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Abstract Parallel tests are needed so that alternate forms
can be applied to different groups or on different occasions,
but also in the context of split-half reliability estimation for a
given test. Statistically, parallelism holds beyond reasonable
doubt when the null hypotheses of equality of observed
means and variances across the two forms (or halves) are
not rejected. Several statistical tests have been proposed for
this purpose, but their performance has never been com-
pared. This study assessed the relative performance (type I
error rate and power) of the Student–Pitman–Morgan, Brad-
ley–Blackwood, and Wilks tests of equality of means and
variances in the typical conditions surrounding studies of
parallelism—namely, integer-valued and bounded test
scores with distributions that may not be bivariate normal.
The results advise against the use of the Wilks test and
support the use of the Bradley–Blackwood test because
of its simplicity and its minimally better performance in
comparison with the more cumbersome Student–Pitman–
Morgan test.
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Parallel tests are sometimes needed so that alternate forms
can be administered either to different groups of respondents
or to the same group on separate occasions (e.g., Kronmüller
et al., 2008; Werheid et al., 2002). The need for parallel tests
arises also on estimation of reliability with the split-half
method, which implies partitioning the test at hand into
two parallel halves (e.g., Altin & Gençöz, 2009; Joyce et

al., 2010; Schmidtke & Metternich, 2009; Woods et al.,
2008). Cronbach’s alpha is also used rather often for the
latter purpose (Hogan, Benjamin, & Brezinski, 2000), but
both approaches to reliability estimation have pros and cons
(Charter, 2001; Sijtsma, 2009; Thompson, Green, & Yang,
2010). Acknowledging this controversy but not aiming to
pursue the discussion further, the present article focuses on
comparing statistical criteria to check out parallelism,
whether in the context of construction of alternate forms or
in the context of split-half reliability estimation.

Raykov, Patelis, and Marcoulides (2011) proposed a la-
tent variable approach that can be used only in quests for the
parallelism of at least three measures, and they also
discussed the methodological limitations of attempts to
check for the parallelism of only two measures. This should
not be a problem in the case of reliability estimation, be-
cause a three-part (instead of a two-part) partition of any
given test is always feasible. But constructing a third form
of a test is not always easy. A similar problem arises in the
assessment of reliability with the test–retest method, which
requires checking out that the two applications of the test
were parallel. A third retest would also be necessary to use
the method of Raykov et al. in this context. A statistical
criterion for examining the parallelism of two measures is
thus necessary, despite the difficulties discussed by Raykov
et al.: If the two measures turned out to be nonparallel, the
correlation between them would not be an estimate of the
reliability of the test. It is also remarkable that reliability in
empirical studies is routinely reported as the measured cor-
relation between two presumed parallel tests (parallel-form
reliability), two presumed parallel halves (split-half reliabil-
ity), or two presumed parallel applications (test–retest reli-
ability) with no accompanying evidence that parallelism
actually held.

Gulliksen (1950, pp. 207–210) described some strategies
that increase the likelihood that a partition of a set of items
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renders parallel tests, whether this is done to construct two
parallel forms of a test or simply to define two halves for
split-half reliability estimation. He also discussed statistical
criteria for parallel tests. In general, k (k ≥ 2) tests or
partitions are parallel if the true scores are the same on all
tests and the error variances are identical. Neither of these
conditions can be directly tested empirically (Raykov et al.,
2011), but they have implications that permit an indirect
examination of parallelism. A testable consequence of par-
allelism is that the observed scores on the various tests must
have means, variances, and intercorrelations that can be
regarded as samples from a single multivariate population
in which the means, variances, and intercorrelations are
identical.

