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Abstract Research on the perception of temporal order uses
either temporal-order judgment (TOJ) tasks or synchrony
judgment (SJ) tasks, in both of which two stimuli are pre-
sented with some temporal delay and observers must judge
the order of presentation. Results generally differ across
tasks, raising concerns about whether they measure the same
processes. We present a model including sensory and deci-
sional parameters that places these tasks in a common
framework that allows studying their implications on ob-
served performance. TOJ tasks imply specific decisional
components that explain the discrepancy of results obtained
with TOJ and SJ tasks. The model is also tested against
published data on audiovisual temporal-order judgments,
and the fit is satisfactory, although model parameters are
more accurately estimated with SJ tasks. Measures of latent
point of subjective simultaneity and latent sensitivity are
defined that are invariant across tasks by isolating the sen-
sory parameters governing observed performance, whereas
decisional parameters vary across tasks and account for
observed differences across them. Our analyses concur with
other evidence advising against the use of TOJ tasks in
research on perception of temporal order.

Keywords Synchrony judgment . Temporal-order
judgment . Point of subjective simultaneity . Audiovisual
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Research on perception of temporal order investigates
observers’ ability to elucidate whether two sensory events
occurred simultaneously or in what order they occurred.
This ability is measured as a function of the temporal delay
(or stimulus onset asynchrony; SOA) between the two
events, and this strategy is used with events of the same or
of different sensory modalities. Here, we will refer only to
the audiovisual case for simplicity and without loss of
generality.

In studies of audiovisual synchrony or temporal-order
judgments, the onset of the visual signal is usually regarded
as the reference, and the independent variable is auditory
delay, defined as positive when the auditory signal follows
the visual signal and as negative when the auditory signal
precedes the visual signal. Those studies use one of two
tasks. In the synchrony judgment (SJ) task, the observer
indicates whether the stimuli were presented simultaneously
or successively, yielding synchronous (S) or asynchronous
(A) responses in the SJ2 version of the task, or whether the
auditory stimulus was presented before, after, or at the same
time as the visual stimulus, yielding audio-first (AF), video-
first (VF), or synchronous (S) responses in the SJ3 version.
In the temporal-order judgment (TOJ) task, the observer
must judge which stimulus was presented first (yielding
AF or VF responses). The data are typically represented as
psychometric functions reflecting the proportion of
responses of each type as a function of auditory delay.
Examples of empirical psychometric functions under each
type of task are given in Figs. 5 and 6 below.

Two quantitative indices are typically obtained from SJ
data. One is the synchrony range, which is the width of the
interval of temporal delays for which S responses prevail.
The other is the point of subjective simultaneity (PSS),
which is the auditory delay at the midpoint of the synchrony
interval. TOJ tasks also yield a PSS (the auditory delay at
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which AF and VF responses are equally frequent) and a
sensitivity measure (the slope of the psychometric function
at the PSS). Van Eijk, Kohlrausch, Juola, and van de Par
(2008) tabulated results from studies aimed at estimating the
PSS with SJ and TOJ tasks and showed that the two tasks
generally provide discrepant estimates. Van Eijk et al.
(2008) also carried out a within-subjects study involving
the three tasks (SJ2, SJ3, and TOJ), whose results confirmed
that PSS estimates from SJ2 and SJ3 tasks were highly
correlated, whereas PSS estimates from TOJ tasks were
uncorrelated with those from SJ2 or SJ3 tasks. Their results
also revealed that PSS estimates from SJ2 and SJ3 tasks did
not differ significantly, whereas PSS estimates from TOJ
tasks were significantly lower than those from SJ2 or SJ3
tasks. The reason for the discrepant PSS estimates in SJ and
TOJ tasks is unclear, but these discrepancies have prompted
the view that SJ and TOJ tasks measure distinct processes
(for a review, see Spence & Parise, 2010). The consensus is
that SJ and TOJ tasks imply different response biases (e.g.,
Nicholls, Lew, Loetscher, & Yates, 2011; Spence & Parise,
2010; Vatakis, Navarra, Soto-Faraco, & Spence, 2008;
Vroomen & Keetels, 2010; Yates & Nicholls, 2011), but
their nature has never been specified and how they affect
performance has never been modeled. The issue of whether
SJ and TOJ tasks involve different processes lends itself to
investigation with recourse to models of timing judgments,
in which sensory and decisional aspects (including biases)
are explicitly represented.

Most models of timing judgments fall within the class of
independent-channels models described by Sternberg and
Knoll (1973).1 In these models, signals from the two stimuli
arrive at a central mechanism with randomly distributed ar-
rival latencies. At this mechanism, the judgment of temporal
order or synchrony is determined by a ternary decision rule
applied to the arrival-time difference between the two signals.
Sternberg and Knoll considered six variants of the decision
rule (which accommodate the class of attention-switching
models of Kristofferson & Allan, 1973) and analyzed the
formal properties of these models mostly as regards reaction
times under TOJ tasks. Sternberg and Knoll also derived
general properties of independent-channels models.

Research on timing judgments has relied on models to
various extents. Some studies fitted specific models to data
from a two-alternative forced-choice (2AFC) variant of the
TOJ task (e.g., Allan & Kristofferson, 1974) or to data from
SJ or TOJ tasks (e.g., Allan, 1975; Jaśkowski, 1991a,
1991b, 1993). In later studies, models were mentioned but
subsequently obviated, and arbitrary functions were instead

fitted to data with the goal of obtaining measures of PSS and
sensitivity from the fitted functions (e.g., Heath, 1984;
Stelmach & Herdman, 1991). The most recent research
disregards models entirely and merely fits arbitrary func-
tions to SJ and TOJ data, with no connection to explicit
models (e.g., Donohue, Woldorff, & Mitroff, 2010; Fujisaki
& Nishida, 2009; Harrar & Harris, 2008; Nicholls et al.,
2011; Shore, Spry, & Spence, 2002; Spence, Baddeley,
Zampini, James, & Shore, 2003; Stone et al., 2001; van
Eijk et al., 2008, 2010; Vatakis et al., 2008; Yamamoto &
Kitazawa, 2001; Yates & Nicholls, 2011; Zampini, Guest,
Shore, & Spence, 2005; Zampini, Shore, & Spence, 2003).
An exception is the study by Schneider and Bavelier (2003),
whose goal was distinguishing mechanisms (response biases
or criterion changes) that might masquerade as prior entry
effects. They thus looked into models from this perspective
only and, hence, did not assess how model parameters (as
opposed to derived measures such as the PSS) differed
between SJ and TOJ tasks.

An important consequence of the widespread practice of
fitting arbitrary functions to data is the resultant multiplicity
of uninterpretable parameters. Consider the study of van
Eijk et al. (2008), in which the same stimuli and SOAs were
used under the three tasks. Van Eijk et al. (2008) fitted two
independent 3-parameter functions to SJ2 data, four inde-
pendent 3- or 4-parameter functions to SJ3 data, and a
further independent 4-parameter function to TOJ data.
Thus, 24 parameters were involved, which reflected only
the location, slope, and asymptotes of the curves that best
described the path of each (sub)set of data. Since stimuli and
conditions were the same across tasks, sensory aspects (i.e.,
distributions of arrival latencies) are likely to have been
invariant across tasks, with differences across them only in
criteria or biases. An analogous situation arises in studies in
which a given task is used under different attentional con-
ditions (e.g., when cuing or other manipulations are used in
studies on prior entry). In these cases, criteria or biases are
likely to be the same across manipulations, which should
presumably alter only sensory parameters. The strategy of
fitting arbitrary functions to data (which usually renders
different PSSs, as discussed above) cannot shed light on
these issues, because there is no link between the parameters
of the arbitrary curves fitted to the data and the sensory and
decisional parameters governing judgments.

The work described in this article looked into these
issues, and the plan of the article is as follows. First, an
explicit model is presented that places performance in all
tasks in a common framework also incorporating response
errors. The model is an expanded version of Sternberg and
Knoll’s (1973) independent-channels model 3. A formal
analysis reveals implications for performance measures in
SJ and TOJ tasks and also shows that the model can accom-
modate a number of quantitative and qualitative differences

1 Consideration of a distinctively different class of models assuming
that perception of simultaneity and perception of temporal order follow
separate and independent processing streams will be deferred to the
Discussion section.
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between SJ and TOJ data. The model is then used to test
hypotheses about differences in sensory or decisional
parameters across tasks. To this end, the model is fitted to
the data of van Eijk et al. (2008), both under no constraint
(i.e., SJ and TOJ data are fitted separately, which may render
different parameter estimates across tasks) and under the
constraint that sensory parameters are common, whereas
decisional parameters differ across tasks. When the model
was fitted separately, estimated sensory parameters turned
out to be similar in all tasks, whereas estimated decisional
parameters differed across tasks, providing justification for
the constrained fit. We discuss the interpretation of model
parameters and extract conventional performance measures
from the data, which confirm the discrepancies that van Eijk
et al. (2008) reported using a different method of analysis.
Finally, we discuss several extensions to the model, as well
as alternative and task-independent measures of timing
judgments.

An integrated model for SJ2, SJ3, and TOJ tasks

The model to be presented next falls within the class of
independent-channels models of Sternberg and Knoll (1973)
and is similar to the triggered-moment model of Schneider
and Bavelier (2003), although our model differs in some
respects. A preliminary version of the model for application
to SJ3 tasks has been described (García-Pérez & Alcalá-
Quintana, 2012a), which showed that the model can account
for aspects of SJ3 data that were previously regarded as
evidence against independent-channels models. The key-
stone of the model is the distinction between unobservable
judgments and observed responses, and the model is extend-
ed here to SJ2 and TOJ tasks, as suggested by Schneider and
Bavelier. The extension is built on the surmise that an
observer’s judgment of whether two stimuli were presented
simultaneously or in a given order precedes and is
independent of the response requested from the observ-
er. Thus, the model assumes that, on each trial, the
observer strives to collect sensory information so as to
judge whether the visual stimulus was first or the audi-
tory stimulus was first; if the observer cannot tell,
presentation is judged to be simultaneous. Thus, observ-
ers face each trial as if they were to choose among
these three options and, subsequently, translate this
judgment into a response according to the options given
in each task: AF, S, or VF in SJ3 tasks, only S or A in
SJ2 tasks, and only AF or VF in TOJ tasks. In giving
these responses, observers may make finger errors and,
thus, misreport their judgments. The model will be
presented in two steps: first, the model for unobservable
judgments and, then, the model for observed responses,
including potential misreports due to finger errors.

Let the arrival latencies Tv and Ta of visual and auditory
signals be random variables with respective densities gv and
ga given by the shifted exponential distributions

giðtÞ ¼ 1i exp �1i t � $ti þ Cið Þð Þ½ �; t � $ti þ Ci; i 2 v; af g;
ð1Þ

where Δti (in milliseconds) is the actual onset of signal i, λi
is the rate parameter (in milliseconds−1), and τi (in milli-
seconds) is a further processing delay. Exponential distribu-
tions are commonly assumed to describe arrival latencies or
peripheral processing times (see, e.g., Colonius &
Diederich, 2011; Diederich & Colonius, 2011; Heath,
1984), and their parameters are readily interpretable: The
mean of a variable distributed as in Eq. 1 is 1/λi + τi,
whereas the standard deviation is 1/λi. Thus, parameters λi
and τi describe arrival latencies whose mean and standard
deviation may vary independently.

Without loss of generality, we set the arbitrary origin of
time at the physical onset of the visual stimulus so thatΔtv 0
0 and, hence, Δt ≡ Δta is the auditory delay that is manip-
ulated, where Δt < 0 reflects that the auditory signal pre-
cedes the visual signal, and Δt > 0 reflects that the auditory
signal follows the visual signal. Figure 1a shows an exam-
ple. On a given trial, arrival latencies are realizations of
these distributions, and the observer’s judgment arises from
a decision rule operating on the arrival-time difference D 0

Ta − Tv, which has a bilateral exponential distribution given

(a)
 auditory

visual 

Arrival latency, Ti

Δt = 50
λa = 1/30, τa = 20
λv = 1/60, τv = 40

–100 0 100 200 300 400

(b)

Arrival-time difference, D = Ta – Tv

–200 –100 0 100 200

“audio-first”
judgment

“synchronous”
judgment

“video-first”
judgment

prob: 0.1488 prob: 0.1226prob: 0.7286

Fig. 1 Model of timing judgments. a Exponential distributions for the
arrival latency of a visual stimulus (red curve) presented at time 0 and
an auditory stimulus (blue curve) presented at time Δt 0 50 ms.
Parameters as indicated in the inset. b Bilateral exponential distribution
of arrival-time differences and cutpoints on the decision space (vertical
lines, at D 0 ±δ with δ 0 60), determining the probability of each
judgment
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by

f d;$tð Þ ¼
1a1v
1aþ1v

exp 1v d � $t � Cð Þ½ � if d � $t þ C
1a1v
1aþ1v

exp �1a d � $t � Cð Þ½ � if d > $t þ C

(
;

ð2Þ
where τ 0 τa − τv is a processing advantage such that τ < 0
indicates faster auditory processing and τ > 0 indicates
faster visual processing. Figure 1b shows the distribution
for the case in Fig. 1a.

