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Abstract The goal of this study was to test the effect of
mental workload on handwriting behavior and to identify
characteristics of low versus high mental workload in
handwriting. We hypothesized differences between hand-
writing under three different load conditions and tried to
establish a profile that integrated these indicators. Fifty-six
participants wrote three numerical progressions of varying
difficulty on a digitizer attached to a computer so that we
could evaluate their handwriting behavior. Differences were
found in temporal, spatial, and angular velocity handwriting
measures, but no significant differences were found for
pressure measures. Using data reduction, we identified
three clusters of handwriting, two of which differentiated
well according to the three mental workload conditions. We
concluded that handwriting behavior is affected by mental
workload and that each measure provides distinct informa-
tion, so that they present a comprehensive indicator of
mental workload.
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Introduction

Research on mental workload has, to date, concentrated on
physiological measures of brain, eye, and heart activity.
This study focuses on behavioral measures of handwriting.
Handwriting is a complex activity, compounded of cognitive,
kinesthetic, perceptual, and motor components (Bonny, 1992;
Reisman, 1993). It is considered as an “overlearned” skill
involving very rapid sequencing of movements. As has been
discussed by Weintraub (1997), several theoretical models
have indicated that handwriting performance involves
retrieving the form, size, and direction of letters, relating
them to their sounds (phonemes), memorizing all the
required parameters, and transferring them by motor execu-
tion to the paper (Weintraub, 1997).

With time, handwriting performance becomes automatic.
Studies have shown that young children need to think more
about the size, form, and direction of letters, tending to
write more slowly and in larger letters (Berninger, 1991;
Wann, 1986). It was also found that they write with a lower
flow (Meulenbroek & Van Galen, 1986; Smits-Engelsman,
Van Galen, & Portier, 1994), resulting in separate move-
ments rather than a sequential pattern (Meulenbroek & Van
Galen, 1986; Smits-Engelsman et al., 1994; Wann, 1986).
Adults have automatic sequential performance, which
begins to change due to physiological changes in elderly
people (Dixon, Kurzman, & Friesen, 1993; Rosenblum &
Werner, 2006).

Thus, adults 20 years of age and above are expected to
write in an automatic manner unless suffering from some
pathology, physical or mental, that affects their handwriting
performance (Longstaff & Heath, 1999). Automatic hand-
writing movements increase efficacy and reduce redundancy
(Latash, 1998). The more skilled and automatic the hand-
writing act, the less variability there will be in temporal
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(performance time), spatial (length, height, width), and
pressure (applied on or toward a surface) measures, and
greater consistency will be evident (Smits-Engelsman & Van
Galen, 1997). This means fewer pauses, less variation in
letter formation, more spatial accuracy, and better control
of pen pressure (Meulenbroek & Van Gemmert, 2003;
Schoemaker, Ketelaars, Van Zonneveld, Minderaa, &
Mulder, 2005; Wann, 1986).

When handwriting performance is automatic, it releases
cognitive resources to deal with other tasks that can be
performed simultaneously—that is, dual-task processing (e.g.,
Schneider, Domais, & Shiffrin, 1984). According to dual-
task studies, human processing resources are shareable
(Kahnemann, 1973; Navon & Gopher, 1979), but the
difficulty of tasks for the hand limits the ability for dual-
task performance (Fisk & Schneider, 1983). For example,
when driving automatically, people can converse and think
about the content of a conversation in a manner that will
result in sequential and logical discussion. However, when
they drive an unfamiliar vehicle or on unfamiliar routes,
conversation is interrupted, becoming less logical and
sequential. Thus, when a cognitive task such as arithmetical
calculation or driving is more complex and demands
additional resources, other tasks, such as writing or commu-
nicating on the phone, may suffer from a loss of resources
that influences performance. This has been conceptualized as
mental workload—the processing costs incurred in task
performance (Kramer, 1991; Wickens, 1992).

Previous studies have indicated that a computerized
system of objective measures of the handwriting process
may be sensitive to dis-automatization (e.g., Teulings,
2001; Tucha, Laufkotter, Mecklinger, Klein, & Lange,
2001; Werner, Rosenblum, Bar-On, Heinik, & Korczyn,
2006). Specifically, it has been found that such computerized
measures are sensitive to cognitive deterioration during the
various stages of Alzheimer’s disease (Werner et al., 2006). A
recent study, in the field of applied psychology, also found
differences between the writing of truthful and untruthful
sentences in a sample of healthy participants, suggesting that
deception is cognitively taxing and, therefore, damages
handwriting performance (Luria & Rosenblum, 2010).

