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Abstract Given a collection Q of problems, in knowledge
space theory Doignon & Falmagne, (International Journal of
Man–Machine Studies 23:175–196, 1985) the knowledge
state of a student is the collection K ⊆ Q of all problems that
this student is capable of solving. A knowledge structure is a
pair (Q, ), where is a collection of knowledge states that
contains at least the empty set and Q. A probabilistic knowl-
edge structure (PKS) is a knowledge structure (Q, , π),
where π is a probability distribution on the knowledge states.
The PKS that has received the most attention is the basic local
independence model BLIM; Falmagne & Doignon, (British
Journal of Mathematical and Statistical Psychology 41:1–23,
1988a, Journal of Mathematical Psychology 32:232–258,
1988b). To the best of our knowledge, systematic investiga-
tions in the literature concerning the identifiability of the
BLIM are totally missing. Based on the theoretical work of
Bamber and van Santen (Journal of Mathematical Psychology
29:443–473, 1985), the present article is aimed to present a
method and a corresponding computerized procedure for
assessing the local identifiability of the BLIM, which is
applicable to any finite knowledge structure of moderate size.

Keywords Local identifiability . Probabilistic knowledge
structures . Knowledge space theory . Basic local
independence model

Introduction

In the theory of knowledge structures (Doignon & Falmagne,
1985, 1999; Falmagne & Doignon, 2011), a domain of knowl-
edge is a collection Q of problems or items (e.g., all problems
that can be formulated in linear algebra), and the state of
knowledge of an individual is the particular subset K ⊆ Q of
problems that he or she is capable of solving. A knowledge
structure is a collection of knowledge states, and in practical
applications of the theory it represents all different knowledge
states existing in a given population.

Knowledge structures are deterministic models of the
organization of knowledge, and as such, are used to repre-
sent specific dependencies among the problems in Q. In the
basic case, such dependencies are expressed in terms of a
precedence relation on the collection Q of problems, called a
surmise relation and interpreted as “failing p implies failing
q,” where p and q are two problems in Q. Knowledge
structures corresponding to surmise relations are called qua-
si-ordinal knowledge spaces.

Introducing dependencies among the problems provides
a way to decide whether or not an arbitrary subset of Q is a
knowledge state. For instance, if the dependence is de-
scribed by a surmise relation saying that “failing p implies
failing q,” then the existence of a knowledge state contain-
ing q and not containing p is excluded. Thus, a knowledge
structure usually forms a strict subset of the power set on Q.

Individual assessment based on knowledge structures
aims at recovering the knowledge state of a subject. Suppose
that the problems in Q have been administered to a student
who provided a response to each of them. The collection R
of all problems in Q that were correctly answered by the
student is called a response pattern. In an ideal situation, a
student whose knowledge state is K provides a correct
answer to an item q if and only if q is in K. This reflects
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the idea that K is really the collection of what the student is
capable of solving. However, this ideal situation is not very
realistic. In some cases, the student might be able to guess
the answer to a problem without knowing the correct solu-
tion process (this is the case, e.g., with multiple-choice
problems, but not only with those problems). On the other
hand, sometimes failure of a problem is a consequence of
making a careless error or being inattentive. Given this
variability, there is some chance that the response pattern
provided by the student will differ to some extent from the
underlying knowledge state. All of these effects must be
taken into account when a knowledge structure is applied to
empirical data.

For this reason, an appropriate probabilistic setting has
been provided by Falmagne and Doignon (1988a, b). Prob-
abilistic knowledge structures (PKS), which are the subject
matter of the next section, are knowledge structures
equipped with a probability distribution on the knowledge
states. In a PKS, knowledge states are regarded as discrete
latent classes that govern the response behavior of a student
(Schrepp, 2005; Ünlü, 2011). At present a special case of
this latent class model is the subject of our attention; it is
called the basic local independence model (BLIM, for
short). The BLIM imposes restrictions on the form of the
conditional probabilities P(R | K) of the response patterns,
given the knowledge states. These probabilities essentially
depend on two parameters per item: a lucky guess probabil-
ity η and a careless error probability β. The lucky guess
parameter ηq of a problem q is regarded as the conditional
probability that a correct answer is provided for q, given that
q is not in K, whereas the careless error parameter βq is
interpreted as the conditional probability that a wrong answer
is provided for q, given that q is in K.

A number of questions concerning the applicability of
this model arise. Some of them, like parameter estimation,
have already been answered, while other questions are still
open. The parameters of the BLIM can be estimated by
maximum likelihood via the expectation-maximization
algorithm (see, e.g., Stefanutti & Robusto, 2009). Other
estimation methods have also been explored by Heller and
Wickelmaier (2011). The model fit can be tested by standard
statistics, such as Pearson’s chi-square or the likelihood ratio
test.

The identifiability of the BLIM, which is the subject
matter of the present article, is still an open question.
Roughly speaking, a model is not identifiable if exactly
the same predictions can be obtained starting from totally
different parameter sets. Model identifiability is crucial to
interpretation of the parameters. If different solutions
exist for the parameters of the model, their values cannot
be interpreted, and the model loses its explanatory power.
This means that the model might still provide correct, or
even excellent, predictions of the frequency distribution

over the response patterns, but the explanations that one
obtains from an analysis of the parameter values can be
totally misleading.

At the present time, not much is known about the
identifiability of the BLIM. For instance, we don’t know
whether specific types of knowledge structures exist for
which the model is identifiable, or whether other types
exist for which it is not. In our view, the problem can be
tackled by following two parallel routes. The first route
is a purely analytic treatment, in which identifiability is
systematically studied and understood on a formal basis.
This requires spotting all of the different sources of
nonidentifiability in the BLIM, which might be many.
Much work remains to be done in this direction.

The other route, which is the one taken in this article,
makes use of some analytic tools for testing the identifiability
of the BLIM with respect to specific knowledge structures,
either in concrete applications or in simulation studies. The
proposed procedure is based on theoretical results by Bamber
and van Santen (1985, 2000), applying them to the case of the
BLIM.

The article is organized as follows: After a brief review of
probabilistic knowledge structures and the BLIM model, the
problem of assessing the local identifiability of the BLIM is
introduced. A method based on analysis of the Jacobian
matrix of the model’s prediction function is then described.
This method allows for detecting the parameters that are
involved in specific tradeoffs, leading to nonidentifiability.
In a subsequent section, the main tradeoff dimensions of the
BLIM parameters are introduced and discussed. A theoret-
ical result in this section shows that tradeoffs cannot occur
among knowledge state probabilities. This part is followed
by a section that deals with the problem of constructing the
Jacobian matrix of the BLIM’s prediction function in prac-
tice. This problem is not trivial, since such a matrix contains
as many rows as the number of theoretically observable
response patterns, which might be huge, even for knowledge
domains of moderate size. Finally, two remaining sections
describe a computerized MATLAB procedure for assessing
the identifiability of the BLIM for arbitrary knowledge
structures and parameter sets, provided that the set Q of
items is of a moderate size. In principle, the procedure is
also applicable to large-size item sets, but in that case the
computational costs might become prohibitive.

