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Abstract Past research finds that people prefer to sit next to
others who are similar to them in a variety of dimensions such
as race, sex, and physical appearance. This preference for
similarity in seating arrangements is called aggregation and
is most commonly measured with the aggregation index
(Campbell, Kruskal, & Wallace, Sociometry 29, 1-15,
1966). The aggregation index compares the observed dissim-
ilarity in seating with the amount of dissimilarity that would
be expected if seats were chosen randomly. However, the
current closed-form equations for this method limit the ease,
flexibility, and inferences that researchers have. This paper
presents a new approach for studying aggregation that uses
bootstrapped resampling of the seating environment to esti-
mate the aggregation index parameters. This method, com-
piled as an executable program, Social Aggregation, reads a
seating chart matrix provided by the researcher and automat-
ically computes the observed number of dissimilar adjacen-
cies, and simulates random seating preferences. The current
method’s estimates not only converge with those of the orig-
inal method, but it also handles a wider variety of situations
and also allows for more precise hypothesis testing by directly
modeling the distribution of the seating arrangements.
Developing a better measure of aggregation opens new pos-
sibilities for understanding intergroup biases, and allows re-
searchers to examine aggregation more efficiently.
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Introduction

The expression “birds of a feather flock together” suggests
that people prefer being around similar others. One common
way to measure this preference for similarity in an environ-
ment, or “aggregation,” is by examining people’s seating
choice. Sitting next to a person expresses a liking towards that
person and, therefore, choosing to sit next to some people but
not others can reveal what traits we value (Holland et al.,
2004). Indeed, research finds that people prefer to sit next to
other people who are similar on a variety of traits including
race, sex, and physical appearance (Batson, Flink,
Schoenrade, Fultz, & Pych, 1986; Sriram, 2002). This prefer-
ence to sit next to similar others leads to less contact between
groups (e.g., races, sexes), which can promote further separa-
tion and prejudice (Campbell, Kruskal, & Wallace, 1966).
Although studying aggregation is important, the current meth-
od for studying aggregation is difficult to implement, unable
to accommodate many situations, and provides limited statis-
tical information. This paper presents a new method for study-
ing aggregation that addresses these limitations and allows
researchers more opportunities to understand intergroup
biases.

Seat choice and preference for similarity

Even without explicitly stating their attitudes, people often
reveal their biases towards others with subtle non-verbal cues,
such as how near or far they are sitting from them. A person,
or group of people, may not admit on self-reports to liking
people who are similar to them on some dimension (e.g.,
race), but their non-verbal behavior, such as whether they
choose to sit next to them, could indicate a preference
(Snyder, Kleck, Strenta, & Mentzer, 1979). A variety of past
research has used seating patterns to understand the dynamics
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between groups and the diversity of a setting. Campbell,
Kruskal, & Wallace (1966) found that students tend to sit next
to students of the same race and sex. Further, when examining
several different schools, how much a school’s White students
preferred to sit next to others of the same race, on average,
predicted students’ average level of positivity towards Black
students within that school. This association between group-
level seating preferences and group-level attitudes was found
for both direct attitude survey measures and indirect measures
of attitude such as projection tests and electrodermal response.
More recently, seating aggregation has helped examine racial
relations in areas with strong racial divisions such as South
Africa (Koen & Durrheim, 2010) and Singapore (Sriram,
2002). By unobtrusively examining seating behavior, these
studies showed how a population’s underlying intergroup
biases manifest in daily life. In addition to revealing prefer-
ences for well known individual differences, studying seating
aggregation also allows researchers to understand very subtle
preferences people hold that are less immediately obvious,
such as liking those whom they physically resemble
(Mackinnon, Jordan, & Wilson, 2011). People with glasses
are more likely to sit next to people who wear glasses and vice
versa. Therefore, measuring aggregation is important because
it allows researchers to understand how integrated a setting
currently is, and study sensitive or subtle attitudes towards
others that are often difficult to assess merely through self-
reports.

Current measure of seating aggregation

The most widely used measure of seating preference is the
“aggregation index” (Campbell, Kruskal, & Wallace, 1966).
This procedure examines whether the number of dissimilar
group pairings observed (e.g., a White person sitting next a
Black person) in a given location (e.g., a classroom) differs
from what the dissimilar group pairings would be if people
chose their seats randomly. Thus, the aggregation index is
similar to a z-score, where an observed value is compared to
some null criterion and this difference is divided by the
variability. Large differences relative to the variability suggest
that seating preferences are unlikely to be random, but are
based on some systematic preference. It is important to note
that, in the equation, a group can be defined in any way by the
researcher as long as it is dichotomous (e.g., Black/White,
male/female, Northerner/Southerner). Thus, a researcher can
apply the aggregation index to the same setting multiple times
by examining the seating patterns of different types of groups.

Aggregation index

The overall index value, /, is the difference between the
observed and the expected number of adjacent seat parings

between members of two different groups, all divided by the
standard deviation of the expected number of dissimilar adja-
cencies. Negative values of / indicate that people prefer sitting
by similar others (i.e., aggregation), while positive values of /
indicate that people favor sitting next to dissimilar others (i.e.,
segregation).

The following formula expresses the aggregation index:

A—FEA
IN

I= (1)

In Eq. 1, variable A represents the observed number of
pairs of dissimilar group members who are adjacent. This
variable is determined by examining how many of pairs of
row-wise adjacent seats contain members of different groups
(e.g., how many times a White student is sitting next to a
Black student).

Variable EA represents the expected number of dissimilar
adjacencies the room would have if people chose their seats
randomly. E£A4 is calculated using a formula that takes into
account the number of members from each group, number
of contiguous rows of people (i.e., clusters of people who are
alongside each other), and the total number of people in the
room. The formula for expected adjacencies is

M(N-M)

EA=2-—_"1
N(N-1)

(N-K) (2)

where N is the total number of people in a room, M is the
number of people in the reference group (e.g., Black students),
and K is the number of groups of row-wise contiguous people,
including isolates. Another way to define K is that it is the
number of uninterrupted chains of adjacent people in the
room, as well as people sitting by themselves.

Variable o4 represents the standard deviation of the num-
ber of dissimilar adjacencies under randomness. It is derived
from the assumption that seats were randomly chosen with
regard to group status, but that the pattern of occupied seats
was fixed.

The following is the formula for the standard deviation of
adjacencies under randomness:

_M(N-M) M(M—1)(N-M)(N-M~1)
70 = 2y N K K1) +4 N0 3)
N M2 (N-M)?
(N-K)(N—K—1) 2)(N 21<+1<1)] AT S (N-K)
(3)

The variables in the standard deviation formula are the
same as those in the expected value formula, with the addition
of K1 which is the number of people with no-one next to them
(i.e., isolates).
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Limitations of current seating aggregation measure

The aggregation index proposed by Campbell et al. (1966)
provided a useful tool for researchers studying intergroup
relations, but many aspects of the method are problematic.
One often mentioned issue with the Campbell et al. method is
that the equations are difficult to implement. Many authors
have commented on the complexity of the equations given,
specifically the calculation of the variance term (McCauley,
Plummer, Moskalenko, & Mordkoff, 2001; Schofield &
Sagar, 1977). The equations are so complex that Campbell
et al. issued a correction to the variance equation due to a
typographical error they made in the original paper (American
Sociological Association, 1967). This correction may have
added to the confusion of future users of the technique, whom,
if not aware of the correction, may mistakenly use the wrong
formula. Even with the correct formulas, the technique still
requires researchers to visually inspect the seating chart, and
enter the relevant variables into the equations. To calculate the
three components of the aggregation index, a researcher must
manually count the total number of people, the individual
group sizes, the number of isolates, and the number of row-
wise contiguous groups. This visual inspection is subject to
human error and is also time-consuming for larger seating
charts. As the size of the room or number of seating charts
increases, the potential to miscount one of the needed compo-
nents also increases. Therefore, a large limitation of the cur-
rent technique for calculating aggregation is the difficulty in
implementing it.

