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Abstract
Under the guidance of a formal exemplar model of categorization, we conduct comparisons of natural-science classification
learning across four conditions in which the nature of the training examples is manipulated. The specific domain of inquiry is rock
classification in the geologic sciences; the goal is to use the model to search for optimal training examples for teaching the rock
categories. On the positive side, the model makes a number of successful predictions: Most notably, compared with conditions
involving focused training on small sets of training examples, generalization to novel transfer items is significantly enhanced in a
condition in which learners experience a broad swath of training examples from each category. Nevertheless, systematic depar-
tures from the model predictions are also observed. Further analyses lead us to the hypothesis that the high-dimensional feature-
space representation derived for the rock stimuli (to which the exemplar model makes reference) systematically underestimates
within-category similarities. We suggest that this limitation is likely to arise in numerous situations in which investigators attempt
to build detailed feature-space representations for naturalistic categories. A low-parameter extended version of the model that
adjusts for this limitation provides dramatically improved accounts of performance across the four conditions. We outline future
steps for enhancing the current feature-space representation and continuing our goal of using formal psychological models to
guide the search for effective methods of teaching science categories.
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A key component of science education involves learning the
fundamental categories of the target domain. For example, in
botany, students learn wide varieties of plant types; in ento-
mology, insect types; and, in the domain that is the focus of the
present work, in the geologic sciences, students learn classifi-
cations of rocks.

In our recent work (Nosofsky, Sanders, Gerdom, Douglas,
& McDaniel, 2017; Nosofsky, Sanders, & McDaniel, 2018a,
b), we have initiated a long-range project that has the aim of

using formal models of human category learning to help guide
the search for effective ways of teaching such scientific clas-
sifications. The general research strategy is to simulate alter-
native classification-teaching methods using the formal
models themselves. Empirical tests would then focus on those
teaching methods that the model simulations predict would be
most successful (for illustrative examples in highly simplified
categorization domains, see, e.g., Khajah, Lindsey, & Mozer,
2014; Mathy & Feldman, 2016; Patil, Zhu, Kopec, & Love,
2014). Confirmation of the predictions could then lead to
implementing the methods in the science classroom.

Although we believe that the idea is a good one in princi-
ple, it is highly ambitious for a number of reasons. Most im-
portant, although a variety of sophisticated formal models of
human classification have been developed in the fields of
psychological and cognitive science (for a comprehensive
review, see Pothos & Wills, 2011), almost all rigorous tests
have been in laboratory experiments involving artificial cate-
gory structures and highly controlled stimuli that vary along
just a few salient dimensions. By comparison, in real-world
category domains such as rock types, the category structures
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are highly complex, and the stimuli are composed of numer-
ous dimensions that are difficult to describe and discern. Thus,
the extent to which the formal models may scale up success-
fully to account for real-world category learning is highly
uncertain.

To provide a foothold on this ambitious goal of applying
formal category learning models to guide more effective in-
struction of science categories, in the present article, we report
our initial attempts at implementing the research strategy.
Using a formal exemplar-memory model of categorization
(Nosofsky, 1986) to guide our investigation, the specific ques-
tion that we explore is whether the model can be used to
search for optimal sets of training examples for teaching the
categories. Importantly, such research can be viewed as a two-
way street: To the extent that laboratory tests of the model
predictions are successful, it provides a firmer basis for
implementing the teaching methods in real-world classroom
settings. On the other hand, if the predictions fail, then impor-
tant new diagnostic information is provided concerning limi-
tations of the proposed model. Such information can be used
to develop improved versions of the model or to suggest al-
ternative models. The model-building and testing process can
then be continued in iterative fashion.

To anticipate, we will see some of both of these out-
comes—successes and failures—in the present work. On the
positive side, the most notable result concerns a successful
prediction involving the variable of category training-set size
on learning and generalization. Across a reasonably broad
range of its parameter settings, the exemplar model correctly
predicts that (a) performance on old training items is signifi-
cantly enhanced in conditions with small sets of training ex-
amples, but that (b) generalization to novel transfer items is
significantly enhanced in a condition in which learners instead
experience a large-size swath of training examples from each
category. Importantly, although related research has previous-
ly pointed in this direction, we will argue that influential past
studies have confounded manipulations related to category-
training size with other factors, such as the total number of
training trials devoted to each category.

On the negative side, our work will also reveal some
departures from the exemplar model’s predictions of which
specific training examples will lead to optimal performance
in a set of small category-training-size conditions. We will
then take initial steps of revising the model (and its associ-
ated machinery) in light of these failures. Furthermore, we
will provide a clear and promising direction for a more
comprehensive form of revision. Importantly, we believe
that the limitations that we identify are likely to hold gener-
ally for numerous others investigations in which researchers
attempt to provide rigorous model-based accounts of catego-
ry learning in naturalistic domains. Thus, we believe that the
path that we carve out is likely to have broad, instructive
value for the field.

In our next section, we provide a brief review of our recent
efforts at modeling rock-classification learning and generali-
zation. Building upon that work, we then outline the new
theoretical and empirical efforts reported in this article in
which we attempt to use the model to search for effective
methods of teaching scientific classifications.

Reviewof the formalmodel and its initial tests

Sketch of the formal model

The model that is used to guide the present work is a well-
known exemplarmodel termed the generalized context model
(GCM; Medin & Schaffer, 1978; Nosofsky, 1984, 1986,
2011). According to the model, people represent categories
by storing individual training exemplars of the categories in
memory, and classify objects on the basis of their similarity to
the stored exemplars. A number of more sophisticated models
that elaborate upon the GCM in important ways have been
developed in the field (e.g., Anderson, 1991; Love, Medin,
& Gureckis, 2004; Nosofsky & Palmeri, 1997; Sanborn,
Griffiths, & Navarro, 2010; Vanpaemel & Storms, 2008);
however, because it is a fairly simple model that has already
been applied successfully across diverse domains, it seemed
reasonable to use the GCM as our starting point.

In a simple descriptive version of the model, the probability
that item i is classified in Category J is found by summing the
similarity of i to all exemplars of Category J and then dividing
by the summed similarity of i to all exemplars of all categories:

P J jið Þ ¼ ∑ j∈ J sij
∑K ∑k∈Ksikð Þ ; ð1aÞ

where sij is the similarity of item i to exemplar j.
Typical applications of the GCM adopt a multidimen-

sional scaling (MDS) approach (Kruskal & Wish, 1978;
Shepard, 1980) to computing the similarity between each
pair of exemplars. In MDS, objects are represented as
points in a multidimensional space, and similarity is a de-
creasing function of distance in the space. In the present
applications, we assume a simple Euclidean distance met-
ric for computing the distance between each pair of exem-
plars i and j:

dij ¼ ∑ xim–xjm
�� ��2h i1=2

; ð2aÞ

where xim is the value of exemplar i on dimension m.
(More elaborate versions of the model, discussed later in
the article, extend the Equation 2a distance function with a
set of Battention weight^ parameters that systematically
modify the structure of the space in which the exemplars
are embedded.) Furthermore, following Shepard (1957,
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1987), similarity is presumed to be an exponentially de-
creasing function of distance in the space:

sij ¼ exp �c∙dij
� �

; ð3aÞ

where c is an overall sensitivity parameter. The sensitivity
parameter describes the rate at which similarity declines
with distance and provides a measure of overall discrimi-
nability in the space.

In their recent applications of the model to predicting rock
classification, Nosofsky et al. (2018b) found that the fits of the
model were significantly improved by adopting a
probabilistic-storage assumption. Instead of assuming that all
training exemplars were stored in memory, each training ex-
emplar had some probability pstore of being stored (see
Nosofsky et al., 2018b, for extended discussion).1 We adopt
this probabilistic-storage assumption again in the present
applications.

Derivation of the MDS space The key to implementing the
model is to derive the MDS space in which the exemplars
are embedded and from which the similarities sij in
Equations 1–3 are computed. In numerous past tests of the
model, the derivation of the MDS space was straightforward,
because the tests involved the use of highly controlled, simple
stimuli varying along just a few salient dimensions (for re-
views, see Ashby, 1992; Nosofsky, 1992; for examples in-
volving use of high-dimensionalMDS solutions for predicting
semantic categorization, see, e.g., Storms, De Boeck, & Ruts,
2000; Verheyen, Ameel, & Storms, 2007; Voorspoels,
Vanpaemel, & Storms, 2008). In a real-world category domain
such as rocks, however, the derivation of the MDS space
becomes a highly ambitious task. The stimuli that compose
such categories vary along a very large number of dimensions,
many of which are difficult to describe or discern.

Thus, as a prerequisite to testing the GCM in the rock-
classification domain, Nosofsky, Sanders, Meagher, and
Douglas (2018) engaged in extensive similarity-scaling stud-
ies of the rock stimuli.2 In these studies, observers provided
similarity judgments among pairs of items drawn from a set
composed of 360 rock pictures (10 categories of each of the
broad divisions of igneous, metamorphic, and sedimentary
rocks, with 12 samples of each of the categories). MDS
methods were then applied to fit the similarity-judgment data

and thereby embed the stimuli in the space (for details, see
Nosofsky et al. 2018). As noted by Nosofsky et al. (2018),
because of the very large number of stimuli that needed to be
scaled, the number of observations per individual cell of the
similarity-judgment matrix was very small (there are more
than 100,000 cells in a 360 × 360 similarity-judgment matrix).
Thus, despite obtaining hundreds of judgments from each of
more than 250 participants, the data were noisy at the level of
individual cells. Nevertheless, at least at a global level, the
results of the MDS analysis appeared to be remarkably
straightforward and impressive. First, an eight-dimensional
scaling solution provided an excellent fit (97.2% of the vari-
ance accounted for) to an aggregate form of the similarity-
judgment data; the aggregate data measured the average sim-
ilarity between all members of each pair of the 30 rock cate-
gories (e.g., the average similarity between all members of the
categories granite and diorite). Second, the derived dimen-
sions of the MDS solution had natural psychological interpre-
tations. In particular, the coordinate values of the exemplars
on the individual eight dimensions correlated highly with an
independent group of subjects’ direct ratings of the stimuli on
the attributes of lightness/darkness of color, average grain
size, roughness/smoothness, shininess, organization, chroma-
ticity, hue, and certain shape-related components. Interactive
displays of the derived eight-dimensional solution are provid-
ed in the online website (https://osf.io/w64fv/) associated with
Nosofsky et al.’s (2018) study. Finally, and perhaps most im-
portant, when used in combination with theMDS solution, the
GCMwas able to achieve good first-order quantitative predic-
tions of rock-classification learning and generalization in an
independent set of categorization experiments involving the
same stimuli (Nosofsky et al., 2018b). We provide a brief
review of the modeling results from those initial rock
category-learning experiments in the next section.

To anticipate, despite the promising initial results noted
above, our present research will lead us to the conclusion that
more work is needed to develop a still more precise and com-
prehensive scaling representation for the rock stimuli used in
our experiments. Given the complexities of the rock stimulus
domain, and the vast amount of data required to measure sim-
ilarities among the large number of to-be-scaled stimuli, this
outcome seems a reasonable one.

Review of recent applications of the GCM to rock
category learning

In one recent experiment, Nosofsky et al. (2018b) had partic-
ipants learn to classify the rock stimuli into the complete set of
10 igneous-rock categories in their rock-pictures collection.
The goal was to use the GCM, in combination with the de-
rived MDS solution for the rocks, to account for participants’
category-learning and generalization performance. The key
independent variable that was manipulated was the nature of

1 Rather than referring to each individual-trial presentation of a rock instance,
the pstore parameter refers to the probability that a single representation of each
rock instance has been stored, along with its correct category label, by time of
the test phase. Although standard applications of the GCMmake provision for
differential memory strengths of stored exemplars (Nosofsky, 1988, 1991), for
simplicity in the present applications we assume that all individual instance-
based representations have equal strength in memory.
2 We should note that, in most of our studies, we have limited consideration to
cases involving the classification of pictures of rocks. In principle, however,
the scaling solution could be extended to include information pertaining to
nonvisual properties such as hardness, density, and so forth.
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the training exemplars. Across two conditions, participants
first engaged in an instance-based training phase involving
multiple presentations of three training exemplars of each of
the 10 categories. In the center condition, the three training
exemplars were those closest in distance to the centroid of
each category distribution defined in the eight-dimensional
scaling solution for the rocks (see Fig. 1, top panel, for a
schematic two-dimensional illustration). In the coverage con-
dition, the three training exemplars more completely covered
the entire rock-category distribution; however, there was far
less training on central exemplars than in the center condition
(see Fig. 1, bottom panel). (For illustrative examples
involving pictures of the actual rock categories, see Fig. 3 of
Nosofsky et al., 2018b)

Following the training phase, participants engaged in a test
phase that included presentations of the original training ex-
emplars as well as novel rock samples from the categories.
Nosofsky et al. (2018b) measured the mean probability—for
each of the individual 10 rock categories—with which the
participants correctly classified the center and coverage train-
ing exemplars across the conditions, as well as the probability
with which participants generalized correctly to novel transfer

items from each of the categories. Estimating only two free
parameters—the overall sensitivity parameter and the
probabilistic-storage parameter (described earlier in our intro-
duction)—Nosofsky et al. found that the model provided an
excellent account of this rich set of classification-probability
data. Successful predictions from the model were also ob-
served in a conceptual-replication experiment in which, rather
than learning to classify only igneous rocks, participants
learned to classify rock pictures into a mix of igneous, meta-
morphic, and sedimentary rock categories. In short, these ini-
tial tests provided extremely promising results in support of
the idea that the GCM could be Bscaled up^ to account in a
parsimonious fashion for classification performance in a com-
plex, high-dimensional natural-category domain.