Probabilistic knowledge structures

A knowledge structure is defined as a pair (Q, ) in whichQ is
a nonempty set (assumed to be finite throughout this study),
and is a family of subsets ofQ containing at least Q and the
empty set Ø (Doignon & Falmagne, 1985). While the set Q is
called the domain of the knowledge structure, its elements are
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referred to as items (or problems). The subsets in the family ,
which are called (knowledge) states, represent those subsets of
items from the considered domain that an individual masters.
In general, however, we may not assume that a person solves a
problem if and only if the person masters it. In the case of a
careless error, the person actually masters an item but does not
solve it. In the case of a lucky guess, an item is solved without
being actually mastered. These types of errors are handled
within a probabilistic framework, which is based on dissoci-
ating the knowledge state K of a person from the actual given
response pattern R. Let 0 2Q denote the set of all possible
response patterns on the domain Q. Falmagne and Doignon
(1988a, b) and Doignon and Falmagne (1999) defined a
probabilistic knowledge structure (Q, , P) by specifying a
(marginal) distribution P on the states of and the condi-
tional probabilities P(R | K) for all R ∈ and K ∈ . The
marginal distribution P on then is predicted by

ð1Þ

The probabilistic knowledge structure that has received
the most attention is the BLIM, which satisfies the following
condition. For each q ∈ Q, local independence assumes that
there are real constants 0 ≤ βq < 1 and 0 ≤ ηq < 1 such that
for all R ∈ and K ∈ ,

ð2Þ

Assessing the local identifiability of the BLIM

After briefly introducing some general concepts related to
identifiability in probabilistic models, in this section we will
consider how these concepts may be applied to the basic
local independence model. For a general framework to treat
identifiability, we mainly refer to the work of Bamber and
van Santen (1985, 2000). Within this framework, a model is
regarded as a triple (D, f, O), where D ⊆ ℜm is called the
model’s parameter domain, O ⊆ ℜn is the model’s outcome
space, and f: D → O is the so-called prediction function of
the model. The model’s prediction f(θ) for a given parameter
vector θ ∈ D provides an outcome in O.

Formally, a model (D, f, O) is identifiable if its
prediction function f is one-to-one, and it is locally
identifiable at a given point θ0 ∈ D if f is one-to-one
when restricted to points within some distance ε > 0
from θ0. Bamber and van Santen (1985) showed that,

with m parameters in the model, if the maximum rank
of the Jacobian matrix of the prediction function f of a
model (D, f, O) is less than m everywhere in D, then
the model is not identifiable. Similarly, but in a some-
how opposite direction, Smith (1998) showed that, if the
Jacobian matrix of the prediction function f, evaluated at
a certain point θ0, has rank equal to the number of
parameters in the model, then the model is locally
identifiable at that point. We recall that the Jacobian
matrix of the prediction function f is the matrix J of
the first partial derivatives of f with respect to the
model parameters.

Both results suggest a way to assess the local identifi-
ability of a model: (1) construct the Jacobian matrix J of the
prediction function f at some point θ0 ∈ D, where the rank of
J is maximum; (2) compare the rank of J with the number m
of parameters; (3) conclude that the model is identifiable if
rank(J) equals m, and nonidentifiable otherwise.

In the procedure described above, the requirement that a
vector θ0 must be selected where the rank of the Jacobian
matrix is maximum may be considered problematic. In this
direction, however, a theorem by Bamber and van Santen
(1985, Theorem B5) guarantees that, under very general
conditions, the Jacobian matrix has maximum rank almost
everywhere in the parameter space D of the model. In this
case, if a point in D is picked at random, then the Jacobian
matrix, evaluated at that point, will have maximum rank
with probability 1. To be precise, the conditions require that
the prediction function f be an analytic function, and that D
be a subset of a connected open set and have positive
Lebesgue measure (which holds, e.g., if D contains a non-
empty open set).

The Jacobian matrix of the BLIM

First, we define the parameter space D for a given BLIM (Q,
, P), which is the set of all admissible parameter combina-

tions. Let β 0 (βq)q∈Q and η 0 (ηq)q∈Q denote the parameter
vectors of the item-specific careless error and guessing prob-
abilities, respectively, and let π 0 (πK)K∈ * with

* 0 \{Q}
denote the parameter vector of independent state probabilities
πK 0 P (K), K ∈ *. Without loss of generality, we may
assume that all state probabilities are nonzero, because other-
wise we can simply eliminate the respective state from the
knowledge structure. This leads to the parameter restrictions
πK > 0 for all K ∈ * and

ðT1Þ

Moreover, the probabilities of response errors are as-
sumed to be nonzero. This means that for all q ∈ Q both
the βq and ηq are elements of the open real interval (0, 1).
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There may arise situations in which it is reasonable to
assume that no guessing can occur—that is, where ηq 0 0
for all q ∈ Q. Considering a domain with items in open
response format (e.g., mathematical problems in which sub-
jects have to respond with a decimal number representing
the result of a computation they have to perform) provides
an example. In these situations, the ηq, q ∈ Q, are no longer
free parameters, and thus are not part of the parameter space.
In the general case, the parameter vectors θ 0 (β, η, π)
consist of m = 2 I |Q| + | | – 1 components, with m char-
acterizing the number of free parameters. In addition to Eq.
T1, consider the parameter restrictions captured by the
equivalent inequalities ηq < 1 – βq, βq < 1 – ηq. These
restrictions mean nothing else but that a correct response is
more likely if the item is mastered (i.e., it is contained in the
knowledge state and no careless error occurs) than if it is not
mastered (i.e., it is not contained in the knowledge state and
a lucky guess occurs). Equivalently, an incorrect response is
more likely if the item is not mastered (i.e., it is not
contained in the knowledge state and no lucky guess occurs)
than if it is mastered (i.e., it is contained in the knowledge
state and a careless error occurs). This relation is at the
bottom of the idea of a knowledge state, and forms the
essence of any stochastic procedure for knowledge assess-
ment that intends to uncover the knowledge state of an
individual given the observed responses (Heller & Repitsch,
2011). Both restrictions are captured by the inequality

bq þ ηq < 1 for all q 2 Q: ðT2Þ

The parameter space D then is defined to consist of all
vectors θ 0 (β, η, π), such that