Gulliksen (1950, chap. 14) presented an indirect statisti-
cal criterion due to Wilks (1946) that examines this neces-
sary condition for parallelism by simultaneously testing the
hypotheses of equal means, equal variances, and equal in-
tercorrelations for k ≥ 2, but he also pointed out that the k =
2 case—in which a single correlation is involved—can be
treated with a simple check of equality of means and vari-
ances. The k = 2 case is the most frequent, if only because of
the prevalence of split-half methods in reliability estimation
and the rare interest in developing more than two forms of a
given test. It should be noted that some computer programs
(e.g., TAP; Brooks & Johanson, 2003) report split-half
reliability estimates by partitioning a test into even and
odd halves or into first and second halves, carrying out no
statistical test of parallelism. Then it is the user’s responsi-
bility to arrange the items in the data file so that one of these
partitioning methods renders parallel halves.

Besides application of the Wilks test with k = 2, other
tests of equality of two means and variances with related
samples have been proposed. For instance, the usual paired-
samples t-tests for equality of means and for equality of
variances could be applied jointly with a Bonferroni correc-
tion to test the compound hypothesis of equality of means
and variances. Alternatively, E. L. Bradley and Blackwood
(1989) have proposed a rather simple statistic that simulta-
neously tests for equality of means and variances with
paired samples. Given this diversity of approaches, the
choice of a statistical test may seem a question of personal
preference or convenience, but it is unlikely that all choices
are equivalent in terms of accuracy, power, and robustness.
Indeed, statistical tests of any kind are derived under usually
strong distributional assumptions, and their theoretical be-
havior is characterized in asymptotic situations. In actual
practice, however, statistical tests are used with small sam-
ples and with variables that may not be distributed as was
assumed in the derivation of the test. But not all alternative
statistical tests for the same purpose maintain their asymp-
totic properties in small-sample conditions, nor are they all
equally robust to violation of distributional assumptions.

This work investigated the small-sample properties of the
three tests just mentioned, taking into account the charac-
teristics of observed test scores. One of these is that ob-
served scores are discrete and bounded; the second is that
observed scores may not be normally distributed and, even
if they are, the measurement model does not ensure that
observed scores on two actually parallel tests will have a
bivariate normal distribution. These two characteristics are
quite apparent in empirical distributions of observed test
scores (see, e.g., Arostegui, Núñez-Antón, & Quintana,
2007; Arostegui, Padierna, & Quintana, 2010; Torrance et
al., 2009) and pose a potential threat to the accuracy of
statistical tests designed for use with continuous, unbound-
ed, and normally distributed variables. This study used
simulation methods to assess the accuracy (type I error
rates) and power (one’s complement of type II error rates)
of each of the statistical tests described next.

Statistical tests

Let X and Y be normally distributed random variables with
means μx and μy and variancesσ2

x andσ
2
y, respectively. Also, let

ρxy be the correlation between X and Y, and note that at this
point, no assumption needs yet to bemade about the form of the
bivariate distribution of X and Y. In practice, statistical inference
about the means and variances of X and Y requires drawing a
sample of n paired observations and computing at least the

sample meansX andY, the sample variances s2x and s
2
y,
1 and the

sample product–moment correlation rxy.
Separate statistical tests for the equality of the means or

the variances of two variables are well known, and using
both of them for a simultaneous test of both null hypotheses
requires the use of a Bonferroni correction. Thus, for a
size-α test, the joint hypothesis of equal means and vari-
ances is rejected if at least one of the two tests is rejected at
an α* = α/2 level. The null hypothesis of equality of means
is tested through the well-known statistic

Tm ¼ X � Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2x þ s2y � 2rxysxsy

q ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p� ; ð1Þ

which has a t distribution with n − 1 degrees of freedom if the
null hypothesis of equality of means is true. On the other hand,
the null hypothesis of equality of variances is tested through
the well-known statistic (Morgan, 1939; Pitman, 1939)

Tv ¼
ffiffiffiffiffiffiffiffiffiffiffi
n� 2

p
s2x � s2y

� �

2sxsy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2xy

q ; ð2Þ

1 Sample variances are assumed in this article to be uncorrected for
bias (i.e., computed with a denominator of n rather than n − 1).

