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Abstract It has become increasingly more important for
researchers to better capture the complexities of making a
decision. To better measure cognitive processes such as
attention during decision making, we introduce a new
methodology: the decision moving window, which capital-
izes on both mouse-tracing and eye-tracking methods. We
demonstrate the effectiveness of this methodology in a
probabilistic inferential decision task where we reliably
measure attentional processing during decision making
while allowing the person to determine how information
is acquired. We outline the advantages of this methodolog-
ical paradigm and how it can advance both decision-making
research and the development of new metrics to capture
cognitive processes in complex tasks.
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tracking

Although some decisions can be quite simple and made
effortlessly (e.g., choosing between cereal or toast for
breakfast), oftentimes, decision making is more complex
and requires cognitive resources in order to make a choice

or judgment (e.g., deciding whether or not to purchase a
house, change jobs during a recession, etc.).The complex-
ities of decision making, especially the processes involved
in making decisions, are often overlooked, and much of the
focus remains on decision outcomes: what is chosen, rather
than how. In part, this emphasis is a product of the
traditional approaches of judgment and decision-making
(JDM) research that have emphasized deviations from
normative models or errors (see Goldstein & Hogarth,
1997, for a historical overview), and to some degree, it is an
artifact of the methodological constraints on capturing the
decision process, such as relying on the presentation of
simple stimuli and deducing process from observable
decision outcomes. The increasing theoretical interest in
capturing the cognitive processes associated with decision
making, rather than relying exclusively on the decision
outcome (e.g., Busemeyer & Johnson, 2004; Glöckner &
Betsch, 2008; Norman & Schulte-Mecklenbeck, 2010; Payne,
Bettman, & Johnson, 1988, 1993; Thomas, Dougherty,
Sprenger, & Haribson, 2008; see Weber & Johnson, 2009,
for a review), has increased the need to provide new
methodologies that can better capture decision processes.

The goal of this article is to introduce a new
methodology that is a hybrid of two successfully estab-
lished methods that will enable researchers to have another
tool to capture cognitive processing during decision
making. In the next section, we briefly outline the mouse-
tracing paradigm used in decision research. Next, we
discuss the theoretical and methodological advantages of
the moving-window paradigm used in reading and scene
perception research. We then introduce the decision moving
window, which capitalizes on the theoretical and method-
ological advantages of both paradigms, and then apply it to
a decision-making task.
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Mouse-tracing paradigm

The earliest works examining process-tracing methods in
decision making used “information boards” and think-aloud
protocols (e.g., Payne, 1976). The pioneering work of
Payne et al. (1988, 1993) is considered one of the first
modern attempts to understand the processes associated
with decision making. Subsequent work by these inves-
tigators and others has modernized the process-tracing
paradigm, using the computer mouse as a means to track
the access of information by individuals as they deliberate
to make a decision. In the typical paradigm, an information
table is displayed on a computer screen, with individual
cells corresponding to specific attribute values for a given
option; these remain concealed unless the cursor is
positioned over the cell. Therefore, in order to “acquire”
information, one must position the cursor on the cell to
reveal the corresponding information. The cursor position
and duration in the cell are recorded over time to provide a
measure of how the information was accessed en route to
making a decision.

This approach allowed researchers to infer what infor-
mation was “attended to” during the acquisition and
deliberation processes involved in decision making by
examining summary information, such as the total number
of acquisitions (cells accessed) and the average amount of
time spent looking at each piece of information. Although
recent attempts have tried to parse mouse-tracing data into
more meaningful units of analysis (e.g., Ball, 1997;
Willemsen, Johnson, & Böckenholt, 2006), it still remains
at a summary level, without specifying attentional process-
ing beyond immediate cursor placements. More seriously, it
is difficult to assess “attention” by simply recording how
long the cursor rests in a given cell. Although mouse
movements are likely correlated with selective attention in a
cell, this association is arguably not as strong as is typically
assumed in process-tracing decision research (e.g., Lohse &
Johnson, 1996; see also Johnson & Koop, 2010, for
additional evidence and related criticisms). For instance,
the cell information can readily be held and processed in
working memory (Johnson & Koop, 2010), allowing
mental attention to shift between cells without requiring a
physical movement of the mouse back and forth. Thus,
mouse movements provide only an indirect and imperfect
measure of the attentional processing of information. In
addition, research has questioned whether specific decision
strategies and/or choice are dependent on the paradigm (cf.
Billings & Marcus, 1983; Glöckner & Betsch, 2008) and
whether the paradigm can adequately capture multiple
aspects of decision making, such as automatic processes
(for discussions of limitations, see Glöckner & Betsch,
2008; Norman & Schulte-Mecklenbeck, 2010). In general,
the mouse-tracing approach has been valuable to research-

ers studying decision making. For the purpose of this
article, we focus on one of its shortcomings—specifically,
that the mouse-tracing paradigm provides an indirect
measure of attentional processing, which may, therefore,
only loosely approximate attentional mechanisms employed
during decision making.