D ¼ θ 2 0; 1ð Þmjθ satisfies Eqs: T1 and T2f g:
It follows that D is an open set that is convex, and thus

connected.
If Eq. 1 is reformulated in terms of the parameters of the

given BLIM, then the expression fR(θ) predicting the prob-
ability of the response pattern R ∈ * 0 \ {Q} is a sum of
the products of the parameters. This means that the predic-
tion function

ð3Þ
θ ∈ D, is an analytic function, and, together with D being a
connected open set of positive Lebesgue measure, we can
draw upon Theorem B5 of Bamber and van Santen (1985).
This allows for considering the rank of the Jacobian matrix
at any randomly selected point in the parameter space.
Again, we restrict the set of response patterns in order to
obtain probabilities pR 0 fR(θ) of observing a specific re-
sponse pattern R—the observables, in the terminology of
Bamber and van Santen (2000)—which are independent.
With this convention at hand, the prediction function of

the BLIM can be rewritten in the following nonredundant
form:

Analytic expressions can be derived for the entries of the
Jacobian matrix of the prediction function of the BLIM.
While its number of rows is the maximum number of
independent observables 2|Q| – 1, its number of columns is
the number of parameters m. A single entry of the Jacobian
matrix has the general form

JRj ¼ @fR θð Þ
@θj

;

where θj represents the jth parameter in θ.
First derivatives of fR(θ) with respect to each of the three

types of parameters β, η, and π collected in θ define the
entries of the Jacobian matrix. Skipping the algebra that
leads to these derivatives, we only provide the final results,
which are based on the following collections, defined for
every single item q ∈ Q:

and

κ κ κ
Given any response pattern R ⊂ Q, the first derivatives of

the prediction function fR(θ) with respect to each of the three
types of parameters are, respectively:

@fR θð Þ
@pK

¼ P RjKð Þ � P RjQð Þ

κ

κ

Given some suitable parameter vector θ and a fixed
knowledge structure , a numerical computation of the
Jacobian matrix Jθ, consists of an application of the
three equations given above to every single response
pattern R ⊆ Q.
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Testing local identifiability

A formal test of local identification of the BLIM for a given
knowledge structure consists of deciding whether the
condition

holds true, where represents the parameter space of the
BLIM and Jθ, is the Jacobian matrix of the prediction
function evaluated at θ, when the knowledge structure is
. In practice, due to the already mentioned Theorem B5 of

Bamber and van Santen (1985), it will suffice to pick some
vector θ0 at random from the parameter space of the BLIM
and to test the condition

J

If this condition does not hold—that is, when rank
(Jθ0, ) < 2|Q| + | | – 1—there are linear dependencies
among some of the columns of Jθ0, along one or more
dimensions, implying that tradeoffs among some of the
model parameters are allowed along such dimensions.
The exact number of dimensions along which tradeoffs
among parameters are allowed corresponds to the di-
mension of the null space of Jθ, . For m 0 2|Q| + | | – 1, this
number is simply

If the aim is fixing an identification problem, null(Jθ, )
also gives the total number of parameters that should be
removed from the model (e.g., by setting them to some
constant value). However, it should be observed that neither
the rank of the Jacobian matrix nor its null space dimension
is informative about which specific parameters of the model
are involved in tradeoffs. Suppose, for instance, that null
(Jθ, ) 0 3. This indicates that exactly three parameters should
be removed. However, removing any three arbitrary parame-
ters will not always produce an identifiable model. This is
because only parameters involved in tradeoffs should be
removed.

Detecting parameters that are involved in tradeoffs

Once it has been assessed that, for a given knowledge
structure , the BLIM suffers from some identification
problems, the next step is to try to fix the problem by setting
some of the parameters to constant values. As stated in the
previous section, only parameters involved in tradeoffs are
good candidates, while the remaining parameters should be
left free to vary. It is thus important to have a way to detect
all those parameters that are not independent and, among
them, those that should be removed from the model. There

exists a particular transformation of the Jacobian matrix that
does the job: the reduced row echelon form of Jθ, .

Formally, a matrix R is said to be in row echelon form
(REF) if it satisfies the following conditions (see, e.g.,
Meyer, 2000):

(a) all rows with at least one nonzero element (nonzero
rows) are above any rows of all zeros;

(b) the leading coefficient (pivot) of a nonzero row is always
strictly to the right of the pivot of the row above it.

Then, R is said to be in reduced row echelon form
(RREF) if it is in REF and satisfies the additional condition

(c) every pivot is 1 and is the only nonzero entry in its
column.

If R is in RREF, its columns are called either basic or
nonbasic. The basic columns are those containing the pivots,
and there are as many of them as the rank of R. A nice
property of R is that every nonbasic column is a linear com-
bination of the basic columns to the left of it and, if R is the
RREF of some matrix A, then exactly the same relationships
can be found among the columns of A, so that, if aij are the
entries of A, rij the entries of R, and k the index of any
nonbasic column ofA, then the following linear relation holds
true for any row i of A:

aik ¼ rk1ai1 þ rk2ai2 þ :::þ rk;k�1ai;k�1

and the general form of any nonbasic column k of R is

rk ¼ rk1; rk2; . . . ; rk ðk�1Þ; 0; . . . ; 0
� �T

:

In particular, the transformation

r�k ¼ �rk1; � rk2; . . . ; � rk ðk�1Þ; 1; 0; . . . ; 0
� �T

spans the null space of A, in the sense that Ar�k ¼ 0.
Bearing in mind the properties given above, if Rθ, rep-

resents the RREF of the Jacobian matrix Jθ, , then the
nonbasic columns of Rθ, are just what we are looking for:
Each of them represents a parameter that should be removed
from the model.

Thus, a procedure for detecting parameters that should be
removed from a nonidentifiable model consists of the following
steps:

1. compute the Jacobian matrix Jθ, ;
2. transform Jθ, into its RREF version Rθ, ;
3. find the set N of all of the nonbasic columns of Rθ,

(i.e., those columns without a leading coefficient);
4. each nonbasic column in N corresponds to a parameter

that should be removed from the model.

It should be observed that the columns actually contained
in Nmight depend on how the columns are ordered from left
to right in the matrix Jθ, , in the sense that different
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permutations of the columns in Jθ, might provide different
results for N. Suppose, in fact, that a linear dependence
exists among, say, three columns along a single dimension.
In that case, any one of these three columns can be arbi-
trarily expressed as a linear combination of the other two.