Another weakness of the Campbell et al. formulas is that
they are only able to address a narrow range of seating
situations. Specifically, their equations restrict the definition
of adjacency to only one direction. That is, the formulas given
for the method only examine adjacencies along one spatial
axis at a time. This limitation is due to the formulas requiring
the number of groups of row-wise contiguous people (i.e. K),
which is not possible when you are interested in both rows
(i.e., side-by-side) and column (i.e., front-and-back) adjacen-
cies. However, researchers may conceptualize being next to a
person as not just sitting side-by-side, but also as sitting across
from a person or occupying any space that touches the person.
Looking at only one dimension does not capture their intended
construct. In the past, researchers have needed to perform
separate tests for each axis (Ramiah, Schmid, Hewstone, &
Floe, 2014; Schoofield & Sagar, 1977). Performing multiple
comparisons, though, comes at the expense of increasing the
type I error rate. For every dimension a researcher analyzes,
he/she increases the probability that sampling variation will
have produced an extreme result and he/she may erroneously
conclude that the finding is systematic and able to be replicat-
ed (Simmons, Nelson, & Simonsohn, 2011). Also, conducting
separate tests along multiple axes disregards information from
the other axes by treating each dimension in isolation.
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Researchers may want to combine the adjacencies from all
of the axes to have a more powerful test. For these situations
where a researcher prefers to conduct a single test of aggrega-
tion along all axes, the Campbell et al. method offers no clear
solution.

Another technical limitation of the Campbell et al. method
is that it can only examine aggregation between two groups.
However, groups in real-life are sometimes more complex
than binary categories, and take the form of ethnicities, class,
and religions, among others. Group differences may not even
be nominal. Theories of aggregation suggest that preferences
for similarity go beyond groups and for variables that occur
along a continuum. Many important variables such as age,
attractiveness, and skin color that past research has studied in
aggregation are naturally continuous. Dichotomizing physical
similarity variables reduces power by discarding information
that would otherwise be available in a continuous variable.
Therefore, using a continuous similarity variable can poten-
tially provide greater generalizability and statistical power. A
more appropriate method of measuring seating aggregation
should be able to take into account the continuous nature of
the data.

An additional limitation of the current method is the lack of
inferential statistics available to the researcher. With the
Campbell et al. method, the only way to determine the prob-
ability of observing aggregation at least as extreme as what
was currently observed assuming no true underlying prefer-
ence (i.e., a p-value) is by collecting data from multiple rooms
and then running a statistical test such as a one-sample t-test,
using each room as an observation. Thus, the current method
requires a great deal of resources (e.g., time, participants, etc.)
for researchers to know how reliable their estimates are. This
restriction therefore favors research designs measuring many
small rooms/locations. Situations involving large areas, such
as lecture halls, and infrequent events, such as ceremonies, are
therefore difficult to study. However, these situations may still
be meaningful to the research question or theory. Further,
despite not being able to resample the seating setting, the
number of participants could still be large (e.g., a stadium),
and therefore still provide more information than multiple
observations on smaller settings (e.g, four classrooms of ten
people). Therefore, the current method limits the amount of
information that researchers can infer from a setting, and
places pressures on researchers to uses designs that involve
repeated settings.

Despite offering insight to researchers interested in study-
ing aggregation, the current aggregation technique has room
for improvement. Solutions to this problem must address the
limitations discussed by being (1) simpler to understand, (2)
easier to and implement, and (3) more flexible in the types of
analyses. The present paper describes a technique based on
bootstrapped simulation of seating charts that can estimate the
parameters in the aggregation index more simply and
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intuitively, while also providing a greater variety of analyses
than the original closed-form method allowed.

Proposed simulation method

Rather than using deterministic formulas to estimate the ag-
gregation index parameters, this paper proposes using
bootstrapped simulations to calculate the otherwise complex
parameters of the aggregation index (for a more in-depth
tutorial see: Efron & Tibshirani, 1994; Simonsohn, 2013).
The method follows the intuition behind the aggregation index
of Campbell et al., where / is the difference between the
current aggregation and what would be expected by random
seating, divided by the standard deviation. However, this
method calculates the expected value of aggregation and the
variability of aggregation by simulating people choosing seats
randomly in the specified space. This method, which has been
compiled into an executable program (Social Aggregation.exe;
Fig. 1), iteratively simulates a room whose occupied seats
were chosen at random to get values for expected adjacencies
and variability of those adjacencies. Specifically the program
is given a row-by-column seating chart (either in an Excel,
comma separated, tab-delimited file, or entered directly into
the program), which is then represented as a two-dimensional
matrix. In this matrix, all empty seats or spaces that no
students occupy are set as null values, and all occupied seats
are represented as an integer representing a specific group
(e.g., 1=White, 2=Black). The program then calculates the
number of dissimilar adjacencies by searching through the
chart, and counts the number of instances where two positive
integers are next to each other and are not equal to each other.
This search obtains the first value needed for the aggregation
index: the observed number of dissimilar adjacencies.

# ' Social Aggregation: Compute Aggregation =NACE X

Menu |

| Please Enter the Following Information:

Select File

Proximity Chart:  C:iCampbellKruskalwallace1966.xls
[T Use Data Entered in the Program

["|Data are Continuous

Adjacency Directions: [V] side [ UpfDown 7] carners
Adjacencies allowed il

one empty space? O (] O
Hypothesis Test: ’Preference For Similarity 'l

V] Save Results

MNumber of Tterations: 10000

Fig. 1 Screenshot of the program. “Social Aggregation.” It is currently
set to analyze the seating chart of Campbell, Kruskal, & Wallace (1966)

To calculate the second parameter—the average number of
adjacencies that would be expected by chance, assuming the
seat choices are fixed—the program un-assigns the people
from their seats (by temporarily removing their values from
the seating matrix) and then randomly assigns each person,
without replacement, to a seat that was previously occupied.
The program then counts the number of dissimilar adjacencies
in this random seating and appends that value to a list. After
numerous iterations, the program then takes the mean of that
list, which is equivalent to the expected value of dissimilar
adjacencies, assuming random seating. Further, the standard
deviation of that list represents the last parameter of the index,
which is the variability of dissimilar adjacencies under ran-
dom seating conditions. With those three values, the program
can compute the aggregation index.