Experiment

Search for optimal training sets

Given the success of the model in our recent rock-category-
learning experiments, we were now prepared for our next step
of using the model to search for enhanced techniques of teach-
ing the rock classifications. Although a variety of such teach-
ing issues might be pursued, the specific question that we
addressed in the current research was, Which training exem-
plars might serve as optimal ones if the goal were to maximize
observers’ overall proportion of correct classifications at time
of test? Importantly, in addressing this question, we presumed
that—except for the choice of specific training exemplars—all
other aspects of the methods from the Nosofsky et al. (2018b)
experiments would remain basically the same. For example, in
the current experiment, we again used a training phase follow-
ed by a test phase, with the same number of training and test
trials used in the previous experiments. Participants again
learned to classify rocks into 10 distinct igneous-rock catego-
ries, with 12 samples per category. In addition, in the condi-
tions in which the model was used to generate strong, a priori
predictions of performance (see below), there were roughly
three training exemplars per category. (However, we also test-
ed a larger training-set-size condition; as will be seen, the
results from this condition turned out to provide some key
results of major theoretical and practical interest.) More de-
tailed aspects of the training and test procedures (e.g., stimulus
presentation sequences, nature of feedback, stimulus and feed-
back durations) were also the same as in the earlier experi-
ments. By holding fixed these methodological components
across the experiments, it seemed reasonable to assume invari-
ance of the best-fitting parameter values across the studies (cf.
Wills & Pothos, 2012), thereby allowing for true, a priori
quantitative predictions of performance in the newly tested
conditions. As our model-based analyses will show, even if
there were some variations in best-fitting parameter values

Fig. 1 Schematic illustration of the center and coverage conditions tested
by Nosofsky et al. (2018b). Top panel: In the center condition, the three
training examples (dotted squares) were the items closest to the centroid
(red dot) of the entire category distribution. Bottom panel: In the coverage
condition, the category distribution was divided into three
nonoverlapping clusters that covered the entire distribution, and the
training examples (dotted squares) were the items closest to the centroid
of each individual cluster. (Color figure online)
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(due, for example, to the fact that different populations of
participants were tested), the pattern of predictions of the over-
all levels of performance across the new conditions would
remain basically the same.

Before describing the specific conditions that were con-
ducted, we should note a limitation in the measure that we
used to define Boptimal^ test performance. In our view, ideal-
ly, the measure would pertain only to new, untrained objects
from the categories. After all, in the real world, a learner will
seldom experience the exact same rock sample twice; instead,
the real interest is in learners’ ability to generalize their knowl-
edge to previously unseen examples of the categories. Thus, in
future work, our goal would be to reserve some completely
separate transfer set of rock stimuli for assessing true general-
ization performance.

Unfortunately, in our present work, we are limited to use of
a fixed test set of stimuli for which we have obtained ourMDS
solution for the individual rocks. The test set includes all
items( i.e., both old training items and new transfer items).
Because the specific training items will differ across the ex-
perimental conditions (see below), so will the specific novel
transfer items that are left over. Thus, across some conditions,
there will be stimulus-specific differences in which items
serve as training exemplars and which serve as transfer items.
Accordingly, for the present study, we decided it made the
most sense to define the objective function to be optimized
as the overall proportion of correct classifications measured
across all individual items in the test set, regardless of whether
the items were training or transfer items.

The four training conditions

We implemented four different conditions in the present ex-
periment. As noted above, in all conditions, participants
learned to classify the rock pictures into the 10 igneous-rock
categories from the larger stimulus set that was scaled in the
Nosofsky et al. (2018) MDS study. In all conditions, the same
set of 120 unique igneous-rock exemplars were presented dur-
ing the test phase. The conditions differed only in terms of the
specific training instances that were used.

The first condition was a replication of the coverage con-
dition tested in Experiment 1 of Nosofsky et al. (2018b) and
that we described above. Because a different population of
participants was tested in the present experiment, we needed
to repeat the condition in order for it to serve as a source of
comparison with the new conditions. We decided to not also
retest the center condition illustrated in our Fig. 1 because
Nosofsky et al. (2018b) had already confirmed the GCM’s
prediction that overall performance in the coverage condition
would be better than in the center condition in two separate
experiments involving different sets of categories.

We term the second condition the small-size (ss)-optimal
condition. Using a Bgreedy-search^ computer algorithm (see

Appendix A for details), we located the sets of training exem-
plars from each of the 10 categories that the GCM predicted
would yield the maximum overall proportion correct during
the test phase. As explained previously, overall proportion
correct was computed across all 120 test items, regardless of
whether an item was an old training instance or a novel trans-
fer item. In conducting the computer search for the ss-optimal
training exemplars, the predicted proportion-correct value was
computed under the assumption that the best-fitting parame-
ters estimated in Nosofsky et al.'s (2018b) closely related ex-
periment would remain invariant. However, as we show be-
low, the pattern of proportion-correct scores across conditions
is predicted to remain basically the same across a large range
of the parameter settings. Whereas there were precisely three
training exemplars per category (i.e., 30 total training exem-
plars) in the coverage condition, we allowed more flexibility
in assigning numbers of training instances in the ss-optimal
condition. Specifically, besides holding fixed the total number
of unique training exemplars at 30, the only other constraint
introduced was that there be at least two training exemplars
from each of the 10 categories. As it turned out, the algorithm
tended to assign fewer training instances to easy categories
and more training instances to harder ones. (We provide
more details about these selections in Appendix A.) Besides
distributing the number of training instances across categories
in a (theoretically) more effective manner, our impression was
that the training instances selected for the ss-optimal condition
had the property of Bcovering^ their respective category dis-
tributions, in much the same manner as the coverage condi-
tion. Thus, the distinctions between the coverage and ss-
optimal conditions turned out to be subtle ones.

Intuitively, in asking whether performance in the ss-
optimal condition will indeed be superior to performance in
the coverage condition, we are setting a high bar for our in-
vestigation. The reason is that the coverage condition is al-
ready expected to be a relatively good condition for fostering
high levels of performance in the categorization test phase. In
particular, according to the exemplar model, because the train-
ing instances in that condition Bcover^ the complete category
distribution, they should support very good generalization per-
formance to novel transfer items (cf. Posner & Keele, 1968).
Indeed, as noted earlier in this section, in the previous study
reported by Nosofsky et al. (2018b), overall performance in
the coverage condition was significantly better than in the
center condition across two separate experiments, as predicted
by the GCM.

Thus, in the present study, rather than relying solely on a
comparison of performance across the coverage and ss-
optimal conditions, we decided to introduce a third condition
that we term the random-3 condition. In this condition, for
each individual participant, three random training instances
were chosen from each of the 10 categories. As shown below,
our computer simulations indicated that overall performance
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in the coverage condition should be better than in the random-
3 condition. This result is important, because the random-3
condition can be considered to provide a measure of the
Baverage^ level of performance that might be expected to be
observed under the present types of training conditions.

Finally, we tested a condition that we term the random-9
condition. In this condition, for each individual participant,
there were nine randomly chosen instances from each of the
10 categories (rather than three). Thus, there was a greater
total number of training instances in this condition than in
the other conditions; however, because we held fixed across
conditions the total number of trials during the training phase
(see the Method section for details), there were fewer presen-
tations of each individual training instance in this condition.
Because the nature of the training phase is changed substan-
tially compared with the other conditions, we can no longer
assume invariance of the GCM parameters across the random-
9 condition and the other three conditions. However, based on
preliminary computer simulations reported below, we never-
theless predicted that overall test performance would be con-
siderably better in the random-9 condition than in the other
three conditions.

To provide clearer documentation for the hypotheses
outlined above, in Fig. 2 we report quantitative predictions
from the GCM of overall proportion correct in the test phase
for the four conditions. The predictions are computed across a
range of parameter settings from the model. The top panel
(Bmoderate^ c) displays the predictions with the value of the
sensitivity parameter (c) held fixed at the value estimated in
the previous study reported by Nosofsky et al. (2018b); the
middle panel (Blow^ c) displays the predictions with the value
of c reduced by 25%; and the bottom panel (Bhigh^ c) displays
the predictions with the value of c increased by 25%. Within
each panel, we plot the quantitative predictions as the value of
exemplar-storage parameter (pstore) varies from .05 to 1.00 in
increments of .05. The best-fitting value in Nosofsky et al.’s
experiment was pstore = .90, so values in this region are of the
greatest interest. As can be seen from inspection of the figure,
among the three conditions in which there are roughly three
training exemplars per each of the 10 categories, the model
does indeed predict that overall performance will be best in the
ss-optimal condition, followed by the coverage condition, and
finally the random-3 condition. Furthermore, this prediction is
robust, as it holds for a wide range of values of the sensitivity
parameter, and for values of pstore ranging from .50 to 1.00.

As discussed previously, it does not seem reasonable to
assume parameter invariance for the random-9 condition; in-
deed, because there are far fewer presentations of each indi-
vidual training instance in the random-9 condition than in the
other three conditions, it should almost certainly be expected
that the value of the exemplar-storage parameter (pstore)would
be lower in the random-9 condition than in the other three.
(We defer more detailed discussion of how the parameters in

Fig. 2 Plots of GCM-predicted overall proportion correct in the test phase
across the four conditions as a function of level of overall sensitivity (c)
and exemplar-storage probability (pstore). ss-opt = small-set-size optimal
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the random-9 condition might compare with those in the other
three conditions until later in our article.) Importantly, howev-
er, it can be seen from inspection of Fig. 2 that, even when the
value of pstore is considerably lower in the random-9 condition
than in the other three conditions, the model predicts that
overall proportion correct will be greater in the random-9 con-
dition than in the other three conditions.

This prediction involving the random-9 condition arises for
two reasons. First, a much larger proportion of the test in-
stances are old training instances in the random-9 condition
than in the other three conditions; furthermore, as will be seen,
the model predicts a robust training-instance advantage under
the present conditions of testing. Second, even when the value
of pstore is relatively low, our simulations indicated that the
model predicts relatively good generalization performance to
the new transfer stimuli. Intuitively, the reason is that the large

number of training instances in the random-9 condition
Bcover^ the complete category distributions, inmuch the same
fashion as occurs in the coverage and ss-optimal conditions.
We unpack the basis for these predictions in greater detail in
the Theoretical Analysis section of our article.

Method

Participants The participants were 163 members of the
Indiana University community. Roughly half were undergrad-
uate students from introductory psychology courses who re-
ceived credit toward a course requirement; the remaining half
were paid for taking part in the experiment. The paid partici-
pants received $24 for a 2-hour experimental session, plus a
possible $6 bonus for good performance (defined as 60%
correct or better during the test phase of the experiment).

Fig. 3 Mean proportion correct for each of the item types in each of the
10 categories in the coverage and ss-optimal conditions. Colored bars =
observed data (blue = coverage-training items, green = optimal-training

items, red = neither items). Xs denote predictions from the baseline
version of the GCM; open circles denote predictions from the baseline
+ cw version of the GCM. (Color figure online)
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Participants were assigned randomly to the four conditions,
with essentially the same proportion of for-credit and paid
participants assigned to each condition. There was a total of
41, 44, 38, and 40 participants assigned to the coverage, ss-
optimal, random-3, and random-9 conditions, respectively.
All participants had normal or corrected-to-normal vision
and claimed to have normal color vision. All participants re-
ported little or no past experience involving rock
classification.

Materials The stimuli were 120 pictures of rocks that form a
subset of those used in the previous similarity-scaling studies
reported by Nosofsky et al. (2018); the full set of rock images
is available in the Rocks Library folder of the website associ-
ated with that article (https://osf.io/w64fv/). In the present
experiment, there were 10 subtypes from the broad category
of igneous rocks (see Table 1), and 12 tokens of each of the 10
subtypes.