1000 Behav Res (2013) 45:999–1010



which has a t distribution with n − 2 degrees of freedom if the
null is true.

An alternative to application of these two tests with a
Bonferroni correction (which we will refer to as the Stu-
dent–Pitman–Morgan test) is the Bradley–Blackwood test
(E. L. Bradley & Blackwood, 1989), which stems from the
observation that testing simultaneously for equality of the
means and variances of X and Y is equivalent to testing for
null slope and intercept in the regression of D = X − Yon S =
X + Y. If X and Y have a bivariate normal distribution, this is
achieved simultaneously through the statistic

F ¼
Pn

i¼1 D2
i � SSE

� �
2=

SSE n� 2ð Þ=
; ð3Þ

where SSE is the residual sum of squares from the regression
of D on S. If μx = μy and σ2

x ¼ σ2
y , this test statistic is

distributed F with 2 and n − 2 degrees of freedom. It should
be noted at this point that the so-called “Bland–Altman
method” in which X − Y is plotted against (X + Y)/2 to
measure the agreement between X and Y finds justification
in Morgan’s (1939) and Pitman’s (1939) demonstration that
the covariance of X − Y and X + Y is σ2

x � σ2
y .

Finally, the Wilks test for k = 2 as discussed by Gulliksen
(1950) tests equality of means and variances through the
statistic

Lmvc
s2x s

2
y 1� r2xy

� �

s2 1þ rxy
� �

s2 1� rxy
� �þ v

� � ; ð4Þ

where s2 ¼ s2x þ s2y

� �
2= and v ¼ X � Y

� �2
2= . Then,

−nlog(Lmvc) has an approximate chi-square distribution with
2 degrees of freedom, and Wilks (1946, p. 272) noted that
the approximation should be adequate for k ≤ 5 and n ≥ 50.

Method

Following the classical measurement model, a sample of n
true scores Twas drawn from a population with mean μt and
variance σ2

t , and observed scores X and Y were obtained
from them through addition of independent and normally
distributed random errors Ex and Ey such that X = T + Ex and
Y = T + Ey. In all cases, Ex had mean 0 and varianceσ2

e, and it
is useful to recall at this point that the reliability of X is
ρxx0 ¼ σ2

t σ2
t þ σ2

e

� ��
. In studies of type I error rates, Ey had

the same mean and variance as Ex on a condition by condi-
tion basis. In studies of power, Ey had mean aσe√2 and
variance σ2

e b� ρxx0ð Þ 1� ρxx0ð Þ= , with a > 0 and b > 1.
These relations were chosen so that a and b respectively
represent effect sizes for mean differences and variance
ratios, as is discussed next.

The effect size for the mean difference between X and
Y is |μx − μy|/σx−y (see, e.g., Faul, Erdfelder, Lang, &
Buchner, 2007, Table 3). When b = 1, effect size equals
a because μx = μt, μy = μt + aσe√2, and σx−y = σe√2.
On the other hand, a definition of effect size for tests of
related variances does not seem to exist, but consider for
convenience the definition used for the case of independent
variances—namely, σ2

y σ2
x

�
(Faul et al., 2007, Table 9). Then,

regardless of the value of a, it can easily be seen that effect
size is given by b because σ2

x ¼ σ2
t þ σ2

e and σ2
y ¼ σ2

t þ σ2
e

b� ρxx0ð Þ 1� ρxx0ð Þ= . Note, then, that a = 0 and b = 1 render
identically distributed Ex and Ey (i.e., strict parallelism),
that a = 0 with b > 1 implies equal means for X and Y
but different variances (i.e., τ-equivalence), and that a ≠
0 with b = 1 implies equal variances for X and Y but
different means.