Example of the proposed method

Creating a seating chart To demonstrate how the program
functions, we will the use the school seating chart of White
and Black students that was originally used in the Campbell
et al. paper (Fig. 2). This seating chart shows eight rows of
seats, with four seats in each row. Seats that are occupied have
a square in that location. The color of the square represents the
race of the student (White/Black). The first row on the top-left
has two students (a White student in the far-left, a Black
student next to them), and two empty seats to their right.
This seating chart can also be represented as a matrix with
size i X j, where i is equal to the number of rows, and j is equal
to the number of columns (Fig. 3). The seating chart of
Campbell et al. has four rows of eight chairs each, with one
aisle separating them in the middle. Thus it can be represented
as a matrix of size 4 X9, with each race/group coded as a
separate integer (e.g. White=1; Black=2), and all empty
spaces (including empty chairs and barriers) coded as a “0”

COm__  OO00

H{E .
NN .

[N
H_EN

[ P I -

Fig. 2 The original seating chart from Campbell, Kruskal, & Wallace
(1966) in a matrix format. White squares represent a White student, Black
squares represent a Black student, and underscores represent an unoccu-
pied seat
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101000000

Fig. 3 A matrix representation of the seating chart from Campbell,
Kruskal, & Wallace (1966). Values of 1 represent a White student,
values of 2 represent a Black student, and values of 0 represent an
empty area, such as an aisle, or an unoccupied seat

(Fig. 3). This matrix representation of a seating chart can be
easily created by a researcher using a text/spreadsheet editor,
and then read into the program (Fig. 4).

Because unoccupied space is irrelevant for the calculation
of the aggregation index, any two-dimensional setting can be
represented in the matrix format. The examples previously
discussed involve a naturally rectangular environment (e.g., a
classroom). However, as long as blank space and unoccupied
chairs are represented as Os in the chart, the environment can
still be represented in a spreadsheet. Figure 5 shows an exam-
ple of how circular seating arrangements or open spaces that
do not have clearly defined seats can be translated into a
spreadsheet. In irregular seating patterns, the dimensions of
adjacency become especially important to consider. For cir-
cular seating arrangements, adjacencies should probably in-
clude a corner dimension to include those sitting where the
circle bends. Also, for areas where seats are not clearly defined
(e.g., a mall or a park), it is important to use spaces of equal
size to represent a possible seating location.

It is important to note that Campbell et al.’s method (and
thus the proposed method) assumes that seat choice possibil-
ities are fixed. That is, the method Campbell et al. introduced
assumes that the places people chose to sit are the only spots
available for others to choose to sit. Therefore, empty space,

B CampbellKruskalWallace1366.xls [Compatibility Mode]
(4] B c B L F G | H I J

0
2
2
1

ocoon
(=N
oooo
of=a|a|=
Olalala
ofa|a|a
[= P Y I

WM~ O W=

o

J CampbellKruskalVallace1966.txt - Notepad
File Edit Format View Help
1,2,0,0,0,1,1,1,1

1,0,2,2,0,1,1,1,1
2,0,2,2,0,1,1,1,1
1,0;1,0,0,0,0,0,0

ssssssss

Fig4 A sample spreadsheet and a sample comma-separated text file that
recreate the seating chart from Campbell, Kruskal, & Wallace (1966).
Values of 1 represent a White student, values of 2 represent a Black
student, and values of 0 represent an empty area, such as an aisle, or an
unoccupied seat
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Fig. 5 Sample spreadsheets for environments with irregular location/
seating arrangements. Values of 1 represent a person from one group,
while values of 2 represent a person from another group, and values of 0
represent an empty area. The panel on the left is a room with a circular
seating arrangement. The panel on the right would be similar to an open
mall or park where each cell represents a patch of land of the same square
size (e.g, 1 m x1 m)

barriers, and unoccupied seats are all irrelevant to the calcu-
lation. It is important to keep in mind that the technique makes
this assumption, but it does not seem to be particularly prob-
lematic for many researchers as the aggregation index has
shown predictive validity and convergent validity with other
intergroup research, as discussed in the “Introduction” section.
This assumption is also important because it allows all seating
charts to be represented in the matrix form described in the
above paragraph. Regardless of the room shape, obstructions,
and chair placement, the matrix notation only requires re-
searchers to specify where the people are currently sitting in
relation to another (i.e., are they next to each other or is there
space or another person between them). Even irregularly
shaped rooms can be represented because any area where a
person is not currently siting is represented by a 0. Whether or
not a 0 is between two people is a decision left up to the
researcher who decides if the empty space is small/
insignificant enough for those two people to be considered
adjacent or not.

Calculating the observed number of dissimilar
adjacencies The program allows researchers to define adjacen-
cy along different dimensions. Researchers can specify that an
adjacency is only when two people are sitting side-by-side (i.e.,
to the left or right of each other on a seating chart). The program
can also have adjacency specified as front-and-back, or on the
corners of a person. For this example, we will use the definition
Campbell et al. used, which was side-by-side. When the matrix
is loaded, and the adjacency is specified, the program can be
run. When the program analyzes the data, it computes the three
parameters in the aggregation index.

To compute the observed number of adjacencies, the pro-
gram sets a variable that represents the starting number of
adjacencies to 0. The program then looks at the cells in the /™
row, and /™ column, starting at /=1 and j=1. The value of the
integer, in this case “1”, is compared to the cells adjacent to it.
If an adjacency is defined as side-by-side, then the program
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looks at the cell in the /™ row and j+1st column. In this case,
the adjacent cell has a value of “2.” The two values are
compared, and if the both cells are not 0, and the value of
the second is not equal to the first, then the number of total
dissimilar adjacencies for that room is incremented by 1. The
process continues for the next column, until all seats in the row
are analyzed. The program then moves to the next row and
does the same calculation. After all rows have been examined
the number of adjacencies counted is stored. The comparative
process is illustrated in pseudo-code (see Appendix 1).

If researchers wish to define adjacencies as not only side-by-
side but also as people sitting in the front and back of the
person, the program can calculate these special cases in a
similar way. Rather than looking only at the j+1st column in
same row, the search for adjacencies would also include i+1st
row in the same column. Therefore a person sitting in the 1st
row (=1) and 4th column (7=4), would be counted as being
adjacent to a person who was a in the 2nd row, and 4th column.
Related, dissimilar adjacencies can be calculated by looking at
not only the next seat, but also two seats ahead in case norms of
personal space dictate that an extra seat should always be left
empty between people sitting side-by-side. If adjacency is
defined in this way, then, in addition to the normal adjacency
calculation, the program can also look at the seat in the j+1st
position to see if it is empty, and the j+2nd position to see if a
person is there and if they are similar (see Appendix 2). In prior
research, the decision of how to define an “adjacent seat” has
been left up to the individual researcher. Some researchers
prefer to count only the seats immediately next to a person as
their definition. This definition is consistent with how Campbell
et al. originally presented the method. Other researchers prefer
to count two people as adjacent if they are next to each other or
if there is one empty seat in between them. As mentioned, one
justification given for this procedure is social norms. That is,
society dictates that a seat be left between people, even if they
have a shared relation. Thus, a researcher interested in examin-
ing people’s preferences will add imprecision to the measure by
missing many instances relevant to the construct. Another
justification given is that including people separated by an open
seat reduces the number of people sitting alone (i.e., “isolates”).
As seen in the Campbell et al. equations, rooms with greater
numbers of isolates increase the standard deviation, and thus
make it more difficult to detect an effect (i.e., reducing the
power of the measure). There does not seem to be a clear way
to assess the relative merits of each reason, and it is important
for researchers to understand the benefits and the limitations to
make the most informed decision.