Moving-window paradigm

Researchers in cognitive psychology often utilize oculomo-
tor measures (i.e., via eye-tracking methods) to examine
attentional processing ranging from lower-level processes
such as perception and pattern recognition (see Pashler,
1998, for an overview) to higher-level processes involved
in reading and scene perception (see Rayner, 1998, for an
overview). Eye-tracking measures provide a wealth of data
and information regarding the attentional processing of
specific information. Methodological advances have gone
beyond recording eye movements as people read or acquire
information presented on a screen to developing an
interactive moving-window or moving-mask paradigm that
enables the user to direct or to be directed to specific
information (McConkie & Rayner, 1975; van Diepen,
Wampers, & d’Ydewalle, 1998). Similar to the mouse-
tracing paradigm, all information on a computer screen is
occluded from the reader or viewer, except for a small
window of text or a segment of a scene. In reading research,
movement of the window is typically directed by the
participant but can also be controlled by the experimenter
(e.g., moving left-to-right or right to left only). The
advantage of this paradigm is that the moving window
occurs simultaneously with eye-tracking measurements,
which allow for finer-grain measurements of attentional
processing, as well as providing a mechanism to capture
overt selective attention.

Interactive eye tracking during decision making

We introduce a new development for the use of an eye-
tracking paradigm in decision research by borrowing from
current methodologies employed in reading and scene
perception research. The decision moving window is similar
to the mouse-tracing paradigm, where only a small segment
of all information is revealed to the person. However,
capitalizing on eyetracking, the cell is revealed by an eye
fixation, rather than by the cursor position. The primary
advantage of using this combined paradigm to measure
attentional processing in decision making is that one can
more reliably measure which information is being acquired
and the path to such acquisition while allowing the person
to determine how the information is revealed. Specifically,
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it reduces the nonnegligible transaction cost associated with
moving the mouse to acquire information. For example,
Gray, Sims, Fu, and Schoelles (2006) have provided
evidence that the parameters of the mouse-tracing para-
digm, such as the physical distance the cursor must traverse
or the latency of revealing the cell information, can greatly
impact information acquisition.

In order to apply eye-tracking methodology to decision
making, several assumptions must be specified. First, eye
placement and fixation are assumed to correspond to
immediate processing of the associated information. A
similar “eye–mind” assumption in reading research pre-
sumes that the moment the eye moves to a particular target
(e.g., a word), the mind begins to process the information
associated with the target (Just & Carpenter, 1980). An
analogous “correspondence assumption” relates cursor
placement to attention in mouse tracing, but we would
argue that the assumption is more appropriate for eye
tracking. Although shifts in covert attention can occur
without moving one’s eyes, overt attentional shifts and eye
movements are coupled for complex information process-
ing (Hoffman, 1998; Rayner, 1998). Thus, the assumption
that eye movements provide a natural mechanism for
understanding overt attention to presented information
appears warranted and, arguably, stronger than using mouse
movements to artificially capture attentional processing.

We are not the first to suggest the use of oculomotor
measures as a tool for examining decision making. In fact,
several researchers have used video cameras to record eye
movements during the process of making a choice (Russo &
Leclerc, 1994; Russo & Rosen, 1975) or have used eye-
tracking methods to investigate consumer decision behavior,
such as goal-directed viewing of advertisements (Rayner,
Rotello, Stewart, Keir, & Duffy, 2001) or general memory
for advertisements based on text and pictorial elements
(Pieters, Warlop, & Wedel, 2002; Pieters & Wedel, 2004;
Wedel & Pieters, 2000). However, the latter studies did not
directly examine the decision process but, rather, relied on
eye-tracking information to examine encoding and memorial
processes or decision outcomes. Lohse and Johnson (1996)
used eye-tracking measures as convergent validity for
mouse-tracing methods. Although they found a strong
correlation between mouse and eye measures during a
decision task, they had distinctly different goals—namely,
to validate the use of the mouse-tracing paradigm. Conse-
quently, they compared information processing during the
mouse-tracing paradigm with information processing during
a full display (without hidden cells) while eye movements
were measured (henceforth referred to as open eye tracking).
Recent work has applied open eye-tracking technology to
capture processes naturally invoked during decision making
(Glöckner & Herbold, 2011; Horstmann, Ahlgrimm, &
Glöckner, 2009; see also Norman & Schulte-Mecklenbeck,

