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Abstract The Oriented Difference of Gaussians (ODOG)
model of brightness (perceived intensity) by Blakeslee and
McCourt (Vision Research 39:4361-4377, 1999), which is
based on linear spatial filtering by oriented receptive fields
followed by contrast normalization, has proven highly suc-
cessful in parsimoniously predicting the perceived intensity
(brightness) of regions in complex visual stimuli such as
White's effect, which had been believed to defy filter-based
explanations. Unlike competing explanations such as anchor-
ing theory, filling-in, edge-integration, or layer decomposi-
tion, the spatial filtering approach embodied by the ODOG
model readily accounts for the often overlooked but ubiqui-
tous gradient structure of induction which, while most striking
in grating induction, also occurs within the test fields of clas-
sical simultaneous brightness contrast and the White stimulus.
Also, because the ODOG model does not require defined re-
gions of interest, it is generalizable to any stimulus, including
natural images. The ODOG model has motivated other re-
searchers to develop modified versions (LODOG and
FLODOG), and has served as an important counterweight
and proof of concept to constrain high-level theories which

rely on less well understood or justified mechanisms such as
unconscious inference, transparency, perceptual grouping,
and layer decomposition. Here we provide a brief but com-
prehensive description of the ODOG model as it has been
implemented since 1999, as well as working Mathematica
(Wolfram, Inc.) notebooks which users can employ to gener-
ate ODOG model predictions for their own stimuli.
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Introduction

A central question in the study of visual perception is how and
under what circumstances the visual system is able to separate
the physically invariant reflectance of a surface from its po-
tentially changing illumination. The intensity distribution fall-
ing on the photoreceptor array is the product of these two
sources and their independent recovery is thus an ill-posed
problem in that there are a myriad of combinations of illumi-
nation and reflectance that can give rise to any particular in-
tensity distribution, and in the absence of additional informa-
tion there is no way to uniquely recover the physically correct
solution. Much of the current debate surrounding brightness
(perceived intensity) and lightness (perceived reflectance) per-
ception, therefore, centers on the nature of the prior assump-
tions and processing strategies the visual system uses to parse
(correctly or incorrectly) the intensity distribution at the retina
into components of surface reflectance and illumination.

Blakeslee and McCourt (1999) developed the Oriented
Difference of Gaussians (ODOG) model to assess the degree
to which early visual processes sufficed to account for bright-
ness (perceived intensity) in a set of canonical stimuli which
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included the White effect stimulus (White, 1979, 1981; White
&White, 1985), the classical simultaneous brightness contrast
(SBC) stimulus (Heinemann, 1972), and the grating induction
(GI) stimulus (Blakeslee & McCourt, 1997; Foley &
McCourt, 1985; McCourt, 1982, 1994; McCourt &
Blakeslee, 1994; McCourt & Foley, 1985), including the var-
iations introduced by Zaidi (1989). The defining features of
the ODOG model are characteristics exhibited at early stages
of cortical visual processing, e.g., spatial frequency selectivity,
orientation selectivity, and contrast gain control. The ODOG
model can account for the modulation in the strength of the
White effect (Blakeslee & McCourt, 2004) and GI (Blakeslee
&McCourt, 2011) with changes in the spatial frequency of the
inducing gratings. The ODOG model has also been shown to
account for brightness perception in a wide variety of addi-
tional displays including the Wertheimer-Benary Cross stim-
ulus (Benary, 1924; Blakeslee & McCourt, 2001, 2003), the
Hermann Grid stimulus (Blakeslee & McCourt, 2003), the
Gelb Staircase stimulus (Blakeslee, Reetz, & McCourt,
2009; Cataliotti & Gilchrist, 1995), Howe's variations on
White's stimulus (Blakeslee et al., 2005; Howe, 2001),
Todorovic's (1997) and Williams, McCoy, & Purves’ (1998)
variations on the SBC stimulus (Blakeslee & McCourt, 1999;
2012), the checkerboard induction stimulus (Blakeslee &
McCourt, 2004; DeValois & DeValois, 1988), the shifted
White stimulus (Blakeslee & McCourt, 2004; White, 1981),
Adelson's Checker-Shadow stimulus (Adelson, 1993;
Blakeslee & McCourt, 2012), Adelson's Corrugated
Mondrian stimulus (Adelson, 1993; Blakeslee & McCourt,
2003) including Todorovic's (1997) variation (Blakeslee &
McCourt, 2001, 2003), Adelson's Snake stimulus (Adelson,
2000; Blakeslee &McCourt, 2003, 2012; Somers & Adelson,
1997), Hillis and Brainard's (2007) Paint/Shadow stimulus
(Blakeslee & McCourt, 2012), so-called Bremote^ brightness
induction stimuli (Blakeslee & McCourt, 2003, 2005;
Logvinenko, 2003; Shapley & Reid, 1985), and the mid-
gray probes inserted into photographs by Cartier-Bresson
(Blakeslee & McCourt, 2012; Gilchrist, 2006). A modified
version of the ODOG model (LODOG) which replaces the
image-based contrast normalization of ODOG with a local
computation (Robinson, Hammon& de Sa, 2007) can explain
illusory brightness effects in a somewhat wider variety of
stimuli including the zig-zag White stimulus (Spehar &
Clifford, 2015) and the radial White stimulus (Anstis, 2005).