Calculating the expected number of dissimilar adjacencies
and its variance After all of the observed number of adjacen-
cies in the specified seating chart are counted, the program
then calculates the number of adjacencies that would be
expected by random seating. To assign random seating, the

program creates an array of length N, with each entry corre-
sponding to an individual person in the room, represented by
their group’s assigned integer. For example, in our seating
chart, there are 22 total people in the room. Of those 22, 16 are
White and six are Black. Because our seating chart assigned
the integer, “1”, to the White group, and “2” to the Black
group, the program would create an array of length 22, with 16
Is and six 2s. The list would then be randomly shuffled. Each
currently filled seat (i.e. a cell in the seating chart not set to 0)
would be assigned the next entry in the shuffled list.
Therefore, we would have a new seating chart with the people
randomly placed in the seats that were previously occupied.
The program would then perform the same adjacency
counting calculation previously described and append the num-
ber of adjacencies counted into an observed adjacency list. This
process of randomly assigning people and counting adjacencies
would repeat for a large number of iterations (e.g., 10,000). After
the final iteration, the mean of the observed adjacency list would
indicate the expected number of adjacencies if the students
occupied the seats without preference for race/group status.
The standard deviation of that list would represent the variability
from random seating. Now, using the observed number of dis-
similar adjacencies, and the simulated estimates for the expected
number of adjacencies and the associated standard deviation, the
program can compute the aggregation index using equation 1.

Optimal number of iterations: A simulation study

When using an iterative estimation procedure, such as
bootstrapping, it is important to determine the number of
iterations needed to obtain both accurate and stable parameter
estimates. The parameters estimated in the proposed method
are the expected number of adjacencies for a room (EA), the
standard deviation of expected number of adjacencies (0A)
for the room, and from those parameters, the program then
computes the aggregation index (I). Therefore, a simulation
study was conducted for different room sizes and variations of
number of iterations used by the bootstrap routine. Then the
estimated parameter values (EA, oA, and I) for each simula-
tion were compared to the closed-form equations. These com-
parisons provide the expected error for different settings and
iteration values. It is important to note that because Campbell
et al. only provide estimates for adjacencies along a single
dimension, the current simulations can only address optimal-
ity for side-by-side situations.

Simulation program

A separate program was conducted for simulating rooms. This
program generated a square (N x N) matrix, where the room
size (N) was set to be either: 5, 10, 15, or 20. Thus, we
examined rooms containing between 25 and 400 seats. The

@ Springer



1334

Behav Res (2015) 47:1328-1342

choice of room sizes was arbitrary, but was intended to repre-
sent a realistic spectrum of rooms encountered in life. Note
that room size is defined by number of possible seats, and not
by space. Therefore a setting with large square footage, but
with a few seats close to one another, is more similar to a
smaller room size in these simulations than a room with little
space, but with the many separated seats. These rooms were
populated with two separate groups of “people” in equal
proportion (represented as 1s and 2s in the matrix). The
sparseness of the room was set to be 50 % (e.g., if the room
had 100 seats, it contained 50 people: 25 people from group 1
and 25 people from group 2). For odd-numbered room sizes,
the number of people was rounded up to the nearest integer
that was closest to 50 % of the room size. Each simulation
randomly assigned each person to an empty seat.

Once the room was constructed, the Campbell et al. method
(coded as a separate program that measures the parameters in
the equations) was used to obtain closed-form (i.e., absolute)
values for the expected number of left-right adjacencies (EA)
as well as the standard deviation of the expected number of
adjacencies (0A). The bootstrapped estimates were obtained
by having the bootstrapping program count the number of
similar side-by-side adjacencies, and perform the bootstrap
routine to estimate the EA and A parameters for that room.
The number of iterations used to calculate those estimates
were: 1,000, 5,000, 10,000, 50,000, 100,000, 500,000.
These numbers were chosen because prior informal simula-
tions by the researcher suggested that 500,000 iterations were
sufficient to obtain accuracy and reliability, and therefore
served as an upper limit for the possible values.

Because people were randomly assigned to seats, there may
be variability in the number of adjacencies for each room type,
and, therefore, each room was re-simulated 1,000 times to min-
imize the standard error of the estimates. Although the resam-
pling value can be any arbitrarily large number, 1,000 was
chosen for computational practicality as the time needed for
any order of magnitude larger would be extremely time intensive
(e.g., months, years). Therefore, these simulations will provide a
measure of how much error, on average, there is between the
methods for varying room sizes and iteration values.

Measuring estimate accuracy

Following the simulations, the estimates between the two
methods (e.g., formula-derived EA and bootstrapped EA)
were subtracted from each other, and then the absolute value
of that difference was computed. For each room size and
iteration value, the average of this error was computed. This
mean absolute error represents how much the simulations
were off from the closed-form answer and serves as a measure
of how imprecise the estimates obtained from the program are.
All statistics are reported in Table 5, including the associated
standard deviation of these values that show how much
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variability the parameter estimates have for each iteration
and room size.

Results

The results of this simulation study are shown in Figures 6, 7,
and 8. For all simulations, the error rates are all relatively low.
As might be expected, the best parameter estimates are ob-
tained with the largest iteration values and in the smallest
room (i.e., a room with 25 seats). The least accurate estimates
are obtained when only 1,000 iterations are used for a room
size of 400 (see Tables 1, 2, and 3). However, when the
number of iterations is 50,000 or greater, the estimates differ
from the true value by only .002 on average and therefore
sufficient for reporting the statistic to a precision of two digits.

When examining room size, larger rooms tend to create
more error in the estimates. This finding is not unexpected
given the parameters in the original Campbell et al.
equations,which suggest that the number of occupants as
number of non-contiguous blocks of people will increase the
variability of adjacencies. However, when estimating the true
aggregation index (Fig. 8), room size does not seem to make
as much of difference in the error rates, and all iteration
methods will produce roughly the same error rate for the
aggregation indices in larger rooms as they do in smaller
room.

