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Abstract One way to combine data from single-subject
experimental design studies is by performing a multilevel
meta-analysis, with unstandardized or standardized regres-
sion coefficients as the effect size metrics. This study eval-
uates the performance of this approach. The results indicate
that a multilevel meta-analysis of unstandardized effect sizes
results in good estimates of the effect. The multilevel meta-
analysis of standardized effect sizes, on the other hand, is
suitable only when the number of measurement occasions
for each subject is 20 or more. The effect of the treatment on
the intercept is estimated with enough power when the
studies are homogeneous or when the number of studies is
large; the power of the effect on the slope is estimated with
enough power only when the number of studies and the
number of measurement occasions are large.

Keywords Meta-analysis . Multilevel . Single-subject
experimental design . Effect size

Single-case or single-subject experimental designs (SSEDs)
are used when one is interested in the effect of a treatment
for one specific subject, a person or another entity. In the

most basic design, the time series design, the subject is
observed several times before the treatment, during the so
called baseline phase, and several times during or after the
treatment. Because it is difficult to generalize the results
from such an experiment to other subjects, the experiment
can be replicated within or across studies. Next, the results
of several single-case studies can be combined using meta-
analytic techniques. There is a plethora of research indicat-
ing how to perform a meta-analysis of group comparison
studies, in which study subjects are typically measured only
once or a few times (e.g., Cooper, 2010; Lipsey & Wilson,
2001). In contrast, procedures necessary to conduct a meta-
analysis of SSEDs are not well documented, and it is not
straightforward how SSEDS should be meta-analyzed. This
is because SSED data differ from group comparison study
data. SSEDs entail a far smaller number of subjects for
whom many repeated measures are taken. The resulting
small-sample size and interrupted time series data may
involve cyclical patterns or serial dependencies (West &
Hepworth, 1991).

Reviews of meta-analyses of SSEDs indicate that a mul-
titude of methods are used (Beretvas & Chung, 2008;
Maggin, O'Keeffe, & Johnson, 2011), each method having
its own advantages and weaknesses. Most studies about the
methodology of SSED meta-analysis have focused on the
question of which effect size should be used to describe the
treatment effect in each study being synthesized (e.g.,
Campbell, 2004; Parker, Vannest, & Davis, 2011; Wolery,
Busick, Reichow, & Barton, 2010). There have been many
proposals: nonparametric approaches (e.g., the percentage
of nonoverlapping data statistic; Scruggs, Mastropieri, &
Casto, 1987), parametric approaches (e.g., standardized
mean difference; Gingerich, 1984), and regression-based
methods (Alison & Gorman, 1993; Center, Skiba, &
Casey, 1985–1986; Van den Noortgate & Onghena, 2003a,
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2003b). Maggin et al. (2011b) compared the weaknesses
and advantages of several methods (both parametric and
nonparametric), and on the basis of this overview, use
of the hierarchical linear or multilevel model seemed
most promising. Use of a multilevel model is consistent
with the logic of visual analysis, can control for threats
to interpretation (e.g., autocorrelation), and has attractive
statistical properties (e.g., being able to capture differ-
ences between subjects and/or studies in the magnitude
of the effect).

In this study, we will examine the effectiveness of
using a multilevel meta-analysis to synthesize effect
sizes from a set of SSEDs’ results. Van den Noortgate
and Onghena (2008) illustrated this approach using a
reanalysis of the study results combined in the meta-
analysis of Shogren, Fagella-Luby, Bae, and Wehmeyer
(2004). However, an illustration using real data does not
prove that the multilevel approach results in proper
parameter and standard error estimates for the effect
size and variance components. Simulation research
makes it possible to investigate the latter question, be-
cause population parameters are specified in advance
and, therefore, also known. First, we will discuss the
multilevel approach to meta-analysis of SSEDs; next,
we will present our simulation study.

Multilevel meta-analysis of SSEDs

Meta-analysis is a set of statistical methods for combining
the results of various studies addressing the same re-
search question (Glass, 1976). In order to combine these
analysis results, study results are typically first con-
verted to a common standardized effect size metric.
The advantage of using effect sizes is that it is not
necessary that all raw data are available in all studies.
Effect sizes may already be reported in a study, or they
can be calculated on the basis of available test statistics.
One possible way to calculate effect sizes when using
SSEDs is to make use of a regression model. Center et
al. (1985–1986) proposed using the following regression
model to analyze data from an SSED study:

Yi ¼ b0 þ b1Ti þ b2Di þ b3TiDi þ ei ð1Þ
where Yi is the score of the subject at the ith point in
time, Di is a dummy variable that equals 0 in the
baseline phase and 1 in the treatment phase, and Ti is
a time-related variable that equals 0 on the first day of
the treatment phase. Therefore, β0 is the baseline inter-
cept, and β1 is the linear trend during the baseline. β2
refers to the treatment effect on the intercept for the
trend during the intervention phase, and β3 refers to the

effect of the treatment on the time trend. Van den
Noortgate and Onghena (2003a) proposed using the last
two regression coefficients as effect size measures: β2
for the immediate treatment effect and β3 for the treat-
ment effect on the time trend.