Critically, unlike competing explanations for brightness
perception such as anchoring theory (Gilchrist, 2006;
Gilchrist, Kossyfidis, Bonato, Agostini, Cataliotti, Li,
Spehar, Annan & Economou, 1999), filling-in (Grossberg &
Todorovic, 1988), edge-integration (Land & McCann, 1971;
Rudd & Zemach, 2004, 2007), or layer decomposition
(Anderson, 1997), the spatial filtering approach embodied
by the ODOGmodel readily accounts for the often overlooked
but ubiquitous gradient (i.e., non-uniform) structure of induction

which, while most striking in grating induction (Blakeslee &
McCourt, 1999, 2013; Kingdom, 1999; McCourt, 1982;
McCourt & Blakeslee, 2015), also occurs in the Hermann grid
illusion (Hermann, 1870; Spillmann, 1994), the Chevreul stair-
case (Chevreul, 1890), Mach Bands (Mach, 1865), and within
the test fields of classical simultaneous brightness contrast and
the White stimulus (Blakeslee & McCourt, 1999, 2015)1. Also,
because the ODOG model does not require defined regions of
interest it is generalizable to any stimulus, including natural
images.

We acknowledge that the ODOG model is imperfect.
It would, for example, benefit from modifications such
as the replacement of ODOG filters with balanced
Gabor functions (Cope, Blakeslee & McCourt, 2009)
and the substitution of local contrast gain control
(Cope, Blakeslee & McCourt, 2013; 2014) for the
image-based (global) normalization procedure which is
currently implemented. Nonetheless, the utility of the
spatial filtering approach lies in the ODOG model’s
success in accounting for brightness in a wide variety
of stimuli, ranging from simple to complex, without the
adjustment of any parameter values, and its parsimony,
which acts as a scientifically necessary counterweight to
high-level theories which posit only vaguely specified
mechanisms such as unconscious inference, perceptual
transparency, Gestalt grouping, intrinsic image layer de-
composition, and the like.

Because of its rigor and simplicity the ODOG model has
proven both influential and provocative (Kingdom, 2011).
There are ten principal publications in which the ODOGmod-
el (or its earlier non-oriented DOG version) has been invoked
to explain various aspects of brightness perception (Blakeslee
&McCourt, 1997, 1999, 2001, 2003, 2004, 2005, 2012, 2013;
Blakeslee et al., 2005, 2009). These papers have collectively
been cited over 400 times (Google Scholar). In response to
persistent requests for source code from colleagues desiring to
test their psychophysical results and/or ownmodel predictions
against those of the ODOG model, we here provide fully
annotated Wolfram Mathematica notebooks accompanied by
a brief mathematical description of the ODOG model.

ODOG model filters

The ODOG model consists of 42 oriented difference-of-
gaussians filters (i.e., receptive fields) taken over six orienta-
tions and seven octave-interval spatial scales. Input patterns

1 Researchers disagree about the conspicuity of such brightness gradients
in some circumstances, but the existence of brightness gradients in phys-
ically homogeneous regions has been noted for over 100 years, has been
measured experimentally, and is beyond dispute.
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are linearly processed by each filter and the filter outputs
are combined by a particular nonlinear weighting which
approximates the shallow low-frequency falloff of the

suprathreshold contrast sensitivity function (Georgeson
& Sullivan, 1975).

The ODOG filters are given by:

f ODOG σ1;σ2;α; x1; x2ð Þ ¼ 1
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where σ2> σ1 >0 and y1, y2 are rotated variables given by:

y1 ¼ þ cos αð Þx1 þ sin αð Þx2 and
y2 ¼ −sin αð Þx1 þ cos αð Þ x2

ðA:2Þ

The condition σ2 >σ1 ensures that regions of excitation and
inhibition are aligned along the y1-axis. The filters are simple
difference of unit volume gaussians and are thus perfectly
balanced (i.e., total filter volume = 0).

