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Abstract It has frequently been claimed that learning perfor-
mance improves with practice according to the so-called
“Power Law of Learning.” Similarly, forgetting may follow a
power law. It has been shown on the basis of extensive
simulations that such power laws may emerge through
averaging functions with other, nonpower function shapes. In
the present article, we supplement these simulations with a
mathematical proof that power functions will indeed emerge as
a result of averaging over exponential functions, if the
distribution of learning rates follows a gamma distribution, a
uniform distribution, or a half-normal function. Through a
number of simulations, we further investigate to what extent
these findings may affect empirical results in practice.
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Power laws of learning and forgetting

At what rate can we expect to learn and forget? We become
faster and more accurate as we practice new activities, such as
piano playing or speaking a foreign language. It has frequently
been claimed that learning performance P improves with
practice time t, according to the so-called “Power Law of
Learning,” or that the forgetting of learned material follows a
power function (J. R. Anderson & Schooler, 1991; Newell &
Rosenbloom, 1981; Wixted & Ebbesen, 1991). In its simplest
form, a power function is a function of the shape P ¼ tm,
where μ is the learning (or forgetting) rate parameter, and t is
number of learning episodes or time. P may refer to how
accurate or how fast we carry out a learned activity.

Despite the compact form of P, it describes different types of
behavior. For instance, the relative learning rate slows down
with prolonged practice. There are situations, however, in which
P needs some adjustment. The previous equation is not correct
if P denotes a probability, μ is negative, and t is small. For
example, for t = 0.5 and μ = −0.1, we have P = 0.5-0.1 = 1.072.
This would give a probability greater than 1, which is
impossible. We can easily remedy this by adding 1 to t, thus
obtaining P ¼ t þ 1ð Þm. This form ensures that its value
remains properly scaled as a probability (i.e., remains between
0 and 1) if μ is negative.

Several authors dispute that learning follows a power
function (e.g., Heathcote, Brown, & Mewhort, 2000), report-
ing exponential curves for individuals. Exponential curves
have basic shape P = μt. If learning shows an exponential
improvement, the learning process itself does not slow down
but continues at the same relative pace. These opposing
viewpoints can be reconciled, if averaging over individual
exponential curves would yield an averaged power function.
This has indeed been found in an extensive simulation study
by R.B. Anderson (2001). This study showed for a variety of
component-curve shapes, not just exponentials, that averag-
ing tends to give power-like functions. There are also
theoretical arguments based on a geometrical analysis that
explain why there is a general tendency for averaged curves
to give a superior fit for power functions as compared with
exponential functions (Myung, Kim, & Pitt, 2000).

The motivation by R. B. Anderson (2001) for carrying out
a simulation study rather than a mathematical analysis was
that a mathematical proof had not been established and may,
in fact, be impossible. As we will demonstrate in the present
article, however, this is not the case. For certain relevant
cases, a mathematical proof can in fact be derived, which we
will outline below. We will limit our analysis to variations in
learning rate, noting that there are several other possible
sources of variation that we will ignore here, such as
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differences in asymptotes and intercept and individual levels
of variability in learning performance. We will also ignore
noise from sampling error, which tends to increase spurious
power law fits (Brown & Heathcote, 2003b; Myung et al.,
2000). Finally, note that although we use the Power Law of
Learning as a starting point of our analysis, our proof is
general and applies to any situation in which the assumptions
are met. In particular, it also applies to the shape of forgetting
functions.

Exponential learning curves

Our measure of learning performance is the probability p(t)
that a student will make an error on a certain test item (e.g.,
knowing foreign language vocabulary) after study time t. In
the analysis, we will first assume an exponential learning
curve for each individual student i: P ¼ pðtÞ ¼ e�mi t with
μi ≥ 0. Such a curve starts at 100% error at t = 0 and will
reach an asymptote with 0 errors (100% correct), given
enough study time. Our second assumption is that
students’ learning rates are not all equal. Instead, we make
the more reasonable assumption that some will be fast
learners (high μi) and others slow learners (low μi). The
aim of the present article is limited to showing that for
certain common probability distributions, the shape of the
averaged curve can be derived mathematically and that it
conforms to a power function. We will also explore
numerically the extent of the distortion introduced through
averaging over exponential curves, which at times may
give misleading averaged curves.

Analyses with different learning rate distributions

Gamma distribution

We will first consider the case in which learning rates
follow a gamma distribution. This is a well-known
probability distribution that can take different shapes,
depending on its parameters a (the “shape” parameter)
and b (the “scale” parameter). If the shape parameter a is 1,
the gamma distribution becomes the exponential distribu-
tion as a special case. The mean of the gamma distribution
is given by the product ab, and the variance by ab2. As can
be seen from Fig. 1, its shape is flexible and may vary from
a peaked distribution in which most learners tend to have
low or average learning rates, to a broader distribution in
which learning rates are more variable.