The stimuli were presented on a 23-inch LCD computer
screen. The stimuli were displayed on a white background.
Each rock picture was approximately 2.1 inches wide and
1.7 inches tall. Participants sat approximately 20 inches from
the computer screen, so each rock picture subtended a visual
angle of approximately 6.0° × 4.9°. Further details regarding
the manner in which the rock pictures were sampled and
displayed are provided by Nosofsky et al. (2018).

The experiment was programmed in MATLAB and the
Psychophysics Toolbox (Brainard, 1997). All participants
were tested individually in private, sound-attenuated cubicles.

Procedure The statistical algorithm for choosing the training
exemplars in the coverage condition has been described in
detail by Nosofsky et al. (2018b). We described the procedure
for choosing the training exemplars in the ss-optimal, random-
3, and random-9 conditions in the introduction to this exper-
iment. In Appendix A we provide a listing of the specific
exemplars that served as training items in the coverage and
ss-optimal conditions; recall that the specific training

exemplars varied randomly across participants in the
random-3 and random-9 conditions. The MDS coordinates
of all 120 stimuli used in the four conditions are provided in
the Rocks Library folder of the website https://osf.io/w64fv/.
It turned out that, for most categories, one or occasionally two
items served as both a coverage training exemplar and an ss-
optimal training exemplar across those conditions; we refer to
such items as Bboth^ items. In addition, we refer to items that
did not serve as either coverage or ss-optimal training exem-
plars in those conditions as Bneither^ items.

In all conditions, the experiment was divided into a training
phase and a test phase. In all conditions, the training phase
consisted of six blocks of 60 trials each. Within each block of
the coverage, ss-optimal and random-3 conditions, each of the
30 training exemplars was presented twice. Thus, each indi-
vidual training instance was presented a total of 12 times in
these conditions. By comparison, in the random-9 condition,
each of the individual 90 training instances was presented a
total of four times; the presentations of each instance were
spread as evenly as possible across the six blocks of training
(a total of two times in each of Blocks 1–3 and 4–6). The order
of presentation of the training exemplars was randomized
anew for each block and each participant, subject to the con-
straints just described.

On each trial of the training phase, a training exemplar was
presented in the center of the screen, and the subject classified
it into one of the ten subtype categories. The category re-
sponse was indicated by pressing labeled number keys on
the computer keyboard. A listing of the assignment of num-
bers to category names was displayed on the computer screen
on each trial to facilitate this procedure. Following the re-
sponse, corrective feedback was provided on the screen for 2
s (e.g., BCorrect! Diorite^; or BIncorrect, Diorite^). At the end
of each block, participants were informed of their overall pro-
portion of correct responses. There was a 10-minute break
between the training and test phases.

In the test phase, in all conditions, participants were tested
on all 120 items from the igneous-rock set. Participants were
informed that in addition to classifying the old training exem-
plars, they would be tested on new stimuli from each of the
rock categories. There were six blocks of 60 trials each in the
test phase. Each of the 120 stimuli was presented once during
Blocks 1–2, once during Blocks 3–4, and once during Blocks
5–6. The order of presentation of the stimuli was randomized
anew for each pair of blocks and each participant. To keep
participants engaged in the task, we continued to provide cor-
rective feedback on the trials in which the old training exem-
plars were presented. (To hold fixed the number of feedback
trials across all conditions, only one third of the test trials
involving the 90 old exemplars in the random-9 condition
were feedback trials.) No corrective feedback was presented
on trials involving the new transfer stimuli. Participants were
informed that on such trials the computer would simply

Table 1 Igneous-rock categories tested in the current experiment

Cat. # Cat. name

1 Andesite

2 Basalt

3 Diorite

4 Gabbro

5 Granite

6 Obsidian

7 Pegmatite

8 Peridotite

9 Pumice

10 Rhyolite
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display the word BOkay^ to indicate that the response was
recorded. Participants were informed of their overall propor-
tion correct at the end of each individual test block. The entire
experiment took slightly less than 2 hours to complete.

Results

Prior to conducting the main analyses, we computed the over-
all proportion correct for each individual participant during
the test phase and constructed histograms of the results.
Visual inspection indicated extremely similar patterns of re-
sults for the for-credit and paid participants, so we combined
those groups in all subsequent analyses. In addition, prior to
conducting the main analyses, we deleted participants who
appeared as severe outliers in the histogram plots. We deleted
the data of four, three, three, and two outliers from the cover-
age, ss-optimal, random-3, and random-9 conditions,
respectively.3

Although our central interest is in theoretical analyses that
consider the ability of the formal model to account quantita-
tively for detailed aspects of the data, we get started by
reporting elementary statistical analyses of some of the sum-
mary results.

In Table 2, we report overall proportion correct during the
test phase, averaged across all items (old training and new
transfer), in each of the four conditions. A more fine-grained
breakdown is reported in Tables 3 and 4. Table 3 separates test
items in the coverage and ss-optimal conditions according to
whether they are Bcoverage-only^ training items, Bss-optimal-
only^ training items, Bboth-conditions^ training items, or
Bneither^ items. Table 4 separates items across all four condi-
tions according to whether they are old training items or new
transfer items.

Inspection of Table 2 reveals that overall performance in
the coverage condition was better than in the random-3 con-
dition, as predicted by the GCM. In addition, overall perfor-
mance in the random-9 condition was clearly better than in the
remaining three conditions; although the GCM-based predic-
tions are parameter dependent, this result too seems consonant
with the model’s pattern of predictions (see Fig. 2). However,
in contrast to the GCM’s predictions, overall performance in
the ss-optimal condition did not exceed overall performance in
the coverage condition; if anything, the results trended slightly
in the opposite direction. To confirm these observations, we
conducted a one-way ANOVA on the overall proportion-
correct scores across the four conditions. The analysis

revealed a significant effect of condition, F(3, 147) = 18.09,
MSE = .006, p < .001. Planned comparisons revealed that
overall performance in the random-9 condition was signifi-
cantly better than in each of the other three conditions, average
t(147) = 5.75, with p < .001 in all individual comparisons. In
addition, as predicted, planned comparisons revealed that
overall performance in the coverage condition was significant-
ly better than in the random-3 condition, t(147) = 2.19, p < .05.
However, in contrast to the GCM’s prior predictions, overall
performance was not significantly different across the cover-
age and ss-optimal conditions, t(147) = −1.06, p = .29.

Because the main goal of classification training is to foster
generalization to new transfer items, the performance results
for the new transfer items are perhaps of greater interest (see
Table 4). A one-way ANOVA on new transfer-item perfor-
mance again revealed a significant effect of condition, F(3,
147) = 7.65, MSE = .007, p < .001. Planned comparisons
revealed that generalization performance in the random-9 con-
dition was significantly better than the average across the cov-
erage, ss-optimal, and random-3 conditions, t(147) = 3.78, p <
.001. Note that individual-condition comparisons revealed
significantly better generalization performance in the
random-9 condition than in the ss-optimal and random-3 con-
ditions, average t(147) = 3.77, with p < .001 in both cases;
however, the improvement in generalization performance in
the random-9 condition comparedwith the coverage condition
did not reach significance, t(147) = 1.67, p = .097.

Because specific stimuli are chosen as old versus new items
in the coverage and ss-optimal conditions, whereas old and
new items are chosen randomly in the random-3 and random-

3 The extremely poor performance of these outlier participants was almost
certainly due to factors such as lack of motivation, failure to understand in-
structions, and so forth. Such factors go beyond the scope of the present
modeling efforts. In the test phase, the individual outliers had overall propor-
tion correct .18, .24, .42 and .43 in the coverage condition; .13, .18 and .35 in
the ss-optimal condition; .09, .12 and .28 in the random-3 condition; and .13
and .52 in the random-9 condition.

Table 2 Overall proportion correct during the test phase in each of the
four conditions

Source Coverage ss-Optimal Random-3 Random-9

Condition

Observed data .712 .693 .672 .797

Baseline model
predictions

.663 .703 .609 .783

Baseline model
+ cw predictions

.692 .712 .658 .792

Table 3 Mean proportion correct by item type in the coverage and ss-
optimal conditions

Condition Cov. ss-Opt. Neith. Both

Item type

Coverage .890 .607 .665 .892

ss-Optimal .589 .877 .641 .892

Note. Cov = coverage-only training instance; ss-Opt = ss-optimal-only
training instance; Neith = test stimuli that were not training instances in
either condition; Both = test stimuli that were training instances in both
conditions
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9 conditions, the previous analyses confound general training
conditions with specific stimuli. To remove this confound, we
conducted focused analyses of performance on the old and
new items across only the random-3 and random-9 conditions.
A two-way mixed-model ANOVA using conditions (random-
3 vs. random-9) as a between-subjects factor and item type
(old vs. new) as a within-subjects factor revealed that old
items were classified with significantly higher accuracy than
were new ones, F(1, 71) = 793.2, MSE = .002, p < .001. In
addition, there was a significant interaction between condi-
tions and item type, F(1, 71) = 99.07, MSE = .002, p < .001.
The interaction reflects that old items were classified with
higher accuracy in the random-3 condition than in the
random-9 condition, whereas the reverse occurred for new
items.

The better performance on old items in the random-3 con-
dition is not surprising, because participants received far more
training on individual old items in the random-3 condition
than in the random-9 condition. Of greater interest is that,
despite the better performance on the old items in the
random-3 condition, generalization performance on the new
items was better in the random-9 condition. Generally speak-
ing, if the goal is to promote generalization performance to
new items, our results suggest that training with a broad sam-
ple of items from the category distribution is better than ex-
tensive training with a few items—even if old-item perfor-
mance on the broad sample does not reach the same levels
as is achieved with focused training on a few old items.
Beyond the theoretical implications of the pattern of results,
our finding is potentially highly significant for making recom-
mendations regarding training strategies in natural-science
category domains. We provide extensive discussion of this
important result (and its relation to previous ones reported in
the category-learning literature) in our General Discussion.

Finally, in Figs. 3 and 4, we provide a fine-grained break-
down of the data for each individual rock category in the four
conditions. Figure 3 shows the results for the coverage and ss-
optimal conditions. In these plots, the blue bars show perfor-
mance on the coverage-training items, the green bars on the
ss-optimal-training items, and the red bars on the neither
items. (Because of small sample sizes at the individual rock-
category level, we have reaggregated the results for the Bboth^

items into the coverage items and ss-optimal items in these
plots.) In addition, Fig. 4 shows the results for the random-3
and random-9 conditions, with the blue bars showing perfor-
mance on the old training instances and the green bars on the
novel transfer items.

As can be seen from inspection of Figs. 3 and 4, the general
pattern of results reported in our summary-table analyses also
tend to be seen within each of the individual rock categories.
Specifically, across all four conditions, performance is consis-
tently better on the training instances than on the novel trans-
fer items. (Recall that in the coverage condition, the coverage
items are training items and the ss-optimal items are novel
transfer items; whereas the reverse holds in the ss-optimal
condition.) In addition, there is a great deal of variability in
overall performance levels across the different rock categories.
Participants are extremely accurate, for example, in classify-
ing members of the categories obsidian and pumice; moder-
ately accurate in classifying pegmatite and basalt; and rela-
tively inaccurate in classifying gabbro and rhyolite.
(Performance levels for the remaining rock categories tend
to be intermediate and vary somewhat across the different
conditions.) A challenge for the formal model of classification
learning is whether it can simultaneously characterize the pat-
terns of training effects across the conditions as well as the
varying performance levels observed across the different cat-
egories of rocks.

Theoretical analysis

Fitting the item-type accuracies across conditions
and categories

We now turn to our central goal of considering the ability of
the GCM to account for the observed classification data across
the four conditions of testing. Although a target for future
research is to account for performance at the level of individ-
ual participants (Lee & Pope, 2003; Nosofsky, 1986; Okada &
Lee, 2016; Shen & Palmeri, 2016), at this early stage of the
project in this complex domain we limit consideration to the
major patterns seen in the averaged data.

We started the analysis by fitting a baseline version of the
model to the proportion-correct data for the different item
types shown in Figs. 3 and 4. Based on consideration of the
summary results reported in the previous section, we know in
advance that the baseline version of the model will have short-
comings, because its prediction that overall proportion correct
in the ss-optimal condition would be greater than in the cov-
erage condition was not confirmed. Nevertheless, by analyz-
ing the baseline model’s fit to the item-type data across the
four conditions, we may gain deeper insights into where the
model has its strengths and weaknesses.