The focus of this study is on mental workload in a
healthy population when writing numbers. This is important
because there is evidence in the literature that cognitive
mechanisms differ for writing words or numbers (e.g.,
Gruber, Indefrey, Steinmetz, & Kleinschmidt, 2001) and
because there is a paucity of information about the
influence of mental load on young healthy adults while
writing numbers. There are several examples, mostly in the
clinical field, that demonstrate effects of mental workload
on handwriting behavior. Findings by Van Gemmert and
Van Galen (1997) reinforce evidence about the influence of
cognitive stress on handwriting. For that study, participants

were required to perform a secondary arithmetical task
together with a number-writing task under two levels of
cognitive stress. It was found that performing the arithmetic
task in parallel did indeed affect number writing, with
increased reaction and movement time and elevated axial
pen pressure. In a study by Van Gemmert, Teulings, and
Stelmach (1998; Van Gemmert, Teulings, Contreras-Visal,
& Stelmach, 1999) among people with Parkinson’s disease,
researchers expected to find smaller writing sizes, but there
was no decrease in writing size when mental load was
increased,

The aim of the present study was to check whether
significant differences would be found in handwriting
measures between high and low mental workload con-
ditions, on the basis of the premise that high mental
workload decreases automatization levels in handwriting
and manifests itself in specific handwriting segments.
Although previous studies had described handwriting
features under cognitive stress, the present study was
related specifically to three main points; that is, the
methodology was different in that the focus was on mental,
not on motor, load while a single writing task concerning
graded numbers was performed. Second, the sample
consisted of healthy participants, and third, the analysis
was related to several aspects of handwriting—namely,
angular velocity, tempo, pressure, and spatial measures.

We suggest that handwriting measures may serve as
indicators for levels of mental workload in healthy
populations. Such measures are important because the need
for objective measures of mental workload increases with
time (Nachreiner, 1999). Kramer and Weber (2000)
reviewed existing measures of mental workload, such as
heart rate and heart rate variability; eye-scan patterns, blink
rate, and duration; and brain activity (event-related poten-
tials [ERPs] and electroencephalography). Iani, Gopher, and
Lavie (2004) suggested that peripheral arterial tone can also
be used as a mental workload measure. This demonstrates
that mental load is related to a variety of physiological
reactions.

There are two main categories of existing mental workload
measures. One is of brain activity evoked by various cognitive
processes. This measures cerebral blood flow and constructs a
neural activity image of the brain (Reiman, Lane, Van Petten,
& Bandettini, 2000). The second category focuses on
arousal, on the basis of the assumption that changes in
workload will be indicated by changes in the autonomic
nervous system, resulting in peripheral reactions that can be
measured (Gopher & Donchin, 1986; Kramer & Weber,
2000).

We include handwriting behavior as a behavioral category
that is indicative of mental workload and can be measured
during actual performance. Kramer (1991) defined intrusive-
ness as the degree to which a measure interferes with task
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performance. Most of the existing methods require an
intrusive laboratory environment, special instrumentation
(which, in the case of brain imaging, is very expensive),
and further expenses for data analysis. Furthermore, the
experiments do not always imitate real-life performance,
raising questions regarding the functionality and veracity of
the obtained results (Majnemer, 2009). Conversely, hand-
writing measures (such as the one presented in this study and
in previous studies; Rosenblum, Parush, & Weiss, 2003a,b)
are inexpensive and simple extensions of standard handwriting
behavior.

This studywas designed to provide evidence of handwriting
as an additional mental workload measure to Kramer’s (1991)
two other parameters—that is, sensitivity and reliability. We
tested whether handwriting measures are sensitive to varia-
tions in mental workload and provide evidence of reliability
by presenting replications of the patterns of results for other
paradigms and participants. We chose numerical calculations,
rather than words, in order to test the reliability of these
handwriting measures in different types of writing.

We used a within-subjects design to test the effect of
mental workload on writing three numerical progressions of
varying difficulty with a sample of healthy individuals. Our
research hypotheses were that differences would be found
between writing under high and under low mental work-
load, with pressure, temporal, angular velocity, and spatial
measures obtained by a computerized system. On the basis of
previous results concerning detection of clinical pathologies
and deception (Luria & Rosenblum, 2010; Werner et al.,
2006), we predicted that writing under high mental workload
would affect both handwriting measures (the mean values of
each measure) and their variability (the SD values of each
measure). However, because there was very little information
about the effects of mental workload on the handwriting
behaviors measured in this study (when numbers rather
than words and sentences were written), we hypothesized
differences between handwriting measures with no specific
direction.

H1: Differences will be found in segment duration on
paper and in air (and variability in duration)
between high and low mental workload conditions.

H2: Differences will be found in angular velocity (and
angular velocity variability) between high and low
mental workload conditions.

H3: Differences will be found in spatial levels (and
spatial variability) between high and low mental
workload conditions.

H4: Differences will be found in pressure levels (and
pressure variability) between high and low mental
workload conditions.

We also assumed that a more complex process of
statistical analysis would reveal finer structures and,

possibly, more variability than had been found with the
basic analysis made in our previous studies. We tried to
identify a statistical profile of automatic handwriting (a
function of the measured parameters that is constant over
time during automatic writing and changes when writing
stops being automatic).

H5: A profile of handwriting measures will discrimi-
nate between writing under low and high mental
workloads.

Method

Participants

Participants included 56 healthy students, 34 females and
22 males, 20–63 years of age (mean age = 25.46, SD =
5.81); 52 of them were under 30 years of age, and only 1
participant was above 35 (63 years old). The older
participant was ultimately excluded from our analysis in
order to obtain a homogeneous age group. All participants
had completed high school, and they averaged 1.9 years of
higher education (SD = 0.9). They were recruited at the
University of Haifa, Israel. Eighty-eight percent of the
participants were born in Israel, 10% in the former Soviet
Union, and 2% in Europe (and had immigrated to Israel
before they were 7 years old and, therefore, had learned to
read and write in Hebrew). On the basis of the participants’
report and observation of their writing hand in the present
study, 79% of the participants had right-hand dominance,
and 21% were left-handed. They came from various
disciplines: 80% humanities, 20% from exact studies.