In the Appendix, we show that, if we assume that the
learning rates μ of individual participants follow a gamma
distribution, the average pA(t) of a (large) number of
exponential learning curves will approach pAðtÞ ¼

ð1þ b tÞ�a (e.g., Feller, 1966, p. 48). This is a power
function, which is properly scaled as a probability (i.e.,
remaining between 0 and 1) and starts at zero performance
(100% error) at t = 0. Simulation studies with a range of
parameter values of a and b, not reported here, confirm that
averaged simulated learning curves approach the theoretical
power function very closely.

Uniqueness of the result

We might wonder whether there are any other distributions
for which we would find exactly this power function? This
is not the case, because the method by which we calculate
the expected value over exponential curves is identical to
the Laplace transform (and is also very similar to the
moment generating function in statistics). It is a well-
known result from mathematics that the Laplace transform
is a so-called “one-to-one transformation,” meaning that the
transformed function is uniquely related to the resulting
function. Hence, there is no other statistical distribution
other than the gamma distribution that will give exactly the
power function in this case. By a similar argument, we can
immediately conclude that there is only one distribution that
will retain exactly the shape of the exponential function when
averaging, namely the Dirac delta function—a distribution
that has all probability mass at a single point. In the present
article, this means that only if the learning rates of all students
are exactly identical will the averaged curve still be of the
same exponential form; any deviations will compromise the
exponential shape in some way or another.

There are, however, several distributions that will converge
exactly to a power function in the limit, for higher t (the
gamma distribution result is valid for all t ≥ 0) with only the
initial portions of the averaged curve deviating (somewhat)
from a power curve. We will discuss the result for
two learning rate distributions: the uniform and the (truncat-
ed) normal distribution. Surprisingly, averaging exponen-
tial curves of which the learning rates follow either of these very
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Fig. 1 Illustration of the flexibility of the gamma distribution. Shown
are plots for different values of a and b
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different distributions still gives rise to a rapid convergence to a
power function.

Uniform distribution

The form of the uniform distribution is not very flexible,
but it is nonetheless informative for our analysis, since it is
a closed distribution: Learning rates remain between set
bounds, as compared with the gamma distribution, which
allows a fraction of very high learning rates. We might
encounter closed distributions if participants have passed a
preselection test such that the slow and fast learners are
eliminated (e.g., they are in a different group or class). This
leaves us with participants who have learning rates higher than
a and lower than b. Suppose that the number of participants
is distributed evenly between a and b; we then have a
uniform distribution of learning rates. If a = 0 and b = 1, we
speak of a standard uniform distribution. In that case, only
the fast learners have been eliminated.

In the Appendix, we show that with both exponential
individual learning curves and uniformly distributed learning
rates, the averaged curve for the uniform distribution with a =
0 and b > a, rapidly converges to (bt)-1 with increasing t. This
is also a power function, with exponent −1 (a so-called
“hyperbolic function”). In Fig. 2b, one can see that this
convergence is typically very rapid and that the averaged
curve approaches a power function even for low t (e.g.,
t > 10). However, if a is higher than 0, and if b approaches a,
the averaged curve approaches the exponential e-a t (see the
Appendix), which is to be expected, because in that case, we
then have nearly all learning rates similar to a (see previous
remark about the Dirac function). For the in-between case,
where b > a > 0, we have the mixture of a power function and
exponentials, for which we were not able to find a useful
closed-form expression for the limit. These results corroborate
the simulations studies by Brown and Heathcote (2003a), who
found that when averaging over exponential curves with high
and low learning rates, a large variation in rates increased
chances of finding spurious power function fits.

Half-normal distribution

The normal distribution is ubiquitous, and that alone merits
its inclusion in the present article. Of course, negative
learning rates are meaningless, so we must use the so-called
“half-normal distribution,” which is a conditioned normal
distribution with mean 0 but with the left half “chopped
off.” In the Appendix, we prove that with increasing t, the
averaged curve also converges to a power function of the
form p

2q t
� ��1

, where θ is a parameter that determines the
shape of the half-normal distribution.

Different distributions, yet similar averaged curves

Of particular interest is that there are many cases in which an
observed averaged learning curve may be produced by
different underlying learning rate distributions. This point is
illustrated in Fig. 2, which shows the three predicted functions
derived in this article. We have chosen parameter values such
that the averaged curves converge to the same form t -1, with
increasing learning time t. In Fig. 2a, it can be observed that
the selected learning rate distributions are very different,
whereas in Fig. 2b, we see a rapid convergence to the shape
t -1. Only the initial portions of the learning curves differ
visibly.