2010, for a discussion of eye-tracking methods and
advantages). Notably, eye-tracking measures have been used
to dissociate between automatic and deliberate processing of
information during a decision task (Glöckner & Herbold,
2011; Horstmann et al., 2009; see also Glöckner & Betsch,
2008). This work reveals that eye-tracking measures were
better for capturing automatic processes that are often
overlooked with mouse-tracing methods, and similar find-
ings were observed when gambles were used as the decision
task (Glöckner & Herbold, 2011). Thus, eye-tracking
methodology has been successfully used to assess
decision processes and choices across a variety of
decision tasks. However, the comparisons to date have
been between mouse-tracing methods (where information
is occluded) and eye-tracking methods (where informa-
tion is not occluded). That is, any such comparisons have
confounded the user interface and the presence of
information occlusion, making it difficult to determine
which feature might be responsible for empirical differ-
ences. We believe that the decision moving window will
allow for more direct comparisons across methodologies,
since it capitalizes on strengths of both methods. In
particular, the decision moving window adds to the
decision researcher’s arsenal by providing an additional
tool that simultaneously captures attention and informa-
tion acquisition and provides a wealth of data that can be
used to model attentional processing while allowing the
user to interact with information on the screen. Before
detailing our implementation and validation of the
decision moving window, we briefly outline the key
methodological advantages of the new paradigm.

Benefits of the decision moving-window paradigm

Because complex decision making often requires attention-
al processing, there are several benefits to using interactive
eyemovements, rather than mouse movements, to under-
stand decision-making processes. First, one can more
directly operationally define and measure attentional pro-
cessing, similar to other areas of cognition (i.e., reading,
scene perception, etc.). Another benefit is the abundance of
new data available from eye tracking and the ability to
obtain finer-grain measurements to quantify attention
beyond summary measures. The most common oculomotor
measures used are saccades (i.e., rapid simultaneous
movement of both eyes) and fixations (stationary or
relatively fixed eye position on a target). Much of the
current cognitive research uses gaze duration (total time
spent viewing the target word or elements of a scene);
however, many additional measures can be recorded (e.g.,
average fixations, first fixations, number of regressions, and
pupil dilation; for overviews, see Inhoff & Radach, 1998;
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Rayner, 1998; see Horstmann et al., 2009, for decision
tasks). Thus, eye-tracking methods offer promising poten-
tial to provide specification of the attentional stream during
decision making that contemporary modeling endeavors
require. Third, eye tracking provides a distinct advantage in
terms of the “eye-mind” assumption relating overt (visual)
and covert (cognitive) attention. Not only is the precedent
better established in decades of eye-tracking research in
reading and scene perception, but strong evidence suggests
that attentional shifts and eye movements are coupled for
complex information processing (Hoffman, 1998; Rayner,
1998). Fourth, the acquisition metrics can be empirically
observed and provide statistical advantages, such as
increased reliability and, presumably, a greater signal: noise
ratio, as well as adherence to assumptions that may be
dubious for mouse tracing, such as avoiding sparse matrices
or extremely low frequencies when desiring chi-square
analyses (cf. Stark & Ellis, 1981). Fifth, it provides a
natural interface between the user and the information,
which, in turn, reduces the transaction costs associated with
acquiring information and allows one to record the
acquisition of information that one wishes not to occlude,
such as row and column headers (e.g., option and cue
labels, in the present study). Lastly, it enables the researcher
to increase internal validity by enabling greater experimen-
tal control over what the participant views. The advantage
of our new paradigm can be seen by noting the theoretical
and quantitative implications of (1) how eye tracking
compares with mouse tracing and (2) how the moving-
window occlusion compares with open eye tracking. These
empirical comparisons are presented in the next sections.

Decision moving window: basic methodology

The general method is one where the decision maker
acquires information via eye movements en route to making
a decision. The basic design consists of matrix display of
information (see Fig. 1a) where only one cell in the foveal
region is revealed at a time. When the decision maker
fixates on a given cell, the information hidden under the
masked cell is revealed (see Fig. 1b). Once the decision
maker moves his or her eyes away from the cell, the mask
returns, and the information is hidden again. Each cell in
the matrix becomes an area of interest (AOI), and all eye-
tracking data pertaining to each AOI are recorded.
Additionally, other information on the screen can be
deemed an AOI. In this example, the alternative labels
(movies A, B, and C) and attribute labels (stars, budget,
rating, and original) are also considered AOIs, and eye-
tracking information is gathered when the decision maker
fixates on these cells. In contrast, the only way to record
attention to alternative and attribute labels in a mouse-

tracing paradigm is to occlude them, which unnecessarily
burdens working memory and substantially increases the
artificiality of the task. Eyetracking allows for greater
flexibility, in that AOIs can be fixed or interactive depend-
ing on what information needs to be accessed or remain
constant on the screen.