Normal and uniform deviates required to generate values
for T, Ex, and Ey with prescribed parameters were drawn
through NAG subroutines G05DDF and G05DAF (Numerical
Algorithms Group, 1999), respectively. The set of simula-
tion conditions resulted from the factorial combination of
several forms of the distribution of true scores, several
reliability levels, four options regarding rounding and
bounding of observed scores, and several sample sizes.
The particular levels that were used along these dimensions
are described next.

True scores T were generated to have symmetrical or
asymmetrical distributions. Symmetrically distributed true
scores were drawn either from normal or from uniform
distributions with parameters that yielded the same mean
and variance irrespective of the form of the distribution. For
a test yielding observed scores in the range between 0 and
Xmax, normally distributed true scores were generated to
have mean μt = Xmax/2 and variance σ2

t = (Xmax/6)
2, so that

the range [0, Xmax] encroaches six standard deviations and,
thus, the distribution of observed scores does not show the
strong ceiling or floor effects that would arise from poorly
constructed tests. A matching condition was defined with
true scores that are uniformly distributed in the range be-
tween Xmax(3 − √3)/6 and Xmax(3 + √3)/6, which also
renders true scores with mean Xmax/2 and variance (Xmax/6)

2

(Evans, Hastings, & Peacock, 2000, p. 171). The set of
conditions in this respect covered values of Xmax from 15
(implying a relatively short test of 30 items in the context of
split-half reliability studies) to 45 (a moderately long test)
items in steps of 5 items, which thus represent conditions in
which mean true score varies from 7.5 to 22.5 and true score
variance varies from 6.25 to 56.25. Asymmetrically distrib-
uted true scores were drawn from folded normal distribu-
tions (Leone, Nelson, & Nottingham, 1961), whose form
resembles the empirical distribution of observed scores from
tests showing moderate ceiling or floor effects. The param-
eters of folded normal distributions varied in preliminary
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simulation studies so as to cover a relatively broad range of
realistic distributions, but the results did not differ meaning-
fully. For this reason, results will be presented here only
for folded distributions with μ = 7Xmax/20 and σ2 =
(11Xmax/60)

2 (see Fig. 4c below for an illustration) and
involving the same range of Xmax described above for sym-
metric distributions.

Error variance σ2
e varied so that the reliability of observed

X scores ranged from .65 to .95 in steps of .03 units. Hence,
σ2
e ¼ σ2

t 1� ρxx0ð Þ ρxx0= varied between σ2
t /19 (when ρxx’ =

.95) and 7 σ2
t /13 (when ρxx’ = .65). In studies of type I error

rates, the variance of Ey matched the variance of Ex on a
condition by condition basis. In studies of power, the vari-
ance of Ey varied as described earlier, with a ranging be-
tween 0 and 1.5 and b ranging between 1 and 2.5. When
b = 1, the reliability of observed Y scores was identical to
that of observed X scores despite variations in the means of
X and Y produced by a; when b > 1, the reliability of Y
scores varied inversely with b, as is evident by the role
played by b in the expression presented above (i.e., the
variance of Ey increases with b).

Observed scores X and Y generated by this process are
continuous, real-valued, and unbounded even with uni-
formly distributed true scores because these are then
corrupted by normally distributed errors. In actual prac-
tice, observed scores are discrete and integer-valued and
have hard bounds at the minimum and maximum scores
attainable in the test. Therefore, all analyses were car-
ried out on the untouched samples of observed scores
initially generated (which are thus close to meeting the
distributional assumptions of the test statistics) and also
on the samples that resulted from rounding each ob-
served score to the nearest integer and/or replacing it
with boundary values (i.e., either by 0 or by Xmax) if
they were off bounds.

Finally, the size n of the sample of examinees varied
between 50 and 350 in steps of 50, since samples smaller
than 50 units are never used in studies of parallelism.