The decision process operates under the trichotomy de-
fined by the two vertical lines in Fig. 1b. Thus, an AF
judgment arises when D is sufficiently large and negative
(D < −δ), a VF judgment arises when D is sufficiently large
and positive (D > δ), and an S judgment occurs when the
arrival-time difference is sufficiently small (−δ ≤ D ≤ δ).
Here, δ is a resolution parameter determining the observer’s
ability to discriminate small differences in arrival latency.2

Under the SJ2 task, observers using the same decision space
arrive at A judgments whenever AF or VF judgments occur.
Finally, TOJ tasks only allow VF or AF responses and,
hence, force observers to guess between AF and VF
responses when they make S judgments. Let ξ be the prob-
ability of a VF response in these cases, so that 1 − ξ is the
probability of an AF response. Then, in TOJ tasks, VF
responses occur when D > δ (as a result of VF judgments)
and with probability ξ when − δ ≤ D ≤ δ (as a result of
guesses), whereas AF responses occur when D < −δ and
with probability 1 − ξ when − δ ≤ D ≤ δ. We will refer to ξ
as a response bias parameter because it may produce an
imbalance of guessing outcomes due to a bias toward one of
the response options.

Even if parameters do not vary across tasks, this model
predicts differences across tasks as to how the probability of
judgments of synchrony and temporal order vary as a func-
tion of Δt. To obtain these predictions, first note that the
cumulative distribution for D is

F d;$tð Þ ¼
Z d

�1
f z;$tð Þ dz

¼
1a

1aþ1v
exp 1v d � $t � Cð Þ½ � if d � $t þ C

1� 1v
1aþ1v

exp �1a d � $t � Cð Þ½ � if d > $t þ C

(
;

ð3Þ
where f is given by Eq. 2. Let ΨX‐Y be the probability under
task X (for X ∈ {SJ2, SJ3, TOJ}) of judgment Y (for Y ∈

{VF, AF, S, A}). Then,

<SJ3�AF $tð Þ ¼
Z �%

�1
f z;$tð Þ dz ¼ F �%;$tð Þ ð4aÞ

<SJ3�S $tð Þ ¼
Z %

�%

f z;$tð Þ dz ¼ F %;$tð Þ � F �%;$tð Þ ð4bÞ

<SJ3�VF $tð Þ ¼
Z 1

%

f z;$tð Þ dz ¼ 1� F %;$tð Þ ð4cÞ

in the SJ3 task,

<SJ2�S $tð Þ ¼
Z %

�%

f z;$tð Þ dz ¼ <SJ3�S $tð Þ ð5aÞ

<SJ2�A $tð Þ ¼
Z �%

�1
f z;$tð Þ dzþ

Z 1

%

f z;$tð Þ dz

¼ <SJ3�AF $tð Þ þ<SJ3�VF $tð Þ ð5bÞ

in the SJ2 task, and

<TOJ�AF $tð Þ ¼
Z �%

�1
f z;$tð Þ dzþ 1� Jð Þ

Z %

�%

f z;$tð Þ dz

¼ <SJ3�AF $tð Þ þ 1� Jð Þ<SJ3�S $tð Þ ð6aÞ

<TOJ�VF $tð Þ ¼
Z 1

%

f z;$tð Þ dzþ J

Z %

�%

f z;$tð Þ dz

¼ <SJ3�VF $tð Þ þ J <SJ3�S $tð Þ ð6bÞ

in the TOJ task. Psychometric functions under SJ2 and TOJ
tasks are thus transformations of the psychometric functions
for the SJ3 task, although they describe different shapes.
Figure 2 shows these functions with the parameters in Fig. 1
and for ξ ∈ {0, .2, .5, .8, 1}. Appendix 1 discusses how
model parameters determine the indices of performance
extracted when these functions are fitted to empirical data
(synchrony boundaries, synchrony ranges, and PSSs).

Model parameters must vary across individuals, but they
may also vary with stimulus conditions (e.g., cuing or the
availability of anticipatory sensory information, which
might alter λv, λa, τv, or τa), with learning, fatigue, or task
requirements (which may alter the resolution parameter δ),
or with strategic decisions or expectations (which may alter
the response bias parameter ξ in TOJ tasks). Figure 3 illus-
trates two extreme cases involving changes in δ. In the top
panel, resolution is high (i.e., δ is small), as it would be for
an observer with high ability to resolve small differences in
arrival latency. Due to this ability, S judgments in the SJ3

2 The reason for a single parameter to define a symmetric central zone
in the decision space under independent-channel models is that an
asymmetric zone requires two independent boundary parameters
whose effects are not experimentally distinguishable from those of
parameter τ. For details, see Appendix A.1 in Schneider and Bavelier
(2003) and the extensive discussion in Yarrow, Jahn, Durant, and
Arnold (2011).
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task are infrequent, and ΨSJ3-S (red curve) does not cross
ΨSJ3-VF (blue curve). This characteristic was reported by
Stelmach and Herdman (1991; see their Fig. 5) and reflects

what van Eijk et al. (2008) described as “synchronous response
proportions [that] were always below either the audio-first or
the video-first curve” (p. 962). At the same time, and because of
the scarcity of S judgments, response bias in the TOJ task has a
very limited effect, and variations in response bias produce
functionsΨTOJ-VF (gray curves) that differ onlyminimally from
their sister function ΨSJ3-VF (blue curve).

The bottom panel of Fig. 3 shows a case differing only in
that resolution is now poor (i.e., δ is large). S judgments
now prevail in the SJ3 task (red curve), producing a pattern
akin to what van Eijk et al. (2010) described as “synchro-
nous responses [that] were relatively constant over the range
of relative delays” (p. 2231). The prevalence of S judgments
makes response bias affect the shape of ΨTOJ-VF (gray
curves), which may thus differ greatly from that of ΨSJ3-VF

(blue curve).
The extreme cases in Fig. 3 help describe how the func-

tions change for intermediate values of δ. As δ increases,
ΨSJ3-S progressively broadens and rises, in a transition from
the red curve in the top panel of Fig. 3 to the red curve in the
bottom panel of Fig. 3; analogously, ΨSJ3-VF progressively
shifts to the right in a transition from the blue curve in the
top panel of Fig. 3 to the blue curve in the bottom panel of
Fig. 3; and, finally, the effect of the response bias parameter
ξ increases and makes ΨTOJ-VF (gray curves in Fig. 3)
describe a transition from the shapes in the top panel (where
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(c) TOJ task, video first
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Fig. 2 Probability of each judgment in each task as a function of
auditory delay. a SJ3 task. b SJ2 task. c TOJ task. Parameters of the
underlying exponential are the same in all cases and equal to those
given in Fig. 1. The various curves in panel c indicate how the curve
describing the probability of VF responses (judgments plus guesses) in
the TOJ task varies with response bias (parameter ξ). The circle on
each curve in each panel reflects the probability of each judgment
under each task when Δt 0 50 ms. Thus, in panel a, the probability
of VF, S, and AF judgments are .1266, .7286, and .1488, respectively
(as shown in Fig. 1b); in panel b, the probability of an S judgment is
still .7286, and the probability of an A judgment is .1226 + .1488 0
.2714; in panel c, the probability of a VF response (a mixture of true
judgments and guesses) varies with bias: If ξ 0 .5 (i.e., an unbiased
observer), the probability is .1226 + .5 × .7286 0 .4869; if ξ 0 .8 (i.e.,
an observer biased toward VF responses), the probability is instead
.1226 + .8 × .7286 0 .7055; if ξ 0 .2 (i.e., an observer biased toward
AF responses), the probability is .1226 + .2 × .7286 0 .2683; finally,
only if ξ 0 0 (i.e., for an observer fully biased toward AF responses)
will the probability of a VF response in the TOJ task equal the
probability of a VF judgment in the SJ3 task, whereas if ξ 0 1 (i.e.,
an observer fully biased toward VF responses), the probability of a VF
response in the TOJ task equals one minus the probability of an AF
judgment in the SJ3 task

SJ3 task
synchronous
video first

TOJ task, video first
ξ = 0.2
ξ = 0.5

ξ = 0.8
ξ = 1

–300 –200 –100 0 100 200 300
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Fig. 3 Model curves for the SJ3 and TOJ tasks under extreme cases
regarding the resolution parameter δ. For small δ (δ 0 15; top panel), S
judgments in the SJ3 task (red curve) are relatively infrequent, and
hence, the curve for S judgments does not cross the curve for VF
judgments (blue curve). At the same time, variations in response bias
(parameter ξ) produce patterns of VF responses in the TOJ task (gray
curves) that barely differ from VF judgments in the SJ3 task (blue
curve). For larger δ (δ 0 250; bottom panel), S judgments prevail in the
SJ3 task (red curve) and variations in response bias (parameter ξ)
produce patterns of VF responses in the TOJ task (gray curves) that
differ greatly from VF judgments in the SJ3 task (blue curve)

824 Psychon Bull Rev (2012) 19:820–846



curves for different ξs are similar and tightly packed togeth-
er) to those in the bottom panel (where curves for different
ξs spread out horizontally and differ in the height of their
intermediate plateau).

Up to now, model equations express the probabilities of
unobservable judgments (plus guesses in TOJ tasks) as a
function of auditory delay. These equations express proba-
bilities of observed responses only if responses faithfully
reflect judgments. However, errors on pressing the response
keys decouple observed responses and judgments, and it has
been shown that the presumed failure of independent-
channels models can be explained as a result of these errors
(García-Pérez & Alcalá-Quintana, 2012a).3 Thus, let εAF,
εS, and εVF be the probabilities that the observer misreports
AF, S, and VF judgments, respectively. In SJ3 tasks, mis-
reporting any given judgment can take two forms (i.e., an
observer who has made an S judgment may unintentionally
press the response key for an AF or aVF judgment). Let κX-Y be
the bias toward misreporting an X judgment as a Y response so
that κX-Z 0 1 − κX-Y is the bias toward misreporting an X
judgment as a Z response. These biases rarely reflect observers’
decisions; on the contrary, they are often caused by the layout of
the response interface, which may make some observers more
prone to making errors upon reporting specific judgments and,
in such cases, more prone to misreporting in a certain form.
Only three such bias parameters exist—say, κAF-S, κS-AF, and
κVF-AF—because κAF-VF 0 1 − κAF-S, κS-VF 0 1 − κS-AF, and
κVF-S 0 1 − κVF-AF. The tree diagrams in Fig. 4 indicate the
possible sequences of eventsmapping judgments onto responses
when errors may occur. These diagrams also help demonstrate
that the model incorporating response errors in SJ3 tasks is

<*
SJ3�AF $tð Þ ¼ 1� (SJ3�AFð Þ<SJ3�AF $tð Þ

þ (SJ3�S.S�AF<SJ3�S $tð Þ
þ (SJ3�VF.VF�AF<SJ3�VF $tð Þ ð7aÞ

<*
SJ3�S $tð Þ ¼ (SJ3�AF.AF�S<SJ3�AF $tð Þ

þ 1� (SJ3�Sð Þ<SJ3�S $tð Þ
þ (SJ3�VF 1� .VF�AFð Þ<SJ3�VF $tð Þ ð7bÞ

<*
SJ3�VF $tð Þ ¼ (SJ3�AF 1� .AF�Sð Þ<SJ3�AF $tð Þ

þ (SJ3�S 1� .S�AFð Þ<SJ3�S $tð Þ
þ 1� (SJ3�VFð Þ<SJ3�VF $tð Þ; ð7cÞ

where ΨSJ3-AF, ΨSJ3-S, and ΨSJ3-VF on the right-hand sides
are given by Eqs. 4a, 4b and 4c. Similarly, the extended
model for SJ2 tasks is

<*
SJ2�S $tð Þ ¼ (SJ2�AF<SJ3�AF $tð Þ

þ 1� (SJ2�Sð Þ<SJ3�S $tð Þ
þ (SJ2�VF<SJ3�VF $tð Þ ð8aÞ

<*
SJ2�A $tð Þ ¼ 1� (SJ2�AFð Þ<SJ3�AF $tð Þ

þ (SJ2�S<SJ3�S $tð Þ
þ 1� (SJ2�VFð Þ<SJ3�VF $tð Þ; ð8bÞ

and the extended model for TOJ tasks is

<*
TOJ�AF $tð Þ ¼ 1� (TOJ�AFð Þ<SJ3�AF $tð Þ

þ 1� Jð Þ<SJ3�S $tð Þ
þ (TOJ�VF<SJ3�VF $tð Þ ð9aÞ

<*
TOJ�VF $tð Þ ¼ (TOJ�AF<SJ3�AF $tð Þ

þ J <SJ3�S $tð Þ
þ 1� (TOJ�VFð Þ<SJ3�VF $tð Þ; ð9bÞ

where additional subscripts are used for εAF, εS, and εVF
because these parameters may vary across tasks (e.g., mis-
reports may be more frequent in ternary SJ3 tasks than in
binary SJ2 or TOJ tasks).

