and y directions relative
to the manual coding estimates. The displacements towards
the right and further away (towards the finger tips) from
the participant were extremely small (0.08 cm and 0.04 cm,
respectively) compared to the width of the index finger (1.5–
2.0 cm). This bias was evident in the marginal distributions,
Fig. 6, where it can be seen that manual-manual differences
were centered on zero, but algorithm-manual differences
were centered on values above zero in both x and y. How-
ever, it cannot be determined whether this relative bias was
ultimately due to bias in the algorithm’s estimates or bias
in the manual estimates relative to “true” fingertip
position. It’s possible that manual estimates were biased to
be low and towards the left. However, we believe that
human coders are a reasonable judge of valid fingertip
position.

Differences in estimates, manual-manual and algorithm-
manual, were contained within 1.0 cm in both x and y

directions. This is well within the size of a fingertip. These

distributions both had significant excess skew compared to
a bivariate normal distribution. The skew was small in the
manual-manual distributions (β1,2 = 0.02), and not visually
apparent in the marginal distributions (Fig. 6). In contrast,
the skew in the algorithm-manual differences was larger
(β1,2 = 0.26), and evident in the marginal distributions
(Fig. 6). In particular, the y algorithm-manual values had
a negative skew. This is reasonable, considering that low y

estimates would occur along the length of the finger, but
high y estimates would be above, and not on the finger at all.
Therefore, relative to low y estimates, high y estimates may
have been less likely and/or excluded because they were not
on the finger.

Both manual-manual and algorithm-manual differences
had kurtosis that indicated greater concentration (a taller
peak) around zero than a normal distribution. This is
not necessarily a concern, because greater concentration
reflects greater agreement between the estimates. Lastly, the
variance of the manual-manual marginal distributions was
smaller than the algorithm-manual distributions (Fig. 6),
reflecting that algorithm estimates had larger variance (less
reliability) than manual estimates.

As previously mentioned, the standard deviation of the
manual estimates was smaller than the algorithm estimates.
However, both were much smaller than the width of an
index fingertip (1.5 cm − 2.0 cm). There was a signifi-
cant correlation in manual estimate error, ρxm,ym = 0.12.
This indicated that errors tended to be either too high and
towards the right, or too low and towards the left, when
done manually. This may have occurred due to biases in
hand/arm movements by the human coder using a computer
mouse to estimate fingertip positions. There was no sig-
nificant covariance in the algorithm estimate error. This is
potentially more desirable, and one reason why algorithm
estimates of fingertip location may be favored over manual
estimates.

A secondary contribution of this report is our develop-
ment of a finger-tracking algorithm using ridge detection.
In general, an algorithm for estimating fingertip locations
is more tractable than manually estimating fingertip loca-
tions in thousands of video-frame images. Therefore, cre-
ating a finger-tracking algorithm increases the accessibility
of finger tracking for psychological study. Marker-based
approaches may be undesirable in a psychological research
application, because these approaches assume line-of-sight
between camera and marker(s), and ask the participant to
wear a marker or glove that may impede finger movements
and perception. Our algorithm offers a less-invasive alter-
native for tracking fingertips, which requires no specialized
hardware to implement.

Overall, our finger-tracking algorithm incorrectly located
the index fingertip in only 0.22 % of video frames for one-
finger videos (where all fingers except the index finger were
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taped to the palm) and in 2.45 % of five-finger videos. A
different finger-tracking study, which used infrared markers
on the index finger, lost roughly 2 % of samples due line-
of-sight disruption between the video camera and infrared
marker (van Polanen et al., 2011). Our one-finger results
were much better than this, and our five-finger results
were comparable. This demonstrates the viability of our
algorithm for psychological research, especially when the
researcher wants to use a video-based method that does not
require markers to be attached to the participant.

Our algorithm was relatively simple, and could be
improved in multiple ways, including greater removal of
irrelevant features from video-frame images and better pre-
diction. Each of these avenues of improvement could be
specific to the context of application. For example, the
stimuli and experimental setting will affect the information
contained in video-frame images that is disruptive to ridge
detection. Furthermore, the task the participant is perform-
ing will affect the hand movements, favoring some forms
of prediction over others (e.g., autoregression or move-
ment towards attractors). Because our algorithm relied on
predicted fingertip locations to both select algorithm param-
eters (amount of thresholding and opening) and to choose an
estimate from candidate estimates, better prediction has the
potential to improve the algorithm’s performance. Track-
ing could be improved using Kalman or particle filtering,
which are popular in gesture recognition and object track-
ing applications (e.g., Bretzner et al., 2002; Gustafsson,
2010). These approaches may be informed by the bias
and variance estimates presented above. However, we con-
sider the current simplicity of our algorithm a positive
attribute, as it will be straightforward for psychologists to
implement.

