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Abstract Developmental change in children’s number-line
estimation has been thought to reveal a categorical
logarithmic-to-linear shift in mental representations of num-
ber. Some have claimed that the broad and rapid change in
estimation patterns that occurs with corrective feedback pro-
vides strong evidence for this shift. However, quantitative
models of proportion judgment may provide a better account
of children's estimation patterns while also predicting broad
and rapid change following feedback. Here we test the hy-
pothesis that local corrective feedback provides children with
additional reference points, rather than catalyzing a shift to a
different mental representation of number. We tested 117 chil-
dren from several second-grade classrooms in a number-line
feedback study. Data indicate that the proportion-judgment
framework accounts for individual differences in estimation
patterns, and that the effects of feedback are consistent with
the unique quantitative predictions of the framework. They do
not provide evidence supporting the representational shift

hypothesis or, more broadly, for the proposal that cognitive
change can occur rapidly at the level of entire mental
representations.

Keywords Cognitive development . Mathematical cognition

Introduction

Experimental evidence from a simple number-line estimation
task with children has been said to show that cognitive change
can occur at the level of entire mental representations (Opfer
& Siegler, 2007; Siegler et al., 2009), consistent with
overlapping-waves theory (Siegler, 1996). In the context of
this theory, children have access to multiple mental represen-
tations at once, and may rapidly substitute a more adaptive
representation for another.

A typical number-line estimation task asks participants to
mark the positions of Arabic numerals on a line with labeled
endpoints. Generally speaking, younger children are less ac-
curate than older children and there are systematic differences
in their estimates: Younger children dramatically overestimate
smaller numbers such that when estimates are plotted against
given numbers, they are better fit by a logarithmic function
than by a linear one. Older children’s estimates are better fit by
a linear function. Moreover, children whose estimates are
more logarithmic with a larger, less familiar number range
often produce more linear estimates with a smaller, more fa-
miliar range. As a result, children have been said to possess
multiple coexisting mental number representations, drawing
upon linear representations when dealing with more familiar
ranges and logarithmic representations for less familiar ranges
(Siegler & Opfer, 2003). With experience and over the course
of development they rely more on linear representations,
which support more accurate estimation, undergoing a
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Brepresentational shift^ from logarithmically organized to lin-
ear mental representations of number (e.g., Booth & Siegler,
2006; Booth & Siegler, 2008; Siegler & Opfer, 2003; Siegler
& Ramani, 2008; Siegler, Thompson, & Opfer, 2009).

Particularly strong evidence for the representational shift,
and more broadly the idea that cognitive change can occur
rapidly at the level of entire mental representations, is said to
come from findings that corrective feedback can turn children’s
logarithmic-looking estimation patterns into more linear ones,
purportedly by encouraging children to access linear rather than
logarithmic mental number representations (Opfer & Siegler,
2007; Opfer et al., 2011). In a carefully designed study (Opfer
& Siegler, 2007), second-grade students were first given a 0–1,
000 number-line pretest that identified them as either logarith-
mic or linear responders. BLogarithmic^ responders received
feedback designed to promote linear responding. It was hypoth-
esized that the best feedback for effecting this change would be
in the region of the number line with the greatest discrepancy
between logarithmic and linear representations (around 150;
Opfer & Siegler, 2007). According to the authors’
Blogarithmic-discrepancy hypothesis,^ feedback near that re-
gion would direct learners’ attention to the area of greatest
discrepancy while feedback about correct placements of other
numbers, around 5 or 725 for example, would not.

When initially Blogarithmic^ second graders received feed-
back (e.g., BYou told me that 159 would go here. Actually, this
is where 159 goes (pointing). The line youmarked is where 430
goes.^), children who received feedback for target numbers
around 150 produced more linear estimates at post-test than
children who received feedback around 5 or 725. Thus, feed-
back about estimates in regions of the number line targeted to
highlight the inadequacy of a logarithmic representation was
more effective than feedback in other regions (or no feedback).
In theory, simply demonstrating that the immature (logarithmic)
representation was inappropriate for the task led children to
adopt a different representation. Moreover, improvements were
broad and rapid: they were not limited to the region in which
feedback was concentrated. Instead, changes occurred over the
entire line. These results were interpreted as powerful evidence
for a categorical shift in children’s numerical magnitude repre-
sentations (Opfer & Siegler, 2007; Opfer et al., 2011) and for
the accompanying broader idea of rapid, cognitive change at the
level of mental representations.