Tradeoff dimensions

The BLIM essentially consists of three different types of
parameters: lucky guesses η, careless errors β, and knowl-
edge state probabilities π. Unidentifiability is a consequence
of tradeoffs among these three types of parameters. It seems
natural to distinguish tradeoffs that occur among parameters
of the same type from tradeoffs that occur across different
parameter types. To be more specific, three orders of trade-
offs can be recognized:

1. first-order trade-offs: Parameters involved in this type
of tradeoff are all of the same type (e.g., a tradeoff
among the lucky guess probabilities of different items);

2. second-order tradeoffs: These are tradeoffs involving
parameters of two different types (e.g., a tradeoff between
the careless error probability of some item and the prob-
ability of some knowledge state);

3. third-order tradeoffs: These involve parameters of all
three types (e.g., one involving the lucky guess of an
item, the careless error of another item, and the proba-
bility of some knowledge state).

These three classes of tradeoffs can be studied separately
through a suitable decomposition of the Jacobian matrix into
the three different submatrices P, B, and E, whose entries
are, respectively:

PRK ¼ @fR θð Þ
@pK

; BRq ¼ @fR θð Þ
@bq

; ERq ¼ @fR θð Þ
@ηq

;

where K ∈ *, R ∈ *, and q ∈Q. Thus,P is the (2|Q| – 1) ×
(| | – 1) matrix of the first derivatives of the prediction
function f with respect to the knowledge state probabilities
π;B is the (2|Q| – 1) × |Q| matrix of the first derivatives of fwith
respect to the careless error parameters β; E is the (2|Q| – 1) ×
|Q| matrix of the first derivatives of f with respect to the lucky
guess parameters η. The whole Jacobian matrix is reconstructed
by

First-order tradeoffs among parameters of the same type
occur when one or more submatrices are not of full rank. For
instance, rank(B) < |Q| would indicate that tradeoffs among
the β parameters of some of the items would be allowed. In
this case, the total number of first-order tradeoff dimensions
for such item parameters would be measured by null(B) 0 |Q| –
rank(B). Similar considerations apply to the two submatrices P

and E. Therefore, the total number of first-order tradeoff
dimensions for all parameter types is given by

null Pð Þ þ null Bð Þ þ null Eð Þ:

Second-order tradeoffs can be assessed by considering
pairs of submatrices. For X, Y ∈ {P, B, E}, there are in total
three possible pairs of submatrices, each of which gives rise
to a compound submatrix of the form [X | Y]. The number of
second-order tradeoff dimensions contained in submatrix [X |Y]
is obtained by subtracting the number of first-order tradeoff
dimensions from the total number of tradeoff dimensions in
[X | Y]. If we indicate with td2([X |Y]) the number of second-
order tradeoff dimensions contained in [X | Y], we can write

td2 XjY½ �ð Þ ¼ null XjY½ �ð Þ � null Xð Þ � null Yð Þ;

which can also be expressed in terms of ranks. IfX andY have
c and d columns, respectively, we can write

td2 XjY½ �ð Þ ¼ cþ d � rank XjY½ �ð Þ � cþ rank Xð Þ � d þ rank Yð Þ
¼ rank Xð Þ þ rank Yð Þ � rank XjY½ �ð Þ:

Finally, in order to count the number of third-order tradeoff
dimensions, the whole matrix [P | B | E] has to be considered.
With td3([P | B | E]) denoting this number, the requirement is
that

null P Bj jE½ �ð Þ ¼ null Pð Þ þ null Bð Þ þ null Eð Þ þ td2 PjB½ �ð Þ
þ td2 PjE½ �ð Þ þ td2 BjE½ �ð Þ þ td3 P Bj jE½ �ð Þ;

from which, after some algebra, we obtain

td3 P Bj jE½ �ð Þ ¼ rank PjB½ �ð Þ þ rank PjE½ �ð Þ þ rank BjE½ �ð Þ

�rank PÞð � rank Bð Þ � rank Eð Þ � rank P Bj jE½ �ð Þ:

It is clear that identification of the BLIM strictly depends
on the chosen knowledge structure . For a finite set Q, the
family of all possible knowledge structures is the collection
of all subsets of the power set 2Q containing at least the
empty set and Q. This collection can be theoretically parti-
tioned into the set of all knowledge structures for which the
BLIM is identifiable and the set of all those knowledge
structures for which it is not. Considering knowledge struc-
tures belonging to the latter collection, they might differ
from one another concerning the types of tradeoffs occur-
ring among the model parameters. There might be a lot to
study about similarities and differences in this respect.

In the rest of this section, a basic result is provided, which
holds for all knowledge structures on a finite set Q. It
basically says that there are no first-order tradeoffs among
the probabilities of the knowledge states. In this direction,
the following lemma is useful.
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Lemma 1 Given any two n ×mmatricesX andY, it holds that

rank X� Yð Þ � rank Xð Þ � rank Yð Þ:

Proof By the subadditivity property of the rank, it holds that
rank(X + Y) ≤ rank(X) + rank(Y). Therefore, we can write
rank(X – Y +Y) ≤ rank(X –Y) + rank(Y), and thus rank(X) –
rank(Y) ≤ rank(X – Y).

Theorem 1 Let be any knowledge structure on the finite
set Q and let J 0 [B | E | P] be the Jacobian matrix of the
prediction function f corresponding to . Then P is full rank.

Proof We first consider the case in which the knowledge
structure equals the power set on Q: namely, when 0

2Q. Let J* 0 [B* | E* | P*] be the corresponding Jacobian
matrix. For k 0 2|Q| – 1, define the k × kmatrixU 0 [P(R | K)],
R ∈ R*, K ∈ *, and the k × 1 column vector v 0 [P(R | Q)].
Then, assuming that v is the last column of U, we have the
following equality:

P�j0½ � ¼ U� V;

where V ¼ vjvj � � � jv½ � is the k × k matrix obtained by repli-
cating vector v for k times, and 0 is the k × 1 column vector of
zeros. It is then clear that the rank of matrix V is 1.