If we can obtain, for each case, estimates for these two
effect sizes, either by using Eq. 1 on the raw data or on the
basis of reported summary statistics or test statistics, then
the resulting effect sizes can be combined in two separate
meta-analyses: one for the immediate treatment effect and
one for the treatment effect on the time trend. There are
several ways to do this. A three-level model presented by
Van den Noortgate and Onghena (2003b, 2008) makes it
possible to model variability in effect sizes at each of the
three levels. At the first level, the effect size estimates of the
immediate treatment effect for case j from study k may be
modeled to randomly deviate from the unknown population
effect size:

b2jk ¼ b2jk þ r2jk with r2jk � N 0;σ2
r2jk

� �
ð2Þ

with b2jk the ordinary least squares (OLS) estimate of β2jk.
The random deviations of the observed regression coeffi-
cients are assumed to be normally distributed with a vari-
ance that depends on the coefficient and the subject.
Because we have only one estimate per case for a coeffi-
cient, this variance cannot be estimated in the three-level
analysis. However, the sampling variance of the regression
coefficients, σ2

r2jk
, can be estimated in the original OLS

regression analysis used to estimate the regression coeffi-
cient or can be derived from summary or test statistics
reported in the primary SSED study. Because these
variances are estimated before the actual meta-analysis
is performed, the three-level meta-analysis (as well as
other typical meta-analyses) can be regarded as a “var-
iance known problem” (Raudenbush & Bryk, 2002).

The population effect sizes β2jk from study k can be
modeled as varying over subjects around a study-specific
mean effect θ20k (second level) as follows:

b2jk ¼ θ20k þ u2jk with u2jk � N 0;σ2
u2jk

� �
ð3Þ

and the effects for studies can vary between studies (third
level):

θ20k ¼ g200 þ u20k with u20k �N 0;σ2
u20k

� �
ð4Þ

The same fundamental three-level model could also
be used to model variability in the treatment’s effect on
the time trend, using the following level one, two, and three
equations,

b3jk ¼ b3jk þ r3jk with r3jk � N 0;σ2
r3jk

� �
ð5Þ
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b3jk ¼ θ30k þ u3jk with u3jk � N 0;σ2
u3jk

� �
ð6Þ

θ30k ¼ g300 þ u30k with u30k � N 0;σ2
u30k

� �
; ð7Þ

respectively.
When the scale used is not the same for all subjects, the

effect sizes b2jk and b3jk are not comparable across subjects
and, therefore, cannot be combined. For example, if the
dependent variable for a first subject can range from 0 to
10 and for a second subject from 0 to 100, the expected
unstandardized effect size of the second subject may be 10
times larger than the effect size of the first subject.
Unstandardized effect sizes are appropriate only when the
dependent variable is measured in the same way for all
subjects. In practice, this situation is rare, unless studies
are exact replications of each other. In the example, also
the expected residual standard deviation σe will be 10 times
larger for the second subject. Therefore, effect sizes can be
made comparable over subjects by standardizing b2jk or b3jk,
by dividing them by the estimated residuals’ standard devi-
ation bσeð Þ (Van den Noortgate & Onghena, 2003b, 2008).
This residual standard deviation can be estimated by esti-
mating the OLS regression model in Eq. 1 separately for
each subject and then finding the square root of the mean
square error or the RMSE of each separate regression. When
there are a lot of measurements for each subject, this stan-
dard deviation can be estimated reasonably well. On the other
hand, when there are only a few measurements available for
each subject, this standard deviation might be poorly estimat-
ed, resulting in poor estimates of the standardized effect size.
Therefore, in this study, we are primarily interested in the
performance of a multilevel meta-analysis when there are
not many measurements for each subject.

During a single-subject experiment, subsequent measure-
ments can be influenced by common (random) factors, with
the result that measurements close to each other in time may
be correlated. This phenomenon of autocorrelation can be
included in the previous multilevel model by specifying an
autoregressive covariance structure for the first-level errors
(i.e., the ei from Eq. 1). In the present study, however, we
will focus on the basic model with no autocorrelation.

The parameters typically estimated in a multilevel analy-
sis are the fixed effects regression coefficients (e.g., γ200

referring to the average immediate treatment effect over
cases and studies and γ300 referring to the average treatment
effect on the linear trend in Eqs. 4 and 7, respectively).
Although this multilevel approach seems well suited for
single-case data, in practice, it is seldom used. One reason
might be that little is known about the functioning of this
model for SSED meta-analysis. This study assesses the
performance of this method in more detail, using a set of
realistic situations.

Method

To evaluate the performance of the three-level approach, we
used a simulation study consisting of several steps. In a first
step, raw data were simulated. In a second step, the unstandard-
ized regression coefficients of Eq. 1 were estimated for each
subject, using OLS estimation. Next, these estimates were di-
vided by the residual within-phase standard deviation, to obtain
corresponding standardized effect sizes. Finally, the unstandard-
ized and the standardized effect sizes were separately analyzed
using the three-level meta-analytic approach (using Eqs. 2–7),
and the results were compared with the parameter values used to
generate data. Despite the fact that meta-analyses with unstan-
dardized effect sizes will rarely be performed in practice, they
are analyzed in this study, because if problems arise, we can find
out whether these problems are due to the standardization of the
effects or to the multilevel meta-analysis itself.