Table 4 Mean proportion correct by item type (old vs. new) in all four
conditions

Condition Old New

Item type

Coverage .891 .653

ss-Optimal .883 .630

Random-3 .905 .594

Random-9 .834 .685
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We conducted computer searches to locate the values of the
two free parameters in the model (c and pstore) that minimized
the sum of squared deviations (SSD) between the predicted
and observed item-type classification probabilities, combined
across all conditions. Because of the probabilistic-storage as-
sumption, fitting the present version of the model required the
use of computer simulation. In particular, for each run of the
simulation, the set of stored training exemplars was randomly
generated in accord with the probabilistic-storage assumption.
Given that set of stored training exemplars, the system of
Equations 1–3 was used to generate the classification predic-
tions from the model for that run of the simulation. The overall
predictions from the model were then obtained by averaging
across the predictions from 1,000 individual simulation runs.
Note that in the case of the coverage and ss-optimal condi-
tions, the stored training instances for each simulation were

always randomly generated from fixed parent sets (because all
participants experienced the same training instances in these
two conditions). However, in the case of the random-3 and
random-9 conditions, each participant experienced a unique
set of training instances. In conducting the simulations for
these two conditions, the stored instances were randomly gen-
erated from the precise sets of training instances experienced
by each individual participant.4

In conducting the fits, we held fixed the values of c and
pstore across the coverage, ss-optimal and random-3 condi-
tions; however, as we have discussed previously, because of
the major changes in instance-training conditions, we estimat-
ed separate values of c and pstore for the random-9 condition.

4 Extremely similar predictions were obtained, however, if the parent sets were
chosen randomly anew for each individual simulation.

Fig. 4 Mean accuracy for each of the item types in each of the 10
categories in the random-3 and random-9 conditions. Colored bars =
observed data (blue = old training items, green = new transfer items).

Xs denote predictions from the baseline version of the GCM; open
circles denote predictions from the baseline + cw version of the GCM.
(Color figure online)
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Finally, recall that in our Fig. 3 we aggregated the data for the
Bboth^ stimuli into the results of the coverage-training and ss-
optimal-training items. So as not to count the Bboth^ stimuli
twice, in conducting the current fits, we separated out the
Bboth^ stimuli from the coverage-item and ss-optimal-item
results, and required the model to fit each of the four item
types separately (i.e., coverage, ss-optimal, neither, both).
However, in displaying the model-fitting results, we again
aggregate the predictions for the Bboth^ stimuli back into the
coverage and ss-optimal items (in order to aid in visual
inspection).

The baseline model’s item-type predictions for each indi-
vidual category across the four conditions are indicated by the
Xs in Figs. 3 and 4. The summary fits of the baseline model to
the data from each of the individual conditions, as well as to
the data combined across the four conditions, are reported in
Table 5 (top row of each panel of table). As a further source of
assessing the model’s strengths and weaknesses, we show in
Fig. 5 the observed and predicted data for the item types in
each condition after averaging across all 10 categories.

Inspection of the figures and tables suggests that, at least as
a first approximation, the baseline model does reasonably well
at accounting for the complete set of data (with some impor-
tant exceptions to be discussed below). For example, in all
conditions, it predicts correctly that the training instances were
classified with significantly higher accuracy than were the
novel transfer items (see Figs. 3, 4, and 5). The old-item ad-
vantage arises because old test items provide a perfect match
to their representations in memory, boosting their summed
similarity to the correct target category. In addition, across
all conditions, the model accounts well for the varying perfor-
mance levels associated with the different categories (see Figs.

3 and 4): For example, the model predicts the extremely high
classification accuracy for obsidian and pumice; the (in gen-
eral) moderately high accuracy for basalt and pegmatite; and
the low accuracy for gabbro and rhyolite. As documented in
detail in the previous Nosofsky et al. (2018b) study, the basis
for these successful individual-category predictions involves
the structure of the rock categories and their positions in the
multidimensional similarity space. In the obsidian and pumice
categories, the individual-category members are tightly clus-
tered; their compact structures yield high within-category sim-
ilarity. Furthermore, for the present set of igneous rocks, ob-
sidian and pumice lie in isolated regions of the similarity
space, so there are few between-category confusions. By con-
trast, rhyolite is a highly dispersed category, with low within-
category similarity (for an illustration involving pictures of the
members of the rhyolite category, see Fig. 3 from Nosofsky et
al., 2018b). Furthermore, both rhyolite and gabbro lie in much
denser regions of the MDS space, so have high between-
category similarity.

Another success for the baseline model, at least at a qual-
itative level, is that it accounts for the interaction between
conditions and item type in the random-3 and random-9 con-
ditions (see Fig. 5): Performance is better for the old items in
the random-3 condition than in the random-9 condition, but is
better for the new items in the random-9 condition than in the
random-3 condition. The model accounts for this interaction
because the estimate of the pstore parameter was higher in the
random-3 condition than in the random-9 condition (we defer
more detailed discussion of the best-fitting parameters until
later in our article). This result seems sensible, because there
were far more presentations of the individual old-training in-
stances in the random-3 condition than in the random-9

Table 5 Fits of different versions of the GCM to the item-type data in Figs. 3 and 4

Model # Free
parms.

Coverage ss-Optimal Random-3 Random-9 Combined

Condition

a Fit measured in terms of sum of squared deviations

Baseline 4 0.376 0.387 0.161 0.408 1.333

Baseline + γ 6 0.392 0.372 0.150 0.381 1.294

Free parameters across all conditions 12 0.350 0.322 0.129 0.381 1.182

Mixed exemplar plus prototype 10 0.385 0.372 0.148 0.241 1.146

Baseline + cw 6 0.201 0.339 0.072 0.121 0.732

Constrained Baseline + cw 4 0.192 0.369 0.073 0.187 0.821

b Fit measured in terms of percentage variance accounted for

Baseline 4 70.2 76.6 82.8 15.7 69.5

Baseline + γ 6 69.0 77.6 84.0 21.3 70.3

Free parameters across all conditions 12 72.3 80.6 86.3 21.3 72.9

Mixed exemplar plus prototype 10 69.5 77.5 84.2 50.2 73.8

Baseline + cw 6 84.1 79.6 92.3 75.1 83.2

Constrained baseline + cw 4 84.8 77.7 92.2 61.5 81.2
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condition. Despite the lower pstore value in the random-9 con-
dition, generalization to new items is better in the random-9
condition than in the random-3 condition, because the
random-9 training instances tend to provide better coverage
of the complete category distributions than do the random-3
training instances.

As reported in the bottom panel of Table 5, averaged across
the coverage, ss-optimal, and random-3 conditions, the model
accounts for 76.5% of the variance in the item-type classifica-
tion accuracies of the 10 categories. In our view, this result is
respectable given that a very low-parameter model is being
used to fit a large number of data entries in a complex, natu-
ralistic domain. However, the model accounts for only 15.7%
of the variance in the random-9 condition. There are three
reasons for the poor fit to the random-9 data. First, unfortu-
nately, the baseline-model fits to the random-9 condition in-
clude a single extreme misprediction involving new items
from the andesite category (see Fig. 4, top-left panel of

random-9 condition). If this single data point is removed from
consideration, then the percentage of variance accounted for
increases from 15.7% to 60.8%. Second, there is far less total
variability in the data in the random-9 condition than in the
other three conditions. The reason is that there is a much
smaller difference in correct classification probabilities for
old versus new items in that condition (see Table 4 and Fig.
5). Third, as can be seen from inspection of Figs. 4 and 5, the
model systematically underpredicts the proportion of correct
responses for new transfer items in this condition. (In fact, this
same problem also tends to be seen in the coverage and
random-3 conditions.) This result provides an initial clue
about the locus of the shortcomings of the present application
of the model. We expand considerably upon this issue in the
next main section.

Finally, in the middle row of Table 2, we report the baseline
model’s predictions of overall proportion correct in each con-
dition, averaged across all test items of all categories. As

Fig. 5 Mean proportion correct for each of the item types, aggregated
across all 10 categories, in all four conditions. Top panel: Coverage and
ss-optimal conditions. Colored bars = observed data (blue = coverage-
training items, green = ss-optimal-training items, red = neither items,
purple = both items). Xs denote predictions from the baseline version of
the GCM; open circles denote predictions from the baseline + cw version

of the GCM. Bottom panel: Random-3 and random-9 conditions. Colored
bars = observed data (blue = old training items, green = new transfer
items). Xs denote predictions from the baseline version of the GCM;
open circles denote predictions from the baseline + cw version of the
GCM. (Color figure online)
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anticipated, although the model correctly predicts the ordering
of performance for the random-9, coverage, and random-3
conditions, it is incorrect in its prediction that performance
in the ss-optimal condition would be better than in the cover-
age condition. In addition, in struggling to account simulta-
neously for performance in the coverage, ss-optimal, and
random-3 conditions (with parameters held fixed across those
conditions), the model is slightly off quantitatively in its pre-
dictions of overall proportion correct for the coverage and
random-3 conditions.

Before proceeding to the next major section of our theoret-
ical analyses, we should note that we investigated various
standard extensions of the baseline model in an attempt to
improve its fits to the data. In one extension, for example,
we added a response-scaling parameter to the model (Ashby
& Maddox, 1993; McKinley & Nosofsky, 1995). In this ver-
sion, each of the individual category-summed similarities in
the Equation 1 decision rule is raised to the power γ. In the
baseline model, with γ = 1, the observer Bprobability
matches^ to the relative summed-similarity of each category;
whereas as γ grows larger than 1, the observer responds more
deterministically with whichever category yields the largest
summed similarity. As reported in Table 5, however, adding
the response-scaling parameter to the baseline model left the
fits virtually unchanged. In a further extension, rather than
constraining the c, pstore, and γ parameters to be equal across
the coverage, ss-optimal, and random-3 conditions, we
allowed separate values of these parameters for each individ-
ual condition. As reported in Table 5, however, the improve-
ments in fit yielded by this Bfree parameters across all
conditions^ model were relatively minor. Furthermore, as
we will report in the next main section, adding category
response-bias parameters to the Equation 1a decision rule as
well as Battention-weight^ parameters to the Equation 2a dis-
tance function (see Nosofsky, 1986, 1987, 2011) also resulted
in only relatively minor improvements in fit to detailed forms
of the classification data. In still another analysis, we extended
the model by assuming that, with some probability, observers
based classification decisions on the similarity of test items to
category prototypes rather than to stored exemplars (see
Appendix B for a description of the mixed exemplar-plus-
prototype model). As reported in Table 5, despite the large
number of free parameters granted to this mixed model, it still
led to relatively minor improvements in overall fit. We now
turn to an alternative set of theoretical analyses that did reveal
a major locus of the model’s shortcomings.

Fitting the data at the level of individual rocks

In our previous modeling analyses, as well as the major ones
reported in Nosofsky et al. (2018b) study, the goal was to
account for data aggregated at the level of Btypes^ of rock
instances broken down by their category membership and

training versus transfer status. As argued by Nosofsky et
al.’s (2018b), this goal seemed a reasonable starting one as
we ventured into formal modeling in this complex natural-
category domain. However, in view of the shortcomings of
the model reported in our previous section, here we decided
that greater insight might be achieved if we considered the
model’s predictions at the level of individual rock tokens rath-
er than broad types of rocks. Specifically, focusing first on the
coverage condition, we decided to fit the model to the com-
plete classification-confusion matrix defined by the condition-
al probability with which participants classified each of the
individual 120 rocks into each of the 10 categories during
the test phase. Note that this classification-confusion matrix
is composed of 1,200 data points (120 rows, one row per rock
instance; by 10 columns, one per each category; however,
because the conditional probabilities within each row sum to
1, there are only 1,080 data points that are truly free to vary).
Also, as detailed below, because the entries in the confusion
matrix vary considerably in magnitude, and therefore have
widely varying error variance associated with them, we decid-
ed to use maximum-likelihood as a criterion of fit rather than
minimization of a sum-of-squared-deviations criterion.

Given the very large number of data points and the com-
plexity of the domain, it no longer seemed realistic to attempt
fits with the extremely low-parameter baseline model.
Instead, we decided to fit an elaborated version of the GCM
with additional free parameters. First, we extended the
Equation 1a decision rule with the response-scaling parameter
(described above), a guessing parameter, and a set of category
response-bias parameters. In this elaborated model, it is as-
sumed that, on each trial, the observer guesses randomly
among the 10 categories with probability g and bases his or
her classification decisions on stored exemplar information
with probability 1 − g. (Although pure guessing likely occurs
with very low probability under the present experimental
conditions, the parameter may be needed to account for ex-
tremely small-magnitude but nonzero entries that are occa-
sionally observed in the matrix.) Likewise, the category
response-bias parameters are commonly used in fitting formal
models to detailed stimulus-response confusion matrices
(e.g., Luce, 1963); they reflect biases or preferences for
responding with alternative categories independent of the spe-
cific test stimuli that are presented. Taken together, in this
Bfull^ GCM, the probability that item i is classified in
Category J is given by

P J jið Þ ¼ 1−gð Þ
bJ ∑ j∈ J sij

� �γ

∑KbK ∑k∈Ksikð Þγ þ
g
10

; ð1bÞ

where γ is the response-scaling parameter; g (0 < g < 1) is the
guessing probability; and bJ (0 < bJ < 1, ∑bJ = 1) is the
response bias associated with Category J.
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Second, as is traditional in fitting the GCM to detailed
classification-confusion data, the Equation 2a distance func-
tion was extended with a set of dimension-weight parameters:

dij ¼ ∑wm∙ xim–xjm
�� ��2h i1=2

; ð2bÞ

where wm (0 < wm < 1, ∑wm = 1) is the weight assigned to
Dimension m. The weights describe the degree of Battention^
that observers give to alternative dimensions in making their
classification judgments. In cases in which some subset of
dimensions is relevant for classification, with other dimen-
sions being irrelevant, the attention weights often play a dra-
matic role in allowing the model to account for classification
performance. In the present case, however, all dimensions
tend to contribute useful information in allowing observers
to classify the objects into the 10 different rock categories,
so we expected the dimension-weight parameters to play a
less dramatic role.