There are at least two reasons to interpret these results
differently. First, the claims rest on the idea that local, targeted
feedback caused broad changes. However, it is important to
note that the feedback procedure gave children information
not only about the targeted focal regions, but also about num-
bers corresponding to the locations of their erroneous esti-
mates. Thus the range of feedback was actually rather broad,
especially for children receiving 150-feedback (given that pre-
test estimates were maximally inaccurate around 150). In fact,
differential effects following differential feedback are

compatible with many interpretations, and are not unique to
representational change. (We return briefly to this point in the
BResults and discussion^ section.)

The main focus of this paper is on a second, more funda-
mental reason for a different interpretation: An ongoing de-
bate exists over the idea that a representational shift underlies
developmental change in numerical estimation. This debate
has stemmed, in part, from recent evidence providing support
for a theoretical explanation of developmental change in
number-line estimation that involves judgments of proportion
(Barth & Paladino, 2011; Cohen &Blanc-Goldhammer, 2011;
Cohen & Sarnecka, 2014; Peeters, Degrande, Ebersbach,
Verschaffel, & Luwel, 2015; Rouder & Geary, 2014; Slusser
et al., 2013; Slusser & Barth, under review; Sullivan, Juhasz,
Slattery, & Barth, 2011; see also Cantlon, Cordes, Libertus, &
Brannon, 2009; Hurst, Monahan, Heller, & Cordes, 2014).
This explanation is based on a psychophysical model of pro-
portion estimation (Hollands & Dyre, 2000; Hollands,
Tanaka, & Dyre, 2002; Spence, 1990), originally developed
to account for judgments of perceptual (not numerical) mag-
nitude. It makes sense here because number-line tasks require
the estimation of a smaller magnitude (the value presented)
relative to a larger one (the value given at the upper endpoint).
Models of proportion estimation provide good quantitative
explanations of performance on a wide variety of tasks that
involve magnitude judgments; they afford clear ways of track-
ing developmental change by exploring change in the model
parameters; and they account for cyclical biases in estimation
data that remain unexplained by the logarithmic-to-linear shift
account (Barth & Paladino, 2011; Cohen & Blanc-
Goldhammer, 2011; Cohen & Sarnecka, 2014; Rouder &
Geary, 2014; Slusser et al., 2013; Slusser&Barth, under review;
Sullivan et al., 2011).

Our interpretation of the observed feedback effects is that
post-feedback estimates change in part because of the use of
additional reference points (see also Barth, Slusser, Cohen, &
Paladino, 2011), rather than because of a shift to a linear men-
tal number representation. A deep representational change
need not be invoked – broad and rapid change should come
about if feedback simply supplies children with additional
reference points. To show how this explanation would account
for the data, we first provide a brief review of the proportion
estimation framework (see Slusser et al., 2013, for details).

A basic psychophysical model of proportion estimation
(Spence, 1990) was derived from Stevens’ Law, which de-
scribes the relationship between the estimated or perceived
magnitude of a stimulus and its actual magnitude as a power
function y = αx β (Fig. 1a). The exponent β has traditionally
been thought to quantify the bias associated with an estimate
of a particular type of stimulus magnitude (but see
Teghtsoonian, 2012), and α is a scaling parameter. Spence
(1990) showed that estimates of proportions (rather than indi-
vidual magnitudes) take the form of S-shaped or inverse S-
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shaped curves, depending on the value of β in question. For a
typical 0–1,000 number-line task, estimates are predicted by y
= x β/ (x β + (1000 - x) β) (a one-cycle model; Fig. 1b). The
basic model assumes that observers judge relative to two ref-
erence points (i.e., the endpoints of the stimulus range), and
was generalized to account for the use of additional reference
points, such as an inferred midpoint (Hollands & Dyre, 2000).
The use of additional reference points leads to cyclic over- and
underestimation patterns (Fig. 1c).