Mean Absolute Error of
Bootstrapped Expected Adjacencies

Room Size
— 25
— 100

225
T — 400

— e s

0 100000 200000 300000 400000 500000

Mean Abs. Error
0.00 0.02 0.04 0.06 0.08 0.10 0.12
|

# of lterations

Fig. 6 The mean absolute error of bootstrapped estimates, compared to
the Campbell, Kruskal, & Wallace (1966) equation estimates, for the
expected number of dissimilar seating adjacencies in a room. The x-axis
shows the number of iterations used in the bootstrap routine. Lines
represent the number of seats in a square room
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Mean Absolute Error of
Bootstrapped Standard Devations

Room Size
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225
1 — 400
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Fig. 7 The mean absolute error of bootstrapped estimates, compared to
the Campbell, Kruskal, & Wallace (1966) equation estimates, for the
standard deviation of the expected number of dissimilar seating adjacen-
cies in a room. The x-axis shows the number of iterations used in the
bootstrap routine. Lines represent the number of seats in a square room

Another important property of the bootstrap method to
examine is when does the error rate experience diminishing
returns for increased iterations. That is, a researcher may be
interested in knowing the iteration value when accuracy stops
increasing to an appreciable level. One method to assess this
question is scree analysis (Cattell, 1966). This method exam-
ines variance/error plots for “elbows.” These elbows can often
be seen visually, though there are also quantitative methods to
suggest the appropriate value (Cng: Gorsuch & Nelson, 1981;
mReg: Zoski & Jurs, 1993). From visual inspection, in all
three plots the elbow occurs between the 10,000th and
50,000th iteration. That is, after about 50,000 iterations, the
estimates see very slow improvement. This visual analysis
showing that between 10,000 and 50,000 iterations is the point
of diminishing returns was also confirmed by quantitative
scree analysis methods. For all estimates, the mReg method
suggests the 50,000th iteration, while the Cng method sug-
gests the 10,000th iteration. Thus, this paper recommends
using 50,000 iterations when conducting research, and at least
500,000 iterations for atypical situations not examined in this
simulation study.

Comparison with results from previous studies

To assess the validity of the simulation method at estimating
the aggregation index’s parameters, six published and unpub-
lished seating charts from papers examining aggregation were
analyzed with both the Campbell et al. and the current

simulation method. Equations 2 and 3 were used to calculate
the parameter values of the aggregation index for the
Campbell et al. method. To estimate the values using the
simulation methods, the seating chart was converted to the
matrix format (in an Excel spreadsheet) using the procedures
previously discussed. These seating matrices were entered
into the program, and each chart’s parameters were computed
from a simulation using 500,000 iterations (to reduce the
standard error as much as possible) of random seat
assignment.

The first parameter calculated was the observed number of
dissimilar adjacencies. For the Campbell et al. method, this
parameter has to be visually calculated, while the simulation
method automates the counting. The results of this compari-
son showed no differences between visually counting the
number of observed adjacencies and having them counted
with the Social Aggregation program. Because the number of
adjacencies counted is equivalent to visual inspection, it sug-
gests that the adjacency counting algorithm is functioning as
expected. Table 4 compares the methods’ estimates for the
expected number of adjacencies. The bootstrap method shows
high convergence with the closed-form equations. The largest
deviation between the simulated estimates and the closed-
form solution was .0027. Similarly, Table 5 shows how the
estimates of the standard deviation compare between
methods. The bootstrap estimates were never more than ap-
proximately .0031 off from the estimates of the closed-form
equations. This similarity between parameters suggests that
the aggregation index parameter estimates from the simulation
are comparable for previous investigations of seat preference.
The parameter estimates between methods are all within two
decimal places of each other, and greater accuracy may po-
tentially be achieved with a greater number of iterations.

Advantages and extensions
Simultaneous analysis of adjacencies

By using simulations to estimate the parameters, this boot-
strap method offers several improvements over the
Campbell et al. method due it being more flexible in the
types of analyses, simpler to understand, and easier to use.
The previous method could only compute an aggregation
index concerning adjacencies along one dimension (e.g,
leftside-rightside) at a single time. If more dimensions were
of interest (e.g., front and back), the researchers would
have to conduct a separate test for that dimension.
However, this proposed bootstrap method offers users the
ability to examine the different types of adjacencies
simultaneously. The program, as usual, would then count
the number of those types of adjacencies in the provided
seating chart, and compute what the expected number of
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adjacencies under random seating would be, as well as the
standard deviation of the random adjacencies with that
definition.

Multiple group comparisons

The program also allows for examining more categories of
groups. Because the program’s instructions are to count the
number of times non-empty, dissimilar cells are next to
each other, the researcher can specify more than two
groups in the seating chart (by using a unique integer code
for each group), and similarity preferences can still be
calculated (Fig. 9). If there is high aggregation, and people
tend to sit next members of their own groups, then it will
count very few dissimilar adjacencies. However, if people
are more open to sitting next to dissimilar group members,
then many dissimilar adjacencies will be counted. The
expected adjacencies and standard deviation of adjacencies
under random seating can still be assessed using this com-
putational method of counting and multiple simulations.
Like the previous closed-form method, this method also
allows for an aggregation index to be computed for each
separate group. If the researcher is concerned about the
amount of aggregation White, Black, and Latin-American
students show, he/she can have the focal group coded as
one integer (“1”), and the other groups coded as a separate
common integer (e.g. “2”) . This recoding process to

Mean Absolute Error of
Bootstrapped Aggregation Indices

Room Size
— 25
— 100

225
T — 400

— hd —

0 100000 200000 300000 400000 500000

Mean Abs. Error
0.00 0.02 0.04 0.06 0.08 0.10 0.12
|

# of lterations

Fig 8 The mean absolute error of bootstrapped estimates, compared to
the Campbell, Kruskal, & Wallace (1966) equation estimates, for the
aggregation index. The x-axis shows the number of iterations used in
the bootstrap routine. Lines represent the number of seats in a square
room
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convert groups into different integers can be done easily
within a basic text editing or spreadsheet program using
the Find-and-Replace function. For example, if White stu-
dents are coded as 1, Latinos as 2, and Asians as 3, and a
user wishes to examine aggregation of White students to
themselves versus out-group members, the user would only
have to Find-Replace 3 into 2. Or, if the user wanted to
compare Latino aggregation to other Latinos versus out-
group members, the user would only need to Find-Replace
3 into 1. Thus separate indices can be obtained for each
group, or if the groups are left as distinct integers, an
overall aggregation index can be provided for the entire
room. Therefore, this method allows not only for the total
aggregation in an environment to be measured, but also for
measuring group-level aggregation.

Examining continuous variables

Another advantage of the proposed simulation method is that
similarity can be defined as a continuous variable, while still
preserving the typical interpretation of the aggregation index.
Rather than assigning people integers in the seating matrix to
indicate group membership, researchers can instead enter
peoples’ numerical value on a continuous interval-level trait
of interest (e.g. age, attractiveness, skin tone). If the researcher
specifies to the program that the seating chart is coded with a
continuous variable (Fig. 10), the program performs a differ-
ent process for computing the aggregation index but one that
is very similar to the process for a nominal variable. The
program examines all non-empty cells and sees if there are
non-empty cells adjacent to it. If there are occupied seats
adjacent to it, then it takes the absolute deviation of each of
those cells to the original cell and appends that value to a list.