For any q ∈ Q, define the 2 × 2 matrix

Uq ¼ 1� ηq bq
ηq 1� bq

� �

Then, up to permuting rows appropriately, U can be
rewritten as

U ¼ U1 � U2 � ::: � Un ð4Þ

where ⊗ denotes the Kronecker product of matrices. The
matrix Uq is full rank if and only if it has a nonzero
determinant that is, when

1� ηq
� �

1� bq
� 	� ηqbq 6¼ 0;

which gives

ηq þ bq 6¼ 1: ð5Þ
From assumption T2 concerning the parameter space of a

probabilistic knowledge structure, we know that this condi-
tion holds true for all q ∈ Q, so that indeed rank(Uq) 0 2.
Drawing upon the general properties of the Kronecker product,
from Eq. 4 it follows that

rankðUÞ ¼
Y
q2Q

rankðUqÞ:

Therefore, we have rank(U) 0 2|Q|. Then, for Lemma 1,
we have

rank P�j0½ �ð Þ ¼ rank U� Vð Þ � rank Uð Þ � rank Vð Þ ¼ 2jQj � 1:

However, since the size of P* is k × k, its rank must be at
most k, and adding a column of zeros to this matrix does not
increase its rank; therefore, we have the upper bound

rank P�j0½ �ð Þ � 2jQj � 1: (6)
Thus, we must have rank([P* | 0]) 0 2|Q| – 1. By removing

column 0 from [P* | 0], the rank does not change, so that we
have rank(P*) 0 2|Q| – 1, and thus P* is full rank. We also
observe that any matrix obtained by removing arbitrary col-
umns from P* will also be full rank. Suppose now that is any
knowledge structure included in 2Q. The corresponding matrix
P can then be obtained fromP* by removing from it all columns
that do not correspond to knowledge states. Thus, P is full rank.

Constructing the Jacobian matrix in practice

The number of rows in the Jacobian matrix of the BLIM
prediction function equals 2|Q| – 1. In practice, the construction
of this matrix is feasible only if the number of items is relatively
small. To give an example, with |Q| 0 20 items, the number of
rows of this matrix would be more than one million. From a
computational point of view, this aspect represents a serious
limitation of the proposed identification test, even with com-
puters that are equipped with a huge amount of memory.

Nonetheless, there is a way to get around this computa-
tional problem, which is based on the fact that any maximal
independent subset of rows from a matrix X contains exact-
ly rank(X) rows. Let Jθ, be the Jacobian matrix of the
BLIM for some knowledge structure (Q, ), and let be
any maximal independent subset of rows from Jθ, . Now, if
M is any of the matrices whose rows are some permutation
of the row vectors in , then it holds that

The important fact about the matrix M is that the number
of its rows might be much smaller than that in Jθ, . More
precisely, for any empirically testable model, this number
will be at most 2|Q| + | | – 1—that is, the total number of
parameters in the model (columns in Jθ, ). Moreover, this
number attains its maximum value only if Jθ, is full rank—
that is, when the model is locally identifiable.

At this point, however, the problem arises how to con-
struct the matrix M, or, stated another way, how to find any
of the maximally independent subsets of rows from Jθ, . Let

denote the collection of all row vectors from Jθ, , and
suppose that ⊆ is an independent subset. In this case,
either of the following two conditions holds true:

1. is a maximal independent subset.
2. There exists r ∈ \ such that ∪ {r} is independent.
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Given the observation above, a maximal independent subset
of rows from Jθ, can be constructed iteratively. We first recall
that the row vectors in are in a one-to-one correspondence
with the response patterns in *. Moreover, for Z 0 {0, 1, . . . ,
2|Q| – 2}, let h: Z→ 2Q\{Q} be a bijection. For instance, h can
be regarded as the lexicographic order, so that for any z ∈ Z, h(z)
is the collection of all digits that are set at 1 in the binary
representation of z. Therefore, for example, h(0) 0 ∅, h(1) 0
{1}, h(2) 0 {2}, h(3) 0 {1, 2}, and so forth. But other choices
for the bijection h might be considered as well, of course.

For ⊆ , let [ ] denote any of the matrices whose
rows are a permutation of the row vectors in , and let
m 0 2|Q| + | | – 1 be the total number of parameters in
the model. Then, an algorithm for constructing the ma-
trix M is as follows:

A few remarks about this algorithm are in order. At the
outset, the collection is initialized to the empty set. Then
the loop is entered and repeated until one of the
following two conditions is satisfied:

(1) The rank of [ ] equals m.
(2) All response patterns in * have been examined.

In every single step i > 0 of the while loop, a new
response pattern R 0 h(i) is produced, and the corresponding
row vector r is added to only if it increases the rank of
[ ]. Now suppose that is an independent subset. If the
condition rank([ ∪ {r}]) > rank([ ]) holds true, then ∪
{r} must be an independent subset, too. From this observation
and the fact that at the outset the collection is empty, it
follows by induction that at each step i > 0, the collection
is an independent subset.

Concerning termination of the algorithm, suppose that at step
i > 0Condition 1 is met first. Then, regardless of which response
patterns have been examined so far, the rank of [ ] equals m,
which is the maximum value that can be attained by rank([ ]).

Thus, must be a maximal independent subset of . On the
other hand, suppose that Condition 2 is met (thus, i > 2|Q| – 2).
In this case, all possible row vectors in have been taken into
consideration. Therefore, there is no row vector r ∈ such
that ∪ {r} is an independent subset, meaning that is
maximal.

With the purpose of testing the local identifiability of the
BLIM, the matrix M 0 [ ] can be used in place of Jθ, . The
conclusions are the same as with Jθ, : Namely, if rank(M) <
m, then the model is not locally identifiable. It is worth
noticing that in this case, the number of rows of M, which
equals its rank, will be less than the number of columns,
which equals the total number m of parameters. Thus, the
difference between the columns and the rows of this matrix
gives the total number of tradeoff dimensions.

With the aim of providing a simple example of how the
algorithm works, consider the simple knowledge structure 0

{∅, {1, 2}, {3, 4}, {1, 2, 3, 4}}, for which the BLIMhappens to
be locally identifiable.With respect to this knowledge structure,
the BLIM contains in the whole 4 + 4 + 3 0 11 free parameters.

At the outset, is empty. At the first step of the algorithm,
the empty response pattern is evaluated, and the row of the
first derivatives of the probability of this pattern with respect
to the 11 model parameters is computed. This row is added to
, and the matrix [ ] happens to be rank 1. At the second step,

the response pattern {1} is evaluated, and a corresponding
row is added to , which now contains two row vectors. After
this change, the rank of [ ] increases by 1, meaning that is
an independent set. Therefore, the algorithm moves to the
third step, where response pattern {2} is evaluated. The pro-
cedure repeats, and the rank increases each time by 1 up to the
response pattern {2, 4}. At this point, contains 11 row
vectors, but the rank of [ ] is 10. Thus, the last column of
is removed, and the new response pattern {1, 2, 4} is evalu-
ated. However, after the row vector corresponding to this
pattern has been added to , the rank of [ ] is still 10.
Therefore this row is also removed from , and the new
response pattern {3, 4} is evaluated. Once the row vector
corresponding to this pattern is added to , the rank of [ ]
becomes 11, and since this number equals the total number of
parameters, the algorithm terminates.