In number-line tasks, relatively older children and adults
are more likely than younger children to produce data consis-
tent with the multi-cycle model than with the one-cycle model
(e.g., Barth & Paladino, 2011; Rouder & Geary, 2014; Slusser
et al., 2013), suggesting that they make estimates relative to
the endpoints of the number line and a midpoint as well (e.g.,
Slusser et al., 2013; see also Ashcraft & Moore, 2012).
Relatively younger children, especially when faced with a less
familiar number range, may produce estimates consistent with
an Bunbounded^model (i.e., a standard power model, Fig. 1a)
as they seem not to use an upper reference point at all (though
there are multiple strategies that could result in roughly this
pattern of estimation; see Slusser et al., 2013; see also Barth &
Paladino, 2011; Cohen & Sarnecka, 2014).

The use of available reference points is strategic, and ref-
erence points need not be centrally located. A similar pattern
of over- and underestimation should appear between any pair
of reference points (Hollands &Dyre, 2000). For example, the
predicted estimation pattern in Fig. 1b (two endpoint reference
points) is the same pattern repeated between each pair of ref-
erence points in Fig. 1c (two endpoints plus a midpoint). We
propose that local corrective feedback provides children with
a new reference point that can be applied immediately, con-
sistent with the rapid change seen after feedback. The use of
additional reference points also predicts broad change in esti-
mation accuracy1: compare, for example, Fig. 1b and c, in
which the simple addition of a middle reference point has
brought estimates closer to y=x throughout the entire range.

Here we report the findings of a number-line estimation
study with second graders. The main goal was to test our
hypothesis that feedback serves to provide reference points
that promote changes in estimations patterns, as predicted by
the framework. To test a key prediction, we screened a large
number of participants for a particular response pattern at pre-
test. While we report general results for the full sample, this
work focuses on the evaluation of post-test data from this
particular subset. A second goal was to determine whether
the proportion judgment framework successfully models indi-
vidual differences in estimation patterns.

Method

This study was modeled closely on Opfer and Siegler (2007),
with three modifications. First, rather than sampling heavily
from the lower portion of the number range, we sampled
evenly from the entire range because the proportion judgment
account makes specific quantitative predictions across the en-
tire range, and samples concentrated at the low end are inad-
equate for testing these predictions. Second, we did not in-
clude a condition with feedback clustered around 5 because
this was not necessary to test our hypotheses. Third, the cur-
rent study includes two (instead of three) blocks of feedback
trials between pretest and post-test, because effects of feed-
back were found to appear quickly, often after just one or two
trial blocks (Fig. 4 in Opfer & Siegler, 2007).

Participants

One hundred and seventeen children participated during
October or November of second grade (M = 7 years and 6
months, range 6 years and 10 months to 7 years and 10
months). Children were tested at four elementary schools in
central Connecticut. Two schools primarily served families of
lower socioeconomic status (SES) and two served families of
mid-range SES (indicated by the percentage of students re-
ceiving free/reduced lunch).

Materials and design

The number-line task was administered in a booklet, with one
trial per page. Each sheet displayed a 23-cm line with B0^ at
the left end and B1,000^ at the right end. The target number to
be estimated was 2 cm above the center of the line. Children
responded by drawing a vertical mark through the line.

Children were randomly assigned to one of three condi-
tions: 150-feedback, 725-feedback, or no-feedback. All par-
ticipants completed four blocks of number-line estimation tri-
als (pretest, two trial blocks, and post-test). The pretest includ-
ed 23 trials in a random order (7, 13, 22, 52, 111, 157, 240,
285, 365, 429, 464, 518, 558, 596, 643, 691, 752, 840, 887,
932, 975, 988, and 995). Each trial block began with three
feedback trials, followed by 23 test trials with no feedback
(9, 15, 24, 60, 108, 142, 244, 289, 348, 420, 466, 511, 563,
590, 645, 692, 748, 844, 933, 960, 978, and 996). The post-
test contained the same 23 target numbers as the pretest.

Target numbers on feedback trials clustered around 150
(147–173) for children in the 150-feedback condition and
around 725 (722–758) for children in the 725-feedback
condition. Half the children in the no-feedback condition
received target numbers matching the 150-feedback con-
dition; the other half received target numbers matching
the 725-feedback condition (but no feedback was actually
given in this condition).