We used the Tobii 1750 eyetracker (17-in. monitor with
1,024 × 768 pixels; sampling rate, 50 Hz; spatial resolution,
0.5°; calibration accuracy, 0.5°) with E-Prime extensions
for Tobii (Psychology Software Tools) for the decision
moving window.1 All AOIs (information cells, as well as
alternative and attribute labels) were identical in size. Eye
movements were recorded using the binocular tracking.
Eye-tracking output includes gaze position relative to
stimuli, position in camera field, distance from camera,
pupil size, and validity codes recorded per eye every 20 ms.
In turn, these measurements allow for a rich data set

Fig. 1 Information table for movie task. a Choice options (i.e.,
movies) are shown in rows, with their corresponding attributes in
columns. In the mouse-tracing and decision moving-window para-
digms, information is hidden (black image) unless the mouse is
positioned to a specific cell or the person fixates on a specific cell;
then the information corresponding to the cell is revealed. b In this
example, participants view the corresponding information (+) under
“Budget” for movie B when the mouse or eye is positioned on cell B2.
Cell labels (A1 thru C4) are not presented on the actual screen but are
labeled for illustrative purposes

1 We modified the code in the TETVaryingPoistionAOITracking
sample to reveal cell information within the matrix.

856 Behav Res (2011) 43:853–863



whereby one can build different eye movement metrics to
examine the decision process. The purpose of this article is
to introduce the decision moving window methodology,
rather than exhaustively define these derivative metrics;
thus, we present summary statistics in line with current
process-tracing research. We computed a fixation by
summing eye placement on a specific AOI (from the onset
of eye movement to AOI until the eye movement was
displaced from the given AOI), using the raw eye-tracking
data generated in the experiment. In the next section, we
describe how we tested and implemented this methodology
using a probabilistic inferential decision task similar to the
tasks used to examine both eye tracking and information
processing during decision making (e.g., Glöckner &
Betsch, 2008; Horstmann et al., 2009).

Decision task The task required participants to make a
probabilistic inferential decision about which option
(movie) was the highest on some criterion value (box
office revenue) based on a set of attributes that had
differential predictive value (validity). Participants
searched within a 3 (options) × 4 (attributes) matrix table
for information, as displayed in Fig. 1. The information
table was arranged such that row headings list options
(e.g., “Movie A”), column headings show the attributes
associated with these options (e.g., “Budget”), and the
individual cells corresponded to specific attribute values
for a given option (e.g., binary values of +/–). The goal
of the decision maker was to evaluate the attribute
information and select the option that had the highest
criterion value (earned the highest revenue). As can be
noted from Fig. 1, the labels for each option and attribute
remained visible on the screen; however, cell information
was hidden until the participant’s eye movements were
directed to the cell.

Although the task was based on data on actual movie
earnings, participants received generic labels (i.e., movie A,
B, or C) to eliminate previous knowledge from biasing the
decision process and choice. Thus, participants were
instructed to consider only the attributes provided to them
during the task as they made their decisions. Each movie
had four attributes—star power, big production budget, PG-
13 rating, and original screenplay—each of which corre-
sponded to a specific predictive validity: .90, .80, .70, and
.60, respectively.2 The predictive validity was defined for
participants as “how often the attribute alone correctly
predicts the movie with the highest earnings, assuming that

it discriminates among movies.” They were given the
example that “if an attribute has a predictive validity of
.90, that means that in a set of three movies, if two movies
do not have the attribute, and the other movie does, then
there is a 90% chance that the movie that does have the
attribute is actually the one that earned more money.” Cues
were presented in a fixed order, left-to-right, by decreasing
predictive validity. Although the actual predictive validities
were not displayed on the screen, these values were
prominently displayed next to the computer if the partici-
pant needed a reminder during the task. Instructions to
participants informed them that each movie could have the
presence (denoted as “+”) or absence (denoted as “–”) of an
attribute.

Implementation of interactive eye-tracking program The
starting state consisted of the table matrix where cell
attribute information was masked by a black box (an
image) while option labels and attribute labels remained
visible (see Fig. 1). Next, we created two images to
represent our attribute binary cues [presence (“+”) and
absence (“–”) of information]. The infile E-Prime code
corresponds to each given cell and trial, with a 1 displaying
the “+” image; else, the “–” image is displayed. For
example,

If c:GetAttrib 22A100ð Þ <> 2222 Then
A1 ¼ 22plus:bmp00

Else
A1 ¼ 22minus:bmp00

End If

In E-Prime, each attribute cell (A1 thru C4) is indicated
as 1 to denote the presence of the attribute or left blank to
denote the absence of the attribute, allowing for the
appropriate image to be displayed on the screen.3 In
summary, the program finds the current eye position, and
if the eye is fixed on a specific cell, it uses the attribute
information in E-Prime to reveal the image that corresponds
to the specific cell. When the user moves his or her gaze
away from the cell, the mask (black image) replaces the
previous image. Hence, cell attribute information is
available only when the user fixates on the cell, and only
one attribute is revealed at any given time.