To simulate the raw data, the following measurement
occasion (level one) model was used:

Yijk ¼ b0jk þ b1jkTijk þ b2jkDijk þ b3jkTijkDijk þ eijk

with eijk � N 0;σ2
e

� � ð8Þ

with occasions nested within individuals at level two:

b0jk ¼ θ00k þ u0jk
b1jk ¼ θ10k þ u1jk
b2jk ¼ θ20k þ u2jk
b3jk ¼ θ30k þ u3jk

8>><
>>: with

u0jk
u1jk
u2jk
u3jk

2
664

3
775 � N 0;Σuð Þ; ð9Þ

and within studies at level three:

θ00k ¼ g000 þ u00k
θ10k ¼ g100 þ u10k
θ20k ¼ g200 þ u20k
θ30k ¼ g300 þ u30k

with

v00k
v10k
v20k
v30k

2
664

3
775

8>><
>>: � N 0;Σuð Þ ð10Þ

Note that we simulated data on the same scale for each
subject and study. However, this is not a limitation in this
simulation study. If we had simulated data using different
scales, this effect would be neutralized by the standardiza-
tion (e.g., if for a specific subject we had multiplied each
score by five, both the estimated regression coefficients and
the estimated residual standard deviations would be 5 times
larger, so the estimated standardized coefficients would
remain unchanged). By simulating data on the same scale,
however, it is possible to evaluate the use of the multilevel
model for SSED meta-analysis for situations in which stan-
dardization is required or is not required at the same time.

The effect sizes were synthesized using the restricted
maximum likelihood estimation procedure implemented in
SAS PROC MIXED (Littell, Milliken, Stroup, Wolfinger, &
Schabenberger, 2006). We used the Satterthwaite approach
to estimating degrees of freedom. This approach has been
shown for two-level analyses of multiple-baseline data to
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provide relatively accurate confidence intervals for estimates
of the average treatment effect (Ferron, Bell, Hess, Rendina-
Gobioff, & Hibbard, 2009), using a model without linear
trends to simulate and analyze the data. On the basis of these
results, we expect that use of this estimation procedure for
three-level analyses would also result in relatively accurate
confidence intervals for the overall treatment effects.

The γ200 coefficient represents the shift in level that
occurs due to the treatment. Data were generated assuming
no effect (γ200 0 0) and 2 times the within-phase standard
deviation (γ200 0 2). We chose values of 0 (no effect) and
0.2 times the within-phase standard deviation for the overall
effect on the slope, γ300. These values were based on rean-
alyses of meta-analyses (Alen, Grietens, & Van den
Noorgate, 2009; Denis, Van den Noortgate, & Maes, 2011;
Kokina & Kern, 2010; Shogren et al., 2004; Wang, Cui, &
Parrila, 2011). The effects of the baseline regression coef-
ficients γ000 and γ100, were set at zero.

The number of studies (K) in each simulated meta-
analysis was manipulated to be 10 or 30. A review of 39
social science single-case meta-analyses (Farmer, Owens,
Ferron, & Allsopp, 2010) showed that the number of studies
included in a meta-analysis ranged from 3 to 117, with 60 %
of the meta-analysis including fewer than 30 studies.

We simulated studies with a multiple baseline design. The
number of subjects per study (J) was 3, 4, or 7. These values are
based on recommendations of Barlow and Hersen (1984) and
Kazdin and Kopel (1975), a survey of multiple-baseline studies
(Ferron et al., 2010), a review of Farmer et al. (2010), and a
survey of single-case studies of Shadish and Sullivan (2011).

The series lengths (I) consisted of 10, 20, or 40 observa-
tions. The survey of Ferron et al. (2010) found average
series lengths that ranged from 7 to 58, with a median of
24, and the survey of Shadish and Sullivan (2011) found
that the number of data points per case ranged from 2 to 160,
with median and mode equal to 20. A meta-analysis of 85
single-case studies (Swanson & Sachse-Lee, 2000) found
that 25 studies had fewer than 11 treatment sessions, 37
studies had between 11 and 29 treatment sessions, and 23
studies had more than 29 treatment sessions.

The intervention introductions were staggered across
subjects within studies. For each combination of the number
of subjects and number of data points, the moment at which

the treatment started is given in Table 1. For example, when
there were 3 subjects and the number of measurement occa-
sions for each subject equaled ten, then for the first subject,
the treatment started on the fourth measurement occasion,
for the second subject on the sixth measurement occasion,
and for the third subject on the eighth measurement occa-
sion, and for all 3 subjects the treatment lasted until the tenth
measurement occasion.

Elements of the within-study variance matrix, Σu, were
manipulated to have conditions with relatively small and
relatively large amounts of within-study variance. For sim-
plicity, covariances between regression coefficients were set
to zero at the subject and study levels. Therefore, Σu is a

diagonal matrix,
P

u ¼ diag σ2
u0
;σ2

u1
;σ2

u2
;σ2

u3

� �
. A review of

several reanalyses indicated that the variance between sub-
jects is sometimes less than the within-person variance
(Ferron et al., 2009; Van den Noortgate & Onghena,
2003a) and sometimes greater than the within-person vari-
ance (Van den Noortgate & Onghena, 2008). If the within-
person (level one) variance is set to 1.0, setting the four
diagonal elements of Σu to values of 2, 0.2, 2, 0.2 (for the
variances in the baseline intercept, baseline slope, treatment
effect on the intercept, and treatment effect on the slope
residuals, respectively) represents a relatively large amount
of within-study variability, while setting the four diagonal
elements of Σu to values of 0.5, 0.05, 0.5, 0.05, respectively,
represents a relatively small amount of within-study variability.
Reanalyses of real data sets (Denis et al., 2011; Kokina &
Kern, 2010; Shogren et al., 2004) indicated that the variance
of the effect of γ200 is sometimesmuch larger than the variance
of the effect of γ300. Therefore, we also set the four diagonal
elements of Σu to values of 8, 0.08, 8, 0.08.