The present version of themodel uses 20 free parameters for
predicting the 1,200-cell classification-confusion matrix: the
overall sensitivity parameter c and exemplar-storage parameter
pstore (described previously); the response-scaling parameter γ
and guessing-parameter g (Equation 1b); nine freely varying
response-bias parameters bJ (Equation 1b); and seven freely
varying dimension-weight parameters wm (Equation 2b).

As noted above, we used a maximum-likelihood criterion
in evaluating the model’s fit to the classification-confusion
matrix data. We used the Hooke and Jeeves (1961) computer
algorithm to search for the best-fitting parameters; in an at-
tempt to avoid local minima, we used 10 different random
starting-parameter configurations in conducting the searches.
Recall that because of the probabilistic-storage assumption,
the predictions associated with any specific set of candidate
parameters were derived across 1,000 simulations of the mod-
el. Finally, to evaluate the fit of different versions of the model
with varying numbers of free parameters (see below), we used
the BIC statistic, which penalizes a model for the number of
free parameters it uses:

BIC ¼ −2lnLþ Pln Nð Þ;

where L is the (maximum)-likelihood fit of the model, P is the
number of free parameters, andN is the sample size uponwhich
the fit is based. Smaller values of BIC indicate a better fit.

The key results of interest are shown in the top-left panel of
Fig. 6, which plots, for the coverage condition of the present
experiment, the 1,200 observed classification probabilities
against the maximum-likelihood predicted ones. In this plot,
all data points associated with correct classification probabil-
ities are indicated by geometric forms, Xs, or asterisks; by
contrast, all data points associated with incorrect classification
probabilities are indicated by the small-size dots. The category

membership associated with the correct-classification data
points can be decoded through use of the figure legend and
caption. So, for example, the open diamond toward the upper
left of the scatter plot is showing a case in which a specific
member of the gabbro category was correctly classified with
probability .85, but in which the model predicted that it would
be correctly classified into its category with probability only
.25.

Given the extremely large number of data points and the
complexity of the domain, we did not find it surprising to
observe a good deal of scatter in the plot. What we did find
to be highly instructive, however, was the systematic nature of
the deviations from the perfect-prediction line: As can be seen,
when there are large deviations for the correct-classification
probabilities, they lie predominantly above the perfect-
prediction line; whereas any large deviations for the
incorrect-classification probabilities lie predominantly below
the perfect-prediction line. In short, the model systematically
underestimates the participants’ ability to correctly classify
many of the individual rocks.

A straightforward explanation for this tendency is that the
current version of the MDS solution being used by the GCM
tends to underestimate the degree of within-category similar-
ity among the rock stimuli. (If within-category similarity were
higher, then the summed similarity of test items to the mem-
bers of their target categories would increase, boosting the
correct-classification probabilities.)

In retrospect, this occurrence seems to have been almost
inevitable, for multiple reasons. A first major reason is one
that was anticipated byNosofsky et al. (2018) in the context of
their study that first attempted to derive the high-dimensional
feature space for the rock stimuli. Although one major method
for deriving the feature space involved the MDS analysis of
pairwise similarity judgments of the rocks, Nosofsky et al.
(2018, p. 531) noted that it was likely that various dimensions
that might be critical in the context of a classification-learning
task might not be highly salient in the context of a similarity-
judgment task. For example, if the members of a given cate-
gory of rocks shared a subtle but highly diagnostic feature that
tended not to be present in the contrast categories, then such a
feature would be likely to take on a great deal of salience in the
context of the classification-learning task (Nosofsky, 1986).
Yet, due to its subtle nature, it would have little influence on
subjects’ judgments in the generic pairwise similarity-
judgment task, so it would be unlikely for that critical feature
to be represented in the scaling solution derived from the
similarity judgments. Thus, any model that made reference
to the scaling solution to generate predictions in an indepen-
dently conducted classification-learning task would then be at
a severe disadvantage. As an approach to dealing with this
issue, Nosofsky et al. (2018) collected direct dimension rat-
ings along a large number of candidate dimensions for char-
acterizing the rock stimuli and suggested the possibility that
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the MDS solution could be extended by including some of
these directly rated dimensions. However, it is impossible to
anticipate all such potentially relevant dimensions in advance.
Later in our article, we will provide what we believe is a clear-
cut example of this problem in the context of the present
classification-learning data.

A second major reason why the present scaling solution
likely underestimates the degree of within-category similarity
among the rock stimuli has to do with noise in the scaling
solution.

Our argument is as follows: In the Btrue^ psychological
space in which the rocks are embedded, it is virtually certain
that within-category similarities among the objects tend to be
greater, on average, than between-category similarities. Now,
suppose that one adds random noise to the locations of the

objects in a configuration with this property. It should be in-
tuitively clear to the reader that adding random noise will tend
to decrease the relative degree of within-category similarity
compared with between-category similarity. (We report
simulation work in Appendix C to support this intuition.)
Indeed, in the limit, as the amount of random noise that is
added dominates the true locations, there would eventually
be no difference in the relative degree of within-category ver-
sus between-category similarity among the objects.

Moreover, as we alerted the reader at the outset, the
similarity-judgment data used for deriving the current high-
dimensional scaling solution were in fact noisy at the
individual-cell level: There was an average of only 1.82 sim-
ilarity judgments per individual pair of rocks in the 360 × 360
matrix. Our claim has been that the MDS solution provides a

Fig. 6 Observed probability with which each individual rock instance
was classified into each of the 10 categories plotted against the
predicted probabilities from the GCM. Top left panel = coverage
condition, full GCM; top right panel = coverage condition, full GCM +

cw; bottom left panel = original coverage condition, full GCM; bottom
right panel = original coverage condition, full GCM + cw. Note. 1 =
andesite, 2 = basalt, 3 = diorite, 4 = gabbro, 5 = granite, 6 = obsidian, 7
= pegmatite, 8 = peridotite, 9 = pumice, 10 = rhyolite

Psychon Bull Rev (2019) 26:48–76 63



reasonable first-order, global account of the dimensional
structure of the objects and of the average similarity between
members of the different pairs of categories. The current anal-
ysis, however, is the first to consider the precision of the pre-
dictions at the level of individual items.

In sum, the above considerations suggest the need to de-
velop both a more comprehensive scaling solution for the
rocks (that includes more dimensions of potential relevance
to classification) as well as a scaling solution that is more
precise in terms of the dimensions that are already represent-
ed. At the current juncture, this goal of deriving a comprehen-
sive, high-precision, high-dimensional scaling solution for the
hundreds of objects in our natural-category set must be viewed
as an extremely long-range goal—we suggest routes to
achieving that long-range goal in our General Discussion. In
the meantime, however, we propose that important progress
can be made with respect to the current modeling by applying
a Brepair^ to theMDS computations. Our proposed repair is to
extend the Equation 3a exponential-similarity computation by
adding a within-category sensitivity parameter (cw) to the
model, viz.

sij ¼ exp −c∙dij
� �

; if i and j belong to different categories
exp −cw∙dij

� �
; if i and j belong to the same category

�
: ð3bÞ

Assuming that cw < c, this computation will have the effect
of Bsqueezing together^ the locations of items belonging with-
in the same category. As will be seen, it is still the case that the
current MDS solution for the rocks is doing an enormous
amount of work in enabling the predictions; the within-
category sensitivity parameter is simply repairing the solution
to enable even better predictions in this complex domain.

It is crucial to understand that the psychological claim here
is not that it is the observer who applies a different sensitivity
parameter to within-category versus between-category pairs.
Such a claimwould be tantamount to supposing a form of ESP
that governs observers’ classification judgments (the ob-
servers would need to have knowledge of the objective cate-
gory membership of the individual objects in advance of mak-
ing their classification judgments). Instead, the use of the
within-category sensitivity parameter should be viewed as
providing a mathematical repair to the independently-
derived MDS solution to which the formal classification mod-
el makes reference.

The predictions from this extended GCM+ cwmodel for the
coverage condition are shown next to the standard model’s
predictions in the upper-right panel of Fig. 6. It should be
obvious from inspection that adding the single free parameter
yields an enormous improvement in quantitative fit. Indeed,
not only do the vast majority of data points come closer to
the perfect-prediction line than for the standard model, but
now the systematic deviations involving correct versus incor-
rect classification probabilities have all but disappeared. This

visual impression is confirmed by the resulting fit indices for
the two models, which are reported in the top panel of Table 6:
Adding the single parameter improves the previous fit by more
than 1,500 BIC points. To bring out the crucial role of the cw
parameter in another way, we also fitted a highly constrained
five-parameter version of the GCM to the complete matrix of
individual-item classification-confusion data. In this highly
constrained version, we set all response-bias parameters equal
to one another and assumed equal attention weights for all
dimensions. Thus, the model made use of only the parameters
c, pstore, g, γ, and cw. Note that with only five free parameters,
this constrained GCM + cw model yields a better absolute fit
(i.e., log-likelihood fit) than does the 20-parameter standard
version of the model without cw (see Table 6).5

To test the generality of these model-fitting results, we
went back to the data from the original coverage condition
conducted in Experiment 1 of Nosofsky et al. (2018b).
(Recall that our present coverage condition was a replica-
tion of that original condition with a somewhat different
population of participants. In the original study, we had
fitted only the item-type data rather than the classification
probabilities for the individual 120 rock instances.) The
model predictions for the individual-item classification
probabilities from the original coverage condition are
shown in the bottom panels of Fig. 6—again, the left panel
shows the predictions from the standard model, and the
right panel the predictions from the GCM + cw model.
The detailed fit indices associated with the models are re-
ported in the middle panel of Table 6. As can be seen from
inspection, the correspondence in the pattern of model-
fitting results across the present coverage condition and
the originally tested one provides a remarkable replication.

To obtain yet additional evidence, we conducted the same
sets of model-fitting analyses on the data from the ss-optimal
condition from the present experiment. The results are shown
in Fig. 7 and in the bottom panel of Table 6. Although not as
dramatic as the results for the two coverage conditions, the
same pattern of model-fitting results is observed for the ss-
optimal condition. Thus, there is considerable support for the

5 We also conducted explorations of another class of models for repairing the
misestimated similarities from the MDS solution. In this alternative class,
rather than adjusting the measured similarities based on whether objects
belonged to the same or different categories, the similarities were adjusted
on the basis of their computed distances in the MDS solution. The general
idea is that because of noise in the derived scaling solution, there would be a
tendency for items separated by small distances in the derived scaling solution
to have even smaller Btrue^ distances than MDS-derived distances. We pro-
vide a report of those alternative modeling explorations in a supplement to this
article. In a nutshell, although these alternatives sometimes led to improve-
ments in fit compared to the standard GCM, the improvements came nowhere
close to the one achieved by the GCM + cw model reported here. This result is
perhaps not too surprising, because these alternative adjusted-distance models
take no account of the problem that subtle features that become salient during
classification learning may not have been represented in the initial similarity-
judgment-derived MDS solution.
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hypothesis that the current MDS solution for the rock stimuli
tends to underestimate the relative degree of within-to-
between-category similarity, and that repairing the model
through use of the within-category sensitivity parameter leads

to significantly improved accounts of the rock-categorization
data.

It is important to understand that the cw parameter is acting
to Brepair^ the MDS solution rather than Breplacing^ the so-
lution. It is still the case that the MDS solution itself is pro-
viding a fundamental bedrock for enabling the successful pre-
dictions. To demonstrate this point, we fitted a Bdiscrete-
similarity^ version of the GCM to the rock-classification data
that made no use of the MDS solution. The discrete-similarity
version made allowance for only three levels of interexemplar
similarity: The self-similarity between an exemplar and its
own representation in memory was set at unity; the similarity
between distinct exemplars belonging to the same category
(Bwithin-category^ similarity) was set at sw; and the similarity
between exemplars belonging to different categories
(Bbetween-category^ similarity) was set at sb. To give this
discrete-similarity model maximum flexibility, we continued
to estimate the parameters pstore, γ, g, and the set of response-
bias parameters from the standard GCM. (Because the MDS
solution was not used, no attention-weight parameters were
estimated.) As shown in each of the panels of Table 6, despite
using substantially more free parameters than the highly
constrained five-parameter version of the GCM + cw model,
this discrete-similarity model fared dramatically worse at
fitting the data in all cases (across the three conditions, the
fit deteriorated by an average of 4,172 BIC points). In a nut-
shell, the continuous gradations in similarity between exem-
plars that are measured by the MDS solution are fundamental
to allowing the GCM to predict the rock-classification data—
they simply need to be adjusted to account for systematic
underestimation of within-category similarities in the current
solution.