Comparison of methods: decision moving window, open
eye tracking, and mouse tracing

In this section, we present data from 71 participants who
completed the decision task using the mouse-tracing (n =

2 These attributes are indeed predictive of movie earnings, and the
real-world ordinal relationship among them was preserved; however,
the actual validities were changed to more easily construct theoreti-
cally diagnostic stimuli in this task. 3 Sample programs are available upon request.
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30), the open eye-tracking (n = 19), or the decision moving-
window (n = 22) paradigm. The decision moving window
was conducted at a large public university in the southeast-
ern U.S., and the other conditions were conducted at a large
public university in the midwestern U.S. In the decision
moving window, participants had 20 s to acquire informa-
tion and then choose which movie had the highest box
office earnings.

Method

Stimuli The stimuli for the experiments were created by first
designing five choice matrices (see the Appendix). All choice
matrices were designed for other research purposes—namely,
to be diagnostic between two very popular and often-tested
strategies in the decision-making literature; however, the
details of these theoretical comparisons are not central to the
goals of the present article. Each matrix represented a
decision trial, and each block of trials contained all five
basic matrices. However, the five matrices were transformed
using complete row permutation, resulting in six blocks, with
each block consisting of a unique permutation of the five
basic matrices, resulting in a total of 30 decision trials.
Participants completed one block of the five distinct matrices
before advancing to the next block. The order and location of
the row and column headings remained the same for all
matrices.

Procedure Participants were welcomed to the lab and
viewed a self-paced Power Point presentation that provided
them with details about the nature of the decision task,
including detailed descriptions of the various cues and
concepts, such as cue validity (explicitly provided to
participants). They were provided with an animated
demonstration about the information acquisition apparatus
specific to their condition (eye-tracking, moving-window,
or mouse-tracing paradigm), followed by practice trials
using their assigned apparatus before commencing the
study trials. Participants viewed the matrix and then
made a decision regarding which movie grossed the most

box office earnings. No feedback was given during the
task to induce participants to change from their naturally
preferred strategy. Between matrices in the eye-tracking
studies, a decision screen (where the participant selected
movie A, B, or C) was inserted, as well as a rest screen
where the participant pressed the space bar to view the
next matrix, to reduce the potential for carryover effects
between trials.

Results

With the introduction of a new method like the decision
moving window, it is important to provide some basic
descriptive statistics, as well as a comparison with the
currently dominant similar methodology. We have summa-
rized these basic statistics across all 30 trials in Table 1,
comparing our new moving-window technique with the
popular mouse-tracing and open eye-tracking paradigms.

Across all of the major variables shown in Table 1—
number of cell acquisitions, proportion of entire table
acquired, number of reacquisitions, time per acquisition
(average fixation duration), and search direction—there
were significant main effects of method (see Table 1 for F-
ratios, all p-values less than .01). More interesting are the
pairwise comparisons between our new decision moving-
window paradigm and either the mouse-tracing paradigm
(with which it shares information occlusion) or the open
eye-tracking paradigm (with which it shares the use of the
eyes as an input device). Both eye-tracking methods led to
a greater number of cell acquisitions, with the new decision
moving window showing significantly more acquisitions
than did mouse tracing, t(50) = 9.60, p < .01, d = 2.70, but
not significantly different from open eyetracking, t(39) =
1.36, p = .18, d = 0.42. Both eye-tracking methods also
produced significantly greater reacquisition rates of
information already attended, from approximately one
third to nearly three quarters. Specifically, as with the
acquisition data, the decision moving window showed a
statistically significant difference from the mouse-tracing
paradigm, t(50) = 15.43, p < .01, d = 4.33, but not from the

Table 1 Comparison of methods: open eye-tracking, moving-window, and mouse-tracing paradigms