When all of the cells have been examined, the program
takes the average of the list to represent the average adjacent
dissimilarity in the room. Then the program randomly as-
signs the people to previously occupied seats over multiple
trials and computes the average amount of dissimilarity that
would be expected to be observed by chance, as well as the
standard deviation of the random dissimilarity. As before,
the aggregation index is computed by taking the difference
of the observed average dissimilarity to the expected average
dissimilarity and dividing the result by the standard devia-
tion (see Appendix 3 for code). It is important to mention
that the aggregation index and associated formulas have
been used over several years, and Campbell et al. provided
proof for the computation of the parameters. Thus, this
bootstrapped method is able to verify its accuracy by com-
paring the bootstrapped results to the results from the equa-
tions. Because no closed-form equation exists for calculating
aggregation on continuous data, it is important to keep in
mind that further testing is needed to validate the results.
The full code for the calculation is posted in the Appendix,
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Table 1 Mean absolute error rates for bootstrapped expected adjacency estimates
Iterations 5x%5 Room Size 15 x15 20 %20
10 x10

1,000 0.0253 (0.0198) 0.061 (0.04569) 0.0888 (0.0674) 0.1230 (0.0922)
5,000 0.0119 (0.0093) 0.0276 (0.02099) 0.0407 (0.0304) 0.0556 (0.0423)
10,000 0.0081 (0.0064) 0.0189 (0.0139) 0.0290 (0.0214) 0.0394 (0.0292)
50,000 0.0037 (0.0029) 0.0083 (0.0063) 0.0123 (0.0094) 0.0177 (0.0138)
100,000 0.0027 (0.0021) 0.0058 (0.0045) 0.0087 (0.0066) 0.0123 (0.0094)
500,000 0.0012 (0.0008) 0.0026 (0.0020) 0.0040 (0.0032) 0.0056 (0.0044)

Note: Error rates are for bootstrapped estimates under different room sizes and iterations when compared to the Campbell, Kruskal, & Wallace (1966)
equation estimates for the expected number of dissimilar adjacencies. Error = mean absolute error. Standard deviations of error rates are given in
parentheses

Table 2 Mean absolute error rates for bootstrapped standard deviation estimates

Iterations 5 x5 Room Size 15 x15 20 %20
10 x10

1,000 0.0123 (0.0158) 0.0150 (0.0492) 0.0511 (0.0658) 0.0336 (0.1047)
5,000 0.006 (0.0077) 0.0143 (0.0175) 0.0215 (0.0288) 0.0315 (0.0366)
10,000 0.0038 (0.0049) 0.0109 (0.0129) 0.0158 (0.0185) 0.0221 (0.0258)
50,000 0.0019 (0.0023) 0.0042 (0.0055) 0.0074 (0.0089) 0.0102 (0.0111)
100,000 0.0013 (0.0016) 0.0033 (0.0040) 0.0053 (0.0059) 0.007 (0.00827)
500,000 0.0005 (0.0008) 0.0014 (0.0019) 0.0022 (0.0027) 0.0033 (0.0033)

Note: Error rates are for bootstrapped estimates under different room sizes and iterations when compared to the Campbell, Kruskal, & Wallace (1966)
equation estimates for the standard deviation of the expected number of dissimilar adjacencies. Error = mean absolute error. Standard deviations of error
rates are given in parentheses

Table 3 Mean absolute error rates for bootstrapped aggregation index estimates

Iterations 5 x5 Room size 15 x15 20 x20
10 x10

1,000 0.0292 (0.0217) 0.0302 (0.0236) 0.0295 (0.0243) 0.0302 (0.0240)
5,000 0.0133 (0.0103) 0.0138 (0.0109) 0.0136 (0.0104) 0.0137 (0.0108)
10,000 0.0090 (0.0070) 0.0094 (0.0075) 0.0094 (0.0072) 0.01 (0.0078)
50,000 0.0042 (0.0032) 0.0043 (0.0036) 0.0042 (0.0035) 0.0043 (0.0034)
100,000 0.0030 (0.0023) 0.0031 (0.0025) 0.0029 (0.0024) 0.0032 (0.0024)
500,000 0.0014 (0.0010) 0.0013 (0.0011) 0.0013 (0.0011) 0.0014 (0.0011)

Note: Error rates are for bootstrapped estimates under different room sizes and iterations when compared to the Campbell, Kruskal, & Wallace (1966)
equation estimates for the aggregation index. Error = mean absolute error. Standard deviations of error rates are given in parentheses

Table 4 Comparison of calculated and simulated expected adjacency values

Seating Chart Equation Method Simulation Method Absolute Difference
Campbell et al. (1966) 4.9870129 4.989222 0.0022091
Mackinnon (2009; Fig. 1) 3.2307692 3.233474 0.0027048
Mackinnon (2009; Unpublished Chart 1) 9.572649 9.570574 0.002075
Mackinnon (2009; Unpublished Chart 2) 3.5164835 3.516614 0.0001305
Mackinnon (2009; Unpublished Chart 3) 4.1538461 4.154242 0.0003959

Note: Comparison between the estimates of the expected number of dissimilar adjacencies from the Campbell, Kruskal, & Wallace (1966) equations and
the estimates from the bootstrapped simulation method (with 500,000 iterations) for six seating charts
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Table 5 Comparison of calculated and simulated standard deviation values

Seating Chart Equation Method Simulation Method Absolute Difference
Campbell et al. (1966) 1.51518927 1.51514729 0.00004198
Mackinnon (2009; Fig. 1) 1.21926441 1.21777609 0.00148832
Mackinnon (2009; Unpublished Chart 1) 1.90059027 1.89754428 0.00304599
Mackinnon (2009; Unpublished Chart 2) 1.2744106 1.27293270 0.00147790
Mackinnon (2009; Unpublished Chart 3) 1.32384105 1.32250610 0.00133495

Note: Comparison between the estimates of the standard deviation of dissimilar adjacencies from the Campbell, Kruskal, & Wallace (1966) equations and

the estimates from the bootstrapped simulation method for six seating charts

and can be reviewed by any researcher interested in using
this experimental calculation.

Non-parametric inferential statistics

Because the program computes the amount of aggregation in
the room under random seating conditions, researchers can
know more precisely the probability of observing aggregation
as extreme as the amount they found. With the prior Campbell
et al. method, a researcher could only compute p-values when
he/she had measured many seating charts, and had multiple
aggregation indices. With this method, the researcher only
needs to observe one setting to know how often he/she would
observe aggregation at least as extreme as the amount in the
present chart if seating were chosen at random. For example, if
a researcher observes 12 dissimilar adjacencies in his/her
study, and out of 10,000 simulations with random seating,
only three of those simulations have dissimilar adjacencies
>12, then there is approximately a 3/10,000 chance that the
researcher would have observed that much aggregation if
seating is being chosen at random (p = .0003). Therefore,
researchers can test directional hypotheses with the proposed
bootstrap method.

In addition to p-values, the program also provides confi-
dence intervals for the mean value of the expected number of
adjacencies. That is, researchers are able to understand more
about the setting they are examining, and know how many
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Fig. 9 A sample spreadsheet that examines students belonging to four
distinct groups (e.g., White=1, Black=2, Latino=3, and Asian=4)
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adjacencies would be expected under randomness 95 % of the
time, thereby giving the researcher further information not
attainable with the previous Campbell et al. method. To com-
pute these confidence intervals, after each simulation of ran-
dom seating, the number of adjacencies in that randomly
seated room is counted and added to a list. Once all iterations
have finished, the program then computes bootstrapped con-
fidence intervals from that list using the bias-corrected and
accelerated bootstrap suggested by Efron (1987), which ad-
justs for both bias and skewness in the bootstrap distribution.
This bias-corrected procedure for confidence intervals tends to

A B C D E F
it 10 8 5 1 3
2 9 6 5 2 1
3 7 0 2 0 4
4 0 2 0 3 3
5 3 0 0 10 0
6 3 0 0 5 4
7 5 6 10 7 6
8
9
# | Social Aggregation: Compute Aggregation o | E jweim
Menu

Please Enter the Following Information:

Select File

Proximity Chart:
[ Use Data Entered in the Program

[V] Data are Continuous

Adjacency Directions: [7] upjpown [T Corners
Adjacencies allowed

one empty space? (= O O
Hypothesis Test: [ preference for Simiarity -

Mumber of Iterations: 50000 Confidence Interval: 95

Fig. 10 A sample spreadsheet that uses a continuous measure of
similarity (i.e., numbers from 1-10) for each student. The program has
a special option that must be selected when the entries in the seating chart
are a continuous-level variable (e.g. height, attractiveness, age)
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produce more accurate/narrow estimations then the more sim-
ple percentile bootstrapped confidence method of removing
the first and last 1 — o/2 entries from the sorted list.