A simulation condition was defined as a particular com-
bination for the options described—for example, a sample
of n = 150 examinees responding to two parallel forms (i.e.,
the mean and variance of Ex and Ey are the same) of a test in
which observed scores range between 0 and Xmax = 30 (thus,
μt = 15 and σ2

t = 25), with normally distributed true scores,

when reliability is .8 (thus, σ2
e = 6.25), and where observed

scores are rounded and bounded. For each simulation con-
dition, 100,000 replicates were drawn, and all statistical
tests described in the preceding section were applied to the
data from each replicate. Then the empirical accuracy (or
power, as applicable) of a given statistical test was defined
as the proportion of cases in which the null hypothesis of
equality of means and variances was rejected. Two-tailed
tests were considered for the statistics in Eqs. 1 and 2; the

tests based on the statistics in Eqs. 3 and 4 are right-tailed by
definition. Accuracy was evaluated at nominal test sizes α ∈
{.10, .05, .01}; power was evaluated at α = .05. Because
error rates computed from 100,000 replicates can be taken at
face value,2 no subsequent statistical analyses were
performed, and all comparisons were carried out in terms
of discrepancies between empirical and nominal error rates.

Results

Before describing the results in detail, it is useful to look at
the sampling distributions of all four test statistics when the
null hypothesis is true and all assumptions hold or almost
hold. Figure 1 shows empirical sampling distributions
(histograms) of the test statistics in Eqs. 1–4 along with
their asymptotic distributions (curves) for the case of sam-
ples of n = 50 examinees from a population in which true
scores are normally distributed with μt = 15 andσ2

t = 25 (i.e.,

Xmax = 30), reliability is .65 (i.e., σ2
e = 13.46), and observed

scores are neither rounded nor bounded. Also printed in
each panel are the empirical percentages of cases (across
all 100,000 replicates) in which the statistics exceeded the
critical limits for size-.1, size-.05, and size-.01 tests (two-
sided or one-sided, as applicable). Thus, for the test statistic
in Eq. 1 (i.e., a t-test for equality of means), the critical
limits for two-tailed tests render empirical type I error rates
of 10.07 % (5.00 + 5.07), 5.09 % (2.53 + 2.56), and 0.99 %
(0.50 + 0.49), respectively, for nominal test levels of 10 %,
5 %, and 1 % (see Fig. 1a). Two-tailed tests for equality of
variances through the statistic in Eq. 2 render similarly
accurate type I error rates of 10.01 %, 5.01 %, and 1 %
(see Fig. 1b). The empirical type I error rates of the Student–
Pitman–Morgan test (i.e., the previous two tests applied
together with a Bonferroni correction) naturally remain also
accurate at 9.84 %, 4.99 %, and 1.00 %, respectively, for
nominal significance levels of 10 %, 5 %, and 1 % (results
not shown in Fig. 1). On the other hand, right-tailed tests of
the null hypothesis of equality of means and variances
through the statistic in Eq. 3 are also quite accurate (see
Fig. 1c). In contrast, the Wilks test (Fig. 1d) appears much
too conservative, with empirical type I error rates that are
nearly half as large as they should be.

Figure 2 shows that accuracy deteriorates under rounding
and bounding—that is, when simulated observed scores are
adjusted to meet the empirical constraint that they take
integer values between 0 and Xmax, as would actually be
the case on administration of actual tests to real examinees.

2 With this number of replications, error rates are approximately esti-

mated to within � 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a 1� að Þ 105=

p
. Use of the more adequate

Score confidence interval (García-Pérez, 2005) renders a similar range
at sample sizes as large as this.
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In these conditions, only the t-test for equality of means
remains accurate when considered in isolation (see Fig. 2a);
all the remaining statistical tests turn somewhere between
meaningfully to overly conservative (see Fig. 2b–d). As a
consequence of the inaccuracy of the t-test for equality of
variances (see Fig. 2b), the Student–Pitman–Morgan test
has deflated empirical type I error rates at 8.70 %, 4.34 %,
and 0.80 %, respectively, for nominal significance levels of
10 %, 5 %, and 1 %. It should nevertheless be pointed out
that test sizes that are within 20 % of the nominal size (i.e.,
actual sizes no lower than 8 %, 4 %, or 0.8 %, respectively,
for nominal test sizes of 10 %, 5 %, or 1 %) are slightly
above J. V. Bradley’s (1978) “fairly stringent” criterion for
robustness (±10 %), but they are acceptable by Robey and
Barcikowski’s (1992) “intermediate criterion” (±25 %).