Table 6 Fits of different versions of the GCM to the complete
individual-rock classification-confusion matrices observed in the cover-
age and ss-optimal conditions of the present experiment, and in the orig-
inal coverage condition tested in Experiment 1 of Nosofsky, Sanders, and
McDaniel (2018b)

Model # Free
parms.

Neg lnL BIC % Var

Coverage condition of present experiment

Full GCM 20 13,863.3 27,916.5 87.1

Full GCM − cw 21 13,099.8 26,399.0 93.0

Constrained GCM − cw 5 13,493.0 27,033.5 92.1

Discrete-similarity GCM 14 15,588.4 31,309.8 85.2

Coverage condition tested in Nosofsky et al. (2018b)

Full GCM 20 12,500.4 25,188.5 86.8

Full GCM − cw 21 11,871.4 23,939.8 92.3

Constrained GCM − cw 5 12,190.1 24,427.1 91.3

Discrete-similarity GCM 14 13,899.3 27,930.0 85.0

ss-optimal condition of present experiment

Full GCM 20 15,505.6 31,203.2 88.5

Full GCM − cw 21 15,058.6 30,318.8 91.9

Constrained GCM − cw 5 15,515.9 31,079.8 89.5

Discrete-similarity GCM 14 17,842.3 35,819.2 83.7

Note. Parms. = parameters; Neg lnL = negative ln-likelihood; BIC =
Bayesian information criterion;%Var = percentage of variance accounted
for. Boldface entries in each panel indicate results for the best-fitting
model

Fig. 7 Observed probability with which each individual rock instance
was classified into each of the 10 categories plotted against the
predicted probabilities from the GCM. Left panel = ss-optimal
condition, full GCM; right panel = ss-optimal condition, full GCM +

cw. Note. 1 = andesite, 2 = basalt, 3 = diorite, 4 = gabbro, 5 = granite, 6
= obsidian, 7 = pegmatite, 8 = peridotite, 9 = pumice, 10 = rhyolite.
(Color figure online)
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Applying the baseline + cw model to the item-type
classification data

Having discovered the above-described limitation associated
with the MDS solution, our next natural step is to circulate
back to the original item-type data (see Figs. 3, 4, and 5) and
apply the extended GCM + cw model there as well. As in the
original analyses, the goal is to characterize performance
across all four conditions (coverage, ss-optimal, random-3,
random-9) with a minimum of parameter estimation.
Therefore, we return to applying the baseline version of the
model (Equations 1a and 2a), except we extend it with the
within-category sensitivity parameter cw (Equation 3b). As
in the original analyses, we hold the values of the free param-
eters (c, pstore, cw) fixed across the coverage, ss-optimal and
random-3 conditions, but estimate separate parameter values
for the random-9 condition. We conducted computer searches
for the values of the free parameters that minimized the SSD
between the predicted and observed item-type probabilities
computed across all 10 categories of the four conditions.

The predicted item-type classification probabilities from
the above-described baseline + cw version of the GCM are
shown as open circles in Figs. 3 and 4. In addition, the pre-
dictions averaged across the 10 categories are shown as open
circles in Fig. 5. The summary fits from themodel are reported
in Table 5. As can be seen in the table, there is dramatic overall
improvement in the quantitative predictions compared to the
fits yielded by the baseline model without the cw parameter,
with the total SSD reduced from 1.333 to 0.732. The dramatic
improvements in fit arise in three of the four conditions (albeit
with little change for the ss-optimal condition). Indeed, as can
be seen from inspection of Table 5, this six-parameter baseline
+ cw model yields an appreciably better SSD than did the 12-
parameter version of the model without the cw parameter.

Inspection of Fig. 5 reveals that the model pinpoints the
item-type accuracies averaged across the 10 categories in all
four conditions. Furthermore, inspection of Figs. 3 and 4 sug-
gests very good fits to the individual-category results of all
four conditions as well.We report in the bottom row of Table 2
the predicted overall proportion of correct classifications in
each condition, averaged across all the test items—the initial
analysis that motivated our investigation. Comparing the ob-
served data in the top row of the table, one sees that although
the model still incorrectly predicts a slight advantage for the
ss-optimal condition compared with the coverage condition,
the quantitative deviations are very small.

The best-fitting parameters from this baseline + cw version
of the GCM are reported in Table 7. As expected, in all con-
ditions, the magnitude of the cw parameter is less than that of
the c parameter, reflecting the needed repair to the
underestimated within-category similarities in the MDS solu-
tion. In addition, as expected, the estimate of the pstore param-
eter is lower in the random-9 condition than in the other

conditions, reflecting the reduced number of presentations of
individual training instances in the random-9 condition. We
did not have strong prior hypotheses regarding how the mag-
nitude of the c and cw parameters might compare across the
small training-set-size conditions and the random-9 condition;
the current estimates suggest lower sensitivity in the random-9
condition. A reasonable explanation is that because individual
instances were presented with much higher frequency in the
small training-set-size conditions than in the random-9 condi-
tion, the memory representations associated with the training
instances were more highly differentiated in the small-set-size
conditions (Kılıç, Criss, Malmberg, & Shiffrin, 2017;
Nosofsky, 1987; Shiffrin, Ratcliff, & Clark, 1990; Shiffrin &
Steyvers, 1997). Nevertheless, we should note that the fit of
the model is not very much worse if the values of c and cw are
constrained to be equal across the small-set-size conditions
and the random-9 condition: As reported in Table 5, even this
highly constrained version of the baseline + cw model (which
estimates only four free parameters) yields an appreciably
better fit to the data than do any of the alternatives without
the cw parameter. In short, future research is needed before
strong conclusions can be drawn regarding how overall sen-
sitivity may vary with manipulations of the number and dis-
tribution of category training instances.

General discussion

Summary

Our attempt to use the formal exemplar model to search for
optimal training examples for teaching the present rock cate-
gories met with some successes and failures. On the positive
side, the model predicted correctly: the observed ordering of
overall performance across the random-9, coverage and
random-3 conditions; the general patterns of item-type perfor-
mance across all four conditions; and, for the most part, the
difficulty levels of the 10 different categories across the four
conditions. On the negative side, the model’s prediction that
overall proportion correct in the ss-optimal condition would
exceed performance in the coverage condition was not con-
firmed. In addition, in more detailed quantitative tests, we
discovered systematic shortcomings in which the model
underpredicted correct classification probabilities associated

Table 7 Best-fitting parameters for the baseline + cw version of the
GCM fitted to the item-type data of Figs. 3 and 4

Condition c pstore cw

Parameters

Coverage/ss-Optimal/Random-3 0.980 0.827 0.814

Random-9 0.777 0.662 0.498
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withmany of the individual rock instances in the coverage and
ss-optimal conditions.

We conducted a variety of follow-up analyses to investigate
the detailed basis for the failed predictions reviewed above.
These analyses led us to the hypothesis that the current version
of the MDS solution to which the exemplar model makes
reference may tend to systematically underestimate within-
category similarity relations among the rock exemplars.
Indeed, we argued that, in retrospect, such an occurrence
was perhaps inevitable when attempting to develop compre-
hensive, high-precision scaling solutions for objects in com-
plex, high-dimensional naturalistic category domains. To rem-
edy this problem, we developed an extended version of the
model with an additional free parameter for repairing the
underestimated within-category similarities. Application of
the extended model led not only to vastly improved predic-
tions of the classification probabilities associated with individ-
ual items in the coverage and ss-optimal conditions, but also to
a very good quantitative account of the patterns of item-type
performance across all four conditions.

Although the overarching project remains a work in prog-
ress, we believe that the achievements reached thus far are
nevertheless highly significant and impressive. The upshot is
that a model that requires the estimation of relatively few free
parameters is providing very good overall quantitative ac-
counts of performance in an exceedingly complex, naturalistic
category domain. Thus, we continue to be encouraged that we
are heading down a fruitful path. Furthermore, our present
theoretical and empirical results point in clear-cut directions
for taking next steps in the project; in addition, they already
provide some strong recommendations for the strategies of
choosing training examples that are the most likely to foster
accurate generalization in natural-science classification. In the
remainder of our General Discussion, we discuss in turn both
of these points.

Improving the high-dimensional scaling solution

Having discovered a key shortcoming in the original model-
based machinery, one approach is to repeat the procedure of a
model-guided search for optimal training examples—except
now using the repaired model—and then to conduct new em-
pirical studies guided by the repaired model’s modified pre-
dictions. At this juncture, however, a limitation of this ap-
proach is that our extension of the model with the within-
category sensitivity parameter is intended only as a temporary
repair and approximation. A more principled approach that
would likely have more profound long-range benefits is to
more directly address the problems that we hypothesize to
be the underlying causes of the underestimated within-
category similarities, namely, (1) the existence of rock charac-
teristics that are not represented in the current MDS solution
but that are nevertheless highly diagnostic for classification,

and (2) noise in the locations of the represented objects in the
high-dimensional feature space.

Missing diagnostic dimensions One approach to identifying
diagnostic dimensions that are missing from the scaling solu-
tion is to search for systematic, category-specific
mispredictions from the model and attempt to discern the basis
for those mispredictions. To illustrate, consider the observed
and predicted data from the complete classification-confusion
matrix for the coverage condition that is shown in the top-left
panel of Fig. 6. Among the data points that are most severely
mispredicted are the four open squares that lie toward the
upper-left corner of the scatter plot. These are all cases involv-
ing transfer items from the category andesite: The subjects in
our experiment classified these transfer tokens with moderate
to high accuracy, but the model severely underpredicted these
accuracy levels. To gain insight, in the top panel of Fig. 8 we
show the three training examples of andesite that appeared in
the coverage condition, and in the bottom panel of Fig. 8 we
show the four underpredicted transfer items. Note that all three
training examples can be characterized as having a fine-
grained homogeneous background, but with small pebbles
or fragments glued into this background. These provide ex-
amples of rocks with what is known in geology as porphyritic
texture (Tarbuck & Lutgens, 2014, p. 66). Although other
rocks in the coverage-condition training set also had porphy-
ritic texture, their occurrence in other categories was very
sporadic and occasional, whereas porphyritic texture can be
viewed as a unifying characteristic of the andesite training
examples. The reader will further note that all of the
underpredicted transfer items (in the bottom panel of Fig. 8)
also had a clear-cut porphyritic texture. Although a dimension
corresponding to Baverage grain size^ figured prominently in
the derived MDS solution for the rocks, this more subtle fea-
ture involving porphyritic texture was not explicitly represent-
ed. It seems highly plausible that this feature became salient in

Andesite

Training Items

Under-predicted Test Items

Fig. 8 Training items and underpredicted test items for andesite in the
coverage condition. The scaling solution underestimates the similarity of
these test items to the training items because it does not account for their
shared porphyritic texture. (Color figure online)
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the context of the classification-learning task and that many of
the observers relied on it as a basis for classifying items into
the andesite category. One approach to developing a more
comprehensive feature-space representation for the rock stim-
uli would be to collect direct ratings of the extent to which
each individual rock in the set has porphyritic texture (see
Nosofsky et al., 2018, for extensive work on the collection
of numerous types of direct dimension ratings for the present
set of stimuli). The current MDS solution could then be ex-
tended simply by appending a new dimension defined by
these direct porphyritic-texture ratings. A similar procedure
to the one just illustrated could be attempted for other sets of
systematically mis-predicted rock types in an attempt to build
a more comprehensive feature-space representation for the
objects in this complex naturalistic domain.

Noise reduction and automated scalingAccording to our cur-
rent working hypotheses, a second problem that needs to be
addressed is that, due to noise in the similarity-judgment scal-
ing procedure, there is imprecision in the locations of the rock
stimuli in the current MDS solution. An apparent example can
be seen by again considering the top-left panel of Fig. 6. The
data point represented by the open diamond toward the top-
left of the scatterplot is a case in which subjects classified a
transfer item from the category gabbrowith high accuracy, but
in which the model underpredicted this accuracy level. The
training items for gabbro in the coverage condition are
displayed in the top panel of Fig. 9; the underpredicted test
item is displayed in the bottom panel. It seems apparent from
inspection that the similarity of the test item to the first training
item is extremely high; thus, from the perspective of the ex-
emplar model, it is not surprising that subjects were so accu-
rate in classifying the test item. Nevertheless, the points

corresponding to these two rocks are located relatively far
apart in the MDS solution.