1 The value of β can also vary independently of the number of reference
points, with β=1 falling on y=x and deviations from 1 reflecting lower
accuracy. Thus an observer could produce a one- or two-cycle pattern
even if her estimates were not very close to perfect accuracy at y=x.
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Procedure

The experimenter introduced the task: BWhat I’m going to ask
you to do is showmewhere on the number line some numbers
are. This number line goes from 0 at this end to 1,000 at this
end.When I ask you where a number goes, I want you tomake
a line through the number line where you think the number
goes.^ Before each trial, the experimenter asked, BIf this is 0
and this is 1,000, where does N go?^ Children completed the
pretest, then two trial blocks, then the post-test.

Feedback was given on the first three trials in each trial
block for children in the 150-feedback and 725-feedback con-
ditions. To introduce these trials, the experimenter explained:
BAfter you mark where you think the number goes, I’ll show
you where the number really goes, so you can see how close
your guess was.^ After the child marked the line, the experi-
menter occluded the paper, marked the correct location for the
target number (N) using a hidden ruler, and recorded the num-
ber associated with the child’s response (X). The experimenter
then showed the child the corrected line and said, BYou said
that N goes here, but N actually goes here. That line you
marked is where X goes.^ If the child’s response fell within
50 points of the target number, the experimenter said: BYou
can see these two lines are really quite close. How did you

know N went there?^ If the child’s response was more than 50
points from the target number, the experimenter said: BYour guess
was a bit too high/low. You can see these two lines are quite far
from each other. Why do you think this is too high/low for N?^

Results and discussion

Children were excluded from further analysis if estimates at
either pretest or post-test were uncorrelated with presented
numbers (Spearman rank correlation, rs, p > .05; n=24) or
the child used only 10 % of the line when marking locations
on over 90 % of trials (n=2). The remaining 91 children were
included (M = 7 years and 5 months, range 6 years and 10
months to 7 years and 10 months).

Comparison with Opfer and Siegler (2007)

We first asked whether our data were consistent with Opfer and
Siegler (2007; O&S), who investigated the effect of feedback
on initially Blogarithmic^ estimators. We identified children
better fit at pretest by a logarithmic model than a linear model
(n = 41). As in O&S, analyses were performed after testing, so
children couldn’t be distributed among feedback conditions

Fig. 1 Predictions of the model on a 0-1000 number line task (top row, a-c) and estimates of 2nd-grade children at pretest following their individual
classification according to the three different versions of the model (bottom row, d-f)
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based on pretest data. However, initially Blogarithmic^ children
were present in all conditions (no-feedback: n = 17,M= 6 years
and 9months; 150-feedback: n = 11,M= 6 years and 9months;
725-feedback: n = 13, M = 6 years and 9 months). Median
estimates for these Blogarithmic^ estimators were similar across
conditions at pretest (results of model comparisons2: no-feed-
back, log R2 = 0.96, lin R2 = 0.74, Δ AICc = 40.36; 150-
feedback, log R2 = 0.91, lin R2 = 0.73, Δ AICc = 25.44; 725-
feedback, log R2 = 0.96, lin R2 = 0.69, Δ AICc = 47.37).

Post-test estimates for children in the 150-feedback condi-
tion were more linear than logarithmic (log R2 = 0.77, lin R2 =
0.96,ΔAICc = 39.18). For the O&S 725-feedback condition,
a linear fit was slightly but not significantly better than a
logarithmic fit. Our data were consistent with this: median
estimates for children in our 725-feedback condition were also
reasonably well described by logarithmic or linear functions
(log R2 = 0.86, lin R2 = 0.85, Δ AICc = 1.67). No-feedback
children remained more logarithmic than linear at post-test
(log R2 = 0.94, lin R2 = 0.84, Δ AICc = 24.16). Overall,
current data were comparable to O&S and successfully repli-
cated the basic findings.

Characterizing estimates according to the proportion
judgment framework

The proportion judgment framework proposes that the
number-line task involves proportion estimation and that chil-
dren’s knowledge and experience may lead to different strat-
egies. Accordingly, children should be categorized not as log-
arithmic versus linear responders, but by the reference points
they use when making estimates (see Fig. 1). Children making
bounded judgments (Figs. 1b and e) know enough about the
numbers involved and the structure of the task to appropriately
make estimates relative to values at both endpoints, leading to
a Bone-cycle^ pattern of over-/underestimation. Children
using endpoints and a midpoint (Figs. 1c and f) produce a
Btwo-cycle^ pattern of over-/underestimation, typically with
more accurate estimates overall. Children making unbounded
judgments (Figs. 1a and d) apparently do not make effective
use of the upper endpoint.