Elements of the between-study variance matrix, Σv, were
also manipulated. On the basis of reanalyses of meta-
analyses (Alen et al., 2009; Denis et al., 2011; Heyvaert,
Maes, Van den Noorgate, Kuppens, & Onghena, in press;
Kokina &Kern, 2010; Shogren et al., 2004;Wang et al., 2011),

we set
P

u ¼ diag σ2
v0
;σ2

v1
;σ2

v2
;σ2

v3

� �
equal to diag( 2, 0.2, 2,

0.2), diag( 0.5, 0.05, 0.5, 0.05), and diag( 8, 0.08, 8, 0.08).
Crossing the levels of the seven factors leads to a 3 × 3 ×

2 × 2 × 2 × 3 × 3 factorial design yielding 648 experimental

Table 1 The number of the measurement occasion at which the treatment started

Number of subjects

3 4 7

Total number of data points 10 4 – 6 – 8 4 – 5 – 7 – 8 4 – 5 – 5 – 6 – 7 – 7 – 8

20 7 – 11 – 15 7 – 10 – 12 – 15 7 – 9 – 9 – 11 – 13 – 13 – 15

40 11 – 21 – 31 11 – 18 – 24 – 31 11 – 15 – 15 – 21 – 27 – 27 – 31
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conditions. For each condition, 2,000 data sets were simu-
lated and analyzed, with a total of 1,296,000 data sets.

Results

Wewill successively discuss the estimates of both fixed effects
used to describe an intervention’s effect (on the intercept and
slope), the mean squared error, the estimation of the
corresponding standard errors, the confidence interval cover-
age, the power, and the estimates of the variances. Because it is
impossible to discuss the 648 conditions separately, we
explored variation between conditions using an ANOVA,
modeling main effects and two-way interaction effects, and
discuss below only the effect for which the ANOVA showed
clear evidence (p < .001). This procedure was primarily used to
distinguish the most important patterns in the results.

Overall effect size estimates

In the simulation study, the mean population effect on the
intercept was 0 or 2, and the effect on the time trend was 0 or
0.2. In each meta-analysis, we estimated these mean effects.
These estimates will likely deviate from this mean population
effect, because of random variation at each of the three levels.

In Fig. 1, the distribution of the deviations is given for γ200

equal to 0 or 2 and the number of measurements equal to 10,
20, or 40 when the unstandardized and the standardized re-
gression coefficients are analyzed. For the unstandardized
effect size estimates, close to no bias was identified.

The results differ for the standardized effect sizes. When
γ200 equaled 0, the estimated bias was close to zero. When
γ200 equaled 2, the estimated bias of the standardized effect
sizes was 0.310 when there are only 10 measurement occa-
sions, 0.110when there are 20measurements, and 0.044 when

there are 40 measurements. We also sorted all conditions by
their estimated bias, and the 100 conditions with the largest
bias all had γ200 0 2 and I 0 10. The condition with the most
bias was γ200 0 2, γ300 0 0, K 0 10, J 0 4; I 0 10, σ2

v2
¼ 8;

and σ2
u2
¼ 0:5; in this condition, the bias equaled 0.350. The

number of studies, the number of subjects, and the true values
of the between- and within-study variances were each found
to have no substantial effect on the estimated bias.

The results for the estimates of γ300 were similar to what
was found for γ200. There was positive bias when standard-
ized effect sizes were used if γ300 0 0.2 and I 0 10. If γ200 0

2, γ300 0 0.2, K 0 10, J 0 4; I 0 10, σ2
v2
¼ 2; and σ2

u2
¼ 2,

the bias was 0.030, with a minimum and maximum devia-
tion of −1.071 and 0.883, respectively, and with lower and
upper quartiles of −0.115 and 0.178. The relative biases of
the two estimates when a meta-analysis on standardized
effect sizes was performed were more or less the same:
The relative bias of the estimate of both γ200 and γ300 was
0.155. The standard deviation of the relative deviations, on
the other hand, differed: 0.324 for the estimates of γ200 and
1.090 for the estimates of γ300.

These results indicate that the positive bias when γ200

and γ300 are larger than zero and the number of measure-
ments equals 10 results from the standardization of the
effects. In this simulation study, however, it is not clear
whether this positive bias is caused by calculating a weight-
ed average of the individual regression coefficients or
whether these individual regression coefficients themselves
are already biased. That is why we also checked the distri-
bution of the deviations from the true value of the individual
regression coefficients β2jk for γ200 0 2, γ300 0 0.2, K 0 10,

J 0 4, I 0 10, σ2
v2
¼ 2; and σ2

u2
¼ 2. In this condition, there

were 80,000 estimates of β2jk. Table 2 shows that there is
almost no bias when the effect sizes are unstandardized and
that there is a positive bias of 0.302 when the effect sizes are
standardized. This indicates that the bias of the estimated
overall effects is mainly due to the standardization of the
individual regression coefficients and not a result of calcu-
lating a weighted average.