This confidence interval provides the range of observable
values at the specified confidence for the expected number of
dissimilar adjacencies. Therefore, this interval can be com-
pared to the observed number of adjacencies to determine if
the observed dissimilar adjacencies overlap or are outside the
range of the interval. The program also provides bias-corrected
confidence intervals for the estimated aggregation index using
a similar process, and therefore researchers can report the
confidence interval for this effect size measure. With these
confidence intervals, it possible for researchers to conduct their
own pre-study power analysis. Researchers who anticipate
certain room sizes, total number of persons, group distribu-
tions, and isolates can submit hypothetical seating charts to the
program and discover the range of dissimilar adjacencies that
are probable (i.e., the confidence interval for EA), as well as
the standard deviation of the expected adjacencies. With these
estimates, the researcher knows how much aggregation they
would need to observe to obtain a certain effect size, and can
therefore plan studies accordingly and know the feasibility of
those studies finding extreme levels of aggregation.

New measures of aggregation

Because of the bootstrapped nature of the method, more
information about the room and the individuals can be pro-
vided that go beyond the information provided by the
Campbell et al. equations. One limitation of the closed-form
equations is that they provide very little individual level
information. That is, the parameters EA, oA, and I reflect
what happens at an aggregate level, but say nothing about the
experience of an individual group member. With the bootstrap
method, it is possible to compute different statistics about
individual level behavior and experiences.

One statistic this paper proposes is the proportion of dis-
similar adjacencies for a person (p-DAP). This statistic is
intended to provide a more easily interpretable measure of
aggregation by describing the daily experience of a typical
group member. Specifically, it describes what percent of peo-
ple next to a person are members of a different group. This
statistic thus offers an easy-to-describe picture of intergroup
contact that can be communicated to a non-technical audience
more clearly. It can also be expressed as raw counts (e.g., for
every eight people a White person is next to, roughly two of
them are going be Black), which research suggests is one of the
most understandable ways to convey statistical information to
the public (Gigerenzer, Gaissmaier, Kurz-Milcke, Schwartz, &
Woloshin, 2007). To compute the statistic, during the initial
counting phase (where the number of observed adjacencies are

counted), each group receives its own empty dictionary where
the entries are the group members. When a person is adjacent
to a person from a different group their dictionary value
increments by 1. Thus, all people in a room are assigned a
value representing the number of dissimilar people next to
them. Further, each seat on the matrix has a value for how
many adjacencies are possible (e.g., a person in the top-left
corner has only one side-by-side adjacency possible, but two
possible adjacencies if adjacent is defined as side-by-side and
front-and-back). To obtain an individual’s probability of hav-
ing an adjacent person next to them, each person’s dissimilar
adjacency count is divided by the total possible adjacencies for
that seat. For example, if a person is next to only one dissimilar
person, and their seat has two total possible adjacencies, then
the proportion of people next to them that are dissimilar is .50
or 50 %. In other words, 50 % of the people this person will
encounter at their seat are of from a different group. These
probabilities are computed for each person in the seating chart.
Next, all probabilities are then averaged. This average indicates
the probability that an individual of a certain group (e.g.,
White) will have a dissimilar group member next to them. It
is important to note that each group receives its own p-DAP
estimate. Further, with this statistic, it is possible to compute
the expected proportion of dissimilar adjacencies of a group
member for a given room. By computing the p-DAP statistics
for each group during the bootstrapped randomization process,
it is possible to show how conducive a room is to having
intergroup contact at an individual level. Thus, the p-DAP
informs researchers of how much experience with other group
members an individual has, and also how often these dissimilar
encounters will even take place by chance alone given the
nature of the room and proportions of group members. These
statistics provide a richer picture of intergroup relations and
structural barriers to contact as they give an immediately
interpretable description of what a group member will experi-
ence in a room as well as an exact measure of environmental
encouragement that is directly comparable to other environ-
ments. While the prior Campbell et al. method does detail the
expected dissimilar adjacencies of the environment, this inte-
ger is difficult to compare across settings, and therefore may
not be particularly helpful for researchers who want to under-
stand how much an environment facilitates intergroup contact
at the individual level.

The aggregation index, however, still serves an important
metric for researchers. This index, which shows the magnitude
of a difference between an observed and null hypothesis
value, standardized by the variability, provides an overall
representation of group preferences. As a standardized differ-
ence between two mean values, it meets the requirements of
many different definitions given for an effect size (Kazis,
Anderson, & Meenan, 1989; Kelley & Preacher, 2012;
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NCES, 2002; Olejnik & Algina, 2003; Thompson, 2004).
Further, this specific definition of effect size is analogous to
the definition provided for Cohen’s d (1988), and therefore
typical interpretations of effect size magnitude are applicable.
Journals are placing an increasing emphasis on reporting
effect size instead of null-hypothesis tests (Cumming, 2014),
and therefore it represents a preferred way of expressing
results and communicating the extent of a finding. Further,
this effect size is directly comparable to other effect sizes,
which makes it especially useful for being included in meta-
analyses (not only for meta-analayses of seating studies but
also meta-analyses of attitudes or in-group bias). The alterna-
tive statistic proposed, p-DAP, is probably better suited for
researchers interested in a real-life implication of group-
member contact and the pressures a particular environment
places on group interactions. Thus, the aggregation index and
p-DAP can be seen as complementary and not competing
measures of aggregation.

Conclusion

The method originally proposed by Campbell et al. was an
important contribution to the social sciences, and offered a
closed-form method of analyzing aggregation. However, ad-
vances in computing speed offer the opportunity to improve

TotalAdjacencies=0
X=SeatingMatrix
for i in range (1,

upon the method’s limitations. Using bootstrap simulations to
estimate the various parameters of the aggregation index
allows researchers to analyze more types of situations, learn
more information about the index, and do this analysis more
efficiently.

This new approach makes it possible to develop intuitive
examinations of seating preferences that are more flexible, and
allow for a greater variety of analyses, than is currently pos-
sible with the Campbell et al. closed-form equations. Further,
this method still maintains a high degree of accuracy in
parameter estimation, and converges with the previous
method’s estimates. Therefore, the bootstrapped simulation
method is recommended as an alternative to analyzing how
much preference for similarity exists in a social setting.