Testing for differences across tasks

To test for differences (or lack thereof) in model parameters
across tasks, the model was fitted to data reported by van
Eijk et al. (2008), because their experiment used the three
tasks under the same stimulus conditions and with the same
observers. The experiment involved two types of stimuli. In
the flash–click configuration, the visual component was a
white disk flashed for 12 ms against a dark background, and
the auditory component was a 12-ms white-noise burst. In
the bouncing ball configuration, the visual component was
an animation in which a white disk moved down toward a
horizontal bar and bounced back up upon impact with the
bar, whereas the auditory component was a sinusoid with a
sharp onset and an exponential decay.With each configuration,
auditory delays ranged between −350 and 350 ms in steps of

3 There is an additional source of response contamination that comes
from what is generally referred to as lapses. These refer to cases in
which observers blink or have lapses of attention that make them miss
the trial. The ensuing failure to collect sensory information on those
trials precludes judgments, and the observer’s response is a pure guess.
Although this eventuality can be included in the model (see García-
Pérez & Alcalá-Quintana, 2012a), we will leave lapses aside, because
experiments can be designed so as to allow observers to abort trials on
which they missed the stimulus for one or another reason. This com-
mendable practice has been used, for instance, by Yarrow et al. (2011).
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50 ms, and 60 trials were administered at each delay. The
experiment was repeated under SJ2, SJ3, and TOJ tasks.
Eleven observers took part in the experiment with each pairing
of configuration and task, and an additional observer partici-
pated in the experiment with the bouncing ball stimulus.

We used maximum-likelihood methods to estimate model
parameters for each observer and stimulus configuration,
under two approaches. First, we fitted the model separately
to data from each task, which may result in different param-
eter estimates across tasks. As will be shown below, esti-
mated sensory parameters (λa, λv, and τ) did not differ
significantly or meaningfully across tasks under this sepa-
rate fit. Thus, we subsequently fitted the model jointly to
data from all tasks under the constraint that λa, λv, and τ
have the same values on all tasks, whereas all other param-
eters might differ across tasks. Pearson’s chi-square statistic
X2 and the log-likelihood ratio statistic G2 were computed as
indices of fit in each case, and a model comparison approach
was also used to determine whether the joint fit or the
separate fit accounts better for each observer’s data.

Separate fit

In the separate approach, for each observer and stimulus
configuration, SJ2 model parameters were sought by maxi-
mizing the likelihood function

LSJ2 RSJ2; qSJ2ð Þ

¼
YNSJ2

i¼1

<*
SJ2�AS $tið Þ� �Ai

<*
SJ2�S $tið Þ� �Si

; ð10Þ

where RSJ2 is the set of empirical responses, θSJ2 0 (λa, λv,
τ, δ, εSJ2-AF, εSJ2-S, εSJ2-VF) is the vector of parameters,
{Δt1, Δt2, …, ΔtNSJ2 } is the set of NSJ2 auditory delays at
which responses were collected, and Ai and Si are the counts
of A and S responses given at delay Δti. Similarly, SJ3
model parameters were sought by maximizing

LSJ3 RSJ3; qSJ3ð Þ

¼
YNSJ3

i¼1

<*
SJ3�AF $tið Þ� �Ai

<*
SJ3�S $tið Þ� �Si

<*
SJ3�VF $tið Þ� �Vi

;

ð11Þ
where RSJ3 is the set of empirical responses, θSJ3 0 (λa, λv,
τ, δ, εSJ3-AF, εSJ3-S, εSJ3-VF, κAF-S, κS-AF, κVF-AF) is the
vector of parameters, {Δt1, Δt2, …, ΔtNSJ3 } is the set of
NSJ3 auditory delays at which responses were collected, and
Ai, Si, and Vi are the counts of AF, S, and VF responses at
delay Δti. Finally, TOJ model parameters were sought by
maximizing

LTOJ RTOJ; qTOJð Þ

¼
YNTOJ

i¼1

<*
TOJ�AF $tið Þ� �Ai

<*
TOJ�VF $tið Þ� �Vi

; ð12Þ

where RTOJ is the set of empirical responses, θTOJ 0 (λa, λv,
τ, δ, εTOJ-AF, ξ, εTOJ-VF) is the vector of parameters, {Δt1,
Δt2, …, ΔtNTOJ} is the set of NTOJ auditory delays at which
responses were collected, and Ai and Vi are the counts of AF
and VF responses at delay Δti.

Likelihood functions were maximized using NAG sub-
routine E04JYF (Numerical Algorithms Group, 1999), which
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Fig. 4 Tree diagrams describing the sequences of events mapping
unobservable judgments onto observed responses in the SJ2 (a), SJ3
(b), and TOJ (c) tasks. The starting point at the left of each diagram is
the unobservable judgments, which occur with probabilities given by
Eqs. 4a, 4b and 4c. Subsequently, misreports occur with probabilities
given by the ε parameters. In the SJ2 task (panel a), misreports result in
a response opposite to that which reflects the judgment. In the SJ3 task

(panel b), misreports also render a response different from the judg-
ment, but, since there are two of those, which one it is varies with the
response bias parameters κ. In the TOJ task (panel c), misreports also
affect AF or VF judgments as in the SJ2 task, whereas S judgments
render an AF or a VF response at random and according to the
response bias parameter ξ
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uses a quasi-Newton algorithm for constrained optimization.
As applicable according to the function to be maximized,
the parameter space spanned the range [1/200, 1/5] for λa
and λv, [0, 300] for δ, [−150, 150] for τ, [0, .8] for εAF, εS,
and εVF, and [0, 1] for κAF-S, κS-AF, κVF-AF, and ξ. Two or
three evenly spaced initial values were defined for each
parameter. These initial values were factorially combined,
and the maximization routine ran for each of the resultant
starting points, yielding in each case a vector of estimates
and a divergence index. On completion, we took the vector
of estimates for which divergence was lowest, although the
returned solution rarely differed meaningfully (if at all)
across starting points (see also Alcalá-Quintana & García-
Pérez, 2012).

The process just described estimates parameters for the
full model for each task—that is, the model that incorporates
all response error parameters (the ε set) and, for the SJ2 task,
their accompanying response bias parameters (the κ set). Yet
ε parameters are worthy of consideration only if their esti-
mated values differ meaningfully from zero, which, in turn,
occurs when the data actually show signs of response errors
(e.g., AF responses at long positive auditory delays where
only VF responses should occur, or VF responses at long
negative auditory delays where only AF responses should
occur). García-Pérez and Alcalá-Quintana (2012a) reported
evidence to the effect that not all observers commit errors of
all types, or commit errors at all. Therefore, we straightfor-
wardly adapted the previously described approach so as to
fit each of the models that arise for each task by eliminating
all possible subsets of response error parameters. This ren-
ders seven additional models for the SJ2 task (three cases in
which only one of the ε parameters is fixed at 0, three cases
in which two of them are fixed at 0, and one more in which
all are fixed at 0), seven additional models for the SJ3 task
(identical to those just described, because elimination of an
ε parameter also removes its accompanying κ parameter;
see the tree diagram in Fig. 4b), and three additional models
for the TOJ task (two cases in which only one of the ε
parameters is fixed at 0 and another case in which both are
fixed at 0; recall that ξ in the TOJ task cannot be removed).
Of all the models thus fitted for each task, we selected that
for which the Bayesian information criterion (BIC) was
lowest. BIC is defined as G2 + k ln(n), where k is the number
of parameters and n is the number of independent observa-
tions. The lower the BIC, the better. Results are reported
next for the variant thus selected for each observer, task, and
stimulus configuration.

Figure 5 shows data and fitted functions for SJ2, SJ3, and
TOJ tasks for 4 participants in the flash–click experiment,
also showing summary panels for aggregated data and av-
erage fitted curves across the 11 participants. Figure 6 is
analogous and for the same participants in the bouncing ball
experiment, with summary panels now reflecting data from

the 12 participants in this experiment. Data and curves for
the remaining participants are given in Section B of the
Supplementary Material. Tables 1 and 2 in Appendix 2 list
parameter estimates for each participant in each experiment
under each task, which also indicate which model variant
was selected in each case.

The most salient aspect of Figs. 5 and 6 is the quality of
the fit, with curves that accurately follow the path of the
data. The chi-square goodness-of-fit test rejected the model
in some cases (see stars in Tables 1 and 2), but these
rejections are not massive (8 of 69 cases),4 and, more
important, they do not reflect systematic deviations between
the path of the data and the path of the fitted curves.
Consider the case of observer 3 in the SJ3 task with the
flash–click configuration (center panel in the top row of
Fig. 5), for whom the model was rejected. Fitted curves
follow the path of the data accurately up to Δt 0 150 ms
(and, actually, across the entire range of auditory delays for
AF data), but they cannot accommodate a few stray data
points that occur only for VF (blue symbols) and S (red
symbols) responses at Δt ≥ 200 ms. It is hard to imagine
how a model could produce strangely winding curves that
also accommodate these stray data.

These results show that a single model can account for
performance on SJ2, SJ3, and TOJ tasks. Fitting the model
separately to data from each task allows estimated parame-
ters to differ across tasks, but this does not imply that the
resultant differences will be significant or meaningful. A
crucial aspect to look into is, thus, whether estimated param-
eters differ across tasks. Consider first parameter τ. Tables 1
and 2 reveal that estimates are generally negative, implying
an auditory advantage (i.e., auditory signals are processed
faster than visual signals), in agreement with other sources
of evidence on this issue (for a review, see Vroomen &
Keetels, 2010). A repeated measures ANOVAwith stimulus
type (flash–click or bouncing ball) and task (SJ2, SJ3, or
TOJ) as factors revealed no significant effects whatsoever:
Estimates of τ did not differ significantly across tasks,
F(2, 20) 0 1.03, p 0 .375, or stimulus type, F(1, 10) 0
1.39, p 0 .266, and there was no interaction either, F(2,
20) 0 0.39, p 0 .679.