Mean squared error

The mean squared error (MSE) is equal to the average
squared deviation of the estimates from the true value, and
therefore, it is preferred that the MSE is as small as possible.
The MSE is, as was expected, smaller when the number of
studies, the number of cases, or the number of measurement
occasions increases. On the basis of the ANOVA, the num-
ber of studies and the between-study variance seem to have
the most important influence on the MSE. This influence is
illustrated in Table 3 for both the unstandardized and the
standardized effect sizes.

Fig. 1 Distribution of the deviations of the estimated mean effect on
the intercept of the treatment from its populations value (γ200) for both
the unstandardized and standardized effect sizes, for γ300 0 0.2, K 0 10,
J 0 4, σ2

v2
¼ 2; and σ2

u2
¼ 2 conditions

1248 Behav Res (2012) 44:1244–1254



Standard error estimates

In addition to assessing parameter estimation for each of the
two fixed effects (on the intercept and slope), we also evaluated
estimation of the standard errors of each of these effects. These
standard errors can be used to construct confidence intervals
and to perform tests of the statistical significance of the effects.
By definition, the standard error equals the standard deviation
of the sampling distribution of the estimated effects. In this
simulation study, we performed for each condition 2,000 meta-
analyses, which results in 2,000 estimates of the effect. Because
of the reasonably large number of estimates, we can regard the
standard deviations of the estimates as a good estimate of the
standard deviations of the estimator’s sampling distribution and
can, therefore, use this standard deviation to evaluate the quality
of the standard error estimates.

The median of the standard error estimates was found to
be almost equal to the standard deviation of the estimates of
the effect for both the unstandardized and the standardized
effects. As was expected, the standard error decreased when
the number of studies, the number of measurement occa-
sions, or the number of subjects increased or in conditions
with lower between-study or within-study variance values.

The results were similar for both the standardized and the
unstandardized effect sizes. The standard error of the unstan-
dardized estimate ofγ200 was slightly underestimated in 83.3%
of the conditions and the relative bias over all conditions was
−0.022. The difference between the median of the standard
error estimates and the standard deviation of the effect size
estimates was greatest for γ200 0 0, γ300 0 0, K 0 10, J 0 3,
I 0 10, σ2

v2
¼ 8; and σ2

u2
¼ 8. In this situation, the median of

the standard error equaled 1.020, and the standard deviations of

the estimates equaled 1.103. For the standardized effects, the
standard error was slightly underestimated in 86.4 % of the
conditions and the relative bias over all conditions was −0.025.
The difference between themedian of the standard error and the
standard deviation of the estimates was greatest in the same
conditions as for the unstandardized data, with the median of
the standard error equal to 1.198 and the standard deviations of
the estimates equal to 1.311. On the basis of the ANOVA, there
seemed to be only a small effect of the number of studies on the
difference between the median of the standard error and the
standard deviation of the estimates. The results were also
similar for the estimates of the standard error of γ300.

Confidence interval coverage

Another way to evaluate estimation of the effect sizes and of
their corresponding standard errors is by calculating the
proportion of replications in which the confidence interval
contained the population effect size. The lower and upper
limits of the confidence intervals around the estimated effect
are constructed by multiplying the estimated standard error
with the right critical value of the z-distribution and sub-
tracting from and adding this product to the point estimate of
the effect. For a 95 % confidence interval, we expected that
the coverage proportion would be around 95 %. Because we
simulated 2,000 data sets for each condition, the coverage
proportions could be estimated accurately—more specifically,

with a standard error of 0:005 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:95*0:05ð Þ 2000=

p� �
—

and therefore, we expected the coverage proportion to range
from 94.04 % to 95.96 % (with α 0 .05).

The coverage proportions for the unstandardized estimate
of γ200 ranged from 93.45 % to 97.10 %, and in 91.36 % of
the conditions, the coverage proportion lay between
94.04 % and 95.96 %. The coverage proportions for the
unstandardized estimate of γ300 ranged from 93.60 % to
96.85 %. In 92.90 % of the conditions, the coverage pro-
portion lay between 94.04 % and 95.96 %.

The results for the standardized estimates of γ200 dif-
fered. In 77.47 % of the conditions, the coverage propor-
tions lay between 94.04 % and 95.95 %; however, for the

Table 2 Distribution of the deviations of the individual regression
coefficients estimates of β2jk, for γ200 0 2, γ300 0 0.2, K 0 10, J 0 4,
I 0 10, σ2

v2
¼ 2; and σ2u2 ¼ 2 conditions

Mean SD Min Max

Unstandardized −0.003 2.452 −10.201 10.444

Standardized 0.302 3.123 −22.297 55.865

Table 3 Mean squared error of (MSE) γ200 and γ300, for γ200 0 2, γ300 0 0.2, J 0 4, I 0 20, and σ2
u2
¼ 2 conditions

K σ2v2 MSE of γ200 σ2
v3 MSE of γ300

Unstandardized Standardized Unstandardized Standardized

10 0.5 0.129 0.161 0.05 0.011 0.012

2 0.261 0.307 0.08 0.015 0.017

8 0.877 0.996 0.20 0.025 0.028

30 0.5 0.041 0.059 0.05 0.004 0.004

2 0.083 0.104 0.08 0.005 0.006

8 0.302 0.347 0.20 0.008 0.010
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other conditions, the coverage proportions were often too
low, with a minimum of 70.65 % when γ200 0 2, γ300 0 0.2,
K 0 30, J 0 7, I 0 10, σ2

v2
¼ 0:5; and σ2

u2
¼ 0:5 . There

appears to be a problem with coverage when the effect is
larger than zero and when the number of measurements
occasions is small (I 0 10); and the problem gets worse
when the number of studies is large (K 0 30) and when the

between-study σ2
v2

� �
and within-study σ2

u2

� �
variances are

rather small (Table 4). Figure 1 already showed that there
was positive bias when the number of measurement occa-
sions is small and when the effect is larger than zero. When
the number of studies increases, the confidence interval
becomes narrower, and the lower coverage proportions
make it clear that this confidence interval varies around a
biased estimator.