Application to small numbers of participants

One might wonder how the mathematical results apply to
cases in which we average over small numbers of
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Fig. 2 a Pdfs of three distributions: a gamma distribution (a = 1, b =1,
dotted line; this is an exponential distribution, which is a special case of
the gamma distribution), standard uniform distribution (dashed line), and
half-normal distribution (q ¼ p=2, solid line). b Theoretical averaged
exponential learning curves with learning rates distributed as in (a). The
line styles in (b) refer to the same distributions as in (a). All curves
converge to the curve t -1
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participants. In particular, what would happen if we fitted
both a power function and an exponential function to
averaged exponential learning curves? Would the power
function always fit better, even with small numbers of
participants, or would spurious power functions appear only
with very large numbers of participants? To investigate, we
simulated experiments with increasing numbers of partic-
ipants. Each artificial participant contributed an exponential
(noise-free) learning curve with a certain learning rate drawn
from the gamma distribution. A learning curve averaged over
all artificial participants was fitted to both an exponential
function and a power function using a least-squares criterion.
The goodness of fit of the two function types was compared
using the r2 value (variance explained).

In Fig. 3, we show the r2 for one particular choice of
learning rate distribution (a = 1, b = 1) and number of
learning episodes (20), which was one of the distributions
shown in Fig. 2. As can be observed, the power function fits
better than the exponential function, as long as there are
more than a few participants, even though the individual
curves are exponential. When we repeated these simulations
for the uniform and half-normal distribution, with parameters
as in Fig. 2, the graphs were highly similar. We also explored
this type of simulation for other parameter values of the
gamma distribution with similar results. Only if the variance
of the gamma distribution is very small (i.e., a strongly
peaked distribution) does the exponential function fit better
for nontrivial numbers (four or fewer) of participants.

Discussion

In the present article, we discussed mathematical analyses of
the effects of averaging exponential learning curves, where it
is assumed that individuals have learning rates that follow a
known probability distribution. We demonstrated mathemat-
ically that if the individual learning curves are exponential in

shape, averaging over these curves gives rise to spurious
power laws if the learning rates follow a gamma distribution, a
uniform distribution, or a half-normal distribution.

The theoretical result can be generalized to forgetting
functions in which we consider t to be time since the
completion of learning. Using pðtÞ ¼ e�mt for individual
curves, and assuming a gamma distribution of the individ-
ual forgetting rates μ, we obtain for the averaged forgetting
curve: pAðtÞ ¼ 1þ a tð Þ�b. Our result is corroborated by a
recent analysis (Lee, 2004) of over 200 forgetting studies
taken from the literature, most of which average across
participants. These forgetting curves are best modeled by
the power function (1+t)-1. If, as assumed here, this
function is a result of averaging over exponential forgetting
functions, we expect the distribution of the forgetting rates
of individual participants to bef ðmÞ ¼ a�1e�a�1m, with a = 1
This is an exponential distribution, implying that in these
experiments, we should observe rather many students who
show little or no forgetting. This is not implausible, with
the short retention intervals often encountered in the
psychology laboratory, in which there may not be enough
time to allow sufficient forgetting for many participants.
The resulting ceiling effects would foster spurious power
laws in the averaged forgetting curves.

Analyses such as these can also be applied to averaging
over items rather than over students (R. B. Anderson, 2001;
Newell & Rosenbloom, 1981). We then assume that single
items to be learned (e.g., foreign language words) have
different learning rates, according to a gamma distribution.
The learning curve averaged over items will then appear as
a power function. Thus, even a single student may show a
power learning curve based on averaged performance of
heterogeneous items to be learned. The analysis can be
carried even further, to the level below that of a single item,
namely to the features that make up its representation.

Our analysis complements earlier simulation studies (R. B.
Anderson, 2001) and theoretical work (Myung, et al., 2000)
by providing further mathematical analyses. Myung et al.
show why, in general, averaging over exponentials will tend
to produce good power function fits, with very general
assumptions about the distribution of learning rates. R. B.
Anderson’s results suggest that averaging over certain
nonexponential types of curves may also give power-like
functions. We will address this issue elsewhere. Clearly, our
results do not rule out that processes other than averaging
may give rise to power laws (Wixted, 2004). Nonetheless, we
have presently adduced rigorous mathematical proof that
power laws may arise as a result of mere data aggregation
without reflecting directly the properties of fundamental
cognitive processes, which may well be exponential in nature.
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Appendix

The starting point of our analysis is the form of the function
for the probability of correctly recalling a learned item for
an individual participant. Let us denote the initial amount of
learned information stored per unit of practice time t by μ.
We take the following form for the recall function p(t) of an
individual participant after learning time t:

pðtÞ ¼ 1� e�m t : ð1Þ

Gamma distribution

We assume that individual learning rates μ follow a gamma
distribution with density function

f ðmÞ ¼ 1
Γ ðaÞbam

a�1e�m=b; ð2Þ

with parameters a, b > 0, where Γ(a) is the gamma function.