From this perspective, the Bradley–Blackwood and Stu-
dent–Pitman–Morgan tests, unlike the Wilks test, are robust,
although they are certainly subject to improvement.

Type I error rates

Figure 3 gives a broader picture of how empirical type I
error rate varies for each test statistic with examinee sample
size, Xmax (and, hence, score mean and variance), form of
the distribution of true scores, and rounding and bounding
of observed scores. All results plotted in Fig. 3 represent
conditions in which reliability was ρxx’ = ρyy’ = .65 (the
lowest value included in our simulations). Consider first
the left panel of Fig. 3a, for normally distributed true scores
with mean 7.5 and variance 6.25 (given that Xmax = 15) and
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untouched (i.e., continuous and real-valued) observed
scores. It is quite apparent that the Bradley–Blackwood test
(rightward-pointing triangles) renders the most accurate er-
ror rates at any nominal size (solid symbols, .1 size; gray
symbols, .05 size; open symbols, .01 size), although the
Student–Pitman–Morgan test (circles) is also very accurate.
On the other hand, the Wilks test (leftward-pointing trian-
gles) is very conservative, yielding empirical type I error
rates that are about half their nominal rate and, therefore,
outside the 20 % tolerance limit. This pattern of results is
identical in the right panel of Fig. 3a (for Xmax = 45 so that
true scores have a mean of 22.5 and a variance of 56.25),
and also for uniformly distributed true scores (Fig. 3b) and
folded normal true scores (Fig. 3c) with either score range.
Results for intermediate values of Xmax were also identical

and are not shown graphically. Interestingly, then, the form
of the distribution of true scores (even if it shows common
asymmetries in empirical score distributions) does not have
any implication for the accuracy of these statistical tests.

Figures 3d–f show analogous results for conditions dif-
fering only in that observed scores were rounded and bound-
ed. Quite clearly, all tests turn conservative in these
circumstances (but still within the 20 % tolerance limit,
except for the Wilks test), and somewhat more when the
distribution of test scores is normal or folded normal
(Fig. 3d, f) than when it is uniform (Fig. 3e). In either case,
whether the score range is narrow (Xmax = 15; left column)
or broad (Xmax = 45; right column) is again inconsequential.
Simulations in which observed scores were either only
rounded or only bounded revealed that the actual cause of
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the deflated type I error rates was bounding. Bounding
alters observed scores more often when true scores are
normally (or folded normally) distributed than when
they are uniformly distributed (see Fig. 4), and this is
the reason for the increased deflation of type I error
rates with normal or folded normal distributions of true
scores, as compared with uniform distributions (Fig. 3d, f, as
compared with Fig. 3e).

Results presented in Fig. 3 arise when reliability is .65.
Figure 5 shows results as a function of reliability when Xmax =

45 and n = 100; results for other score ranges and sample sizes
were indistinguishable, as was the case in Fig. 3. When
observed scores are untouched, the type I error rates of Brad-
ley–Blackwood tests (rightward-pointing triangles) and Stu-
dent–Pitman–Morgan tests (circles) do not change in any
meaningful respect as reliability increases, whether true scores
are normally (Fig. 5a), uniformly (Fig. 5b), or folded normally
(Fig. 5c) distributed. In contrast, the inaccuracy of the Wilks
test (leftward-pointing triangles) further deteriorates as reli-
ability increases. For rounded and bounded observed scores
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(f)    Folded normally distributed true scores; rounded and bounded observed scores
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(Fig. 5d, f), the accuracy of Bradley–Blackwood tests and
Student–Pitman–Morgan tests improves as reliability in-
creases. This is a natural consequence of the fact that the
original distributions of (untouched) observed scores are

narrower as reliability increases, so that bounding changes
scores less often. Under conditions of rounding and bounding,
the accuracy of the Wilks test also deteriorates as reliability
increases.