The BLIMIT function

A computerized procedure for testing the local identifiability
of the BLIM, which includes the various features examined in
the previous sections, has been implemented as a MATLAB
function.1 This function is named BLIMIT, which stands for

1 The MATLAB code of the BLIMIT function can be requested by
sending an e-mail to the first author (luca.stefanutti@unipd.it).
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“basic local independence model identification test.” In its
basic usage, the function takes as its input argument a
binary matrix representation of the knowledge structure
for which the identification test has to be performed, and
it returns a detailed identification report, which is saved
into an external text file.

In this section, the main features of the BLIMIT function
are illustrated by means of a simple example. Suppose that
one would like to test whether the BLIM is locally identifi-
able for the knowledge structure

on the set Q 0 {1, 2, 3, 4}. The BLIMIT function accepts as
an input argument a model, which is a MATLAB-structured
object in which at least one field named states is defined.
This field is a binary matrix, consisting of | | rows and |Q|
columns, that represents the knowledge structure to be test-
ed. Each row of the matrix represents a distinct knowledge
state in , and each column a different item in Q. A 1 at the
intersection between row i and column j of this matrix means
that knowledge state i contains item j, whereas a 0 means the
opposite. Suppose that the model is called mymodel; the
knowledge structure is then specified by the following
syntax:

The function is then called by the syntax blimit (mymo-
del). Optionally, values for the model parameters can also be
specified as input arguments (there is one field for each
vector of parameters, labeled, respectively, beta for the
careless error probabilities, eta for the guessing probabili-
ties, and pi for the knowledge state probabilities). If these
values are not specified, the BLIMIT function generates
them at random, and this corresponds to selecting a point
θ0 from the parameter space.

The function does not compute the whole Jacobian ma-
trix of the BLIM but rather, as explained in Constructing the
Jacobian matrix in practice, a maximal independent subset
of row vectors from the Jacobian is constructed, and any subse-
quent computation is performed on this subset of vectors—or
more precisely, on a matrix M whose rows are some permuta-
tion of the vectors in this subset.

The output from the function is a text file that, by
default, is printed on the MATLAB command window.
Basically, this file consists of three main parts: a general

information section and two other sections that appear
only when the model is not identifiable. The first of
them is a table, called the submatrix rank analysis
table, in which the matrix M is partitioned in different
ways; the last part contains specific diagnostic informa-
tion about the item parameters.

The output from the BLIMIT function is now examined for
the example at hand. Thus, suppose that the function has been
called for the model mymodel defined above. The first part of
the output file looks like the following one

Besides the numbers of items and states, the report iden-
tifies the total number of parameters in the model (which in
our example is 2|Q| + | | – 1 0 2 × 4 + 6 – 1 0 13), the
Jacobian rank, and the null space dimension. Notice that the
rank of the Jacobian is only 10. Since this number is less
than the total number of parameters, the Jacobian is not full
rank, and thus the model is not locally identifiable. The
difference between the total number of parameters and the
Jacobian rank is called the null space dimension (NSD).
This is the overall number of dimensions along which trade-
offs among the model parameters are allowed. Since NSD 0
3, in our example there are, in total, three distinct tradeoff
dimensions.

The remaining part of the report provides detailed diagnostic
information that can be used for fixing the identification prob-
lem. The submatrix rank analysis table is a table in which the
Jacobian matrix is partitioned in different ways (see Tradeoff
dimensions). The complete Jacobian matrix can be regarded as
the joining of three different submatrices corresponding to the
three different types of parameters in the BLIMmodel (careless
error, lucky guess, and state probabilities). For the example at
hand, the submatrix rank analysis table looks like the listing
below. Each of the three submatrices listed in the upper part of
the table has as a number of columns that corresponds to the
number of parameters of a certain type (N. PAR). In terms
of the notation used in Tradeoff dimension, [BETA] stands
for the submatrix B, [ETA] stands for E, an [PI] for P. The
submatrix B is the part of the Jacobian whose columns are
the n 0 4 different careless error probabilities of the items;
the submatrix E is the part of the Jacobian whose columns
are the n 0 4 different lucky guess probabilities; the sub-
matrix P is the part whose columns are the knowledge state
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probabilities (form knowledge states, there are on the wholem –
1 such columns).

For each of the three submatrices the number of parame-
ters (columns) and the rank are indicated. For instance, for the
B submatrix there are four parameters, and the rank is also 4.
The null space dimension is also indicated, which is 0 for all
three submatrices, in our example. The last column of the
table indicates the trade-off dimension (TRADEOFF DIM)
corresponding to each submatrix. For individual submatrices
this number always corresponds to the null space dimension.

In the whole, this part of the table is aimed at highlighting
tradeoffs within single submatrices. In our example we see
that there are no such kind of trade-offs.

In the second part of the table, all possible pairs of the
individual submatrices are considered. Like in the first part
of the table, also here the total number of parameters and
submatrix rank are indicated along with the NSD and TD.
Tradeoffs occur in those submatrix pairs having a positive
TRADEOFF DIM. In our example, this is the case of sub-
matrix pairs [B | P] and [E | P]. In each of these two pairs the
residual is 1, meaning that in each of them a tradeoff is
allowed along exactly one dimension. The fact that the
trade-off dimension of [B | P] is 1 means that there is a
tradeoff between some careless error parameter and some
knowledge state probability. Similar conclusions can be drawn
concerning the submatrix pair [E | P].

It is important to bear in mind that this part of the table is
concerned with tradeoffs that occur across submatrices, and
all of them involve exactly two types of parameters (e.g.,
careless error and knowledge state probability). These types
of tradeoffs are called second-order tradeoffs, and should be
distinguished from the first-order tradeoffs occurring within
individual submatrices (i.e., involving parameters of the same
type).

In the third part of the table, third-order tradeoffs,
that is tradeoffs involving all three types of parameters
along the same dimension are considered. In our exam-
ple the number of third-order tradeoff dimensions is
exactly 1. This means that there is some tradeoff in-
volving, along the same dimension, a careless error
probability, a lucky guess probability and also some
knowledge state probability.