Thus, a crucial direction for future research is to develop
techniques that reduce noise in the positionings of the objects
in the high-dimensional feature space. Unfortunately, this goal
is a highly ambitious one and will likely require extensive new
research and perhaps the application of major new scaling
techniques before it can be accomplished. As we noted at
the outset, the current MDS solution was derived by collecting
similarity judgments among the extremely large number of
pairs of distinct stimuli from a collection of 360 rock-picture
tokens. Our goal, however, is not simply to model classifica-
tion learning and generalization for the objects in this 360-
member set, but to be able to extend the approach to predict
classification learning and generalization for indefinitely large
numbers of stimuli from this domain. Thus, the traditional
approaches become intractable.

As one possible alternative, we have achieved some pre-
liminary success in applying an integrated approach in which
we combine MDS methods with the use of deep-learning
convolutional neural networks (CNNs; e.g., Lecun, Bengio,
& Hinton, 2015) to derive the high-dimensional feature space
for these naturalistic stimuli (Sanders & Nosofsky, 2018). As
is well known, CNNs have been used successfully to predict
classification of natural images from large data bases. In a
typical CNN architecture, elementary visual inputs are con-
verted to higher-order features via connections to a series of
hidden convolutional layers. These feed into a set of fully
connected layers and a final output layer that generates the
classification responses. A number of researchers have pro-
posed and found support for the hypothesis that the patterns of
activation developed in the layers of the CNN can serve as the
feature space in which the naturalistic images are embedded
(e.g., Battleday, Peterson, & Griffiths, 2017; Guest & Love,
2017; Lake, Zaremba, Fergus, & Gureckis, 2015; Peterson,
Abbott, & Griffiths, 2016). Despite the preliminary successes
described in these studies, the extent to which CNNs truly
capture the details of human classification learning remains
unknown. Thus, we have been exploring an approach that is
complementary to the recent past applications. Rather than
using CNNs to directly account for human classification judg-
ments, we instead train them to predict the dimension values
of individual exemplars derived from traditional MDS
methods (Sanders & Nosofsky, 2018). Once the CNN is
trained in this manner, new stimuli can be presented to the
CNN and it can be used to automatically produce the coordi-
nate values of the stimuli in the multidimensional psycholog-
ical feature space. Thus, an unlimited number of stimuli from
complex naturalistic domains can be scaled in this manner.
The derived coordinate values can then be used in combina-
tion with formal models such as the GCM to predict classifi-
cation learning and generalization (for related ideas, see
Battleday et al., 2017).

Gabbro

Training Items

Under-predicted Test Item

Fig. 9 Training items and the underpredicted test item for gabbro in the
coverage condition. Despite their high similarity, the test item and the first
training item are placed relatively far away in the MDS solution, likely
due to noise in the similarity-based scaling procedure. (Color figure
online)
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Beyond scaling large sets of high-dimensional stimuli,
such an approach may have other advantages compared to
MDS methods that rely solely on similarity-judgment data.
In particular, the CNN could potentially act to reduce the noise
that is inherent in the similarity-judgment approach. For ex-
ample, suppose that in the Btrue^ psychological space, two
stimuli reside very close to one another; however, due to noisy
judgments, an observer may have provided a low similarity-
judgment rating for the pair. In fitting the noisy data, a tradi-
tional MDS model might therefore position the two stimuli
too far away from one another in the space. However, if used
as input to the trained CNN, there would be an automatic
correction, because the very similar inputs provided by the
two stimuli would likely lead to similar outputs in the auto-
mated scaling solution. A great deal of future research is need-
ed to test the viability of these ideas.

Alternative models of similarity and classification Finally,
whereas the focus of our discussion thus far has been on
repairing limitations of the current MDS solution for the
rocks, we recognize of course that other limitations may reside
in the formal models of similarity and classification them-
selves. The MDS similarity model is a purely spatial model
that relies solely on measures of continuous distance. As an
alternative, models based on matching and mismatching of
discrete features, such as additive clustering (Shepard &
Arabie, 1979) and tree models (Sattath & Tversky, 1977)
might be applied. As discussed by (Nosofsky et al., 2018b,
p. 347), for the present, highly complex stimulus domain, it
seems most likely that hybrid models that combine spatial and
discrete-feature components may be needed (e.g., Lee &
Navarro, 2002; Nosofsky & Zaki, 2003; Verguts, Ameel, &
Storms, 2004).

Likewise, the GCM provides only one candidate model of
perceptual classification; numerous alternatives might fare
considerably better. To take just one example, the SUSTAIN
model (Love et al., 2004) is closely related to the GCM in
terms of its computations; however, unlike the GCM, which
stores each training item as a unique exemplar, SUSTAIN
makes allowance for distinct exemplars to be combined in
clusters represented by Bsubprototypes.^ This cluster-
formation process results in category-compression effects, so
perhaps could provide a process-level explanation for why the
present exemplar-based modeling approach appears to have
systematically underestimated within-category similarities
among items. More generally, although the results are mixed,
there is some evidence that category training itself can de-
crease within-category psychological distances, perhaps
through forms of learned categorical perception (e.g.,
Goldstone, 1994; Gureckis & Goldstone, 2008; Viviani,
Binda, & Borsato, 2007; but see Folstein, Gauthier, &
Palmeri, 2012). Models that incorporate mechanisms for these
potential forms of learned categorical perception might also

provide significantly improved accounts of the present rock-
classification data.

Number and variability of training instances

The central theme of our investigation was to generate true a
priori predictions from the formal model of the consequences
of using alternative sets of training examples on subsequent
classification test performance. Although the prior predictions
for the coverage, ss-optimal, and random-3 conditions were
indeed parameter free, the same was not quite true of the
random-9 condition (for reasons discussed extensively earlier
in our article).

Nevertheless, in our view, the results from the random-9
condition are extremely informative in their own right and
make a major new contribution to knowledge in this field.
The general take-home message is that overall test perfor-
mance in this condition—whether averaged over all individual
items (old training and novel transfer) or considered for novel
transfer items only—was better than in any of the conditions
that used smaller numbers of training items. Although the
generality of the finding clearly needs to be tested, the results
point to the following tentative recommendation: If the goal is
to foster generalization to novel transfer stimuli in a natural-
science category domain, then it is better to train with a broad
swath of training examples from each category rather than to
focus training on a select few training examples.

Surprisingly, although related conclusions have emerged
from previous work in the category-learning literature, we
believe that our form of evidence has a unique slant. For
example, a well-known and highly influential set of studies
that bear on the issue are those reported by Homa and his
colleagues (Homa, Cross, Cornell, Goldman, & Schwartz,
1973; Homa, Sterling, & Trepel, 1981; Homa & Vosburgh,
1976). Using artificial dot-pattern categories as materials,
these investigators manipulated category size across condi-
tions by varying the number of training instances that defined
each category. They reported a robust pattern of results in
which generalization to new transfer patterns improved with
increases in category size. However, in their designs, each
individual training instance was presented the same number
of times. A consequence is that the larger-size categories re-
ceived more total trials of training than did the smaller-size
categories. By comparison, in our design, we held fixed across
conditions the total number of training trials. In a real-world
scenario involving the teaching of science categories, an edu-
cator may have fixed time or number of training trials avail-
able for accomplishing his or her goals, and simply devoting
more total trials of category training may not be an option.
Thus, our present results provide a major complement to those
reported in the Homa studies.

Another classic study that bears on the issue is the one
reported by Posner and Keele (1968). These researchers too
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used dot-pattern categories as materials but manipulated the
variability of training instances across conditions. In a low-
variability condition, each category was defined by training
instances that were low distortions of a category prototype,
whereas in a high-variability condition, each category was
defined by training instances that were moderate distortions
of a category prototype. This manipulation is related to our
number-of-training-instances manipulation because, in gener-
al, as both the number of distinct training instances increases
and as the variability of training instances increases, one ex-
pects better overall Bcoverage^ of the complete category dis-
tribution. In line with the present results, Posner and Keele
(1968) observed better generalization to new transfer items in
the high-variability-training condition than in the low-
variability one. However, in Posner and Keele’s design, train-
ing did not end until observers met a criterion of correctly
classifying all training instances from the study lists for two
consecutive blocks of trials. Although Posner and Keele
(1968, p. 356) did not report the detailed results from the
training phase, they did note that, not surprisingly, observers
in the high-variability condition made more errors in original
learning than did observers in the low-variability condition.
Almost certainly, therefore, observers in the high-variability
condition received more total trials of training than did ob-
servers in the low-variability condition—a similar state of
affairs as occurred in the category-size experiments reported
by Homa and his colleagues.

A previous study that perhaps comes closest to our random-
3 versus random-9 manipulation is one reported by Wahlheim,
Finn, and Jacoby (2012). As in our investigation, these re-
searchers trained participants to classify objects from natural
categories—species of birds belonging to different bird-
category families. Although the researchers’ main interest
was in investigating certain metacognitive aspects of their par-
ticipants’ category learning, their key experimental manipula-
tion was similar to our own. In particular, for half the bird-
category families, training involved a small-size/high-repetition
condition: two species of each category repeated six times each
(S2R6); whereas the remaining half of the bird-category fami-
lies involved a large-size/low-repetition condition: six species
of each category repeated two times each (S6R2). (Note that
Wahlheim et al.’s S2R6 condition is analogous to our random-3
condition, and their S6R2 condition is analogous to our random-
9 condition.) In line with our present results, Wahlheim et al.
(2012) found that, at time of test, participants classified old
training instances with higher accuracy in the small-size/high-
repetition condition (S2R6), but generalized tomembers of nov-
el species of each bird-category family with higher accuracy in
the large-size/low-repetition condition (S6R2).

Although the take-home message from this aspect of the
two studies is basically the same, we do note an important
difference in our designs. In particular, in Wahlheim et al.’s
case, the manipulations of repetition and category size were

conducted within a mixed-categories design: Half the catego-
ries experienced by each participant were small-size/high-rep-
etition and the other half were large-size/low-repetition. Thus,
if participants had simply developed a general response bias
for classifying objects into the large-size categories compared
with the small-size ones, then that tendency alone could ex-
plain the observed pattern of generalization results. (The better
performance on the old training instances in the high-
repetition condition would be explained by the stronger mem-
ory traces developed for those items.) By comparison, we do
not see an analogous response-bias explanation for our results,
because, within each of our conditions, all categories were
either small-size/high-repetition (random-3) or else large-
size/low-repetition (random-9).6

Future research is needed to test the generality of our
findings involving the apparent benefits conferred by our
random-9 condition (compared with our small-size condi-
tions). The needed research is both empirical and theoret-
ical in nature. From an empirical standpoint, our present
manipulations involved only a single contrast between the
conditions (size-3 vs. size-9). Furthermore, other variables
that might interact with the category-size manipulation—
such as total number of training trials, number of to-be-
learned categories, and difficulty level of the category
distinctions—were held fixed. Future research might ma-
nipulate these variables in parametric fashion to test for
the generality of the results.