Criteria for participation included residence in Israel for
at least 20 years, normal or corrected-to-normal vision and
hearing, at least 12 years of education in Israeli educational
frameworks, and at least three sentences written in Hebrew
at least three times a week. Anyone suffering from any
form of neurological/emotional or physical disability was
not eligible for participation.

Instruments

The socio-demographic questionnaire included gender, age,
and number of years of education.

Mental workload manipulation Participants were asked
to write three numerical progressions. We controlled for
mental load by differentiating the gap in the progressions.
In the easiest, the gap was one (1, 2, 3, 4, . . .); for the
medium mental load, the gap was three (1, 4, 7, 10); and for
the most difficult, the gap was four (1, 5, 9, 13).
Participants were asked to add ten more items to each of
the three progressions, on the basis of the given four first
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numbers as presented above. This was in line with other
studies using arithmetic in dual-task paradigm studies (Cho,
Gilchrist, & White, 2008) to manipulate mental workload
(Seibt, Scheuch, & Hinz, 2001) and for comparison with
physiological reactions such as heart rate (Lehrer et al.,
1996).

The digitizing tablet, online data collection, and analysis
software for objective spatial, temporal, and pressure
measures were provided by the Computerized Penmanship
Evaluation Tool (ComPET), developed by Rosenblum et al.
(2003a). ComPET software includes (1) data collection and
(2) data analysis, which is programmed via MATLAB
software toolkits (for more details, see Rosenblum, Chevion,
& Weiss, 2006; Rosenblum, Dvorkin, & Weiss, 2006). The
system enables collection and analysis of spatial, temporal,
angular velocity, and pressure handwriting data while the
participant writes on a paper affixed to a digitizer (an
electronic tablet).

All writing was on A4 lined paper affixed to the surface
of a WACOM Intuos 2 (Model GD 0912-12X18) x–y
digitizing tablet, using a wireless electronic pen with a
pressure-sensitive tip (Model GP-110). The x and y location
and angle of the pen tip were sampled on the digitizer at
100 Hz by means of a 1300-MHz Pentium (R) M laptop
computer. The digitizer provided accurate temporal measures
throughout the writing, both when the pen was touching the
tablet (on-paper time) and when it was raised (in-air time). It
also provided accurate spatial measures when the pen was
touching the tablet and/or when it was lifted above the
digitizer (up to 6 mm). Beyond 6 mm, spatial measurement
was not reliable.

The handwriting evaluation system does not recognize
letters, words, or sentences. It only analyses segments—that
is, the curves created by the movement of the pen-tip on the
paper, which are represented on an x-, y-coordinate system
(Mergl, Tigges, Schröter, Möller, & Hegerl, 1999). That is,
the computerized analysis recognizes points when the pen
is in contact with and/or leaves the paper. Segments were
measured from when pen pressure rose above 50 (non-
scaled units) at the beginning of a segment to when the pen
returned to 50 at the end of the segment and was raised
from the paper. It is important to note that there is
variability between and within writers; therefore, we
aggregated measures of the entire task. The mean and the
standard deviation of each measure were examined for each
participant in order to follow intraindividual variability across
different measures. On the basis of previous handwriting
analyses (Lacquaniti, Ferrigno, Pedotti, Soechting, &
Terzuolo, 1987), standard deviations (SDs) for segment
duration, path length, height, and width were analyzed as
measures of handwriting performance consistency. That is,
we calculated the SD between segments in each condi-
tion,. For example, we calculated the mean length of all

segments and then calculated the deviation of each segment
from this mean. In order to measure, as accurately as possible,
variability of pressure and angular velocity, we measured SD
within a segment; that is, we calculated the variability
between all data points for each segment. Because the tablet
reports the value of these measures 100 times per second, it
is possible to capture changes in pressure and angular
velocity even within segments.

We used several measures to analyze handwriting
behavior:

1. Pressure: mean pressure on the writing surface for the
entire task, measured in nonscaled units from 0 to
1,024 with a linear curve (the default curve of the
WACOM Intuos 2 digitizer).

2. Temporal: segment duration in air (pen is not in contact
with writing surface) and on paper, both reported in
milliseconds.

3. Spatial:

3.1. Segment length in millimeters: total path length
from starting point to finishing point for each
written segment.

3.2. Segment height (y-axis): direct distance from the
lower to the highest point of the segment in
millimeters.

3.3. Segment width (x-axis): direct distance from the left
side of the segment to the right side in millimeters.

4. Angular velocity of a segment indicates how many
degrees the pen travels when writing a segment. This is
measured in degrees per second, to allow for comparison
between short and long segments. Angular velocity was
also measured in other studies using radians per second
(see, e.g., Lacquaniti, Terzuolo, & Viviani, 1983; Viviani
& Terzuolo, 1982).

Procedure

Signed informed consent was obtained from the participants
following approval by the Ethics Committee of the
University of Haifa. Advertisements posted at the Univer-
sity invited students to participate in the study. The
participants were asked to write three numerical progres-
sions with different gaps (1, 2, 3, 4; 1, 4, 7, 10; 1, 5, 9, 13).
All tasks were performed on paper affixed to a digitizing
tablet, and each participant conducted one trial (numerical
progression) per condition.