At this point, if we sum up all of the values displayed in the
TRADEOFF DIM column of the table, we obtain 3, namely
the overall null space dimension of the Jacobian matrix.
Therefore, we know that in the whole there are:

& no first-order tradeoff dimensions,
& two second-order tradeoff dimensions, and
& one third-order tradeoff dimension.
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It remains to discover which specific model parame-
ters are in a tradeoff relation. Since we learned that there
is a second-order tradeoff dimension involving β and π
parameters, the next table in the report contains detailed
diagnostic information at the item level, concerning the β
parameters:

The text above the table serves as a reminder that for the
submatrix pair at issue there is exactly 1 tradeoff dimen-
sion. The table contains one row for each item and three
columns. The first column is a list of the item parameter
labels, whereas the second column contains the parameter
values. The third column, labeled DIM #1, is the most
important one. In Detecting parameters that are involved
in tradeoffs, it has been shown that the reduced row eche-
lon form of the Jacobian matrix might contain nonbasic
columns, and that those columns correspond to parameters
that are involved in tradeoffs. More precisely, each of the
non basic columns is a linear combination of the basic
columns that are to the left of it in the RREF of the
Jacobian matrix. The values displayed in the DIM #1
column of the table are the negative coefficients of this
linear combination, with the convention that, if a coeffi-
cient is zero then the corresponding row is empty and that
the coefficient of the parameter that can be expressed as a
linear combination of the others is 1.

Looking at the table we discover that the β parameters
of Items 3 and 4 are not linearly independent. These two
parameters are involved in a tradeoff with some state
probability along a single dimension. Since there are two
parameters and only one tradeoff dimension, it suffices to
set just one of them to a constant value to fix the tradeoff
problem.

If one is interested in retrieving linear coefficients for
all parameters (including knowledge state probabilities)
involved in the tradeoff, it is possible to call BLIMIT
with the syntax info=blimit(mymodel). The output
argument info contains a number of fields, among which
there is the array info.DiagBetaPi in which the

mentioned coefficients are stored. The array has as many
rows as the number of parameters in the [B | P] subma-
trix, and as many columns as the number of tradeoff
dimensions for this submatrix.

By examining the submatrix rank analysis table we
also noticed that there is a second-order tradeoff dimen-
sion involving the η and π parameters. This is why in the
next table of the report there are detailed diagnostic
information at item level concerning the [E | P] submatrix
pair:

By examining the third column of this table we dis-
cover that there is a tradeoff involving the η parameters
of Items 1 and 2 and some knowledge state probability.
As in the previous case, it suffices to set at a constant
value one of the two lucky guess probabilities to fix the
tradeoff problem. If one is interested in retrieving the
whole set of linear coefficients, they are stored in the array

info.DiagEtaPi.
Finally we observed that a third-order tradeoff dimension

also exists. Detailed item-level diagnostic information
concerning this type of tradeoff is provided in the next table of
the report:
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Notice that parameters β4 and η2 are missing in this
table. They are both involved in some second-order
trade-off dimension and, for this reason, they are re-
moved from the analysis of third-order trade-off
dimensions.

From this last table we observe that the third-order
tradeoff dimension involves parameters β3 and η1, plus
some knowledge state probability. The trade-off problem
is solved by setting exactly one of these parameters to
some constant value. The whole set of linear coefficients
for third-order tradeoffs is stored in the array

info.DiagBetaEtaPi.
We now have complete information for fixing the iden-

tification problem. Exactly three parameters in the model
have to be set to some constant value, and this corre-
sponds to excluding these parameters from the model.
To be more precise, these parameters are still in the
model, but they are not free to vary. As a consequence,
the first partial derivative of the prediction function with
respect to these parameters will be zero. As suggested by
the procedure, the parameters that should be excluded are
η1, η2, and β4.

Exclusion of specific parameters can be done in BLIMIT
by passing to the function two additional logical vectors
(one for each of the two error parameter types) by means
of which one can specify which item parameters should be
removed from the model. To this aim we add two new
vectors to the object mymodel, labeled, respectively beta0
and eta0. Since we want to exclude β4 the first of the two
vectors is:

Since we want to exclude both η1 and η2, the second
vector is:

After these changes, as expected, a new call to blimit
(mymodel) produces the following result:

Therefore, by removing exactly three parameters (η1, η2,
and β4) from the model, we were able to solve the identifi-
cation problem.

At this point it might be argued that the parameter values
remain ambiguous anyway: one sets some of them to be
constant but, since other choices are possible, the values of
the constants might affect how one interprets the parameters.
However it should be observed that local identification is
assesses in a model construction stage, that is before any
data is observed. It is at that stage that one decides which
parameters are free to vary and which are not. In this respect
local identification assessment can be regarded as a type of
model construction tool, a way to establish if a model, with
all of its parameters, is falsifiable or not. If not, then one
knows that some parameters of the model cannot be isolated
or separated from others.

In the example given above, parameters η1, η2, and β4
were set to zero with the aim of providing a simple and
immediate illustration of how the BLIMIT procedure
works. In concrete applications however one might con-
sider the alternative of redefining the knowledge structure by
removing critical knowledge states and/or adding new ones.
This option is discussed in the next two empirical examples.

Two empirical examples

This section exemplifies the application of the BLIMIT
function to real data sets from the domain of elementary
probability theory.

The first data set consists of responses that 300 students
provided to a collection of 19 problems. An analysis of the
content of the problems resulted in the hypothesis that five
skills (computation of the probability of an event, probabil-
ity of the complement of an event, stochastic independence,
union of mutually exclusive events, deck of cards) were
required in order to solve them. Via the conjunctive model
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(Doignon & Falmagne, 1999), each problem was associated
with the skills necessary and sufficient to solve it according
to the skill map represented in Table 1. Consider Problem 11
as an example: “Throw a dice. What is the probability of
obtaining 1 or 4?” The problem was assumed to require the
skills concerning computation of the probability of an event
and union of events. The knowledge structure 1 delineated
by the given skill map contains 24 knowledge states.

Model parameters were estimated bymaximum-likelihood.
The fit of the BLIM for 1 was tested using Pearson’s chi-
square statistic and a parametric bootstrap (217 response
patterns had expected frequency <1), and it turned out to be
good (p 0 .16).

Local identifiability of the BLIM for 1 was tested through
the BLIMIT function. The values of the model parameters
(careless error probabilities, guessing probabilities, knowledge
state probabilities) estimated on the empirical data were passed
to the function, together with the knowledge structure 1.

The model is not locally identifiable, and there is one
second-order tradeoff dimension involving the β parameter
of Problem 4 and some state probability.