Averaged exponential functions

The recall function, which we denote as pA(t), averages
over participants that learn exponentially but with different
learning rates. It is equal to the mathematical expectation of
function (1) with respect to μ:

pAðtÞ ¼
Z1

0

pðtÞf ðmÞ dm

¼
Z1

0

1� e�m tð Þ 1
ΓðaÞbam

a�1e�m=bdm

¼ 1� 1þ b tð Þ�a:

ð3Þ

This proof is based on elementary probability calculus
(e.g., Feller, 1966, p. 48) and also applies when averaging
over exponential forgetting curves with shapes. A special
case of this result (for a = 1 and b = 1, i.e., an exponential
distribution) was derived by Killeen (2001, p. 34).

Uniform distribution

This distribution has pdf

f ðmÞ ¼
1

b�a for a � m � b;
0 for m < a or m > b:

�

If we integrate this function with the exponential
individual learning curves, we obtain

PAðtÞ ¼
Z b

a

e�mt

b� a
dm ¼ e�at � e�bt

tðb� aÞ :

For a = 0, this becomes

1� e�bt

bt
;

which converges to 1/bt for large t. If b = 1, for increasing t,
this rapidly converges to 1/t.

If b > a > 0, and if b approaches a very closely, we
obtain an exponential function. This is to be expected
because in that case (nearly) all participants will have the
same learning rate a:

lim
b!a

e�at � e�bt

tðb� aÞ ¼ e�at:

Half-normal distribution

The half-normal distribution is a normal distribution with
mean 0, of which the left half (i.e., below 0) is removed and
the remaining part is multiplied by 2 to retain a total
probability mass of 1. The pdf uses a different parameter-
ization from the normal distribution where the familiar

parameter σ is replaced by q
ffiffiffiffiffiffiffiffi
2=p

p� ��1
, which gives the

pdf:

f ðmÞ ¼ 2qe
m2q2
p

p ;for m � 0:

The half-normal distribution has mean 1
q and variance p�2

2q2
.

As above, we derive the expected value for the
exponential base function:

PAðtÞ ¼
Z 1

0

2qe�
m2q2

p

p
e�mtdm ¼ e

pt2

4q2 erfc

ffiffiffi
p

p
t

2q

� 	

Here, erfc
ffiffi
p

p
t

2q

� �
¼ 1� erf

ffiffi
p

p
t

2q

� �� �
, where erf(x) is the

error function, which is an integral of form: erf ðxÞ ¼
2ffiffi
p

p
R x
0 e

�t2dt.
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For large t, we can derive the limit for PA(t) as follows:
We start with the following inequality (see Gautschi, 1965,
p. 298):

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 2

p þ x
< ex

2

Z 1

x
e�t2dt � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ 4
p

q
þ x

Using

erfcðxÞ ¼ 2ffiffiffi
p

p
Z 1

x
e�t2dt;

we multiply all parts by 2=
ffiffiffi
p

p
:

2ffiffiffi
p

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 2

p þ x
� � <

2ex
2 R1

x e�t2dtffiffiffi
p

p � 2ffiffiffi
p

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 4

p

q
þ x

� �

and, thus, obtain

2ffiffiffi
p

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 2

p þ x
� � < ex

2
erfcðxÞ � 2ffiffiffi

p
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ 4
p

q
þ x

� �

The derived result for the averaged curve was

e
pt2

4q2 erfc

ffiffiffi
p

p
t

2q

� 	
;

so that, if we substitute
ffiffi
p

p
t

2q for x, we obtain

2ffiffiffi
p

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pt2

4q2
þ 2

q
þ

ffiffiffi
pt

p
2q

� � < e
pt2

4q2 erfc

ffiffiffi
p

p
t

2q

� 	
� 2ffiffiffi

p
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pt2

4q2
þ 4

p

q
þ

ffiffi
p

p
t

2q

� � :

This can be rewritten as

4qffiffiffi
p

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pt2 þ 8q2

p
þ pt

< e
pt2

4q2 erfc

ffiffiffi
p

p
t

2q

� 	
� 4qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2t2 þ 16q2
p

þ pt
:

We can now verify the limits for large t for the left- and
right-hand sides of the inequality:

lim
t!1

4qffiffiffi
p

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pt2 þ 8q2

p
þ pt

¼ 2q
pt

and

lim
t!1

4qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2t2 þ 16q2

p
þ pt

¼ 2q
pt

:

We observe that both sides converge to 2q
pt and conclude

that the expression itself converges to 2q
pt for large t.
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