Open Eye Moving Window Mouse Tracing F Ratio

Time per acquisition (ms) 188 289 643 88.68

Number of cell acquisitions (fixations) 42 49 20 21.61

Proportion of cell information acquired .77 .97 .93 171.90

Cell reacquisition rate 0.72 0.74 0.33 6.32

Search index 0.17 0.42 0.48 65.06

Time per acquisition gives the average fixation duration, in milliseconds, but does not include the time cells remained occluded in the moving-
window or mouse-tracing paradigms. Data include only fixations to attribute information in matrix cells, not to row and column headers. F-ratios
are calculated across the three conditions in the associated row with df = (2, 68); all p-values <.01.
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open eye-tracking paradigm, t(39) = 0.99, p = .33, d =
0.31. Interestingly, in terms of the proportion of the 12
information cells accessed at least once on each trial, the
moving-window paradigm was more similar to (not
statistically different from) the mouse-tracing paradigm,
t(50) = 1.24, p = .22, d = 0.35, than to the open eye-
tracking paradigm, from which it did differ, t(39) = 6.09,
p < .01, d = 1.91. All three methods seemed to produce
different average fixation durations (the average time per
acquisition), with the moving window producing signifi-
cantly shorter average fixation times as compared with
mouse tracing, t(50) = 8.66, p < .01, d = 2.43, but
significantly longer average fixation times as compared
with open eyetracking, t(39) = 3.85, p < .01, d = 1.21. Our
results are in line with Horstmann et al.’s (2009)
probabilistic inferential task in terms of number of
fixations, average fixation duration (open eyetracking),
and increase in reacquisition rates providing convergence
for eye-tracking methods.

The search direction or pattern of information acquisition
was measured by using the search pattern index of Payne et
al. (1988), indicating whether adjacent acquisitions (tran-
sitions) occur primarily across rows (values from 0 to +1)
or across columns (values from –1 to 0). The former is
associated with gathering information about multiple
attributes for one option, then moving on to the next
option, whereas the latter suggests that one primarily looks
across multiple options, comparing one attribute at a time.
Greater absolute magnitudes imply greater systematicity
(assuming these two search styles) in search behavior. Our
data suggest that information acquisition in all three
methods occurred largely across rows, with all mean values
greater than one. However, again we found that those
searching with a decision moving window did so in a
manner that was not significantly different from those
searching within the mouse-tracing paradigm, t(50) = 0.69,
p = .50, d = 0.19, although it was significantly different
(with relatively greater systematicity) than the patterns
produced in the open eye-tracking paradigm, t(39) = 4.55,
p < .01, d = 1.42. The latter result is consistent with
Horstmann et al. (2009); however, it differs from the result
reported by Lohse and Johnson (1996) for a more complex
preferential choice task, where they found approximately
equal number of transitions across rows and across columns
in open eye tracking.

It is interesting to note some of the similarities and
differences across methods that can be attributed, at least in
part, to the freedom the decision moving window offers,
relative to mouse tracing, versus the occlusion that it offers
relative to open eye tracking. Although significant, the
increase of only 100 ms, on average, in time per acquisition
between open eye tracking and the moving window is
encouraging for our new paradigm, since it suggests that

the paradigm does not suffer from artificially inflated
fixation times stemming from stabilizing on a cell after
the information is revealed. Similarities between the
decision moving window and open eye tracking in terms
of total number of acquisitions and reacquisitions support
the assertion that information occlusion per se does not
decrease the desire for the participant to acquire informa-
tion. Rather, decreases in information acquisition may be
better attributed more specifically to the navigation required
by using the mouse as an input device.

An especially interesting comparison across methods
involves the percentage of the total information (12 table
cells, in our case) that was acquired. Specifically, this was
an instance where the moving-window paradigm produced
results more in line with mouse tracing than with open eye
tracking. One possible explanation is that the open eye-
tracking paradigm allows the person to view information in
the periphery, therefore reducing the number of cells fixed
upon. Another possibility is that, perhaps, the information
occlusion introduced some sort of implicit obligation on the
part of participants to reveal (almost) all of the table cells to
see what was behind them, where open eye tracking
allowed for scanning the table that did not promote such
behavior—especially for such simple cue information as
“+” and “–” in our task. The similarity of the two occlusion
methods (moving window and mouse tracing) in terms of
the search pattern index also suggests an increased system-
aticity that might have led to acquiring a higher proportion
of the total information available. Interestingly, data
reported by Lohse and Johnson (1996) suggests as well
that open eye tracking produces a significantly smaller
proportion of total information acquired, relative to mouse
tracing. This is the one result from their study that does not
seem to fit with their hypothesis that eye tracking results in
more search across all metrics. They raise the possibility
that (“open”) eye tracking allowed for information to be
collected using the periphery that would not be registered as
an acquisition, since acquisitions were operationalized
using a foveal fixation. This argument is controlled for in
our study by implementing the decision moving window,
under which case we see the result becomes more in line
with their original hypothesis (and our own intuitions).