At this point, there are two possibilities for solving the
identification problem. On the one hand, we can modify the
knowledge structure that is tested. An indication in this
direction is to modify the skill assignment concerning Prob-
lem 4 because this last was involved in the tradeoff dimen-
sion. Problem 4 says: “Assuming a deck of cards contains
52 different playing cards, what is the probability of extract-
ing a black 4?” The problem was assumed to require the
skills concerning computation of the probability of an event
and the knowledge of what cards are in a 52-card deck.
When the last skill is deleted from Problem 4, a new knowl-
edge structure is obtained that contains 16 knowledge states.
The BLIM is locally identifiable for the new structure, and
its fit is good (p 0 .13). However, it is worth noticing that
this solution is not plausible from a theoretical point of view,
because it assumes that knowing the 52-card deck is not
necessary for solving Problem 4.

On the other hand, when we do not want to modify the
knowledge structure, we can solve the identification prob-
lem by removing the parameter β4 from the model through
the BLIMIT function.

The second data set consists of the responses that 67 students
provide to a collection of 13 problems. An analysis of the
content of the problems reveals that four skills (conditional
probability, law of total probability, probability of the comple-
ment of an event, stochastic independence) were required to
solve them. Via the competency model (Doignon & Falmagne,
1999), each problem was associated with its competencies
according to the skill multimap represented in Table 2. All
problems were associated with one competency, except for
problem 13 which was associated with two competencies.
Problems 13 reads: “Given two independent events A and B
in a sample space S, the following probability is known: P(A |

B) 0 .2. Find P(A). The first competency specifies that the
problem requires the skills concerning probability of the com-
plement of an event, conditional probability and stochastic
independence to be solved. The second competency constitutes
an alternative solution strategy specifying that Problem 13
could also be solved by simply subtracting the single probabil-
ity value given in the text from 1. The knowledge structure 2

delineated by the skill multimap contains 30 knowledge states.

The fit of the BLIM for 2 turned out to be good (p 0 .15).
Maximum-likelihood estimates of model parameters were
passed to the BLIMIT function, along with the knowledge
structure 2. The model is not locally identifiable, and there is
one second-order tradeoff dimension involving the η parame-
ters of Problems 1, 2, 3, and 13 and some knowledge state
probability.

As in the previous example, we can solve the identifica-
tion problem by modifying the knowledge structure or by
excluding a parameter from the model. With respect to the
first solution, we can modify the skill assignment of Prob-
lem 13 which was involved in the tradeoff to a greater extent
than Problems 1, 2, and 3. When the alternative solution
strategy is deleted from Problem 13, a new knowledge
structure is obtained that contains 16 knowledge states.
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The BLIM is locally identifiable for the new structure, and
its fit is good (p 0 .14).

With respect to the second solution, we can remove the
parameter η13 from the model by using the BLIMIT
function.

Conclusions

Identifiability is a general and fundamental issue in para-
metric modeling of the data. A parametric model is said to
be identifiable if the parameter set giving rise to a certain
prediction is uniquely determined. When more than a single
parameter set gives rise to the same model predictions, then
the model is said to be nonidentifiable. In this case the
model parameters cannot be interpreted even when the
model displays a good or even excellent fit to the data. As a
consequence, any explanatory conclusions drawn from an anal-
ysis of the model parameters may be misleading.

The focus of this article was on identifiability of probabi-
listic knowledge structures, that is knowledge structures
equipped with a probability distribution on the knowledge

states. The BLIM is a special case of a probabilistic knowl-
edge structure where the responses to the items are locally
independent given the knowledge state of an individual. In the
BLIM the conditional probabilities of the response patterns,
given the knowledge states depend on two types of parameters
of the items: a lucky guess probability η and a careless error
probability β.

Identifiability of the BLIM depends on the particular
knowledge structure on which it is defined. To the best of
our knowledge, the set theoretical properties of those knowl-
edge structures for which the BLIM turns out to be identifiable
are far from clear. Indeed, a theoretical characterization of
these kinds of knowledge structures is still missing. For this
reason any method or procedure that aims at assessing iden-
tifiability of the BLIM which is general enough to be applied
to any finite knowledge structure, although of moderate size,
would be welcome. This was precisely the purpose of the
present article.

Based on the work of Bamber and van Santen (1985,
2000), a method and a corresponding computerized proce-
dure for assessing local identifiability of the BLIM have
been proposed and described. The method operates on the
Jacobian matrix of the model’s prediction function. By this
method it is possible to systematically detect those parame-
ters of a nonidentifiable model that are involved in tradeoffs.
The theory behind the proposed method sheds light on the
existence of three different types of tradeoff dimensions
involving, respectively, parameters of the same type, of
two or three different types. This paves the way to future
investigations aimed at systematic classifications of the
types of nonidentifiability that arise with probabilistic
knowledge structures in general and with the BLIM in
particular.

A MATLAB procedure, called BLIMIT, which imple-
ments the proposed identification assessment method was
described in a number of example applications. The input to
the procedure is a binary matrix representing the knowledge
structure for which the BLIM identification has to be tested,
and the output is a text report with a main response saying
whether the model is identifiable, followed by detailed
diagnostic information at item level. In particular, informa-
tion at item level allows detection of those specific item
parameters that are involved in tradeoff dimensions. This
information is particularly useful for modifying or correcting
the knowledge structure and turning it into an identifi-
able one.

It is our hope that the proposed method and proce-
dure might be useful to researchers that are interested in
a systematic study of the identifiability of probabilistic
knowledge structures, as well as to practitioners that, in
applying such types of models would like to ascertain
identifiability of the particular knowledge structure they
intend to use.

Table 2 Skill map from example 2

Problem Competencies Problem Competencies

1 {cp} 8 {tt, cd}

2 {tt} 9 {tt, id}

3 {cd} 10 {cd, id}

4 {id} 11 {cp, tt, cd}

5 {cp, tt} 12 {cp, tt, id}

6 {cp, cd} 13 {cp, cd, id} {as}

7 {cp, id}

as, alternative strategy; cd, conditional probability; cp, complement of
an event; id, stochastic independence; tt, total probability

Table 1 Skill map from example 1

Problem Skills Problem Skills

1 {pb} 11 {pb, un}

2 {un} 12 {cp, id}

3 {cp, id} 13 {pb, cp, un}

4 {pb, cd} 14 {cp}

5 {cp, id} 15 {pb, cp, un, id}

6 {id} 16 {pb, cp, id}

7 {pb, cp, un} 17 {pb, cp}

8 {un, id} 18 {pb, un, id}

9 {pb, un, id} 19 {pb, un}

10 {pb, id}

cd, card deck; cp, complement of an event; id, stochastic independence;
pb, probability of an event; un, union of events
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