The 95 % coverage proportion for the standardized esti-
mates ofγ300 ranged from 92.8% to 97.1%. In 88.27% of the
conditions, the mean coverage proportion lay between
94.04 % and 95.96 %. We already mentioned that the relative
bias for the estimates of γ200 and γ300 was more or less the
same but that the standard deviation of the relative deviations

of the estimates of γ300 from the true value was larger. This
will result (again in relative terms) in larger estimated standard
errors and wider confidence intervals, and this results in a
better coverage proportion, as compared with the coverage
proportion of the standardized estimates of γ200.

Power

In our study, we estimated the actual Type I error rate for
conditions where the null hypothesis was true (i.e., γ200 0 0
or γ300 0 0), by calculating the proportion of data sets for
which the null hypothesis was rejected with α equal to .05.
For γ200, this proportion is given in Table 5, in the fourth
through seventh columns, for the unstandardized estimates.
The results for the standardized estimates were very similar.

When the null hypothesis is false, we want the proportion
of correct rejections of the null hypothesis to be as high as
possible and, preferably, above .80. The estimated power for
γ200 0 2 and α 0 .05 is given in the last four columns of
Table 5. On the basis of the ANOVA, the number of studies,
the within-study variance, the between-study variance, and all
the interactions between these factors seemed to influence

Table 4 Mean coverage proportion of the 95 % confidence interval of
γ200 for both the unstandardized (U) and standardized (S) effect sizes
for γ300 0 0.2 and J 0 4 (upper section of the table) and of γ300 for both

the unstandardized (U) and standardized (S) effect sizes for γ200 0 2
and J 0 4 (lower section of the table)

K I γ200 0 0 γ200 0 2

σ2
v2
¼ 0:5 σ2

v2
¼ 8 σ2

v2
¼ 0:5 σ2

v2
¼ 8

σ2
u2
¼ 0:5 σ2

u2
¼ 8 σ2

u2
¼ 0:5 σ2

u2
¼ 8 σ2

u2
¼ 0:5 σ2

u2
¼ 8 σ2

u2
¼ 0:5 σ2u2 ¼ 8

U 10 10 .950 .962 .950 .953 .948 .957 .947 .949

20 .949 .962 .948 .949 .953 .960 .955 .951

30 10 .949 .954 .944 .949 .950 .957 .952 .950

20 .951 .955 .952 .953 .951 .955 .948 .949

S 10 10 .951 .963 .952 .954 .914 .944 .944 .944

20 .949 .964 .949 .951 .946 .960 .955 .948

30 10 .950 .955 .947 .952 .775 .889 .924 .935

20 .952 .957 .951 .952 .920 .945 .946 .949

K I γ300 0 0 γ300 0 0.2

σ2
v3
¼ 0:05 σ2

v3
¼ 0:08 σ2

v3
¼ 0:05 σ2

v3
¼ 0:08

σ2
u3
¼ 0:05 σ2

u3
¼ 0:08 σ2

u3
¼ 0:05 σ2

u3
¼ 0:08 σ2

u3
¼ 0:05 σ2

u3
¼ 0:08 σ2

u3
¼ 0:05 σ2u3 ¼ 0:08

U 10 10 .958 .955 .952 .954 .954 .956 .952 .954

20 .952 .951 .950 .953 .952 .953 .945 .950

30 10 .950 .956 .943 .952 .952 .957 .954 .953

20 .950 .949 .948 .952 .947 .950 .948 .948

S 10 10 .961 .959 .956 .960 .954 .956 .953 .955

20 .954 .952 .951 .954 .955 .950 .946 .952

30 10 .950 .957 .944 .952 .942 .944 .941 .938

20 .953 .948 .950 .952 .942 .950 .946 .948

Coverage proportions that are significant different from .950 (α 0 .05) appear in bold
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power. For conditions in which the number of studies being
meta-analyzed was 30, the power was high. On the other hand,
when there were only 10 studies and a lot of between-study
variability, the power was found to be much lower.

Table 6 contains the power of the estimates of γ300 for the
unstandardized effects. The estimated power was lower, as
compared with the power of γ200. The power was above .80
only when K 0 30 and I > 10, except if the number of cases
equaled 7. Here again, the results for the estimates of the
standardized effects were very similar.

Variance estimates

In the meta-analyses, the between-study and within-study
residuals’ variances were estimated for both the effect on the
intercept and the effect on the slope parameters. We will
examine the relative deviations, which are the deviations
from the true value divided by the value of the population
parameter. In this study, the same problem arises for the
estimates of the four variances and for the meta-analyses of
both the unstandardized and the standardized effect sizes:
namely, the distribution is positively skewed, with a long tail
at the right side. For example, for the meta-analyses on the
standardized effect sizes, the relative bias (i.e., the mean
relative deviation) was larger than 100 % for 13.39 % of the

estimates of the between-study variance of the effect on the
intercept, for 12.52 % of the estimates of the between-study
variance of the effect on the slope, for 25.07% of the estimates
of the within-study variance of the effect on the intercept, and
for 26.94 % of the estimates of the within-study variance of
the effect on the slope. Table 7 shows the mean and median of
the relative deviations of the variance estimates.