Data analysis

Statistics of the dependent variables were tabulated and
examined. It is important to note that data collection is
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performed automatically by the computerized system in real
time—that is, while the participant is writing. The data,
obtained as a text file, are objective and exact physical
data—length, time, direction, and pressure. The raw data
are then aggregated to the final measures using averages
and SDs.

In the analysis, handwriting measures for the three
conditions of mental workload (in a single factor) were first
compared by GLM MANOVAs with repeated measures.
MANOVAs were done for each type of measure to achieve
mean values and standard deviations according to the
following:

1. pressure on the writing surface;
2. time: pen duration in air and on paper;
3. space: segment-path length, width, height;
4. angular velocity of writing.

The second and third stages were intended to integrate
the existing measures into profiles that would be better and
simpler handwriting indicators.

In the second stage, in order to reduce the number of
measures, we used principle component analysis (PCA)
with varimax rotation for all measures that significantly
discriminated between the three conditions of mental load.
PCA is a data-reduction statistical technique that scores
large sets of measured variables and reduces them to
smaller sets of composite variables, retaining as much
information as possible from the original variables (Fabrigar,
Wegener, MacCallum, & Strahan, 1999). PCAwas conducted
on all the data, regardless of mental complexity condition or
participant, in order to capture variability in the data.

Lastly, we conducted cluster analysis with the central
measure, using a measure from each factor that was found to
differentiate better between the three mental load conditions of
stage 1. These measures were analyzed by interactive
partitioning (K-means), which minimizes within-cluster
variability and maximizes between-cluster variability
(Tinsley & Brown, 2000). Cluster analysis was conducted
on all the data regardless of mental workload condition.
On the basis of the clusters that emerged empirically from
the data, we compared the three cognitive complexity
conditions and tested the frequency of clusters in each of
them. This analysis identified which of the handwriting
clusters differentiated better between the conditions of mental
load.

Results

Prior to the analysis, we screened participants’ answers for
mistakes in the mathematical sequence. We found that 18
participants had a mistake in their calculated sequence (4 of
whom had 2 mistakes). Participants’ mistakes were in the

high and medium mental workload conditions (11 mistakes
per condition). We therefore added a “mistakes” variable to
the data and controlled for mistakes in our analysis. We
found no significant effects of the mistakes variable on the
handwriting variables in the different workload conditions.
We also filtered out some of the outlier segments according
to their duration. After careful screening, we ruled out very
long or very short segments that seemed extreme and/or
rare, as compared with other segments in the data. We
assumed that such segments resulted from measurement
errors—for example, when participants stopped for ques-
tions or did not understand the task. Segments of less than
50-ms or more than 850-ms duration were deleted. In total,
we filtered out 67 segments—that is, 1.8%. We also ran the
analysis with a first-order filter with a 12-Hz cutoff
frequency but found no significant differences between
results with and without the filter. Because we used
aggregated measures of each condition, we decided to
analyze the data as completely as possible and, therefore,
report the analysis without the first-order filter.

We tested the reliability of our measures using a split-
half reliability procedure. This was important because, for
some participants, segments might represent whole numbers.
We split each condition randomly in order to compare the
different frequencies of numbers and to make sure that the
handwriting measurement was not affected by the frequency
differences of certain numbers in each condition. We found
sufficient reliability (average Spearman–Brown stepped-up
reliability = .71), which indicates that, regardless of frequency
of numbers the participants wrote in each split half, the
handwriting behavioral measures were stable for each
condition and an overall pattern of individual handwriting
emerged. Furthermore, using mixed models with repeated
measures, we tested the variability between the participants in
each condition and measure (see Table 1). We found high and
significant variability between participants in all the con-
ditions of the study and for all of the handwriting measures.
This provides additional support that the measures reflect
overall individual handwriting style that is not only reliable,
but also highly distinctive between individuals.

Stage 1

The first stage of the analysis tested differences between
three mental workload conditions by SPSS GLM with a
repeated measures procedure, including workload as one
factor with three levels of difficulty, in order to test
hypotheses 1–4. The results are presented in Table 2.

The MANOVA analyses indicated significant differences
between mental workload conditions in temporal, spatial,
and angular measures.

Hypothesis 1 predicted differences in mean and vari-
ability in the duration of the pen in the air and on the page
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under high and low mental load conditions. The results
supported the hypothesis, and significant differences were
found between the three mental workload conditions. In the
post hoc analysis, we found that duration of the pen on the
page per segment was longer in higher mental workload
conditions (M = 288.2 ms, SD = 128.5) than in medium
conditions (M = 283.0 ms, SD = 119.8). Duration on the
page per segment in the medium mental workload task was
significantly higher than in the easy mental workload
condition (M = 229.3 ms, SD = 95.2). The analysis also
revealed significant differences between the three condi-
tions in regard to duration of the pen in the air between
segments. A post hoc analysis revealed a significant
difference between the higher mental workload condition,
which had the longest duration (M = 517.5 ms, SD =
278.0), and the medium condition (M = 438.1 ms, SD =

259.1). The medium mental workload condition also
differed significantly from the low condition, which was
the shortest (M = 402.4 ms, SD = 248.7). The distance
traveled by the pen in the air is illustrated in Fig. 1.