A limitation of our algorithm is that its parameters were
selected to provide good performance with our specific
stimuli and setup. This reduces the generalizability of the
algorithm. However, the algorithm’s parameters, such as
the width (2 cm) to determine that a cluster represents two
fingertips instead of one, can be easily changed. Gesture
recognition research often focuses on performance in non-
optimal situations, where the hand(s) may be in front of
a visually cluttered background, with unfavorable lighting,
and/or captured using a noisy camera (Oikonomidis et al.,
2013). In such conditions, algorithms need to have param-
eters that automatically adjust to preserve performance.
However, this may be of less concern for finger-tracking
applications, where the algorithm can be fine-tuned to per-
form in a highly controlled laboratory setting.

Finally, this report contains two example applications
of finger-tracking results in perceptual psychology. In the
first, we determined the proportion variance explained by
the position of the index finger for the other fingers in five-
finger search. This proportion ranged from 0.76 – 0.94, in

x and y directions. Although these values were relatively
close to 1.0, which would indicate perfect linear predic-
tion, there was still as much as 25 % variance unexplained
in some instances. To examine if this unexplained vari-
ance could be attributed to the finger-tracking variance, we
corrected for this in x and y directions using the variances
we estimated. Only 1–2 % of the previously unexplained
variance was absorbed by the finger-tracking variance,
resulting in corrected proportion of variance explained val-
ues that varied between 0.77 and 0.95, in x and y directions.
The smaller values tended to be those belonging to the
thumb and little finger, while the positions of the middle fin-
ger were most highly explained by those of the index finger.
This suggests that the thumb and little fingers may move in
opposition to the index finger more frequently than the middle
finger, perhaps due to expansions and contractions of the hand.

We also examined the amount of time spent in con-
tact with important stimulus features (map symbols) by
the index finger in one-finger and five-finger search tri-
als. In this analysis, we corrected for our algorithm’s bias
relative to human judgments. Although the bias of the
finger-tracking algorithm was small, adjusting for this bias
took the human estimates of finger position to be more valid
(correct) than the algorithm estimates, as we believe that
humans are good estimators of fingertip position. We found
that participants spent relatively little time touching impor-
tant stimulus features with their index fingers, on average
about 7.3 % and 0.8 % of frames in one- and five-finger tri-
als, respectively. More time was spent touching important
features with the index finger in one-finger trials, possibly
because the non-index fingers were also used to examine
important features in five-finger trials.

Our initial results on finger movements during hap-
tic search may, along with future results revealed through
finger-tracking studies, be informative to both basic percep-
tual and translational research. Finger movements, like eye
movements, are a fundamental component of perception and
action. Understanding the function and characteristics of
finger movements during haptic perception may also be crit-
ical for translational research, such as the creation of haptic
feedback in robot-assisted surgery, for which hand move-
ment patterns of novice and expert surgeons may inform
system design and training (Nisky et al., 2014).

In conclusion, we have shown how the bias and variance
of a deterministic finger-tracking method can be measured
through comparison to a method with known or measur-
able bias and variance. We demonstrate this approach for a
deterministic finger-tracking method using ridge detection.
This finger-tracking algorithm was designed specifically for
psychological application, and we have detailed the method
sufficiently for it to be reproduced by other perceptual
psychologists. We use the measured bias and variance of
our algorithm to compare the approach to human coding,
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whereby its bias (x = 0.08 cm, y = 0.04 cm) and standard
deviation (σx = 0.16 cm, σy = 0.21 cm) were demonstra-
bly small compared to the size of a human fingertip. Finally,
we provide results on the proportion of variance explained
by the index finger for the other fingers in five-finger
search, and the amount of time spent touching important
stimulus fingers with the index finger, correcting for finger-
tracking variance and bias, respectively. These contributions
to the science and methodology of finger tracking may
ultimately lead to greater adoption of finger tracking in
psychology, and better understanding of haptic perception
and action.
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