These categories do not map perfectly onto logarithmic and
linear classifications, but there are predictable relations

between classification schemes. Children Bunbounded^ at
pretest would be classified as Blogarithmic^ according to the
representational shift scheme. Childrenwhowere Btwo-cycle^
at pretest would generally fall into the Blinear^ category (al-
though they are fairly accurate, their estimates are better ex-
plained by the two-cycle proportional model than a linear
model because they show characteristic cyclical patterns of
over- and underestimation). Children who were Bone-cycle^
at pretest included some who would be classified as
Blogarithmic^ and some who would be Blinear.^

We classified children’s pretest data in terms of these three
categories, based on AICc differences. Fifty-one children pro-
duced Bunbounded^ pretest estimates (Fig. 1d), 33 children’s
pretest estimates were Bone-cycle^ (Fig. 1e), and seven chil-
dren’s pretest estimates were Btwo-cycle^ (Fig. 1f). These
findings show that this theoretical framework can describe
individual differences in children’s estimation patterns.

Testing a new hypothesis about the role of feedback

To test our core hypothesis that feedback provides new refer-
ence points within the proportional structure of the number
line, we looked in particular at one subset of children: the
children with Bone-cycle^ pretest estimates (Fig. 1e), who
appear to use two reference points (both endpoints). Eleven
initially Bone-cycle^ children received 150-feedback and 13
received 725-feedback (nine were in the no-feedback
condition).

Our main hypothesis is that corrective feedback provides
new reference points in the vicinity of the feedback, providing
these children with a third reference location in addition to the
two endpoints they were already using at pretest. The patterns
of over- and underestimation seen in the pretest data should
thus repeat between each pair of reference points used at post-
test (Hollands & Dyre, 2000). This leads to specific predic-
tions about the post-test data of two groups: the children who
initially showed a one-cycle pattern and then received feed-
back near 150, and the children who initially showed a one-
cycle pattern and then received feedback around 725. If feed-
back provides additional reference points, initially one-cycle
children who receive 150-feedback should produce post-test
data better explained by a model with a third reference point
around 150 (see Fig. 2a), but initially one-cycle children who
receive 725-feedback should produce post-test data better ex-
plained by a model with a third reference point around 725
(see Fig. 2b).

Because informative feedback was given not only at 150
and 725 but at a range of locations surrounding those focal
numbers and at the locations of children’s erroneous place-
ments (as in O&S), true feedback locations were Bnoisier^
than modeled feedback locations (see discussion below).
However, data did conform to model predictions. Following
feedback around 150, group median post-test data from

2 Formal model comparisons used Akaike’s Information Criterion
corrected for small sample sizes (AICc; Burnham & Anderson, 2002;
Burnham, Anderson, & Huyvaert, 2011). Δ AICc gives the difference
in AICc scores between another model and the preferred model (which
has the lowest AICc score). Burnham and Anderson (2002) suggest, BAs
a rough rule of thumb, models having a Δ within 1–2 of the [preferred]
model have substantial support and should receive considerations in mak-
ing inferences. Models having Δ within about 4–7 of the [preferred]
model have considerably less support, while models with Δ > 10 have
either essentially no support and might be omitted from further consider-
ation or at least fail to explain some substantial structural variation in the
data^ (p. 446).
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children who were one-cycle at pretest (n = 11) were better
explained at post-test by the model with a third reference point
specifically located at 150 (vs. 725, R2 = 0.96, Δ AICc =
10.35; Fig. 2a). Following feedback around 725, group medi-
an data from children who were one-cycle at pretest (n = 13)
were better explained at post-test by the model with a third
reference point at 725 (vs. 150, R2 = 0.96, Δ AICc = 19.41;
Fig. 2b).3