Not only did mean duration vary significantly between
mental workload conditions, but also variability of duration
varied significantly, both on the page and in the air. The
highest variability in the high mental workload condition
(on page, mean SD = 167.1, SD = 121.6; in air, mean SD =
632.1, SD=460.5) differed significantly from the medium
mental workload condition (which had medium variability;
on page, mean SD = 123.83, SD = 56.0; in air, mean SD =
498.2, SD = 438.5). The medium mental workload condition
differed significantly from the low condition (on page, mean
SD = 104.3, SD = 54.2; in air, mean SD = 437.4, SD =
416.7). In sum, higher mental workload is related to longer

Table 1 Mixed models repeated
measures test of between-
subjects variability of temporal,
spatial, angular velocity, and
pressure handwriting measures
within each mental workload
conditions

Low Mental Workload
F(55) (p value)

Medium Mental Workload
F(55) (p value)

High Mental Workload
F(55) (p value)

Duration on page 11.8 (.000) 26.7 (.000) 6.9 (.000)

Duration in air 3.1 (.000) 1.6 (.000) 2.6 (.000)

Length 3.7 (.000) 6.9 (.000) 6.9 (.000)

Width 4.0 (.000) 6.0 (.000) 6.3 (.000)

Height 6.0 (.000) 11.7 (.000) 9.8 (.000)

Pressure 42.0 (.000) 53.7 (.000) 58.9 (.000)

Angular velocity 2.6 (.000) 3.4 (.000) 3.2 (.000)

Table 2 Comparison of means, standard deviations, and F values of temporal, spatial, angular velocity, and pressure handwriting measures for
three mental workload conditions

Low Mental
Workload
Mean (SD)

Medium Mental
Workload
Mean (SD)

High Mental
Workload
Mean (SD)

F(2, 52)
Within Factor
(p value)

Post hoc
Low–Medium
p value

Post hoc
Medium–High
p value

Temporal Mean duration
on page (ms)

229.3 (95.2) 283.0 (119.8) 288.2 (128.5) 25.1 (.000) 49.4 (.000) 12.4 (.000)

SD duration on page 104.3 (54.2) 123.3 (56.0) 167.1 (121.6) 9.15 (.000) 8.75 (.005) 12.3 (.001)

Mean duration in
air (ms)

402.4 (248.7) 438.1 (259.1) 517.5 (278.0) 33.5 (.000) 33.8 (.000) 31.7 (.000)

SD duration in air 437.4 (416.7) 498.2 (438.5) 632.1 (460.5) 35.5 (.000) 34.7 (.000) 25.8 (.000)

Pressure Mean pressure 823.7(94.9) 823.8 (106.1) 812.6 (113.8) .93 (.398) .001 (.999) 1.86 (.178)

SD pressure 143.3 (29.2) 140.4 (27.4) 140.2 (28.4) .97 (.385) 1.54 (.220) .851 (.360)

Angular
velocity

Mean angular
velocity

1341.2 (408.8) 1285.6 (311.9) 1114.4 (349.3) 16.5 (.000) 2.6 (.114) 33.3 (.000)

SD angular velocity 2746.8 (898.2) 2737.5 (718.3) 2408.9 (824.9) 7.9 (.001) .49 (.86) 15.5 (.000)

Spatial Mean width (mm) 2.49 (.57) 2.5 (.50) 2.5 (.59) .162 (.851) .327 (.570) .062 (.804)

Mean height (mm) 3.9 (.96) 3.9 (.90) 3.6 (.90) 12.7 (.001) .00 (.999) 21.9 (.000)

Mean length (mm) 8.64 (2.08) 9.02 (1.96) 8.13 (2.25) 10.2 (.001) 4.9 (.03) 9.9 (.003)

SD length 3.89 (1.08) 3.72 (1.11) 3.74 (1.12) 2.73 (.763) .433 (.513) .302 (.585)

SD width 1.02 (.32) 1.0 (.30) .98 (.30) 3.55 (.036) 4.63 (.036) 4.85 (.032)

SD height 1.29 (.33) 1.22 (.34) 1.36 (.35) 6.36 (.002) .091 (.764) 12.1 (.001)

The control variable, mistakes, had no significant effect, and therefore we did not add a column with this control variable.
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duration and greater variability both on the page and in the
air.

Hypothesis 2 predicted differences in writing between
mental workload conditions in regard to angular velocity
and variability of angular velocity. The hypothesis was
supported, and the post hoc analysis demonstrated that
angularity discriminated significantly between high mental
load (M = 1,114.4, SD = 349.3) and medium mental load
(M = 1,285.6, SD = 3110.9), but without distinction between
easy and medium mental load conditions (M = 1,141.2, SD =
408.8). Variability in angular velocity also discriminated
significantly between high (mean SD = 2,408.9, SD = 824.9)
and medium (mean SD = 2,737.5, SD = 718.3) mental load
conditions, but not between medium and low (mean SD =
2,746.8, SD = 898.2) mental load conditions. Thus,
handwriting had the highest angular velocity in the medium
mental load condition, with smaller variations in angular
velocity as the mental load increased.