Table 7 indicates that the relative bias of the variance
estimates was larger when the meta-analysis was performed
on standardized effect sizes. The number of measurements
also had a large effect on the bias of the four estimated
variances. The within-study variance exhibited the highest
bias when the number of measurement occasions was 10. In
general, the median relative deviation of the estimates of the
within-study variance was larger than that found for the
between-study variance estimates. The median of the rela-
tive deviation of the within-study variance of γ200 was
especially large when the between-study variance was large
and the within-study variance was small.

Discussion

In this study, we examined whether single-case studies
can be combined using a multilevel meta-analysis, with

Table 5 Power of γ200 for γ300 0 0.2, for the unstandardized effect sizes

K J I γ200 0 0 γ200 0 2

σ2
v2
¼ 0:5 σ2

v2
¼ 8 σ2v2 ¼ 0:5 σ2

v2
¼ 8

σ2
u2
¼ :5 σ2

u2
¼ 8 σ2u2 ¼ :5 σ2u2 ¼ 8 σ2

u2
¼ :5 σ2

u2
¼ 8 σ2

u2
¼ :5 σ2

u2
¼ 8

10 3 10 .045 .039 .047 .041 .993 .818 .467 .378

20 .041 .044 .049 .055 .998 .851 .515 .394

40 .047 .034 .051 .047 1.000 .875 .498 .389

4 10 .055 .036 .045 .054 .999 .891 .465 .402

20 .058 .033 .050 .051 1.000 .922 .506 .417

40 .059 .040 .046 .046 1.000 .937 .528 .412

7 10 .051 .042 .058 .047 1.000 .985 .480 .457

20 .056 .038 .057 .049 1.000 .988 .506 .456

40 .054 .047 .052 .050 1.000 .991 .494 .475

30 3 10 .053 .049 .049 .056 1.000 1.000 .947 .874

20 .043 .042 .045 .051 1.000 1.000 .956 .892

40 .047 .042 .054 .053 1.000 1.000 .954 .904

4 10 .050 .049 .060 .046 1.000 1.000 .950 .905

20 .052 .048 .049 .040 1.000 1.000 .959 .911

40 .052 .049 .043 .042 1.000 1.000 .956 .909

7 10 .052 .042 .059 .053 1.000 1.000 .959 .948

20 .052 .047 .049 .052 1.000 1.000 .962 .941

40 .055 .045 .054 .048 1.000 1.000 .957 .936

Values equal to or larger than .80 appear in bold
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unstandardized or standardized regression coefficients as
effect sizes. Several realistic conditions were simulated
and analyzed.

The multilevel approach works well when unstandard-
ized effect sizes are used. The approach is also suitable for

standardized effect sizes when there are many studies (30 or
more), when there are a lot of measurement occasions for
each subject (20 or more), and when the studies are rather
homogeneous (which corresponds with a small amount of
between-study variance). In these situations, the effects are
well estimated, the mean squared error is small, the cover-
age proportion of the 95 % confidence interval is around
95 %, and the power of each effect is above 80 %.

However, when these criteria are not met, problems may
occur. In this study, it became clear that difficulties are
encountered in particular when there are only 10 measure-
ment occasions for each subject. In this situation, the overall
effect estimate is biased as a result of biased estimates of the
individual standardized regression coefficients. Because
standardizing is often needed in order to make study results
comparable, further research should focus on this problem
of standardization when the number of measurements is
rather small. A possible solution is the use of iterative
bootstrap procedures (Goldstein, 1996), or through correct-
ing the individual regression coefficients for bias (Hedges,
1981). Another solution might be to use the correction
procedures for biased standardized regression coefficients
that were proposed by Yuan and Chan (2011), but they
should be adapted, because the procedures were developed
for regression coefficients that are standardized in the

Table 6 Power of γ300 for γ200 0 2, for the unstandardized effect sizes

K J I γ300 0 0 γ300 0 0.2

σ2v3 ¼ 0:05 σ2
v3
¼ :08 σ2v3 ¼ 0:05 σ2v3 ¼ :08

σ2u3 ¼ :05 σ2
u3
¼ :08 σ2

u3
¼ :05 σ2

u3
¼ :08 σ2

u3
¼ :05 σ2

u3
¼ :08 σ2

u3
¼ :05 σ2

u3
¼ :08

10 3 10 .042 .042 .049 .037 .222 .204 .200 .191

20 .045 .047 .048 .052 .520 .453 .395 .375

40 .053 .052 .050 .052 .570 .518 .429 .403

4 10 .039 .043 .052 .042 .275 .273 .240 .250

20 .045 .049 .047 .048 .557 .498 .397 .390

40 .057 .050 .048 .053 .591 .552 .472 .443

7 10 .046 .050 .045 .059 .400 .402 .307 .346

20 .055 .051 .055 .041 .619 .592 .439 .453

40 .060 .051 .058 .060 .663 .601 .480 .463

30 3 10 .044 .040 .053 .051 .643 .631 .579 .579

20 .045 .050 .051 .050 .957 .946 .874 .868

40 .047 .052 .057 .049 .984 .963 .930 .885

4 10 .048 .046 .061 .048 .747 .744 .669 .664

20 .058 .049 .054 .047 .974 .965 .909 .892

40 .048 .043 .054 .055 .986 .979 .930 .913

7 10 .060 .047 .059 .046 .905 .894 .818 .801

20 .047 .055 .053 .049 .990 .986 .935 .917

40 .055 .046 .047 .046 .994 .990 .948 .944

Values equal or larger than .80 appear in bold

Table 7 Mean and median of relative deviations of the variance esti-
mates for γ200 0 2, γ300 0 0.2, K 0 10, J 0 4, σ2