Lohse and Johnson (1996) did not, however, record data
on acquisitions to row (movie option) and column
(attribute) labels and admit, therefore, that they “cannot
determine the effect this additional information would have
on the amount of information searched” (p. 37). We
explicitly recorded the acquisition of this information in
both eye-tracking conditions and found that across all
participants, blocks, and trials in the decision moving
window, there were 2.97 fixations across the four attribute
labels (average time per acquisition: 181 ms) and 1.53
fixations across the three movie option labels (average time
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per acquisition: 231 ms). Note that these labels were not
occluded in the decision moving-window paradigm (cf.
Fig. 1). In the open eye-tracking condition, there were
greater numbers of fixations to the attribute (8.23 fixations,
with an average time of 281 ms) and alternative (3.40
fixations, average time of 296 ms) labels. Note that
integrating these results with those for the information cells
presented in Table 1 only increases the similarity between the
open eye-tracking and moving-window conditions.

Finally, it is very interesting to look at the patterns that
emerge when the data in Table 1 are examined across
blocks (reported in Table 2). In particular, there is a striking
effect of experimental block on all of the relevant search
metrics for the mouse-tracing paradigm and virtually no
systematic effect for the two eye-tracking paradigms. The
data in Table 2 suggest that, with standard mouse tracing,
participants acquire less information (both first acquisitions
and reacquisitions) and attend to acquired information for
much shorter durations as an experiment progresses. Across
all six blocks, decreases in metrics were almost completely
monotonic; a repeated measures MANOVA showed a
significant effect of block, F(5, 145) = 5.73, p < 0.01;
subsequent ANOVAs revealed significant effects of block
on the number of acquisitions, F(5, 145) = 22.86, p < 0.01,
partial η2 = .44; proportion of table acquired, F(5, 145) =
8.76, p < 0.01, partial η2 = .23; reacquisition rate, F(5, 145) =
19.27, p < 0.01, partial η2 = .40; and average time per
acquisition, F(5, 145) = 24.41, p < 0.01, partial η2 = .46.
Although there was not a significant effect revealed for the
search index variable, there was a significant, albeit small,
effect on the search index when the first block was excluded

from analysis, F(4, 116) = 2.79, p = .03, partial η2 = .09. An
optimistic interpretation might be that the decreased search
revealed by these metrics represents a practice effect with only
minor implications; amore dire assessment is that this reveals the
onsetof fatigueassociatedwith themouse-tracingparadigm.This
analysis again supports the notion that transaction costs in the
mouse-tracing paradigm are nonnegligible and can have serious
consequences onbehavior, as inferred from the commonmetrics.
Fortunately, the decision moving window (and eye tracking in
general, as evidenced in the present study and Horstmann et al.,
2009) does not seem to suffer from these effects.

Discussion of advantages and disadvantages

Both eye-tracking methodologies seem to have an advan-
tage over mouse tracing in that they produce a greater
number of fixations, of shorter duration, and are not
susceptible to significant variability over the course of an
experiment. Given the advantages of eyetracking over
mouse tracing, there are also direct benefits to using the
decision moving-window paradigm, rather than an open
eye-tracking paradigm. First, practically, it allows for more
direct comparison with existing mouse-tracing research.
Prior comparisons of the two methods in decision making
confounded the two hardware approaches with the use of
information occlusion (Lohse & Johnson, 1996). Second,
the latency before the occlusion is removed can be
manipulated not only to ensure that fixations are meaning-
ful (and not simply sweeping of the eyes over information
en route to other fixation locations), but also to examine

Table 2 Differences in information search variability across time (experimental blocks)