Hypothesis 3 predicted differences between mental
workload conditions in spatial writing measures and their
variability. This hypothesis was partially supported. Signifi-
cant differences were found between the three mental
workload conditions for mean and variability of height and
length and variability of width. Mean height of segments
under high mental load (M = 3.6, SD = 0.90) was
significantly lower than under medium load (M = 3.9, SD =
0.90), but no differences were found between medium and
low mental load conditions. (M = 3.9, SD = 0.96), No
significant differences were found for segment width.
Significant differences were found between all the three
conditions in length of segment, the longest being in the
medium condition (M = 9.012, SD = 1.96), which differed

significantly according to the post hoc test from the high
mental workload condition (M = 8.13, SD = 2.25). Segments
under low mental workload condition (M = 8.64, SD = 2.08)
were significantly shorter than under medium mental
workload (see example in Fig. 2). No significant differences
were found in length variability, but there were significant
differences in width and height variability. Variability in
segment width was significantly higher under the low mental
workload condition (mean SD = 1.02, SD = 0.32) than under
the other two conditions (medium workload [mean SD = 1,
SD = 0.30]; high workload [mean SD = 0.98, SD = 0.30],
where variability was significantly lower than under medium
mental workload). Conversely, variability in segment height
was significantly higher under the high mental load
condition (mean SD = 1.36, SD = 0.35) than under medium
workload (mean SD = 1.22, SD = 0.39). No significant
differences were found between medium and low workload
conditions (low workload, mean SD = 1.29, SD = 0.33). In
sum, segment length and height become smaller when
mental workload increases; variability in segment height
also increases, but segment width decreases.

Hypothesis 4 predicted differences between high and
low mental workload conditions in handwriting pressure
and pressure variability. This hypothesis was not supported,
because no significant differences were found between the
three conditions.

Stage 2: Data reduction

Hypothesis 5 predicted that a profile of handwriting
measures would distinguish between writing under high
and low mental workloads. In order to test this hypothesis
and reduce the number of parameters to those that best
captured the data, we conducted a PCA and included six
measures that were found to differentiate between mental
load conditions in Stage 1 (see Table 2).1 The PCA
explained 75.7% of the variance in the data and converged
after only three iterations. It also revealed two components
(see Table 3). In the first component, spatial measures
(length, height, and width) and temporal measures (dura-
tion) were loaded together, unlike other handwriting
measures. In the second factor, angular velocity measures
(mean and SD for angular velocity) were loaded together.

Stage 3: Handwriting profile

In order to create a profile for stage 3, we selected one
measure for each group of measures—that is, the measure
that was the most significant indicator of mental load in the

1 In order to achieve uniform levels of analysis, we used only
measures for which we had data on each segment (level 1) and not
from level 2, which could be aggregated only to participant levels,
such as duration.

Fig. 1 Three mathematical progressions written by the same writer,
the first under low mental workload, the second under medium mental
workload, and the third under high mental workload (visualization of
on-page and in-air data)
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MANOVA analysis (the selected measures were mean
segment duration, mean angular velocity, and segment
length). Cluster analysis with K-means was used to create a
handwriting profile. Cluster analysis revealed three profiles
(see Table 4), which present the normalized Z-score of each
measure. As can be seen, the first cluster presents a profile
of small handwriting with low levels of angular velocity,
written quickly. The second cluster captured a profile of
(mainly) long segments that take longer to write, and the
third cluster consisted of segments that seem to be medium
in duration, angular velocity, and length.

In order to compare mental load conditions, we analyzed
frequency of writing profiles for each condition (see
Table 5). Analysis indicated that the first cluster is the best
indicator; that is, the higher the mental load, the more
marked and frequent was the combination of the three
measures that followed: smaller segments, less angular
velocity, and time taken to write the segments (cluster 1).
Cluster 1 was also the most frequently observed in the data
(47% of the segments), demonstrating discriminate validity,
especially between low/medium and high mental workloads

(i.e., almost 50% more frequent in high mental workload).
Cluster 2 discriminated well only between low and
medium/high mental workload, but not between medium
and high mental load. It appears that the combinations of
long segments written over long duration happen twice
more frequently in medium or high mental workload
conditions than in low mental workload conditions. Cluster
2 captured about a third (32%) of the segments in the data.
Cluster 3 did not discriminate well between mental
workload conditions but did capture the smallest percentage
of segments in the data (21%). A chi-square analysis
revealed highly significant differences between frequencies of
handwriting clusters in each mental load condition, χ2(4) =
55.7, p<.001, thus supporting hypothesis 5.

Discussion

For this study, we applied a computerized handwriting
digitizer tablet in order to detect the effects of mental
workload on handwriting. It was assumed that greater mental
workload would be apparent in the handwriting of participants
writing numerical progression series of different cognitive
complexities. Temporal and spatial measures were derived for
each mental load condition, as well as pressure and angular
velocity measures. Results showed support for hypotheses 1–
3, demonstrating that, under highmental load , mean durations
of writing, both on the page and in the air, were higher, as were
SDs of durations., Segment height, length mean, and SD for
width were lower, SD for height was larger, while the mean
and SD for angular velocity were smaller than under lower
mental load. Results did not support hypothesis 4, and no
significant differences were found for pressure measures,
mean segment width, or SD for segment height.