From a theoretical standpoint, although the results from the
random-9 condition appear to be in general accord with the
predictions from the formal model, these predictions are not
completely parameter free—a point that we have acknowl-
edged in this article on several previous occasions. To achieve
more precision in the predictions, deeper theories will be re-
quired that specify more detailed mechanisms that govern the
settings of the currently estimated free parameters (i.e., pstore
and c).7 Once such theoretical advances are made, we might

6 The response-bias possibility that we advance for theWahlheim et al. (2012)
study is not an idle concern. In particular, Cohen, Nosofsky, and Zaki (2001)
reported a series of experiments that explicitly manipulated category variabil-
ity. In their designs, one category had low variability and a second had high
variability. At time of test, a critical test item was presented that had equal
similarity to the nearest training exemplar of each category. In all experiments,
participants tended to classify the critical item into the high-variability catego-
ry with higher probability than was predicted by a baseline version of an
exemplar-similarity model (the GCM). Cohen et al. (2001) argued for the role
of a systematic response bias toward the high-variability category and made a
case for a rational basis for that form of response bias.
7 To take just one example, Kruschke’s (1992) ALCOVE model builds upon
theGCMby incorporatingmany of its components within the framework of an
error-driven connectionist learning model. A potential advantage of this ap-
proach is that, rather than being specified as free parameters, the strength of
associations between stored exemplars and categories are an emergent prop-
erty of the learning characteristics of the network. It is a wide-open question
what predictions ALCOVE would make for how the association strengths of
the stored exemplars would be related across the random-9 condition and the
small-set-size training conditions.
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then also explore more intricate issues such as those suggested
in the preceding paragraph. For example, answers to questions
such aswhich exemplars form optimal training setsmight vary
in parameter-dependent ways with factors such as total num-
ber of training trials, category size, number of to-be-learned
categories, and so forth. We believe that this kind of model
sophistication would have tremendous applied value, as it
could fruitfully limit plausible candidates for optimal training
sets for a wide range of categories varying in their dimensional
complexity and structure. Thus, rather than engaging in un-
constrained empirical investigation of such issues, the model-
guided search would make such research far more efficient
and tractable.8

Other approaches to enhancing the teaching of the natural-
science categories Finally, although the present investigation
centered around the question of which training sets might be
optimal, there are of course many other approaches to enhanc-
ing the teaching of natural-science categories, some of which
may also profit from a formal model-guided approach. For
instance, learning from optimal sets of training items can per-
haps be further enhanced by specifying particularly effective
presentation orders of those items (e.g., Mathy & Feldman,
2009, 2016; Pashler & Mozer, 2013; Spiering & Ashby,
2008). In a related vein, training items can be blocked by
category or intermixed by category, and intermixing has been
found to support better generalization to new items when train-
ing naturalistic categories such as chemical categories
(Eglington & Kang, 2017) and artistic-style categories (Kang
& Pashler, 2012; Kornell & Bjork, 2008). However, research
with artificial categories has revealed that the relative advan-
tage of one training order versus the other can vary depending
on the structure of the to-be-learned categories (Carvalho &
Goldstone, 2014). Accordingly, a formal modeling approach
as developed in this article could be invaluable for anticipating
how the effectiveness of blocked versus intermixed presenta-
tion might vary with the structure of the to-be-learned catego-
ries. Models and approaches that are closely related to GCM
incorporate sensitivity to presentation order (e.g., Carvalho &
Goldstone, 2017; Kruschke, 1992; Love et al., 2004) and in
principle might be applied to this issue.

As well, recent approaches to dynamic adaptive training
procedures, in which the frequency and spacing of particular
instances are personalized to each learner (e.g., Lindsey,
Shroyer, Pashler, & Mozer, 2014; Mettler & Kellman, 2010),

offer potential promise for improving scientific-category learn-
ing. Some of these systems use the empirically based learning
difficulty of particular target items along with the individual’s
past performance on particular target items to personalize the
presentation of training items. For science-classification train-
ing, theoretical models that anticipate category difficulty, as
developed herein, could potentially augment the effectiveness
of dynamic adaptive training algorithms.

Yet another approach that is emerging in the basic cognitive
research is specifying the types of explicit Bcoaching^ that can
enhance category learning. One type of coaching involves
providing learners with explicit information about character-
istic features or rules that are diagnostic for each category
(e.g., Miyatsu, Gouravajhala, Nosofsky, & McDaniel, 2018;
Pashler & Lovelett, 2017). For instance, Miyatsu et al. (2018)
found that highlighting characteristic features of particular
rock categories during training (by circling and describing
specific features on the image of each training token) pro-
duced more accurate generalization to new instances than
when learners were not provided such highlighting.
Likewise, Eglington and Kang (2017) found that, in cross-
experiment comparisons, explicit highlighting of diagnostic
features improved learning and generalization in the domain
of chemistry categories. Formal modeling could reveal how
feature highlighting potentially changes learners’ attention
weighting across features, thereby modifying the structure of
the psychological similarity space in which the category ex-
emplars are embedded (Nosofsky, 1986). Such model-guided
analysis might point to the particular forms of feature
highlighting that would optimize the attention-weighting pro-
cesses useful for generalizing to the members of alternative
natural-science category structures.

Conclusions

Our model-guided search for optimal training instances for
teaching the rock categories met with some successes and fail-
ures. The failures led us to major insights regarding the short-
comings of the present version of the model, and to a clear
target path for improving upon it. Although our current ac-
count of the rock-categorization data is not completely param-
eter-free, it is still the case that a relatively low-parameter mod-
el is providing good fits to a rich set of data from a complex,
naturalistic categorization domain. Furthermore, a tentative
recommendation that emerges from the work is that, if the goal
is to foster generalization to novel transfer stimuli in this do-
main, it is better to train with a broad swath of training exam-
ples from each category rather than to focus training on a select
few training examples. Based on our results and consideration
of findings exploring other dimensions of category training, we
are confident that our long-range goal of using formal psycho-
logical models to help guide the search for effectivemethods of
teaching science categories is a promising one.

8 Indeed, this approach parallels successful high-throughput protein design
efforts in biochemistry in which the structure/function of thousands of
computer-designed protein candidates can be modeled, fromwhich an optimal
set can be identified for experimental synthesis and testing. By so doing, time-
consuming and expensive experimental protein synthesis and characterization
can be limited to a small set of fruitful candidates. Further, as is the intent of our
investigations, the experimental results feed back to the computer models to
further improve the accuracy of the modeling (Rocklin et al., 2017).
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Appendix A

Description of the procedure for choosing the training
examples in the optimal condition

As explained in the text, the objective function to be maximized
was the GCM’s prediction of overall proportion correct comput-
ed across all test items, holding fixed the values of the best-fitting
parameters estimated in Experiment 1 of Nosofsky et al. (2018b).
Due to combinatorial explosion, it was not feasible to conduct an
exhaustive search of all possible sets of training examples to
locate the theoretically optimal set. Instead, we relied on a heu-
ristic greedy-search computer algorithm. On any given run of the
algorithm, a starting training set was created by selecting at ran-
dom a single item from each category. Then, on each iteration,
the greedy-search algorithm added to the training set the single
remaining exemplar (from the complete collection of 120 items)
that yielded the highest predicted overall proportion correct. The
iterations continued until the set-size limit of 30 was reached.
This same procedure was conducted hundreds of thousands of
times, and the set that maximized the objective function (subject
to the constraint that at least two training examples from each
category were included) was selected.

Following the selection of the theoretically optimal exam-
ples by the search algorithm, we decided to make two minor
changes to the training set. In particular, we exchanged one
token of granite for another, and one token of peridotite for
another. (Using the numbering scheme developed in
Nosofsky, Sanders, Meagher, and Douglas, 2018, we used
token 10 of granite instead of token 12; and token 2 of
peridotite instead of token 7.) We decided to make these ex-
changes based on our intuitive judgment that the new tokens
provided better coverage of the to-be-learned category distribu-
tions than did the computer-chosen ones. Furthermore, our
computer simulations indicated that the alternative training set
yielded a prediction of overall proportion correct that was only
.01 lower than the theoretically optimal one (for reasonably
high settings of the pstore parameter). Despite these exchanges,
for simplicity, we continue to refer to our second condition as
the Bss-optimal^ condition.

The specific training items used in the ss-optimal con-
dition (as well as in the coverage condition) are listed in
Table 8. The specific rock images and MDS coordinates
associated with each of the listed training examples are
available on the website https://osf.io/w64fv/. It is of
interest to note that the greedy-search algorithm assigned
fewer training examples to easier categories (obsidian,

pegmatite, and pumice) and more training examples to dif-
ficult ones (andesite and rhyolite) in the ss-optimal
condition.

Appendix B

Description of the mixed exemplar-plus-prototype
model

According to prototype models (e.g., Nosofsky, 1986; Reed,
1972; Smith & Minda, 1998), people represent each of the
subtype categories in terms of the central tendency of the
training exemplars of each category. Except for the form of

Table 8 Training items and category membership values in the
coverage and ss-optimal conditions

Training item # Category Training item # Category

Coverage ss-Optimal

2 1 1 1

5 1 2 1

9 1 5 1

16 2 8 1

19 2 16 2

21 2 19 2

26 3 21 2

28 3 27 3

33 3 32 3

39 4 35 3

43 4 37 4

44 4 41 4

49 5 46 4

54 5 54 5

58 5 58 5

65 6 59 5

66 6 67 6

71 6 72 6

75 7 75 7

76 7 76 7

83 7 83 7

85 8 86 8

87 8 94 8

94 8 97 9

98 9 103 9

104 9 111 10

107 9 116 10

114 10 117 10

116 10 118 10

120 10 119 10

Note. 1 = andesite, 2 = basalt, 3 = diorite, 4 = gabbro, 5 = granite, 6 =
obsidian, 7 = pegmatite, 8 = peridotite, 9 = pumice, 10 = rhyolite
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the category representation, the prototype model is the same as
the exemplar model, using the same system of Equations 1–3
as discussed previously. Rather than summing similarities to
stored exemplars as in Equation 1, the evidence for Category J
is given simply by the similarity of test item i to the Category J
prototype. Nosofsky et al. (2018b) showed previously that a
pure version of the prototype model provides very poor fits to
the present forms of data; among the reasons is that it is unable
to predict the robust advantage in classification accuracy ob-
served for the old training examples compared with the new
transfer stimuli in the test phase. Conceivably, however, ob-
servers may rely on some mixture of exemplar-plus-prototype
information.

Let Pprot(J|i) denote the prototype-model prediction of the
probability that item i is classified in Category J, and let
Pexm(J|i) denote the corresponding probability for the exem-
plar model. In the mixed model, the overall probability that
item i is classified in Category J is given by

P Jjið Þ ¼ mix� Pexm Jjið Þ þ 1−mixð Þ � Pprot Jjið Þ; ðB1Þ

where mix (0 < mix < 1) is the probability that the observer
relies on stored exemplars, and 1 − mix is the probability that
the observer relies on the prototype.

In fitting the model, we held parameters fixed across the cov-
erage, ss-optimal and random-3 conditions, but allowed
completely separate free parameters for the random-9 condition.
Within each set of conditions, we estimated the mixture param-
eter mix; the parameters c, pstore, and γ for the exemplar model;
and a separate sensitivity parameter cprot for the prototype model,
yielding a total of 10 free parameters. As reported in Table 5, this
mixture model led to relatively minor improvements in fit com-
pared to the pure, baseline version of the exemplar model.

Appendix C

Noisy MDS simulations

To confirm the intuitions regarding how adding random
noise to the locations of objects in a Btrue^ configuration
would affect the patterns of within-to-between category sim-
ilarity in the noise-modified configuration, we conducted
some example simulations. To maintain comparability with
the rock-stimuli modeling, we supposed that each category
was composed of 12 objects, and that each object varied
along eight independent dimensions. For simplicity, we re-
stricted consideration to the case of two categories. (If one
supposes that the two categories are neighboring categories
in the high-dimensional space, with the other categories be-
ing distant from the two, then including the other categories
would add needless complications to the present analysis.)
We assumed that the categories both had multivariate normal

structures. The population mean of Category A was set at
the origin. For each simulation, the population mean of
Category B was created by sampling randomly and indepen-
dently from a normal distribution with mean zero and stan-
dard deviation sdB on each dimension. (As the magnitude of
sdB increases, between-category similarity tends to de-
crease.) The 12 sample members of each category were then
generated as follows. For each dimension, a deviation was
randomly and independently sampled from a normal distri-
bution with mean zero and standard deviation sdW. The
deviation was added to the category population mean on
that dimension to create the object’s Btrue^ location in the
multidimensional space. (As the magnitude of sdW in-
creases, within-category similarity tends to decrease.) In ef-
fect, this procedure created two clouds of points in the mul-
tidimensional space, with the clouds roughly centered about
their respective population means. The magnitude of sdB
controlled the distance between the means of the two clouds;
the magnitude of sdW controlled the overall variability or
expanse of each individual cloud.

Finally, we created Bnoise-distorted^ configurations by de-
fining a noise-parameter sdN. For each individual object and
dimension, a deviation was randomly and independently sam-
pled from a normal distribution with mean zero and standard
deviation sdN, and the deviations were added to the objects’
true locations on each dimension.

For any given collection of settings of sdB, sdW, and sdN,
we conducted the simulations described above 10,000 times.
For each simulation, we computed the average within-
category similarity between all distinct pairs of points, and
the average between-category similarity between all pairs of
points. The similarity between any individual pair of points
was given by s = exp(− d), where d is the Euclidean distance
between the pair of points in the simulated space. We then
computed the average value of the computed within-
category similarity and the average value of the computed
between-category similarity across all 10,000 simulations, as
well as the ratio of those two measures.

The results for some example values of sdB and sdW, with
the value of sdN varied parametrically in each case, is reported
in Tables 9, 10, and 11. In each example, sdB is held fixed at 1,
while sdW takes on the values .05, .1, or .2. (Again, larger
values of sdW create higher-variability clouds of points, so
that within-category similarity in the true configuration tends
to decrease.) Regardless of the settings of sdB and sdW, it can
be seen that as greater amounts of noise are added to the
locations of the individual points (i.e., as, the magnitude of
sdN increases), there is a dramatic lowering of average within-
category similarity, a relatively smaller lowering of averaged
between-category similarity, and a steady decrease in the ratio
of averaged within-to-between category similarity. For very
large values of sdN, both measures drop towards zero, and
the ratio begins to approach one.
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