In turn, 1/λa and 1/λv reflect the standard deviations of
arrival latencies, which might vary across stimuli but which
should not be affected by the task (i.e., by the type of
response requested from the observer). It is noteworthy that

4 The chi-square statistic X2 was used because it has been shown to be
accurate, whereas the empirical Type I error rate of the log-likelihood
ratio statistic G2 nearly doubles its nominal Type I error rate (García-
Pérez, 1994; García-Pérez & Alcalá-Quintana, 2012a; García-Pérez &
Núñez-Antón, 2001, 2004). On the other hand, if the true rejection rate
is .05, the probability of observing eight or more rejections in 69 cases
is .022 under the binomial distribution, so that model rejections are
only marginally significant (at α/2 0 .025).
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1/λa and 1/λv are generally smaller in the bouncing ball than
in the flash–click configuration (see Tables 1 and 2). It is
also apparent in Tables 1 and 2 that 1/λa and 1/λv are
sometimes estimated at 5, which is the lower bound of our
parameter space. As is discussed in Appendix 3, this char-
acteristic reflects that the data are not informative of the
corresponding parameter and, thus, these boundary values
must be regarded as missing data and excluded from anal-
yses. This inevitable decision jeopardizes formal analyses of
differences in these parameters across tasks: With repeated
measures, all cases with one or more missing values must be
discarded. A look at Tables 1 and 2 reveals that this leaves
only two cases for analysis. Breaking down the full factorial
analysis into separate one-factor analyses does not help
much either, because sample size is nevertheless reduced

to only 5 observers in some cases. Nevertheless, a compar-
ison of means computed from all available data in each
condition is useful. Consider first the case of 1/λa. From
Table 1, the average ± SE estimates across SJ2, SJ3, and
TOJ tasks are 42.47 ± 5.54, 36.25 ± 4.96, and 35.21 ± 15.15;
from Table 2, they are 20.47 ± 3.10, 25.87 ± 3.07, and 37.82 ±
7.00. The average 1/λa seems to be meaningfully smaller in
the bouncing ball than in the flash–click configuration, but,
within each configuration, the means do not seem to differ
meaningfully across tasks. As for 1/λv, Table 1 shows that the
average ± SE estimates across SJ2, SJ3, and TOJ tasks are
41.58 ± 6.74, 39.33 ± 3.82, and 74.98 ± 12.99; from Table 2,
they are 36.32 ± 6.04, 28.37 ± 4.28, and 35.25 ± 12.11. Again,
the mean 1/λv seems meaningfully smaller in the bouncing
ball than in the flash–click configuration, but, with the only
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Fig. 5 Data and fitted curves under each task in the flash–click experiment of van Eijk et al. (2008). The upper part shows illustrative results for 4
participants. The bottom part shows summary results as averages of data and averages of the fitted functions across the 11 participants
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exception of a remarkably larger mean in the TOJ task with
the flash–click configuration, the means do not seem to differ
meaningfully across tasks either. We will show below that
TOJ tasks render less dependable estimates of these parame-
ters than do SJ2 and SJ3 tasks, which may explain the pattern
just described, but another indicator of this problem is the
prevalence of boundary estimates of 1/λa and 1/λv from TOJ
data (see Tables 1 and 2).

Estimates of δ were also subjected to a repeated measures
ANOVA with stimulus type (flash–click or bouncing ball)
and task (SJ2, SJ3, and TOJ) as factors, which revealed
significant main effects of task only, F(2, 20) 0 12.28,
p < .001, without significant main effects of stimulus
type, F(1, 10) 0 2.07, p 0 .180, or interaction, F(2, 20) 0 0.01,

p 0 .987. Subsequent paired comparisons revealed nonsignif-
icant differences between estimates of δ from SJ2 and SJ3
tasks (p 0 .651), whereas estimates from the TOJ task differed
significantly from those in the SJ2 task (p 0 .010) and the SJ3
task (p 0 .021). In sum, then, the resolution parameter δ differs
significantly across SJ and TOJ tasks.

Finally, parameter ξ is a nuisance brought about by a TOJ
task that forces observers to guess for lack of the S response
option. Like error and bias parameters (the ε and κ sets), ξ is
unrelated to temporal-order perception, and there is no rea-
son to expect any relation of these parameters to stimulus
type. In any case, Tables 1 and 2 reveal large between-
subjects differences in estimated ξ, with cases that range
from bias toward responding VF (i.e., ξ close to 1), bias in
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Fig. 6 Data and fitted curves under each task in the bouncing ball
experiment of van Eijk et al. (2008). The upper part shows illustrative
results for 4 participants (the same as those for whom results in the

flash–click experiment were shown in Fig. 5). The bottom part shows
summary results as averages of data and averages of the fitted func-
tions across the 12 participants
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the opposite direction (ξ close to 0), or a more balanced
guessing behavior (ξ around .5).

Joint fit

Because the preceding analysis revealed no meaningful or
significant differences across tasks in parameters λa, λv, and
τ, we fitted the model jointly to data from the three tasks
under the constraint that these parameters have the same
values in all tasks, whereas the resolution parameter δ and
the error and bias parameters may still differ across tasks.
Even if differences in sensory parameters were deemed
significant or meaningful across tasks, this joint analysis
serves two additional goals: (1) assessing whether the data
are compatible with the notion of common sensory param-
eters across tasks, and (2) using data from all tasks to solve
deficiencies that rendered occasional boundary estimates for
λa and λv in the separate analysis of data from each task.

Fitting the model under the joint constraints requires
maximizing the joint likelihood function

LSJ2 RSJ2; qallÞ � LSJ3 RSJ3; qallð Þ � LTOJ RTOJ; qallð Þ;ð ð13Þ
where LSJ2, LSJ3, and LTOJ are given by Eqs. 10, 11, and 12,
respectively, and where θall 0 (λa, λv, τ, δSJ2, εSJ2-AF, εSJ2-S,
εSJ2-VF, δSJ3, εSJ3-AF, εSJ3-S, εSJ3-VF, κAF-S, κS-AF, κVF-AF,
δTOJ, εTOJ-AF, ξ, εTOJ-VF) is the vector of parameters, where
subscripts for δ have been introduced because this parameter
can vary across tasks. The likelihood function was maxi-
mized as described above for the separate fit. Reduced
versions of this full model were also considered as discussed
earlier for the separate approach. In this case, an overall
number of 8 × 8 × 4 0 256 models resulted from the factorial
combination of the eight versions for the SJ2 task (including
the full model), eight versions for the SJ3 task, and four
versions for the TOJ task. The best-fitting model was also
selected as described above.

The results are shown in Figs. 7 and 8 for the same
observers as in Figs. 5 and 6 (see Section B of the
Supplementary Material for the remaining observers), and
Tables 3 and 4 in Appendix 2 list parameter estimates for
each observer with each stimulus configuration. The differ-
ences with respect to Figs. 5 and 6 are barely noticeable:
Both approaches produce curves that pass through the data
points almost identically. Interestingly, the joint fit did not
result in boundary estimates for parameters λa or λv (see
Tables 3 and 4), a natural outcome because a potential lack
of information in the data from any given task is supple-
mented with information provided by data from other tasks:
Regarding the case discussed in depth in Appendix 3, com-
pare the results for observer 6 with the flash–click configu-
ration (second panel down the left column of Figs. 5 and 7).
The X2 statistic rejected the joint model for 5 observers in
the flash–click configuration and for 7 in the bouncing ball

configuration (see stars in Tables 3 and 4). The reason for
this relatively large number of rejections is that the BIC
criterion used to select a reduced model penalized models
with more parameters that rendered a nonsignificant X2

statistic.5 But Figs. 7 and 8 reveal that rejections do not
reflect systematic deviations between the path of the data
and the path of the fitted curves, even when the model is
nominally rejected.

We compared the fit of the separate and joint approaches
as follows. First, and because the separate approach entails
fitting a separate model to data from each task, the G2 values
from the three separate fits for each observer and stimulus
configuration were summed. With this compound G2 for the
separate fit and the G2 obtained under the joint fit, the BIC
for each approach was computed. Figure 9 plots BIC for the
compound of the separate fits against BIC for the joint fit.
Generally, the BIC of the joint fit is lower, which quantita-
tively favors this approach, besides the fact that the joint fit
with common sensory parameters across tasks renders a
more parsimonious and reasonable account of performance
when stimuli and conditions are identical across tasks. The
almost identical shapes of psychometric functions arising
from the separate and joint approaches (compare Figs. 5 and
6 with Figs. 7 and 8) and the lack of significant or mean-
ingful differences in sensory parameters separately estimat-
ed for each task (as reported in the preceding section) also
support that sensory parameters can be regarded as common
across tasks.

To better appreciate differences in model parameters
across the two approaches, Fig. 10 plots parameter estimates
under the separate approach against parameter estimates
under the joint approach for each task. Consider first the
left column, for parameter λa. Recall that this parameter has
the same value for all tasks under the joint approach, which
implies that the abscissae of points plotted in all three panels
in the left column are the same. In the SJ2 and SJ3 tasks (top
and center panels in that column), this parameter has a
similar value whether estimated under the separate (ordi-
nate) or joint (abscissa) approaches. In contrast, the value of
this parameter as estimated separately from TOJ data is
barely related to its estimated value under the joint approach
(bottom panel in the first column of Fig. 10). The same
holds for parameters λv (center-left column in Fig. 10) and
τ (center-right column of Fig. 10), which also have the same
value across tasks under the joint approach and which attain
similar values when SJ2 or SJ3 data are fitted separately but
very disparate values when TOJ data are fitted separately.
The right column of Fig. 10, for parameter δ, represents a
slightly different situation, because this parameter differs

5 In contrast, for the simpler (separate) models considered earlier, the
model yielding the lowest BIC was also always the model that best
fitted the data according to the X2 statistic.
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across tasks also under the joint approach. Nevertheless, the
joint and separate estimates of δ are nearly identical for SJ2
and SJ3 tasks (top and center panels in the right column of
Fig. 10), and, again, they differ more for TOJ tasks (bottom
panel in that column).

The reason for the large discrepancy between separate
and joint estimates for TOJ data lies in a subtle aspect of the
task. TOJ tasks provide only one source of data (VF
responses at each auditory delay) that embodies an inextri-
cable mixture of true judgments, misreports, and guesses.
The mixture renders likelihood functions with multiple local
maxima and, hence, offers a multiplicity of exit points to a
parameter estimation algorithm whose termination criterion
is simply based on the change across iterations. The result is
inaccurate parameter estimates with large standard errors

(see Fig. 14 below). Under the joint approach, in contrast,
parameter estimates that describe TOJ data are sought using
the independent evidence provided by data from SJ2 and
SJ3 tasks, rendering a solution similar (in the maximum-
likelihood sense) to that obtained under the separate fit of
TOJ data but in which parameters λa, λv, and τ are not
permitted to vary wildly (compare model curves in the right
columns of Figs. 5 and 7, which are very similar despite the
different parameter values).

Analyses of parameter estimates under the joint approach
rendered conclusions that corroborate those of the separate
approach. Estimates of τ were larger in absolute value in the
bouncing ball than in the flash–click configuration (see
Tables 3 and 4), but a paired-samples t-test revealed non-
significant differences, t(10) 0 1.36, p 0 .202. For estimates
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of λa and λv, a repeated measures ANOVA with modality
(auditory or visual) and stimulus type (flash–click or bounc-
ing ball) as factors yielded only significant main effects of
stimulus type, F(1, 10) 0 9.46, p 0 .012, with no differences
between 1/λa and 1/λv, F(1, 10) 0 0.87, p 0 .374, and no
interaction, F(1, 10) 0 0.64, p 0 .442. As for estimates of δ,
a repeated measures ANOVA with stimulus type (flash–
click or bouncing ball) and task (SJ2, SJ3, and TOJ) as
factors yielded only significant main effects of task, F(2,
20) 0 33.51, p < .001, with no main effects of stimulus type,
F(1, 10)02.48, p0 .146, and no interaction, F(2, 20) 0 0.77,
p 0 .475. Subsequent paired comparisons revealed nonsig-
nificant differences between estimates of δ from SJ2 and
SJ3 tasks (p 0 .998), whereas estimates from the TOJ task

differed significantly from those in the SJ2 task (p < .001)
and the SJ3 task (p < .001).

Conventional indices of performance

Van Eijk et al. (2008) estimated synchrony ranges and
PSSs by fitting piecewise cumulative and survival
Gaussians to S responses, cumulative Gaussians to VF
responses, and survival Gaussians to AF responses. Our
approach (which fits model-based functions instead) dif-
fers from theirs, but it is unlikely that the two
approaches yield meaningfully different performance
measures when the alternative curves used to obtain
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them describe the skeleton of the data similarly. We
nevertheless estimated PSSs from our fit using Eqs. 17,
18a, 18b, 19a, 19b, 20a, 20b, 21a, 21b, 22a, 22b and 22c

in Appendix 1 after removing response error and bias
parameters as in van Eijk et al. (2008, 2010).

As was expected, curves estimated from our separate
approach (Figs. 5 and 6) rendered performance indices that
corroborated the conclusions of van Eijk et al. (2008). For
the flash–click stimulus, average ± SE PSSs for SJ2, SJ3,
and TOJ tasks were, respectively, 24.12 ± 9.88, 15.91 ±
8.89, and 14.71 ± 12.27, the correlation between PSS esti-
mates from SJ2 and SJ3 tasks was .942 (p < .001), and
correlations between PSS estimates from SJ2 and TOJ tasks
(r 0 −.166) or SJ3 and TOJ tasks (r 0 .098) were not
significant. For the bouncing ball stimulus, average ± SE
PSSs for SJ2, SJ3, and TOJ tasks were, respectively, 36.33 ±
6.20, 32.01 ± 5.83, and 7.39 ± 9.55, the correlation between
PSS estimates from SJ2 and SJ3 tasks was .771 (p 0 .003), and
no significant correlation was found between estimates from
SJ2 and TOJ tasks (r 0 −.249) or SJ3 and TOJ tasks (r 0 −.145).
We should point out that we did not need to exclude observer 6
in the flash–click experiment from our analyses, because our
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fitted curves in the SJ3 task cross and, thus, allow estimating a
PSS.