Regarding hypothesis 5, this study is the first to create
profiles of handwriting behaviors by means of data reduction
and cluster analysis. The PCA results provide evidence that
some handwriting measures are intercorrelated and that two
principal components capture most of the variability in the
data, suggesting that it is possible to reduce the number of
parameters for measuring handwriting. Cluster analysis
provided empirical evidence that these measures represent a
meaningfully integrated profile that differs significantly under
three mental load conditions. The handwriting profile that is

Table 3 Factor loadings according to exploratory factor analysis
(principal component analysis with varimax rotation) of handwriting
measures

Measures Factor 1 Factor 2

Segment length .929 .209

Segment duration .775 .180

Segment height .759 .114

Segment width .668 .244

Mean angular velocity .135 .962

SD angular velocity .969

The two factors captured 75.7% of the explained variance and
converged in three iterations.

Table 4 Results of K-means cluster analysis

Z score Cluster 1 Cluster 2 Cluster 3

Duration .478 .831 .216

Angular velocity .631 .095 1.55

Length .721 .929 .171

The three clusters converged after 14 iterations.

Fig. 2 Three mathematical progressions written by the same writer,
the first under low mental workload, the second under medium mental
workload, and the third under high mental workload (visualization of
on- page data)
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apparently most sensitive to mental load (especially to high
levels of mental workload) is of small, not angular, segments
that take less time to write. As mental load increased in the
highest condition, so did the participants’ handwriting profile.
The other profile that seems to be sensitive, specifically, to
increased mental workload above the lowest condition is that
of longer segments that take longer to write.

It is important to note that while there were significant
differences between some of the handwriting measures
according to mental load conditions, changing in a rather
linear and synchronized way with cognitive manipulation,
others had significant differences only in a few conditions
and were not always synchronized with cognitive manipu-
lation. For example, there were significant differences in
the mean and SD for duration measures in all the cognitive
load conditions, and these were synchronized with cogni-
tive manipulation; as cognitive load increased, the duration
increased. On the other hand, some measures differentiated
only between two mental load conditions. For example,
angular velocity differentiated between medium and high
load, but not between low and medium load. Finally, some
measures showed significant differences but were not
synchronized with manipulation. For example, the longest
segment lengths were in the medium mental workload
condition. It seems that not all measures relate linearly to
mental load, so that careful consideration must be made
about whether and how to use these specific measures as
cognitive load indicators.

There are few studies that focus on mental workload
while numbers are written. On the basis of previous
literature (e.g., McCloskey, Caramazza, & Basili, 1985), it
can be assumed that the mechanisms involved in number
processing differ from those for words/lexical processing as
previously evaluated in relation to lie detection and clinical
pathologies. Transforming a multidimensional knowledge
structure (domain knowledge) into a linear sequence of
words (the text) requires the following processes:

1. Generating and organizing text content by retrieving
information from long-term memory or from the envi-
ronment (e.g., documentary sources).

2. Translating semantic representation into linguistic
structures.

3. Revision to allow evaluation and modification of concep-
tual and linguistic characteristics of a text.

4. Creating a written graphomotor plan.

However, in the case of numbers, different processes are
required:

1. Lexical processing involves comprehension or produc-
tion of the individual elements as a number (e.g., the
digit 3 or the word three).

2. Syntactic processing involves relations among elements
in order to comprehend or produce a whole number.

3. Calculation requires cognitive mechanisms for (1)
processing of optional symbols (e.g., +, -, :) that
identify the operation to be performed; (2) basic
arithmetic (e.g., multiplication, such as 6 × 7 = 42); and
(3) calculation (McCloskey et al., 1985). We chose
calculation because it demands mental activity (Tucha,
Mecklinger, Walitza, & Lange, 2006), thereby serving
our interest in studying writing under mental workload.
Future research should test the effect of cognitive load
on writing words, which demands different processes
and resources and may be manifested differently in
handwriting variables.

Our results are partly in line with those in studies by Van
Gemmert and Van Galen (1994, 1996, 1997, 1998) on the
effects of physical and mental stress on fast and accurate
spatial control while handwriting tasks are performed. They
assumed that dis-automatization as a result of mental stress
causes increased variation in handwriting velocity, longer
movement duration, and smaller writing size among
patients with Parkinson’s disease (Van Gemmert et al.,
1998). They found that, among adults, auditory stress did
indeed cause longer reaction times and higher axial pen
pressure (Van Gemmert & Van Galen, 1998). Similarly,
Bailey (1988) found that higher pressure is an indication of
mental stress. Our results present a systematic description
of handwriting measures of a healthy population (with
many measures) and support the automatic and controlled
information-processing model (Schneider & Shiffrin, 1977;
Shiffrin & Schneider, 1977). It seems that in a task such as
writing a more complex numerical progression, the auto-
matic process in normal handwriting is replaced with a
more controlled process that is sensitive to task difficulty,
thereby limiting dual-task performance (Fisk & Schneider,
1983; Kahnemann, 1973; Navon & Gopher, 1979; Vrij,
Fisher, Mann, & Leal, 2006, 2008; Wickens, 1991). These
results are similar to those of previous studies regarding
various pathologies (Rosenblum, et al., 2003a,b; Rosenblum
& Livneh-Zirinski, 2008; Rosenblum et al., 2006b;

Table 5 Frequencies of each
cluster in each of the mental
workload conditions

***p<.001

Condition Cluster 1 Cluster 2 Cluster 3 Chi Square (df)

Low mental workload 27.4% 20.6% 22.1% 55.7 (4) ***

Medium mental workload 30.8% 39.8% 39.6%

High mental workload 32.4% 35.9% 31.6%
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Rosenblum & Werner, 2006) and detection of deception
(Luria & Rosenblum, 2010). In sum, these results provide
evidence for the assumption that measures of handwriting
processes can capture dis-automatization in handwriting.