v2
¼ 2; and σ2

u2
¼ 2

conditions

I Unstandardized Standardized

Mean Median Mean Median

cσ2v2 10 0.037 −0.063 0.367 0.155

20 −0.006 −0.109 0.089 −0.032

40 0.011 −0.097 0.0541 −0.055cσ2
u2 10 0.173 0.139 1.521 1.237

20 0.024 −0.008 0.334 0.281

40 0.007 −0.024 0.123 0.091cσ2
u3 10 −0.013 −0.142 0.314 0.086

20 0.008 −0.096 0.111 −0.006

40 −0.013 −0.100 0.030 −0.068cσ2
u3 10 0.434 0.369 1.647 1.338

20 0.008 −0.019 0.221 0.174

40 −0.009 −0.029 0.076 0.056
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traditional way—namely, by multiplying them by the stan-
dard deviation of the independent variable and then dividing
by the standard deviation of the dependent variable. In this
study, we suggest standardizing based on the standard devi-
ation of the dependent variable only, and only in so far as
this dependent variable is not explained by the predictors
(i.e., we propose to use the residual standard deviation).

An important question for a researcher who wants to
conduct a multilevel meta-analysis of SSEDs has to do with
the power of different scenarios. The results are the same for
the unstandardized and the standardized effect sizes. When
the immediate effect of the treatment is estimated, the power
is acceptable when the studies are homogeneous, regardless
of the number of studies, cases, or measurement occasions.
On the other hand, when the studies’ effect sizes are more
heterogeneous, a power of 80 % or more can be reached
only when there are a lot of studies (e.g., 30) being meta-
analyzed. On the other hand, the effect of the treatment on
the slope is estimated with enough power only when the
number of studies is 30 or more and the number of mea-
surement occasions per subject is 20 or more.

The major advantage of multilevel models is that they
result not only in an overall estimate of the effect, but
also in an estimate of the between-study and within-
study variance. But these estimates are sometimes seri-
ously biased. The estimates are worse for meta-analyses
of standardized effects, and the estimates of the within-
study variance is especially biased when the number of
measurements is rather small.

We should also note that the conclusions are, in principle,
limited to the conditions that were simulated. These data
were balanced and were sampled from a normal distribution,
there was no correlation between consecutive observations,
there was no covariance, and the trajectories were not non-
linear. In practice, however, data will probably not be bal-
anced, autocorrelation will likely occur when observations
are taken in quick succession, there can be another underlying
distribution, there might be correlation between the effects,
and the baseline and/or intervention phase trends might be
nonlinear. The purpose of this study was to discover which
parameters really matter and to identify in which conditions
problems occurred. Our aim was to get a preliminary insight
into the empirical functioning of the multilevel model for
SSED meta-analysis, but in future research, we will also want
to investigate more complex situations.

In this study, we performed two separate meta-analyses for
the effects b2jk and b3jk, whereby we assumed that these two
effects are independent of each other. This assumption may
not be realistic in applied settings. If a covariance at the second
and/or third level can be expected, a multivariate meta-
analysis might be more powerful (Kalaian & Raudenbush,
1996). In a pilot study, we already explored the performance
of the multivariate approach, with simulated effect sizes that

did not covary at the second and third level and showed
sampling covariance only at the first level. The results were
similar to the ones of this study. In future research, we
want to explore the operating characteristics of the multi-
variate multilevel model for meta-analytic data of SSEDs in
situations where there is nonzero covariance between
parameters. We expect that the gains of such a multivariate
model increases (e.g., higher power and accuracy) when the
covariance increases.

We also assumed that the repeated measures were uncor-
related. This is probably too strong an assumption in some
real situations, because a typical characteristic of single-case
data is that the measurements are taken in rapid succession.
Shadish and Sullivan (2011) showed that the size of auto-
correlation varies substantially over studies. In previous
research (Ferron et al., 2009), where a two-level model
was used to analyze SSEDs, it was found that not modeling
an existing autocorrelation results in biased parameter esti-
mates. In this study, we modeled the level one errors as σ2I,
but there are many other covariance structures possible, of
which the first-order autoregressive type is often used to
model autocorrelation. Thus, future research should explore
scenarios where the repeated measures are autocorrelated
and assess the impact of failing to model this autocorrela-
tion, as well as evaluating recovery of model parameters,
given the small number of data points typically encountered
in single-case design research.

Can single-case studies be combined with a multilevel
meta-analysis? The answer is yes when it is not necessary to
standardize effect sizes. And even if effect sizes should be
standardized because studies’ outcomes are on different
scales, there are no real problems as long as the studies’
effects are reasonably homogeneous or when there are a lot
of measurements per individual and there are a lot of studies
being meta-analyzed. But the method does not work well for
standardized effect sizes when there are only a few measure-
ments for each subject; this situation calls for an adaptation
of the method and additional research into alternative esti-
mation procedures.
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