True score0 Xmax

(a) Uniform distribution

t = Xmax/2
2
t = X 2

max/36
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0 Xmax

2
e = 2

t /4

xx’ = .80
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True score0 Xmax

(b) Normal distribution
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Bounded observed score
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True score0 Xmax

(c) Folded normal distribution
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0 Xmax

Bounded observed score
0 Xmax

Fig. 4 Distributions of true scores (top row), real-valued and unbounded observed scores (center row), and integer-valued and bounded observed
scores (bottom row)
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Power

A comparison of power curves for different score ranges
(Xmax between 15 and 45) and form of distribution of true
scores (normal, uniform, or folded normal) revealed no
meaningful differences, and therefore, results will be
presented only for Xmax = 15 and normal distributions of
true scores.

Figure 6 shows power curves as a function of effect size a
when b = 1—that is, when observed scores X and Y differ in
mean (with μy > μx) but not in variance. Each panel displays
results for a given reliability level (columns) and sample
size (rows) for untouched test scores (solid symbols) and
rounded and bounded test scores (open symbols). Despite
expected variations in power with sample size, two charac-
teristics stand out. One is the lack of differences between
Bradley–Blackwood (rightward-pointing triangles) and Stu-
dent–Pitman–Morgan (circles) tests, which shows in that
data points representing these tests are superimposed; the
power of the Wilks test (leftward-pointing triangles) is
somewhat lower throughout. The second characteristic is
the minimal effect that rounding and bounding has, which

shows in that solid and open symbols are generally
superimposed, although power is slightly lower with
rounding and bounding when reliability is very high (right-
most column).

It may seem surprising that power curves differ across
columns despite the fact that the horizontal axis represents a
standardized measure of effect size that should equalize
results across changes in the variance of X and Y. Although
this is true in general, it should be remembered that ob-
served scores X and Y do not have a bivariate distribution
with a fixed correlation across the changes in variance
represented in different columns of Fig. 6. Indeed, and as a
result of the classical measurement model, the correlation
between X and Y is given by the attenuation formula ρxy =
√ρxx’ √ρyy’. Since ρxx’ = ρyy’ in Fig. 6 and they vary across
columns as indicated at the top, ρxy varies across columns
just as reliability does. Variations in power with reliability
must, then, be understood as a consequence of variations in
the correlation between observed X and Y scores.

Figure 7 shows power curves as a function of the binary
logarithm of effect size b for a = 0—that is, when observed
scores X and Y differ in variance (with σ2

y > σ2
x ) but not in
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mean. As compared with the previous case, the power of the
Wilks test (leftward-pointing triangles) is noticeably lower
in these conditions, while Bradley–Blackwood and Student–
Pitman–Morgan tests have nearly identical power. Also,
power deteriorates meaningfully when observed scores are
rounded and bounded (open symbols). This is only a natural
consequence of the fact that the reliability of Y scores de-
creases (and, hence, their variance increases) as b increases,
so that rounding and bounding produces increasingly stron-
ger spikes at the boundaries of the score range such as those
shown in the bottom panel of Fig. 4b.

Variations in power curves across columns in this
case are, in principle, a consequence of the fact that
the horizontal axis does not represent a standardized
measure of effect size. But variations in correlation
between X and Y are also involved here. For instance,
from values given at the top of each column in Fig. 7,
the rightmost data points (for log2 b = 1.2) in the panels
on the left column imply ρxy = √.65 √.28 = .427; in contrast,
the rightmost data points in the panels on the right column
imply ρxy = √.95 √.41 = .624. The effects of correlation on
power can be best appreciated in the top row of Fig. 7 and
suggest that a standardized measure of effect size should take
correlation into account.