We also instigated angular velocity (the degrees through
which the pen travels per second). Our results demonstrated
that the mean and SD for angular velocity differentiate
significantly between high and other cognitive load
conditions. Furthermore, PCA proved that this discrete
measure is not cross-loaded with other measures. Although
significant differences were found only between high and
low/medium, but not between medium and low cognitive
load conditions, it seems that under high cognitive load,
angular velocity tended to decrease, so that participants
wrote with less variability in angular velocity. This is in line
with Luria and Rosenblum’s (2010) contention that in
deceptive writing, which is more cognitively taxing than
writing the truth, participants’ movements are more limited
in order to conserve cognitive resources. Mavrogiorgou et
al. (2001) suggested that limitations of writing movements
indicate less regularity, as manifested in segment length,
height, and standard deviation, which also differ in our
study. We believe that these results support studying
angular velocity as a handwriting measure, since it will
improve detection of cognitive aspects, such as deception
or clinical pathology.

Similar to other studies (e.g., Van Gemmert & Van
Galen, 1998), we measured segment duration and found
that the SD for duration is a better indicator of cognitive
load than is mean duration on the page, which does not
discriminate between medium and high cognitive load
conditions.

These results suggest that handwriting measures docu-
mented with a computerized digitizer and focusing on
automatization/regularity can provide sensitive measures of
mental workload. An advantage over other mental work-
load detection methods is that it is not intrusive and is user-
friendly (see Kramer, 1991, for problems with other
measures). Future studies on a variety of samples and
cognitive tasks will test the reliability of this measure.

Computerized handwriting digitizers automatically generate
objective data that cannot be obtained by merely observing
handwriting behavior or by analyzing written texts (see, e.g.,
Guinet & Kandel, 2010). Training our research assistant on
how to collect data using the tablet and the software took less
than 1 h. Measures such as the SD for segment height or
applied pressure are unique measures, easily and objectively
received. The writer is not aware of the kind of data being
measured. Even if s/he were aware, measures such as
pressure, segment height, width, angular velocity, or SDs
cannot be actively controlled consistently. Analysis of seg-
ments and not of letters enables use of this technique for
writing in different languages, and overall, this technique will

be useful for researchers and practitioners studying cognitive
load.

Limitations

The results of the present study call for the use of computerized
handwriting digitizers for future cognitive studies. The present
study does, however, have limitations, one being that our
research included comparison of conditions that were not
identical. That is, in order to measure mental workload and to
prevent the effect of learning due to repetition of the same task,
we decided on a manipulation that, in turn, did not control for
similarity of the segments in each condition. Participants were
asked to write three numerical progressions with different gaps
between the numbers, resulting in unequal frequency of
numbers in each condition. Although most of the numbers
existed in all conditions, some of the numbers were used more
frequently in one condition than in the other. We note that this
manipulation may have added noise to the measurement, due
to differences in sizes and width between numbers. Neverthe-
less, we suggest that because handwriting behavior patterns
(spatial, angular velocity, pressure, etc.) become consistent and
automatic among adults, the overall measured characteristics
of each individual’s segments should be similar even when
different letters or numbers are written and should also be
different from the writing characteristics of other individuals.
That is, we suggest that for each individual, there is a general
handwriting pattern that is consistent over different segments
(numbers).

In support of this, we found split half reliability when we
split each condition randomly; that is, we found similarities
in the behavioral measures (within the same condition and
participant), although we did not use identical numbers in
each half test that was compared with the other half. We
found further support in our analysis for variability between
participants: Significant differences were found between
individuals within the same condition, indicating high
distinctiveness between individuals (see Table 1). In sum,
we chose an approach that examines an overall writing style
of individuals in order to observe handwriting behavior in a
valid mental workload task. We acknowledge that due to
our manipulation, we could not control for the differences
in writing of specific segments, which may have damaged
the reliability of our measurement. We suggest that future
studies should test the effect of mental workload on writing
while controlling for the segments being written. We
believe that such scientific control will even strengthen our
results and that the study of handwriting can benefit from a
combination of these two methodological approaches (the
study of an overall writing style and the controlled laboratory
examination of each writing segment).

An additional limitation of this study is that the sample
consisted only of students. Future studies with randomly
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sampled participants from different populations should
improve the generalizability of the results. Furthermore,
instead of one specific cognitive task, as was used in this
study (i.e., numerical progression), future studies should
employ a variety of tasks, such as writing from memory
versus copying text or writing a paragraph versus writing
while thinking of a number, in order to increase memory
load. Such tasks require different cognitive functions and,
thus, may influence handwriting differently.
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