The Fourier Transform of ODOG filters is given by:
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where t1, t2 are rotated variables given by:

t1 ¼ þ cos αð Þs1 þ sin αð Þs2 and t2

¼ −sin αð Þs1 þ cos αð Þs2 ðA:4Þ

ODOG filters possess six orientations at 30o intervals:

a ¼ 0o; 30o; 60o; 90o; 120o; 150o ðA:5Þ

and seven spatial scales arranged at octave intervals:

σ1 ¼ 0:046875o; 0:09375o; 0:1875o; 0:375o; 0:75o; 1:5o; 3:0owith σ2 ¼ 2σ1

ðA:6Þ

Figure 1(a) illustrates a space-domain representation of an
ODOG filter in cross-section along the (oriented) y1 -axis.
Figure 1(b) illustrates the same filter in the spatial.

Input patterns

Input patterns p(x1, x2) are non-negative functions on
the plane (i.e., images). The working region of the mod-
el is a square patch subtending 32o × 32o of visual
angle, and the size of input patterns should be scaled
accordingly2. The ODOG filters map input patterns p to
output patterns q (which may be negative):

q σ1;σ2;α; x1; x2ð Þ

¼
Z
ℝxℝ

f ODOG σ1;σ2;α; y1−x1; y2−x2ð Þ p y1; y2ð Þdy1dy2
ðB:1Þ

Note that the linear operator is a (reversed) convolution
where the kernel has the form f(y−x)dy instead of f(x−y)dy.

The convolution form is exploited for computational effi-
ciency. In practice, patterns are represented as 1024 × 1024
RGB pixel matrices, and the convolution is calculated using
the Fast Fourier Transform.

2 Because this implementation of the ODOG model performs a global
contrast normalization of each orientation channel’s entire convolution
image, and because the power of the ODOG model to explain test field
brightness in White’s stimulus relies on the normalization of the unequal
magnitudes of filter responses at different orientations, it is important that
users bear this in mind when submitting stimuli to the model. For in-
stance, the ODOG model accounts for test field appearance in the stan-
dardWhite stimulus such as supplied with this paper (White_Stimulus.tif)
because the anisotropic stimulus occupies the entire image. The ODOG
model will not account for the zig-zag version of this stimulus (Spehar &
Clifford, 2015), or even a stimulus containing two White stimuli at or-
thogonal orientations, because these patterns, while possessing local
orientation anisotropy, are globally isotropic, which causes the energy
in each orientation channel’s convolution image to be nearly equal.
Implementing local contrast normalization, as done by Robinson et al.
(2007) in their LODOG version of the ODOG model, and which is char-
acteristic of visual neurons (Carandini & Heeger, 1994; Cope et al, 2013;
2014), allows it to account for the zig-zag White stimulus.
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Output patterns

Let q(σ1,σ2,α,x1,x2) be the output pattern produced by con-
volving an ODOG filter with spatial parameters σ1,σ2 and
orientation α with a given input pattern p(x1, x2), as described
in (Eq. B.1). The 42 output patterns undergo two additional
stages of processing.

First, for each orientation α a weighted summation over
filter size is taken:

Q α; x1; x2ð Þ ¼
Z
all σ1

w σ1ð Þq σ1; 2σ1;α; x1; x2ð Þdσ1 ðC:1Þ

where the weight function is w σ1ð Þ ¼ 8
3σ1

� �−1=10
with σ1 in

degrees. The integral is approximated by the sum:

Q α; x1; x2ð Þ≃
X

w σ1ð Þ q σ1; 2σ1;α; x1; x2ð Þ ðC:2Þ

where the values of σ1 are given in (Eq. A.6) above.