Information Variables Method Experimental Block

1 2 3 4 5 6

Time per acquisition (ms) Open Eyes 188 182 193 195 186 184

Moving Window 285 285 304 293 291 285

Mouse Tracing 923 676 649 588 520 505

Number of cell acquisitions (fixations) Open Eyes 40 38 42 41 49 44

Moving Window 49 50 47 48 49 49

Mouse Tracing 25 22 20 20 18 15

Proportion of cell information acquired Open Eyes .74 .77 .78 .79 .79 .77

Moving Window .97 .97 .97 .97 .97 .97

Mouse Tracing .98 .98 .95 .92 .91 .86

Cell reacquisition rate Open Eyes 0.72 0.70 0.71 0.71 0.74 0.73

Moving Window 0.73 0.74 0.74 0.73 0.74 0.74

Mouse Tracing 0.43 0.38 0.33 0.33 0.29 0.22

Search index Open Eyes 0.15 0.18 0.20 0.17 0.15 0.19

Moving Window 0.40 0.42 0.41 0.45 0.38 0.45

Mouse Tracing 0.45 0.58 0.52 0.49 0.49 0.37
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theoretically meaningful questions, such as the impact of
information acquisition costs. Lastly, it allows the researchers
to manipulate information search processes by guiding the
direction of search and/or the rate in which the information is
revealed; this, in turn, might allow for finer-grain model and
theoretical testing. One disadvantage of the moving-window
paradigm is its potential to decrease the external validity of the
search process and potential impact on decision strategies
such as those noted with mousetracing by Glöckner and
Betsch (2008). Although beyond the scope of the present
work, additional research designed specifically to draw
accurate inferences regarding strategy use could empirically
assess the severity of this potential drawback. Future work
could also look at extending our paradigm, and methodo-
logical comparisons, to other task domains, such as
preferential choice (Glöckner & Herbold, 2011; Lohse &
Johnson, 1996). An additional concern is that periphery
information is restricted in the moving window, thereby
restricting some of the natural attention processes captured
when all information is available to the decision maker.
Despite the loss of potential periphery vision, the time to
acquire information will potentially allow for the integration
of several pieces of information at a quicker rate than could
be integrated with mouse-tracing processes. Thus, it seems
that the use of a decision moving window with eye tracking
provides a sort of “best practices” solution that enjoys the
benefits of two paradigms, while minimizing the practical
and inferential drawbacks.

Conclusion

In sum, mouse movements have provided an initial step toward
capturing and understanding the deliberation process and
acquisition of information in decision making. However,
because cursor movements are used as a proxy for attentional
processing, a better direct measure of attention (via eye
movements) provides an improvement in both the method
and measurement of attentional processing within a decision-
making framework. In addition, eye movements provide an
extremely rich data source, in that several different measures
can be collected. Considered independently, each type of data
provides information into the cognitive processes of attention
and deliberation; however, combining multiple sources of data
is a useful tool for providing convergence in understanding the
dynamic processes associated with the acquisition and use of
information in decision making. The decision moving window
capitalizes on both mouse-tracing and eye-tracking methods to
provide another tool in the researcher’s toolbox for better
capturing attentional processing during decision making.

Our results are consistent with the notion that informa-
tion occlusion and the cost associated with mouse move-
ment have separable effects on the basic statistics used to

characterize information acquisition in decision making
(Table 1). Comparing open eyetracking with our moving
window suggests that information occlusion increases the
systematicity of information search, including the tendency
to examine all information at least once, without affecting
the total amount of information acquired. Comparing our
moving window with mouse tracing suggests that requiring
physical movement of the mouse decreases the reacquisi-
tion of information and, thus, the total number of
acquisitions, as well as the average time spent acquiring
each piece of information, while producing similarly
systematic search and acquisition of nearly all pieces of
information at least once. Using both information occlusion
and the physical requirements of the mouse, as is the modal
tendency in current process-tracing research, can be
expected to combine these effects (compare open eye-
tracking with mouse tracing in table and cf. Lohse &
Johnson, 1996). Regardless of the task and paradigm, these
effects should be kept in mind when interpreting any
decision research using process-tracing techniques.

Although beyond the aims of the present article, the
wealth of data provided by utilizing the decision moving
window allows researchers to advance their understanding
of the cognitive processes invoked during decision making.
Recently, Weber and Johnson (2009) outlined the need to
translate attention into decision weights as one of the key
future issues for decision research. The attentional-
processing data provided by the decision moving window,
coupled with the decision maker being an active participant
in the decision process, allow one to better establish how
covert attention can be mapped and modeled into the
decision process. Especially promising is the potential to
develop specific models that could relate cognitive states to
visual attention, thus specifying not only how visual
attention provides input to cognitive processing, but also
how the latter guides the former (mainstream approaches
from reading are summarized excellently in a 2006 special
issue of Cognitive Systems Research, Vol. 7).

As we advance our theoretical models to capture how a
choice is made, rather than simply what is chosen, newer
methodologies are required to better capture and develop
theories of information acquisition and deliberation during
decision making. Notably, both mouse-tracing and moving-
window paradigms have improved our understanding of
processing information in complex tasks. Thus, our
complementary integration of these successful paradigms
not only will contribute to the theoretical content in
decision research, but also will advance the methodology
and measurements in behavioral science more generally.
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Appendix

Matrix 1

Stars Budget Rating Original

Movie A +

Movie B + +

Movie C + +

Matrix 2

Stars Budget Rating Original

Movie A + +

Movie B + + +

Movie C + + +

Matrix 3

Stars Budget Rating Original

Movie A + +

Movie B + + +

Movie C +

Matrix 4

Stars Budget Rating Original

Movie A + +

Movie B + +

Movie C + +

Matrix 5

Stars Budget Rating Original

Movie A +

Movie B +

Movie C + +
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