Repeating the analyses with parameters from our joint
approach (Figs. 7 and 8) rendered performance measures
that were almost identical across SJ2 and SJ3 tasks. For the
flash–click stimulus, average ± SE estimates of the PSS were
21.33 ± 9.62 in the SJ2 task and 21.36 ± 9.61 in the SJ3 task,
whereas, for the bouncing ball stimulus, they were 36.45 ±
5.53 and 36.43 ± 5.52. For both stimuli, the correlation be-
tween PSS estimates from SJ2 and SJ3 tasks was in excess of
.9999. As for the TOJ task, average ± SE estimates of the PSS
were 13.36 ± 13.35 with the flash–click stimulus and −0.89 ±
12.02 with the bouncing ball stimulus. The correlations be-
tween TOJ and SJ2 estimates of the PSS were virtually null
(−.051 and − .028 with the flash–click and the bouncing ball
stimuli, respectively), and so were the correlations between
TOJ and SJ3 estimates (−.051 and − .027 with the flash–click
and the bouncing ball stimuli, respectively).

Van Eijk et al. (2008) also analyzed a sensitivity measure
defined as the slope of the fitted TOJ curve at the PSS. For
the cumulative Gaussians fitted to TOJ data by van Eijk et
al. (2008), these slopes relate to the standard deviation of the
Gaussian and are useful for describing the spread of the
entire curve. In contrast, our model renders curves whose
slope may not change smoothly (see the right column of
Figs. 5 and 6), and, then, the slope at any arbitrary point
gives a very poor description of the spread of the entire
curve. A way around this difficulty is to measure spread
directly with a method akin to that used to define compara-
ble measures of the spread of psychometric functions across
variations in their mathematical form (Alcalá-Quintana &
García-Pérez, 2004; García-Pérez, 1998; García-Pérez &
Alcalá-Quintana, 2005; Gilchrist, Jerwood, & Ismaiel,
2005) or to that used to define comparable measures of
variability across variations in the form of distributions
(Townsend & Colonius, 2005). Because the standard devi-
ation of a cumulative Gaussian reflects half the distance
between the 15.87 % and the 84.13 % points on the curve,
a comparable measure for our model curves is also half the
distance between these points on ΨTOJ-VF. These points,
ΔtTOJ-.1587 and ΔtTOJ-.8413, are readily obtained through
Eq. 22a, 22b and 22c in Appendix 1, and the spread of
ΨTOJ-VF is σTOJ 0 (ΔtTOJ-.8413 − ΔtTOJ-.1587)/2.

With parameter values in Tables 1 and 2 (from our
separate approach), the average ± SE spread was 101.47 ±
13.07 with the flash–click stimulus and 71.14 ± 11.05 with
the bouncing ball stimulus, implying a narrower spread (i.e.,
a higher sensitivity) with the latter stimulus. Results using
parameter values from our joint approach (Tables 3 and 4)
were similar owing to the fact that the shapes described by
the curves from which these measures are obtained are very
similar under both approaches. But van Eijk et al. (2008; see
their Table 2) reported slopes instead of spread. By defining

the putative slope at the 50 % point on our curves as

1
ffiffiffiffiffiffi
2:

p
ATOJ

� ��
(i.e., through the same transformation used to

obtain the slope at the 50 % point on a cumulative Gaussian),
we obtained average ± SE slopes of 0.47 × 10−2 ± 0.06 × 10−2

in the flash–click condition and 0.68 × 10−2 ± 0.08 × 10−2 in
the bouncing ball condition, in good agreement with the
results that van Eijk et al. (2008) reported.

Recall, however, that sensitivity measures from TOJ
tasks can be overly misleading because they are contami-
nated by the response bias of the observer. This contaminat-
ing influence is best appreciated when δ is large, in which
case the spread of ΨTOJ-VF is very broad unless the irrele-
vant response bias parameter ξ is almost 0 or almost 1. The
bottom panel of Fig. 3 illustrates this characteristic: The
15.87 % point on ΨTOJ-VF occurs at a very long negative
auditory delay when ξ 0 .2 (continuous gray curve) but at a
very long positive auditory delay when ξ 0 0 (blue curve),
while in both cases, the 84.13 % point is almost at the same
location. The consequences on sensitivity measures are dra-
matic. It is thus unsurprising that sensitivity measures from
TOJ tasks do not agree well with purportedly analogous
sensitivity measures from SJ2 or SJ3 tasks.

In sum, in terms of conventional sensitivity measures,
synchrony ranges, and estimates of the PSS, our fitting ap-
proach and that of van Eijk et al. (2008) yield essentially the
same conclusions, although a simple analysis of performance
measures cannot elucidate how SJ and TOJ tasks differ in
terms of the processes governing performance in each task.

Discussion

SJ and TOJ tasks are widely used in studies on prior-entry
effects. As Spence and Parise (2010) put it, “understanding
the effect has been hindered by the many methodological
confounds present in early research. As a consequence, it is
unclear whether the behavioral effects reported in the ma-
jority of published studies in this area should be attributed to
attention, decisional response biases, and/or, in the case of
exogenous spatial cuing studies of the prior-entry effect, to
sensory facilitation effects instead” (p. 364). They also
acknowledged that prior-entry effects tend to be smaller
when performance is assessed with SJ tasks than when
assessed with TOJ tasks, and they also discussed the prob-
lems and potential biases inherent in either task. Yarrow et
al. (2011) have also discussed and demonstrated these con-
founds empirically.

Under the usual practice of fitting arbitrary functions to
the data, the estimated parameters do not speak of the
processes under study—namely, whether arrival latencies
of attended stimuli are shorter than those of unattended
stimuli. In contrast, the model considered here includes
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parameters that represent the distributions of these arrival
latencies along with other parameters that reflect decisional
aspects of the task, response bias, and response errors. By
fitting these model-based functions to data, the estimated
parameters directly speak of the underlying processes. We
have shown that the model gives a satisfactory account of
the data of van Eijk et al. (2008), and an analysis of param-
eter estimates across tasks and stimulus configurations
revealed aspects that conventional Gaussians fitted to the
data cannot disclose. Specifically, (1) the distributions of
arrival latencies do not differ across SJ2, SJ3, and TOJ tasks,
but the resolution parameter δ does differ across tasks; (2)
arrival latencies have a smaller standard deviation (i.e., 1/λa
and 1/λv are lower) with the bouncing ball stimulus than with
the flash–click stimulus, surely as a result of the anticipatory
information provided by the former; (3) the auditory advan-
tage reflected in parameter τ is larger (although not signifi-
cantly) with the bouncing ball stimulus than with the flash–
click stimulus, perhaps for the same reason; and (4) the
observers’ resolving power (i.e., the ability to discriminate
small differences in arrival latency, as indicated by parameter
δ) is also higher with the bouncing ball stimulus, perhaps
because the availability of anticipatory information allows
observers to better allocate their attentional resources and
perform at a level closer to their absolute resolution limit.

The data analyzed in this article are compatible with the
notion that sensory parameters are common to all tasks
when stimulus conditions are identical, whereas decisional
parameters differ across tasks. But some assumptions, impli-
cations, extensions, and consequences of the model are
worth discussing.

General applicability of the model

Independent-channels models embody a representation of
the processes governing judgments of temporal order or
simultaneity, and our addition of response-error parameters
account for empirical evidence of misreports in SJ or TOJ
tasks. All the parameters in our model have empirical refer-
ents; hence, their inclusion is justifiable. We have used the
data of van Eijk et al. (2008) in our test and illustration of
the model because theirs seems to be the only experiment
carried out using the same observers and conditions under
the three tasks. But there is nothing peculiar about this data
set in the sense that data reported in other studies and
collected only under two of the tasks display similar char-
acteristics (e.g., Donohue et al., 2010; Fujisaki & Nishida,
2009; Schneider & Bavelier, 2003; van Eijk et al., 2010;
Vatakis et al., 2008; Yates & Nicholls, 2011). Analyses of
other data sets that allow addressing additional issues will be
reported in due course.

A characteristic of the experiment whose data we rean-
alyzed is that attentional conditions were not manipulated in

any way beyond what the flash–click or bouncing ball
conditions bring around (anticipatory information about
the time of stimulus presentation in the latter case, as com-
pared with an unpredictable time of stimulus presentation in
the former). The question thus may arise as to whether the
model would also hold under the conditions of studies on
prior entry or temporal recalibration, in which several
manipulations are involved. Although the ultimate answer
to this question must wait until data from those studies are
analyzed under our model, the empirical patterns of results
reported in such experiments (e.g., Schneider & Bavelier,
2003; Stelmach & Herdman, 1991; Yates & Nicholls, 2011)
are certainly compatible with our model.

On another front, misreports can have causes other than
mere errors in pressing the response keys. Yamamoto and
Kitazawa (2001; see also Shore et al., 2002) had their
participants carry out a TOJ task to indicate which of their
two hands had received a mechanical stimulation earlier.
Their results showed that the psychometric function for
“right-hand earlier” responses had the typical sigmoidal
and monotonic shape when the experiment was carried out
with the hands in their natural position; but with crossed
hands, the function was N-shaped. They argued that short
arrival-time differences cause misreports of temporal order
when arms are crossed. In contrast to unconditional re-
sponse errors in our model, this factor causes misreports
that do not have a fixed probability across arrival-time
differences; rather, their probability is largest at null
arrival-time differences and decreases as arrival-time differ-
ence increases in absolute value. An extension of our model
along these lines describes Yamamoto and Kitazawa’s
results, but details are omitted here.

Distribution of arrival latencies

Our model is based on exponential distributions of arrival
latencies. One might consider using alternative and, presum-
ably, more realistic distributions given by the gamma densities

giðtÞ ¼ 1!ii
* !ið Þ t � $ti þ Cið Þð Þ!i�1 exp �1i t � $ti þ Cið Þð Þ½ �;

t � $ti þ Ci; ð14Þ

of which our exponential distributions are particular cases
with αi 0 1.

This simple replacement makes the model intractable
because the arrival-time difference D then has a bilateral
gamma density that has no closed-form expression for arbi-
trary values of the shape parameter α (Holm & Alouini,
2004; Küchler & Tappe, 2008), a problem that carries over
to the cumulative distributions needed to define the psycho-
metric functions for SJ2, SJ3, and TOJ tasks. Parameter
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estimation thus becomes a formidable computational task.
Yet Fig. 11 shows through a tractable case that bilateral
gamma densities have shapes similar to those of bilateral
exponential densities (compare with Fig. 1; see also Fig. 1 in
Küchler & Tappe, 2008). Although the data of van Eijk et al.
(2008) can be accurately accounted for with exponential
distributions, there is room for replacing them with other
realistic (i.e., causal) distributions if those are mathematical-
ly tractable.

The relation between detection of asynchrony
and identification of temporal order

Two recurring issues in perception of temporal order are
whether the detection of asynchrony is a sufficient condition
for the identification of temporal order and whether detec-
tion of synchrony and identification of temporal order arise
from a single processing stream (e.g., Allan, 1975; Hirsh &
Sherrick, 1961; Mitrani, Shekerdjiiski, & Yakimoff, 1986;
see also Occelli, Spence, & Zampini, 2011; Shore et al.,
2002). The three-zone decision space in independent-
channels models (see Fig. 1b) assumes that observers’ judg-
ments are ternary outcomes, not the result of two indepen-
dent binary decisions. The only model of the latter type
seems to be that of Jaśkowski (1991a), in which two inde-
pendent paths are invoked: one to judge successiveness and
the other to judge temporal order. The model also includes

guessing mechanisms to solve cases in which the outcomes
of the two independent paths are incompatible or inconclu-
sive, and Jaśkowski (1991a, 1991b, 1993) showed that this
model can fit data. Because independent-channels models
and two-stage models offer diametrically different accounts
of SJs and TOJs, a discussion of the empirical evidence
supporting either account is worth considering.