Author Note The author would like to thank Sean Mackinnon for
providing seating chart data, and for his suggestions of features for the
program. He would also like to thank Ryan Ritter for his comments on an
early version of the paper. A copy of the SocialAggregation program and
sample seating charts can be downloaded from http://ivanhernandez.com/
software/Social Aggregation.zip

Appendix 1

Source code for counting the number of dissimilar group
members who are adjacent (side-by-side) to one another in a
room

# of rows of Seating Matrix) :

for j in range(1,# of columns of Seating Matrix-1):

if X[i] (5]

l= X[i] [§+1]

and X[1][§]!=0 and X[i] [§+1]!=0:

TotalAdjacencies +=1

Appendix 2

Source code for counting the number of dissimilar group
members who are adjacent to one another in a room, where

TotalAdjacencies=0
X=SeatingMatrix
for i in range(1,

adjacent is defined as either side-by-side or front-and-back to
another person

# of rows of Seating Matrix) :

for j in range(1l,# of columns of Seating Matrix-1):

if X[41][§] != X[1] [§+1] and X[i][j]!=0 and X[i] [j+1]!=0:
TotalAdjacencies +=1

elseif X[i][q] != X[i] [§+2]

X[i] [§+2]!=0:
TotalAdjacencies +=1

and X[i] [§J] !=0 and X[i] [j+1]==0 and
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Appendix 3

Code to compute aggregation index for continuous data

entries=transpose (nonzero (X))
A=[]
if side==True:
for row in range (0,X.shape[0]):
li=X[row, :].tolist ()
if len(li)==2:length s=1
for i in range (0, len(ll)-length s):

Tf 14[i] != 1i[i+1] and 1i[i]!=0 and 1i[i+1]!=0:
A.append (abs (11 [1] - 13 [i+1]))

if length s==
if 1i[d] != 1i[i+1] and 1i[i]!=0 and 1i[i+1]!=0
A.append (abs (1i[i] - 1i[i+1]))

elif 1i[i] != 1i[i+2] and 1i[i]!=0 and 1i[i+1]==0 and 1i[i+2]!=0

A.append (abs (11 [i] - 13 [i+2]))

if i==(len(1i)-3) and 1i[i+1]!=1i[i+2] and 1i[i+1]!=0 and 1i[i+2]!=0

A.append (abs (11 [i] - 13 [i+2]))

for row in range(0,X.shape[0]-1):

li=X[row,:].tolist ()

li2=X[row+1,:].tolist ()

if length f==2 and row!= (X.shape[0]-2):
1i3=X[row+2, :] .tolist ()

for i in range(0,len(li)):
if 1i[i] != 1i2[i] and 1i[i]!=0 and 1i2[i]!=0:

A.append (abs (1i[i] - 1i2[i]))

elif length f--2 and 1i2([i]==0:

if row!=(X.shape[0]-1) and 1i[i] != 1i3[i] and 1i[i]!=0 and 1i3[i]!=0

A.append (abs (1i[i] - 1i3[i]))

if corners==True:
for row in range(0,X.shape[0]-1):
li=X[row,:].tolist ()
1i2=X[row+1, :] .tolist ()
if length c==2 and row!=(X.shape[0]-2):1i3=X[row+2,:].tolist ()
for i in range(0,len(1i)):

if i != 0:
if 1i[4] != 1i2[i-1] and 1i([i]!=0 and 1i2([i-1]!=0:A.append(abs (1i[i] - 1i2[i-1]))
elif length c==2 and i > 1 and 1i2[i-1]==0:
if 1i[i] != 1i3[i-2] and 1i[i]!=0 and 1i3[i-2]!=0
A.append (abs (13 [i] - 1i3[i-21))
if i != (den(li)-1):

if 1i[di] != 1i2[i+1] and 1i[i]!=0 and 1i2[i+1]!=0
A.append (abs (1i[i] - 1i2[i+1]))
2 and i < (len(li)-2) and 1i2[i+1]==

elif length

if 1i[4] != 1i3[i+2] and 1i[i]!=0 and 1i3[i+2]!=0

A.append (abs (1i[i] - 1i3[i+2]))

A=mean (A)

allpeople=[]
for i in entries:

x, i
allpeople.append (X [x,y])
N=len (allpeople)
0A array=[]
for r in range(0,iterations) :
randompeople-allpeople[::]
Xrandom=zeros ( (X.shape [0],X.shape[1]))
random. shuffle (randompeople)
for i in entries:
x,y= 1
Xrandom [x, y] =randompeople.pop ()

for row in range (0,Xrandom.shape [0]) :
li=Xrandom[row, :].tolist ()
if len(li)==2:length s=1
for i in range(0,len(li)-length s):
if length s--

if 1i[4] != 1i[i+1] and 1i[i]!=0 and 1i[i+1]!=0

S.append (abs (1i[i] - 1i[i+1]))

if length s==

if 1i[4] != 1i[i+1] and 1i[i]!=0 and 1i[i+1]!=0

0 and 1i[i+2]!=0

S.append (abs (13 [1] - 1i[i+1]))
elif 1i[i] != 1i[i+2] and 1i[i]!=0 and 1li[i+l]==
S.append (abs (1i[i] - 1i[i+2]))

if i==(len(1i)-3) and 1i[i+1]!=1i[i+2] and 1i[i+1]!=0 and 1i[i+2]!=0

S.append (abs (1i[i] - 1i[i+2]))

if front==True:
for row in range (0,Xrandom.shape[0]-1) :
li=Xrandom[row, :].tolist ()
li2=Xrandom[row+1, :].tolist ()
if length f==2 and row!=(X.shape[0]-2):
li3=Xrandom[row+2, :].tolist ()
for i in range(0,len(li)):

if 1i[i] != 1i2[i] and 1i[i]!=0 and 1i2[i]!=0

S.append (abs (11 [1]

- 1i2[i]))

elif length f==2 and 1i2[i]==

if row!=(X.shape[0]-1) and 1il[i]

!= 1i3[i] and 1i[i]!=0 and 1i3[i]!=0:

S.append (abs (1i[1]

- 1i3[i]))

if corners==True:
for row in range (0,Xrandom.shape [0]-1) :
li=Xrandom[row, :].tolist ()
li2=Xrandom[row+1, :].tolist ()

if length c==2 and row!=(Xrandom.shape [0]-2) :1i3=Xrandom[row+2,:].tolist ()

for i in range(0,len(li)):

if i I= 0:
if 1i[i] != 1i2[i-1] and 1i[i]!=0 and 1i2[i-1]!=0
S.append (abs (13 [1] - 1i2(i-1]))
elif length c==2 and i > 1 and 1i2[i-1]==0:
if 1i[i] != 1i3([i-2] and 1il[i] ‘*0 and 1i3[i-2]!=0
S.append (abs (13 [i] - 1i3[i-2]))
if i != (len(li)-1):
if 15(i] != 1i2[i+1] and 1i[i]1=0 and 1i2[i+1]!=0:S.append (abs (1i[i]
elif length c==2 and i < (len(li)-2) and 1i2[i+1]==0:
if 1i[i] != 1i3[i+2] and 1i[i]!=0 and 1i3[i+2]!=0

S.append (abs (11 [1]

- 1i3[i+2]))

OA array.append (mean (S))
td (OA array,ddof=2)
EA=sum (OA array)/(len(OA array))
I=(A-EA)/OA
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