The root mean square magnitude ‖Q(α;x1,x2)‖ of the out-
put pattern at each orientation α is calculated by:

Q α; x1; x2ð Þk k2 ¼
Z
ℝxℝ

Q α; x1; x2ð Þð Þ2dx1dx2 ðC:3Þ

and is used as a contrast normalization factor.
The final output pattern R(x1, x2) is obtained by averaging

the normalized output patterns over all orientations
(0≤α≤π rad):

R x1; x2ð Þ ¼ 1

π

Z
all α
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Q; α; x1; x2ð Þk kdα ðC:4Þ

The ODOG model approximates the integral by averaging
over the six discrete orientations which are spaced at intervals
of 30o:
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Notes concerning implementation

It should be kept in mind that the model assumes a square
region of space subtending 32o × 32o, which corresponds to
an image size of 1,024 × 1,024 pixels (0.03125o/pixel). The
space constant (σ) of the largest ODOG filter measures 6o

(192 pixels), so the mapping of output patterns to input
patterns which are restricted to the central 16o × 16o (512 ×
512 pixel) region, and which are padded beyond this area with
zeros (or with the pattern mean value) will be essentially free
from distortion. In practice, input patterns larger than 512 ×
512 pixels can be tolerated, although users may want to vary
input pattern size and examine the output patterns to assess
whether significant distortion is occurring.

Whereas input patterns are images (matrices of non-
negative integers ranging from 0–255), the convolution of
these patterns with the volume-balanced ODOG filters pro-
duces output patterns of positive and negative real numbers
whose mean is zero. To display ODOG model output as im-
ages, and to compare it with psychophysical brightness
matches (expressed as percent maximum luminance), output
patterns are typically additively offset to possess a mean of
128, and are scaled to possess integer values between 0 and
255. The scaling factor is arbitrary, but is usually chosen to
maximize the correlation between ODOG model output and
brightness matching data.
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Mathematica notebooks

Four executable Mathematica (.nb) notebooks are included
with this paper. They are:

Blakeslee_Cope_&_McCourt_(Notebook_A_ODOG_
Filter_FT_Generation).nb
Blakeslee_Cope_&_McCourt_(Notebook_B_File_
Format_Conversion_TIF_to_DAT).nb
Blakeslee_Cope_&_McCourt_(Notebook_C_ODOG_
Pattern_Processing).nb
B l a k e s l e e _Cop e_&_McCou r t _ (No t e b o o k_
D_Examine_Results).nb

These fully annotated Notebooks are written to step users
through setting up appropriate directories, generating the li-
brary of ODOG filter files, processing a sample (image) pat-
tern (White_Stimulus.tif) through the ODOG model, and ex-
amining the Input and Output patterns.

About Wolfram Mathematica

This implementation of the ODOG model usesMathematica,
a general purpose mathematical software platform by
Wolfram Research, Inc. Extensive knowledge or experience
with Mathematica is not required but the following back-
ground may be helpful:

& Mathematica files are called Notebooks and the corre-
sponding filenames have the extension .nb.

& Notebooks are divided into cells which are identified by
cell delimiters at the extreme right edge of the display.

& To select a cell, click once on the cell delimiter, which
highlights the selected cell.

& Types of cells include Text cells (which contain text mate-
rial), Input cells (which contain the executable
Mathematica commands), and Output cells (which dis-
play the results of evaluating Input cells). Cell types can
be identified by their different fonts. When Input cells are
evaluated Output cells will appear. Another way to iden-
tify a cell type is to select the cell (click on the delimiter)
and look under Format: Style in the Menu Bar where a
check mark appears next to the cell type.

& To evaluate an Input cell, select the cell (click on the
delimiter) and press SHIFT+ENTER. This evaluates the
commands in the Input cell. Text and Output cells cannot
be evaluated. The delimiter of an Input cell is highlighted
when the cell is evaluated and remains highlighted while
the evaluation proceeds. In the ODOGmodel, some steps,
such as generating the filter FT files in Notebook A, or the
pattern processing stage in Notebook C, may take a few
minutes for evaluation.

& To stop an evaluation, click on Evaluation: Abort
Evaluation in the Menu Bar.

& To delete a cell (such as an Output cell), select the cell
(click on the delimiter) and press the Delete key. After
running the notebooks it is good practice to Delete All
Output by selecting that option under Cell in the Menu
Bar.

& In this implementation of the ODOGmodel the only com-
mands requiring interaction by the user are ones where
directory or file names need to be set to specify storage
locations. Automatic checks are provided to help.

& The commands in an Input cell often end with semicolons
which suppress the display of the output of evaluating the
command. You can add or remove a semicolon at the end
of a command without affecting the evaluation of a com-
mand, and youmay find it helpful to remove one to see the
result which is displayed. However, if the output is, say, a
1,024 × 1,024 matrix of complex-valued numerical data,
the display may be too extensive to be helpful, although
the experience will be memorable.

& Mathematica is available for download on a 15-day trial
basis on the Wolfram website (https://www.wolfram.com/
mathematica/trial).
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