Allan (1975) used a dual-response task in which, on
each trial, observers first reported whether or not the
offsets (instead of the onsets) of a visual and an audi-
tory stimulus were simultaneous and, subsequently and
regardless of their first response, whether the offset of
the visual or the auditory stimulus preceded the other.
By collecting a dual response on each trial, Allan could
demonstrate that detection of asynchrony is a necessary
and a sufficient condition for identification of temporal
order, thus favoring the account offered by independent-
channels models. In contrast, Mitrani et al. (1986)
claimed to report evidence that detection of asynchrony
is not sufficient for the identification of temporal order,
which would thus favor two-stage models. Yet their data
do not justify their conclusion, for various reasons.
First, instead of a dual-response task, Mitrani et al. used
an SJ3 task that does not allow elucidating whether or
not a judgment of asynchrony is always followed by a
report of temporal order. Second, and more important,
their conclusion arises from an incorrect interpretation
of the data. In particular, they computed the frequency
of each type of response (“left first,” “right first,” or
“simultaneous,” since their visual stimuli were two
LEDs horizontally aligned) at various SOAs, and they
defined the “prevalent” response as that which was
given significantly more frequently than the two other
responses. They also assumed that observers actually
(and only) perceived whatever this prevalent response
was. Their conclusion that, at short SOAs, “the subjects
were not able to indicate the order of flash presentation
although they did not perceive them as simultaneous”
(p. 161) is supported only by the observed lack of
prevalent responses: “Simultaneous” responses did not prevail
(which was taken as indicating that simultaneity was not
perceived) and “left first” or “right first” responses also did
not prevail (which was taken as evidence that temporal order
was not perceived either). A more fitting interpretation of their
data is that observers perceived simultaneity, left first, or right
first on different trials and with no overall prevalence.
Independent-channels models can account for this outcome.

Measures of latent sensitivity and latent PSS

Parameter δ reflects the observer’s ability to resolve small
differences in arrival latency. Given that this parameter
affects all performance measures (see Eqs. 17, 18a, 18b,
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Fig. 11 a Gamma distributions for the arrival latency of a visual
stimulus (red curve) presented at time 0 and an auditory stimulus (blue
curve) presented at time Δt 0 50 ms. Parameters indicated in the inset
are such that the mean and standard deviation of arrival latencies of
visual and auditory stimuli attain the same values as they had under the
exponential distributions in Fig. 1a. b Bilateral gamma density for the
arrival-time differences, which resembles a smoothed version of the
bilateral exponential density in Fig. 1b
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19a, 19b, 20a, 20b, 21a, 21b, 22a, 22b and 22c in Appendix 1),
it is useful to define latent performance as the psychometric
function for VF judgments if the observer had infinite
resolution (i.e., as if δ 0 0), also setting all response
error and bias parameters to 0. These latent psychometric
functions describe performance as limited only by the random
nature of arrival latencies and are shown in Fig. 12 for each
observer, using estimates of λa, λv, and τ from Tables 3 and 4.
These functions can also be used to define alternative and
“pure” estimates of the PSS (the 50 % point on the curve) and

sensitivity (spread defined as the distance between the
84.13 % and the 15.87 % points on the curve). The latent
PSS is given by

q ¼
1
1a
ln 1aþ1v

21v

h i
� C if 1v � 1a

1
1v
ln 21a

1aþ1v

h i
� C if 1v < 1a

8<
: ð15Þ

and the latent sensitivity (spread) is given by

σ ¼
1
1a
ln 0:8413

0:1584

� �
if 1v

1aþ1v
� 0:8413

1
1v
ln 0:8413

0:1584

� �
if 1v

1aþ1v
� 0:1587

ln1a
1v

þ ln1v
1a

� 1
1v
þ 1

1a

� 	
ln 0:1587 1a þ 1vð Þ½ � otherwise

8>><
>>: :

ð16Þ

Figure 13 plots latent PSSs and sensitivities across stim-
ulus configurations, showing that the PSS tends to be a little
higher and that sensitivity is clearly higher (spread is
smaller) with the bouncing ball stimulus. Note that this
measure of sensitivity is purely determined by sensory
factors (arrival latencies), whereas the resolution mea-
sured by parameter δ additionally limits performance in
a way that can vary across tasks, attentional conditions,
or other factors. Thus, the triplet (θ, σ, ±δ) gives latent
performance measures in which sensory factors are sep-
arated from decisional factors, allowing separate assess-
ment of decisional influences (parameter δ) and
stimulus/attentional influences (parameters θ and σ,
which depend only on λa, λv, and τ). Assessing

performance in this way may also be useful in research
on neuropsychological conditions in which temporal-
order judgments are impaired. For instance, dyslexics
find difficulty discriminating temporal order, and it
would be useful to know whether these difficulties have
a sensory or a decisional basis, given their effect on
performance at visual detection and discrimination tasks
(Ben-Yehudah, Sackett, Malchi-Ginzberg, & Ahissar,
2001; Landerl & Willburger, 2010; Peli & García-
Pérez, 1997; Ram-Tsur, Faust, & Zivotofsky, 2006).

Which task?

Although conducting experiments using the three tasks as
done by van Eijk et al. (2008) is useful and informative,
research is more efficient when carried out with a single
task. In principle, all tasks are eligible because fitting
model-based psychometric functions provides estimates of
the same parameters. The question, then, involves
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consideration of which task yields more dependable esti-
mates. To address this question, we used simulation meth-
ods analogous to those in García-Pérez and Alcalá-Quintana
(2012a), except that all error parameters were assumed to be

zero here, so as to obtain an uncontaminated picture of the
extent to which the tasks themselves allow recovering
parameters. Thus, 1,000 data sets were produced under
randomly drawn parameters with uniform distributions on
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[1/80, 1/20] for λa and λv (independently), on [−80, 80] for
τ, on [20, 150] for δ, and on [.1, .9] for ξ (for the TOJ task).
The particular parameters that would produce the data set
under each task were inserted into Eqs. 7a, 7b, 7c, 8a, 8b, 9a
and 9b (as applicable), and responses at auditory delays
ranging from −350 to 350 ms in steps of 50 ms were
simulated for various numbers of trials per auditory delay.
The full and reduced models for each individual task were
subsequently fitted to the applicable data from each simulee,
and the model with the lowest BIC was selected.6 The
agreement between true and estimated parameters was mea-
sured for each task under each number of trials per auditory
delay. Figure 14a shows scatter plots of estimated against
true parameter values under each task (rows) for the case of
100 trials per auditory delay, where it is clearly apparent that
TOJ tasks render larger discrepancies between estimated
and true parameters. Figure 14b shows how estimation
accuracy varies with number of trials under each task as
indicated by the coefficient of concordance (Lin, 1989),
which measures the scatter of data around the identity line.
It is evident that SJ3 tasks yield slightly better parameter
recovery than do SJ2 tasks at small numbers of trials and
that TOJ tasks yield much poorer results even with large
numbers of trials.

This picture deteriorates when response errors occur,
which means only that more data (i.e., more presentations
per auditory delay) are needed to compensate for the effect
of errors. Another way to ensure accurate parameter recov-
ery when errors are likely to occur is to repeat the experi-
ment with two or three tasks and then fit the model jointly to
all data. For simulation results addressing this issue, see
Alcalá-Quintana and García-Pérez (2012). But the analyses
of empirical data reported here additionally demonstrate that
collecting data with more than the SJ3 task is barely useful,
even when response errors occur. Note, in the center row of
Fig. 10, that parameter estimates from the separate fit to SJ3
data are very similar to estimates arising from the joint fit to
data from all tasks, whereas the relation is weaker across the
board for separate estimates from the SJ2 task (top row in
Fig. 10). This means that use of a lone SJ3 task yields
parameter estimates analogous to those obtained by taking
the extra step of repeating the experiment with the two other
tasks and estimating parameters under the joint approach.
The reason for this is surely that the ternary SJ3 task pro-

vides sufficient diversification of responses to allow an
accurate estimation of parameters without the help of addi-
tional data from other tasks. And note that concerns about
contamination arising from the observer’s criterion (param-
eter δ) to give S responses should dissipate because this
parameter is estimated and does not contaminate the remain-
ing parameters.

Yet, and despite its shortcomings, TOJ tasks seem to
place observers in a situation in which they push their
resolution limit, given that data from these tasks rendered
the lowest estimates of δ in our analyses. If the aim is to find
out where this limit is, TOJ tasks are useful, although they
should be complemented with SJ2 or SJ3 tasks to obtain
dependable estimates of all model parameters.

Conclusion

We have considered a quantitative model that places perfor-
mance in SJ2, SJ3, and TOJ tasks under a common frame-
work with interpretable parameters and incorporating
response errors. The model fits data reported by van Eijk
et al. (2008) adequately. An analysis of parameter estimates
revealed that differences across tasks are a consequence of
differences in the decisional factor represented by parameter
δ. Separation of decisional and sensory aspects also allows
obtaining alternative and task-independent indices of latent
performance in temporal-order judgments.

A formal analysis of the model reveals the shortcomings
of TOJ tasks, which arise from the contaminating response
bias of observers who are forced to guess when they would
have, instead, given the (not allowed) S response. This
influence contaminates performance measures from TOJ
tasks, which thus lose their relation to analogous measures
from SJ2 or SJ3 tasks. We have also shown that lack of bias
in TOJ tasks (i.e., ξ 0 .5) does not solve the problem. This is
reminiscent of a similar contamination that has the same
deleterious effect in 2AFC tasks aimed at estimating psycho-
metric functions and thresholds in detection or discrimination
experiments and that can only be surmounted by replacing the
binary response format of the 2AFC task with a ternary format
in which observers are additionally allowed to give an “I don’t
know” response (Alcalá-Quintana & García-Pérez, 2011;
García-Pérez, 2010; García-Pérez & Alcalá-Quintana,
2010a, 2010b, 2011a, 2011b, 2012b; García-Pérez, Alcalá-
Quintana, Woods, & Peli, 2011). These results concur with
those of Ulrich (1987) and van Eijk et al. (2008) in advising
against the use of TOJ tasks in research on perception of
temporal order (see also Spence & Parise, 2010).

User-friendly software packages (in MATLAB and R) have
been developed for fitting SJ and TOJ data either separately

6 It is worth noting that the BIC selected the wrong model with rates
that varied between 3 % and 19 % across simulations involving
different sample sizes and tasks. In contrast, a concurrent .05-size
chi-square test rejected the correct model with rates that varied between
3 % and 7 %.
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or jointly, as was done in this article, and under alternative
sets of assumptions about how response errors occur
(Alcalá-Quintana & García-Pérez, 2012).
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Appendix 1

This appendix shows how conventional indices of perfor-
mance typically obtained from SJ2, SJ3, and TOJ data are
related to model parameters.