Discussion

Results presented in Figs. 3, 5, 6 and 7 and discussed in the
preceding section can be summarized as follows. The Wilks
test is not advisable under any circumstances when k = 2,
whereas the accuracy and power of Bradley–Blackwood and
Student–Pitman–Morgan tests are virtually identical, with only
a minimal advantage of the former as regards type I error rates.
If test scores were real-valued and unbounded, Bradley-
Blackwood and Student–Pitman–Morgan tests would maintain
their nominal sizes for n > 50 (the smallest sample size used in
our simulations, which is usually exceeded in studies of paral-
lelism), whether scores were symmetrically distributed (from
normal or uniform distributions) or asymmetrically distributed
(from folded normal distributions) within the limits typically
observed in empirical test score distributions. With
(inescapably) bounded test scores, both tests become slightly
and equally conservative, although their actual test size remains
well within 20 % of the nominal size, something that is usually
regarded as acceptable (García-Pérez & Núñez-Antón, 2009;
Robey & Barcikowski, 1992; Serlin, 2000; Serlin & Harwell,
2004). Because the conservatism of both tests depends on the
extent to which the distribution of observed scores is curtailed
by the hard bounds of minimal and maximal scores, cautious
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users should seek evidence of this characteristic in a scatterplot
of observed scores, if only to gain subjective confidence on the
results of these statistical tests.

The Pitman test for equality of related variances (which is one
of the components of the Student–Pitman–Morgan test) has been
reported to be nonrobust to certain deviations from normality
(McCulloch, 1987; Wilcox, 1990), but our results show that it is
more robust to nonnormality (at least for uniform distributions
and folded normal distributions) than it is to the bounding of
otherwise continuous and normally distributed values, even
when bounding affects score distributions as little as Fig. 4 in-
dicates. The same holds for the Bradley–Blackwood test, where-
as the t-test for equality of means (the other component of the
Student–Pitman–Morgan test) is certainly much more robust,
perhaps as a consequence of the applicability of the central limit
theorem (which certainly does not help to free tests for equality
of variances from their strong distributional assumptions).

A perfect solution to the problem of statistically assessing
parallelism with prescribed accuracy does not seem to exist,
but Bradley–Blackwood and Student–Pitman–Morgan tests
are satisfactory solutions, and both of them have adequate
power to detect differences in means or variances. Both
statistical tests are recommended for the assessment of whether
two tests (parallel forms), two halves (split-half), or two appli-
cations of a test (test–retest) are parallel.

The t-test for related means can be computed with any
statistical software package, but neither of the two other tests
(i.e., the Morgan–Pitman t-test for related variances, which is
needed for a full Student–Pitman–Morgan test, or the Brad-
ley–Blackwood test) appears to be available in any of the
software packages more widely used. Nevertheless, the statis-
tics that need to be introduced in Eq. 2 for the Morgan–Pitman
t-test or in Eq. 3 for the Bradley–Blackwood test can be easily
obtained with any software package. For instance, the stan-
dard deviations, variances, and correlation needed for Eq. 2
are straightforwardly obtained, and note that Eq. 2 has the
same form whether variances and standard deviations are or
are not corrected for bias. On the other hand, the value of the
residual sum of squares needed for Eq. 3 is reported in the
summary ANOVA table for the regression ofD on S, whereas

the value of
Pn
i¼1

D2
i can easily be obtained from the variance of

D reported by the software that was used. Typically, variances
reported by statistical software are corrected for bias, and

hence, recovering
Pn
i¼1

D2
i from them amounts to computing

n� 1ð Þes 2d þ nD
2
, whereD is the reported sample mean and es 2d

is the reported (unbiased) sample variance; if the reported

variance is not corrected for bias,
Pn
i¼1

D2
i is recovered as

n s2d þ D
2

� �
instead.
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