Effects of feedback on initially unbounded estimates

We also looked at the effects of feedback on the 51 ini-
tially Bunbounded^ children, for whom our framework
does not make such specific quantitative predictions. For
the initially Bone-cycle^ children discussed above, we
could infer that they had the necessary knowledge to ben-
efit from a new reference point (as their pretest estimates
indicated that they already used both endpoints

appropriately), and we could predict specific patterns that
should arise following feedback at 150 versus feedback at
725 (Fig. 2). The situation is different for children whose
pretest estimates were Bunbounded.^ The unbounded fit
could indicate a lack of knowledge of the magnitudes of
the numbers near the upper end of the range, a lack of
necessary ordinal knowledge, a failure to understand or
respond appropriately to the bounded, proportional nature
of the task, or some combination of these (see also Cohen
& Sarnecka, 2014; Hurst et al., 2014). Because of this,
our framework doesn’t make clear predictions about dif-
ferential effects of feedback on reference point use for
these children. For example, feedback clustered around
150 might lead these children to adopt a new reference
point, but without sufficient knowledge to calibrate esti-
mates relative to the upper endpoint of 1,000, they would
not be expected to suddenly begin using the upper end-
point following feedback (i.e., feedback wouldn’t neces-
sarily cause them to shift between categories in our clas-
sification scheme).

Nineteen initially Bunbounded^ children received 150-
feedback and 20 received 725-feedback (12 were in the
no-feedback condition). To assess how feedback

3 While the small size of this critical subset (24 children across two
feedback conditions) may be a potential limitation of the study, it is
comparable to the previous study which included 61 initially
Blogarithmic^ children distributed unevenly in unspecified numbers
across four feedback conditions (Opfer & Siegler, 2007).

Fig. 2 Predictions (top row) and data (bottom row) regarding the effects
of feedback for children who were classified at pre-test as making a
bounded judgment using two reference points (the endpoints), resulting

in a one-cycle estimation pattern. Predictions and data for children
receiving feedback around 150 are shown in (a); predictions and data
for children receiving feedback around 725 are shown in (b)

Psychon Bull Rev (2016) 23:1198–1205 1203



influenced children’s estimates, we computed an average
pretest/post-test change score for each child for each feedback
condition (subtracting post-test estimate from pre-test estimate
for each number 4). A one-way ANOVA on Condition (150-
feedback, 725-feedback, no-feedback) showed a significant
main effect of Condition, F(2, 48)=5.149, p=.009. Tukey post
hoc analyses showed significant differences between no-
feedback and 150-feedback conditions (p=.026) and between
150-feedback and 725-feedback conditions (p=.021), but no
difference between 725-feedback and no-feedback conditions
(p=.957).

Thus, the location of feedback mattered, with feedback
trials using target numbers clustering around 150 (vs. 725)
leading to a greater influence on initially Bunbounded^ chil-
dren’s estimates, similar to the initially Blogarithmic^ estima-
tors of O&S. These results do not require explanation in terms
of representational discrepancy. Rather, the vicinity of 700 is
the region in which group estimates are relatively unbiased for
children who initially produce either Blogarithmic^ or
Bunbounded^ estimates. Due to the design of the feedback
procedure, feedback revealed information not only about the
correct location of the target number, but also about the num-
bers corresponding to the locations of the child’s erroneous
placements, wherever they might be. Thus feedback around
150 was likely both broader and more informative than feed-
back around 725, in both O&S and our study. For example,
feedback received by initially Bunbounded^ children in our
150-feedback condition had a range of 883 (from 0 to 883,
M = 281, SD = 202) while in our 725-feedback condition the
range was 521 (from 407 to 928, M = 719, SD = 93). This
difference across conditions could explain differences in esti-
mates following these two types of feedback – there is no
reason to call upon discrepancies with mental representations
of number for an explanation.

Conclusions

We tested the hypothesis that local feedback about the
accuracy of number-line estimates simply provides chil-
dren with new reference points in the vicinity of the feed-
back, rather than supporting a shift to a different mental
representation of number. This hypothesis arises from a
theoretical framework according to which number-line es-
timation tasks should be treated as proportion judgments.
Second graders completed a 0–1000 number-line task
with a pretest, two feedback trial blocks, and a post-test.
We used pretest behavior to classify children according to
this theoretical framework, showing that it can describe
individual differences in second graders’ estimation pat-
terns, and to identify a subset of children for whom the

theory makes specific quantitative predictions. The effects
of feedback do not support the representational shift hy-
pothesis. Rather, they are consistent with the proportional-
reasoning framework and the idea that local feedback pro-
vides children with new reference points on the number
line. More broadly, this work provides no evidence for the
idea that cognitive change can occur rapidly at the level of
entire mental representations.
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