First note that the psychometric function ΨSJ3-S for “syn-
chronous” judgments in SJ3 tasks (which is identical to
ΨSJ2-S, as Eq. 5a shows) is asymmetric and peaks at a small
positive auditory delay (red curve in Fig. 2a and b). This is a
widespread characteristic of empirical data (see, e.g., van
Eijk et al., 2008, 2010; Vroomen & Keetels, 2010) and is the
result of unequal rates λv and λa. The function is symmetric
only when λv 0 λa, and, regardless of symmetry or lack
thereof, its peak is located at

$tpeak ¼ arg max <SJ3�S $tð Þ½ �

¼ arg max <SJ2�S $tð Þ½ � ¼ %
1a � 1v
1a þ 1v

� C ð17Þ

(see Section A of the Supplementary Material). In the case
illustrated in Fig. 2a and b, the peak occurs at Δtpeak 0

40 ms.
Second, note also from the shape of the psychometric

functions for the SJ3 task in Fig. 2a that ΨSJ3-AF (black
curve) and ΨSJ3-VF (blue curve) both cross ΨSJ3-S (red
curve) once. These crossings represent the synchrony
boundaries that render the synchrony range as an index of
performance in SJ3 tasks. In general, the functions cross at
most once, and the conditions under which they would not
cross are easily determined (see Section A of the
Supplementary Material): ΨSJ3-AF and ΨSJ3-S cross only if
δ ≥ ln(2)/2λv. Given this requirement, if exp(−2δλa) ≤ (λv −
λa)/λv, the crossing (i.e., the audio-first synchrony bound-
ary) occurs at the location ΔtAFS-3 ≤ −δ − τ given by

$tAFS�3 ¼ %� Cþ 1

1a
ln

1a þ 1v
1v 2 exp 2%1að Þ � 1½ �


 �
ð18aÞ

and otherwise the crossing occurs within the interval (−δ −
τ, δ − τ) at the solution of

21a exp �1v %þ $tAFS�3 þ Cð Þ½ �
¼ 1a þ 1v � 1v exp �1a %� $tAFS�3 � Cð Þ½ �: ð18bÞ
On the other hand, ΨSJ3-VF and ΨSJ3-S analogously cross

only if δ ≥ ln(2)/2λa. Given this requirement, if exp(−2δλv) ≤
(λa − λv)/λa, the crossing (i.e., the video-first synchrony
boundary) occurs at the location ΔtVFS-3 ≥ δ − τ given by

$tVFS�3 ¼ 1

1v
ln

1a 2 exp 2%1vð Þ � 1½ �
1a þ 1v


 �
� %� C ð19aÞ

and otherwise the crossing occurs within the interval (−δ − τ,
δ − τ) at the solution of

1a exp �1v %þ $tVFS�3 þ Cð Þ½ �
¼ 1a þ 1v � 21v exp �1a %� $tVFS�3 � Cð Þ½ �: ð19bÞ
For the example in Fig. 2a, the AF synchrony boundary

occurs at ΔtAFS-3 0 −22.07 ms, and the VF synchrony
boundary occurs at ΔtVFS-3 0 93.06 ms. The midpoint
ΔtSJ3-PSS of these boundaries is the PSS in SJ3 tasks. In this
example,ΔtSJ3-PSS 0 (ΔtAFS-3 +ΔtVFS-3)/2 0 35.49 ms, and,
owing to the asymmetry implied when λv ≠ λa, it does not
coincide with the peak of ΨSJ3-S (Δtpeak 0 40 ms). Also, the
synchrony range (i.e., the width of the region delimited by
these boundaries) is ΔtVFS-3 − ΔtAFS-3 0 115.13 ms.

Synchrony boundaries in SJ2 tasks are defined at the
crossings of ΨSJ2-S and ΨSJ2-A, which occur when the
functions evaluate to 1/2 (see Fig. 2b). The functions cross
only if δ ≥ (λa + λv)ln(2)/2λaλv (see Section A of the
Supplementary Material). When this requirement holds, if
exp(−2δλa) ≤ (λv − λa)/2λv, the AF synchrony boundary
occurs at the location ΔtAFS-2 ≤ −δ − τ given by

$tAFS�2 ¼ %� Cþ 1

1a
ln

1a þ 1v
21v exp 2%1að Þ � 1½ �


 �
ð20aÞ

and otherwise it occurs within the interval (−δ − τ,Δtpeak] at
the solution of

1a exp �1v %þ $tAFS�2 þ Cð Þ½ �
þ 1v exp �1a %� $tAFS�2 � Cð Þ½ �
¼ 1a þ 1vð Þ 2= : ð20bÞ
On the other hand, if exp(−2δλv) ≤ (λa − λv)/2λa, the VF

synchrony boundary occurs at the location ΔtVFS-2 ≥ δ − τ
given by
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$tVFS�2 ¼ 1

1v
ln

21a exp 2%1vð Þ � 1½ �
1a þ 1v


 �
� %� C ð21aÞ

and otherwise it occurs within the interval [Δtpeak, δ − τ) at
the solution of

1a exp �1v %þ $tVFS�2 þ Cð Þ½ �
þ 1v exp �1a %� $tVFS�2 � Cð Þ½ �
¼ ð1a þ 1v 2:=Þ ð21bÞ
Note that Eq. 21b has the same form as Eq. 20b, which

may have two solutions in the interval (−δ − τ, δ − τ).
For the example in Fig. 2b, boundaries exist because

δ 0 60 ≥ (λa + λv)ln(2)/2λaλv 0 31.192. Then, the AF
synchrony boundary occurs at ΔtAFS-2 0 −21.36 ms,
and the VF synchrony boundary occurs at ΔtVFS-2 0
88.54 ms. The midpoint ΔtSJ2-PSS of these two bound-
aries is the PSS in SJ2 tasks, which amounts to ΔtSJ2-PSS 0

(ΔtAFS-2 + ΔtVFS-2)/2 0 33.59 ms, and, again owing to the
asymmetry implied when λv ≠ λa, it does not coincide with the
peak of ΨSJ2-S (Δtpeak 0 40 ms). The synchrony range is
ΔtVFS-2 −ΔtAFS-2 0 109.90 ms. Note that these indices differ
slightly from those computed above for the SJ3 task because
of the different criteria used to define landmarks onΨSJ3-S and
ΨSJ2-S.

Finally, note in Fig. 2c that the shape of ΨTOJ-VF

varies with the response bias parameter ξ. As seen in
Eq. 6b, ξ 0 0 makes ΨTOJ-VF identical to ΨSJ3-VF (blue
curve in Fig. 2c, which is identical to the blue curve in
Fig. 2a), whereas ξ 0 1 makes ΨTOJ-VF identical to 1 −
ΨSJ3-AF (black curve in Fig. 2c, which is one minus the
black curve in Fig. 2a). Intermediate values for ξ define
a transition between these two curves, as illustrated for
ξ ∈ {.2, .5, .8} in Fig. 2c (gray curves). The obvious
consequence is that the PSS (i.e., the value ΔtTOJ-PSS
satisfying ΨTOJ-VF(ΔtTOJ-PSS)0 .5) is affected by the re-
sponse bias of the observer and can be anywhere be-
tween the corresponding values in ΨSJ3-AF and ΨSJ3-VF.
The location of the PSS in ΨTOJ-VF can also be easily
determined (see Section A of the Supplementary
Material). It is nevertheless more useful (as will be seen
below) to determine the general location of the point
ΔtTOJ-p at which ΨTOJ-VF(ΔtTOJ-p) 0 p (for arbitrary
0 < p < 1), from which ΔtTOJ-PSS ≡ ΔtTOJ-.5. Thus, if
λv(1 − ξ)exp(−2δλa) ≥ λa p + λv (p − ξ) then

$tTOJ�p ¼ 1

1a
ln

p 1a þ 1vð Þ
1v 1� Jþ J exp 2%1a½ �ð Þ


 �
þ %� C; ð22aÞ

else, if J1a exp �2%1vð Þ � 1v 1� pð Þ � 1a p� Jð Þ, then

$tTOJ�p ¼ 1

1v
ln

1a Jþ 1� Jð Þ exp 2%1vð Þ½ �
1� pð Þ 1a þ 1vð Þ


 �
� %� C; ð22bÞ

ð22bÞ

and, otherwise, ΔtTOJ-p is at the point within (−δ − τ, δ − τ)
satisfying

1� Jð Þ1v exp �1a %� $TOJ�p � C
� �� �

� J1a exp �1v %þ $TOJ�p þ C
� �� �

¼ 1a þ 1vð Þ p� Jð Þ: ð22cÞ

For the examples in Fig. 2c, the PSS is ΔtTOJ-PSS 0

97.26 ms when ξ 0 0 (blue curve), ΔtTOJ-PSS 0

85.87 ms when ξ 0 .2 (solid gray curve), ΔtTOJ-PSS 0
53.86 ms when ξ 0 .5 (long-dashed gray curve),
ΔtTOJ-PSS 0 −6.23 ms when ξ 0 .8 (short-dashed gray
curve), and ΔtTOJ-PSS 0 −22.74 ms when ξ 0 1 (black
curve). As was discussed above, the cases ξ 0 0 and ξ 0 1
refer to the 50 % point ΔtVF-PSS on ΨSJ3-VF and the 50 %
point ΔtAF-PSS on ΨSJ3-AF, respectively.

Therefore, even if the underlying parameters are invariant
across tasks, PSSs in SJ2 or SJ3 tasks differ minimally and
only as a result of the different landmarks used to define the
PSS from the otherwise identical functions ΨSJ2-S and ΨSJ3-S.
In the preceding example, these are ΔtSJ2-PSS 0 33.59 ms
and ΔtSJ3-PSS 0 35.49 ms. In contrast, and owing to the
participation of the response bias parameter ξ in TOJ tasks,
PSSs in these tasks may vary greatly. In the preceding
example, they may range from ΔtTOJ-PSS 0 −22.74 ms
when ξ 0 1 to ΔtTOJ-PSS 0 97.26 ms when ξ 0 0. Note that
even for an unbiased observer (i.e., ξ 0 .5), the PSS will be
ΔtTOJ-PSS 0 53.86 ms in the preceding example, which is
meaningfully different from its counterparts in SJ2 or SJ3
tasks (33.59 and 35.49 ms, respectively). The latter char-
acteristic is due to the asymmetry caused by λv ≠ λa; when
λv 0 λa instead, the PSS in a TOJ task with ξ 0 .5 matches
the PSS in SJ2 and SJ3 tasks.

These features of the model are consistent with the
empirically observed similarity of PSS estimates from
SJ2 and SJ3 tasks and the discrepant estimates from
TOJ tasks, and also with the lack of correlation with
estimates from SJ2 and SJ3 tasks. In other words, the
empirical “observation that the TOJ 50 % points occur
virtually anywhere in the synchrony range” (van Eijk et
al., 2008, p. 964) may have its origin in the response
bias parameter ξ, which plays a major role in shaping
ΨTOJ-PSS even if the remaining parameters have the
same values as in SJ2 and SJ3 tasks.
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Appendix 2 Tables with parameter estimates
and descriptive statistics

Table 2 Estimated parameters for each task in the bouncing ball
experiment. Dashes indicate parameters not included in the reduced
model that was selected for the corresponding observer and task. Stars
on the right of the block for each task indicate that the model was

rejected by a .05-size chi-square test with the degrees of freedom
indicated in the header row for each task, where k is the number of
parameters in the model for each particular observer

SJ2 task (15 - k degrees of freedom) SJ3 task (30 - k degrees of freedom) TOJ task (15 -k degrees of freedom)

Obs. 1/λa 1/λv τ δ εAF εS εVF 1/λa 1/λv τ δ εAF εS εVF κAF-S κS-AF κVF-AF 1/λa 1/λv τ δ εAF ξ εVF

1 29.90 50.51 -57.99 93.64 .007 – – 21.11 30.75 -51.37 98.15 .017 .128 – 0.00 0.00 – * 38.33 5.00 -141.55 138.58 .029 .975 .008

2 23.05 41.06 -15.65 108.64 – – – 24.47 43.88 -25.65 95.05 .022 – .040 0.63 – 0.50 66.28 5.00 -108.02 38.89 .022 .330 .008

3 15.84 37.87 -25.55 119.52 .016 – .055 * 27.21 33.16 -53.75 128.89 .018 – – 0.00 – – * 20.40 37.80 -46.75 56.14 – .553 –

4 47.82 5.95 -104.47 104.53 – – .094 26.06 15.32 -59.97 104.82 .034 .107 .073 0.38 0.13 0.07 43.62 21.47 -66.37 84.51 .019 .851 .027

5 21.93 23.57 -25.99 123.36 – – – 25.79 33.42 -11.70 115.49 .055 .078 .068 0.29 0.29 0.45 38.60 5.00 -128.42 132.10 .014 .910 –

6 20.88 15.95 -39.08 67.72 – – .009 5.00 14.91 -23.38 71.31 – .109 .003 – 0.00 1.00 46.74 37.79 -10.97 47.44 – .430 –

7 20.90 16.07 -60.71 104.27 .003 – .036 37.71 20.41 -44.88 106.33 – – .007 – – 0.49 5.00 53.34 60.61 52.35 .007 .160 –

8 25.24 25.78 -13.60 115.86 – – – 22.51 15.41 -19.34 108.03 .083 .035 .040 0.00 0.00 0.82 * 20.91 48.84 16.91 51.33 .009 .661 –

9 27.69 43.90 -4.60 129.29 .030 .093 – 39.27 29.05 -33.19 102.88 .023 .139 .072 0.30 0.54 0.69 45.49 34.19 -67.93 92.19 .022 .851 .028

10 6.33 39.76 -26.08 123.95 – – – 16.13 5.00 -61.60 93.36 .003 .049 .020 1.00 0.62 0.00 6.92 67.33 106.32 56.37 .012 .097 –

11 25.06 45.78 -2.31 151.14 – – – 21.08 56.34 29.31 178.59 .188 – .040 0.83 – 1.00 38.27 5.00 -34.34 78.59 .067 .375 .083

12 5.00 89.60 39.68 129.31 .079 – – 44.14 43.14 -10.86 113.41 .015 .111 .014 0.00 0.06 1.00 88.11 121.44 28.11 127.62 – .515 –

meana 20.47 36.32 -28.03 114.27 .027 .093 .049 25.87 28.37 -30.53 109.69 .046 .069 .038 0.46 0.36 0.60 37.82 35.25 -32.70 79.67 .022 .559 .031

SDa 10.28 20.91 34.28 20.07 .028 .000 .031 10.18 14.21 25.07 24.72 .052 .048 .025 0.41 0.38 0.35 23.22 34.26 72.99 34.21 .017 .282 .028

a Boundary values of 5.00 for 1/λa and 1/λv are excluded from these computations (see Appendix 3 for a discussion)

Table 1 Estimated parameters for each task in the flash–click exper-
iment. Dashes indicate parameters not included in the reduced model
that was selected for the corresponding observer and task. Stars on the
right of the block for each task indicate that the model was rejected by

a .05-size chi-square test with the degrees of freedom indicated in the
header row for each task, where k is the number of parameters in the
model for each particular observer

SJ2 task (15 - k degrees of freedom) SJ3 task (30 - k degrees of freedom) TOJ task (15 - k degrees of freedom)

Obs. 1/λa 1/λv τ δ εAF εS εVF 1/λa 1/λv τ δ εAF εS εVF κAF-S κS-AF κVF-AF 1/λa 1/λv τ δ εAF ξ εVF

1 5.00 69.44 10.64 101.35 – – – 36.41 47.52 -31.47 106.05 – – .095 – – 0.44 47.94 39.43 -51.93 56.12 – .475 –

2 53.89 66.20 -11.92 159.00 – – – 60.63 30.75 -26.43 122.93 .034 – .128 0.39 – 0.57 137.14 159.08 -6.56 60.73 – .482 –

3 27.92 19.19 -69.06 127.21 – – .072 * 27.06 25.31 -45.24 108.29 .013 – .153 0.00 – 0.23 * 5.00 87.22 115.97 66.76 .008 .122 –

4 66.50 47.64 -52.60 94.16 – – – 56.68 49.98 -45.28 96.14 .014 – .060 0.00 – 1.00 * 22.61 79.03 -55.82 69.63 .005 .826 –

5 a – – – – – – – – – – – – – – – – – – – – – – – –

6 36.65 5.00 -33.21 81.51 – .418 .010 5.00 19.38 1.81 53.85 .024 .636 .011 0.00 0.24 1.00 35.53 51.74 131.68 114.85 – .043 .020

7 36.79 25.36 -27.90 84.48 – – – 28.66 42.36 -11.49 108.72 .023 – .009 0.76 – 1.00 5.00 50.24 -22.80 62.93 .011 .470 –

8 39.58 29.51 -12.76 125.41 – – .055 28.21 35.48 -4.91 123.35 .065 – .045 0.21 – 0.85 50.29 26.13 -62.67 0.00 .032 .331 .016

9 54.79 58.35 -41.97 101.58 – – .064 40.64 46.37 -23.34 109.24 – .187 .024 – 0.57 1.00 5.00 156.66 21.77 123.88 .056 .777 –

10 60.00 28.46 -73.61 177.06 – – – 37.13 23.96 -52.14 150.55 .028 .112 .043 0.00 0.24 1.00 * 18.40 77.46 -67.12 138.06 .013 .933 –

11 53.02 61.39 68.98 166.44 – – .045 49.10 61.35 69.20 160.29 .227 – .022 0.17 – 1.00 5.00 61.57 125.55 117.75 .090 .245 –

12 37.83 51.66 -24.70 161.65 .071 – .123 33.97 50.22 10.08 172.60 .076 .022 – 0.75 0.60 – 74.63 36.18 -62.59 124.82 – .819 –

meanb 42.47 41.58 -24.37 125.44 .071 .418 .062 36.25 39.33 -14.47 119.27 .056 .239 .059 0.26 0.41 0.79 35.21 74.98 5.95 85.05 .031 .502 .018

SDb 17.51 21.30 37.96 33.74 .000 .000 .034 15.69 12.66 32.74 31.42 .064 .237 .048 0.30 0.17 0.32 40.09 43.07 77.08 39.98 .029 .289 .002

a Observer 5 did not participate in the flash–click experiment
b Boundary values of 5.00 for 1/λa and 1/λv are excluded from these computations (see Appendix 3 for a discussion)
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Table 3 Estimated parameters of the joint model in the flash–click
experiment. Dashes indicate parameters not included in the reduced
model that was selected for the corresponding observer. Stars indicate

that the model was rejected by a .05-size chi-square test with 60 − k
degrees of freedom, where k is the actual number of parameters in the
model for each particular observer

common parameters SJ2 task SJ3 task TOJ task

Obs. 1/λa 1/λv τ δ εAF εS εVF δ εAF εS εVF κAF-S κS-AF κVF-AF δ εAF ξ εVF

1 40.16 46.66 -39.30 99.79 – – – 106.23 – – .089 – – 0.47 56.75 – .488 –

2 54.16 39.82 -21.09 161.96 – .060 .064 122.60 .049 – .116 0.55 – 0.62 98.43 .062 .458 .103

3 * 33.10 10.57 -78.06 126.47 – – .087 126.08 – .065 .103 – 0.06 0.00 81.60 .015 .784 .034

4 * 58.85 51.40 -46.95 93.17 – – – 96.58 .014 – .055 0.00 – 1.00 53.48 – .361 .018

5 a – – – – – – – – – – – – – – – – – –

6 32.29 10.02 -26.43 80.70 – .423 .012 57.14 .020 .616 .012 0.00 0.31 1.00 45.81 .020 .605 .030

7 30.88 41.29 -13.53 86.15 – – – 107.90 .020 – .009 0.78 – 1.00 72.27 .008 .203 –

8 36.62 32.34 -11.78 126.32 – – .046 124.09 .057 – .046 0.11 – 0.83 40.12 .039 .085 .014

9 * 42.18 45.30 -30.87 113.96 – .139 .091 108.49 – .184 .024 – 0.53 1.00 113.76 .049 .557 .107

10 * 41.76 32.43 -50.19 181.98 – .034 – 150.47 .026 .110 .045 0.00 0.22 1.00 78.57 .009 .792 .034

11 50.83 61.04 70.06 166.18 – – .045 161.72 .218 – .023 0.12 – 1.00 101.31 .099 .224 –

12 * 41.75 46.62 -14.18 156.84 .052 – .187 171.68 .089 .021 – 0.78 0.56 – 107.17 .034 .800 –

mean 42.05 37.96 -23.85 126.68 .012 .164 .076 121.18 .062 .199 .048 0.29 0.34 0.72 77.21 .037 .487 .049

SD 8.73 15.15 35.21 33.76 .000 .154 .052 30.68 .064 .215 .037 0.33 0.19 0.32 24.59 .028 .238 .037

a Observer 5 did not participate in the flash–click experiment

Table 4 Estimated parameters of the joint model in the bouncing ball
experiment. Dashes indicate parameters not included in the reduced
model that was selected for the corresponding observer. Stars indicate

that the model was rejected by a .05-size chi-square test with 60 − k
degrees of freedom, where k is the actual number of parameters in the
model for each particular observer

common parameters SJ2 task SJ3 task TOJ task

Obs. 1/λa 1/λv τ δ εAF εS εVF δ εAF εS εVF κAF-S κS-AF κVF-AF δ εAF ξ εVF

1 32.62 21.26 -78.86 99.10 .007 .094 .051 108.39 .015 .166 – 0.00 0.00 – 96.81 .031 .980 .017

2 27.28 39.75 -26.08 109.03 – – – 94.51 .019 – .050 0.60 – 0.44 58.04 .033 .267 –

3 * 19.19 39.39 -33.62 118.59 .017 – .041 124.71 .019 – – 0.00 – – 58.07 – .467 –

4 * 38.01 21.68 -72.05 97.83 – – .128 109.73 .029 .109 .054 0.35 0.10 0.09 93.65 .022 .865 .025

5 24.97 24.06 -25.58 123.32 – – – 118.86 .059 .096 .069 0.33 0.31 0.43 66.28 .018 .859 .022

6 * 16.92 18.11 -31.81 69.53 – – .008 67.72 – .105 .003 – 0.00 1.00 65.62 .016 .628 –

7 * 36.47 13.60 -63.04 102.92 – – .053 109.75 – – .008 – – 0.46 44.82 .008 .766 .013

8 25.86 22.80 -16.72 116.61 – – – 103.62 .096 – .036 0.00 – 0.90 66.12 .008 .663 .004

9 35.33 39.02 -18.51 127.49 .028 .085 – 101.71 .024 .127 .069 0.32 0.51 0.73 62.29 .025 .782 .040

10 * 16.01 32.88 -42.97 122.42 – – – 91.72 .003 .035 – 1.00 0.53 – 78.49 .023 .891 .013

11 * 29.65 44.79 -2.83 151.30 – – – 171.21 .239 – .042 0.87 – 1.00 76.63 .069 .427 .073

12 * 54.95 47.14 -21.36 124.81 .057 – .071 119.47 – .153 – – 0.18 – 129.50 .050 .547 .052

mean 29.77 30.37 -36.12 113.58 .027 .090 .059 110.12 .056 .113 .041 0.38 0.23 0.63 74.69 .027 .678 .029

SD 10.39 10.90 22.62 19.33 .019 .004 .036 23.46 .070 .040 .023 0.35 0.20 0.31 21.79 .017 .208 .021
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Appendix 3

In the model, 1/λa and 1/λv represent the standard deviation
of the arrival latencies (in milliseconds) of auditory and
visual signals, respectively, at the central mechanism, and
it is unrealistic to assume that these standard deviations can
be arbitrarily small. This is the reason that their lower
bounds in the parameter space for the optimization algo-
rithm were set at 5 ms. As shown here, estimates of any of
these two parameters at the boundary value reveals only that
the data are inconclusive about the value of that particular
parameter. Consider the case of the separate SJ2 task for
observer 6 in the flash–click experiment (data and model
curve plotted in the second panel down the left column of
Fig. 5 and reproduced also in the top panel of Fig. 15). From
Table 1 in Appendix 2, parameter estimates are (1/λa, 1/λv,
τ, δ, εS, εVF) 0 (36.65, 5.00, −33.21, 81.51, 0.418, 0.010),
and the top panel of Fig. 15 indeed shows that the model
curve describes the data very accurately despite the bound-
ary estimate. The consequences of removing the boundary
on estimates of 1/λv are illustrated for this particular case in
the bottom panel of Fig. 15: The model curve only has
sharper corners (indicated by arrows; compare with the
smoother corners in the top panel) but with no actual im-
provement in how the curve accommodates the data. The
nominal fit is better when the boundary on 1/λv is removed,

but, in terms of parameter estimates, those obtained in the
unbounded case are (1/λa, 1/λv, τ, δ, εS, εVF) 0 (36.66,
0.0002, −37.92, 81.53, 0.418, 0.010). In other words, no
meaningful or relevant change (if a change at all) occurs in
parameter estimates other than 1/λv, which now turns out to
be 0.0002. But visual arrival latencies cannot be accepted to
have this standard deviation, and this is the reason for our
setting an arbitrary lower bound at 5 ms.

Similar outcomes were observed in all the other cases
listed in Tables 1 and 2 in which estimates of 1/λa or 1/
λv attained boundary values. The common characteristic
of all these cases is that the fixed set of auditory delays
that was used with all observers turned out to sample
insufficiently the psychometric functions for some of
them: In the case shown in Fig. 15, all auditory delays
at or below −200 ms and at or above 150 ms render
uninformative data, and only the six auditory delays
between −150 and 100 ms are useful to estimate model
parameters. A way around the uncertainty as to which set
of auditory delays would be needed for each observer is
to use adaptive sampling methods analogous to those that
efficiently solve this problem in other contexts (García-
Pérez & Alcalá-Quintana, 2005). Note, however, that the
example considered here reveals that all the remaining
model parameters are reasonably well estimated, and the
same was true in the remaining cases affected by bound-
ary estimates. A reasonable replacement for the boundary
estimate in these cases could, perhaps, be sought post
hoc by increasing the value of the affected parameter
until the model curve begins to part company with the
data, but this is a rather ad hoc method with uncertain
outcomes. We decided instead to regard boundary esti-
mates of 1/λa and 1/λv as missing values in all statistical
analyses.
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