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Abstract We conducted five sets of experiments asking
whether psychological and physical events are construed in
broadly different manners concerning the underlying textures
of their causes. In Experiments 1a–1d, we found a robust
tendency to estimate fewer causes (but not effects) for psycho-
logical than for physical events; Experiment 2 showed a sim-
ilar pattern of results when participants were asked to generate
hypothetical causes and effects; Experiment 3 revealed a
greater tendency to ascribe linear chains of causes (but not
effects) to physical events; Experiment 4 showed that the ex-
pectation of linear chains was related to intuitions about de-
terministic processes; and Experiment 5 showed that simply
framing a given ambiguous event in psychological versus
physical terms is sufficient to induce changes in the patterns
of causal inferences. Adults therefore consistently show a ten-
dency to think about psychological and physical events as
being embedded in different kinds of causal structures.

Keywords Domain specificity . Causal reasoning . Event
representation

People of all ages ubiquitously infer causal structure from
observation. For example, in a classic case, Dr. John Snow
was able to show, from multiple observations of cholera
spreading through London in 1854, that its transmission was
caused by contaminated drinking water. Similarly, in the

psychological domain, people infer causal structure from ev-
eryday observations. For example, upon learning that a man-
ager of Manchester United recently decided to invest 36 mil-
lion pounds in an unproven 19-year-old player, fans could
infer that the decision to buy at this particularly high price
was brought about by several factors: a positive evaluation
of the player’s potential, a long-term strategy to build for fu-
ture (as opposed to immediate) success, a desire to secure the
transfer before a deadline, and the selling club’s reluctance to
sell for a lower price.

Just how such causal inferences are achieved has been an
area of intense investigation in cognitive psychology. The
general view of causal induction (i.e., the postulation of causal
relationships from observed data) adopted here resembles the
Btheory-based causal induction^ view developed by Griffiths
and Tenenbaum (2009). According to this view, at the com-
putational level of analysis (Marr, 1982), causal induction can
be seen as the product of Bdomain-general statistical inference
guided by domain-specific prior knowledge^ (Griffiths &
Tenenbaum, 2009, p. 661).

The first facet of the theory involves the tracking of statis-
tical information in a domain-general way, and the incorpora-
tion of such statistical information into causal inferences.
Evidence for such an ability is robust. In making causal infer-
ences without much background knowledge concerning the
particular types of entities involved, people are able to analyze
the frequency with which a cause and a potential effect co-
occur, and systematically deploy such information to form
judgments about causal relationships (Cheng, 1997; Jenkins
& Ward, 1965; Shanks, 1995) in a manner that may be sup-
ported by a process resembling Bayesian analysis (Sobel,
Tenenbaum, & Gopnik, 2004; Tenenbaum & Griffiths,
2001). To successfully differentiate causation from mere cor-
relation, people also apply a number of domain-general strat-
egies or heuristics in support of such inferences. These include
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intervention (e.g., Steyvers, Tenenbaum, Wagenmakers, &
Blum, 2003), reasoning about temporal sequences (e.g.,
reasoning that if x generally occurs before y, then x is a
likely cause of y; Lagnado & Sloman, 2006), and reasoning
about abrupt transitions (e.g., whether an initial change in X
co-occurs more often with a change in Y, or vice versa;
Rottman & Keil 2012; Rottman, Kominsky, & Keil, 2014).

The second facet of the theory involves the influence of
domain-specific prior knowledge on how statistical informa-
tion is used to draw causal conclusions. Thus, infants and
adults categorize objects into types based on their causal prop-
erties (Gopnik, Sobel, Schulz, & Glymour, 2001; Tenenbaum
&Niyogi, 2003), and these resulting categories can carry with
them expectations about the strength of causal relationships
(Kemp, Goodman, & Tenenbaum, 2007). Moreover, prior ex-
pectations about mechanisms have been postulated to con-
strain causal inferences from otherwise identical covariational
data (e.g., Ahn & Kalish, 2000; Schlottmann, 1999). To give
just one example, when presented with identical covariational
data regarding (temporally asynchronous) color changes in
two balls, participants who were told that the two balls were
connected by a hidden wire were more likely to judge that one
ball changed the color of the other than were participants who
did not receive information about the mechanism (Wolff,
Ritter, & Holmes, 2014).

In the present article, we investigate the possibility of a type
of domain-specific bias that may be at play in causal reason-
ing: biases in the relative numbers of causes that would be
postulated to bring about physical versus psychological
events. Our focus is less on specific structures, such as com-
mon cause, common effect, and feedback loops, and more on
what we might call Bmetastructural^ expectations—namely,
biases about the relative density and broad types of causal
patterns associated with different ontological classes of enti-
ties. From a broader point of view, such structural expectations
could serve to constrain domain-general processes of causal
induction across a wide range of contexts.

Domain specificity in psychological versus physical
reasoning

There are strong reasons to suspect that the psychological and
physical ontological domains may differ with respect to peo-
ple’s broad expectations regarding the density and types of
causal patterns that serve to bring about events in these differ-
ent domains.

From early in development, humans have structured expec-
tations regarding how psychological states come about and
influence behavior. This is sometimes known as Btheory of
mind.^ Thus, infants expect social agents (but not physical
objects) to have not only goals that help organize their actions
(Hamlin, Hallinan, & Woodward, 2008; Olineck & Poulin-

Dubois, 2005; Woodward, 1998), but also desires
(Repacholi & Gopnik, 1997), beliefs (Onishi & Baillargeon,
2005), and rational means–end reasoning (Gergely & Csibra,
2003). Additionally, young infants possess the ability to rea-
son about emotional states, and are thus sensitive to the con-
gruence between emotions and actions (Hepach &
Westermann, 2013).

Infants’ expectations about the behavior of physical objects
contrast with their expectations regarding social agents
possessing psychological states. Whereas they know that so-
cial agents can intentionally create order, they do not expect
this of inanimate physical objects (Newman, Keil, Kuhlmeier,
& Wynn, 2010). They understand that for an entity to cause a
physical object (but not a mindful social agent) to move, that
entity must come into direct contact with the object (Leslie &
Keeble, 1987). And they understand that physical objects, in
contrast to social agents, are not capable of goal-driven self-
propelled motion (Saxe, Tenenbaum, & Carey, 2005; Spelke,
Phillips, & Woodward, 1995).

Consistent with these differences in infancy, one also finds
important domain contrasts in reasoning about physical versus
psychological events at later stages of development and into
adulthood. As Paul Bloom (2006, pp. 211–212) puts it:

People universally think of human consciousness as
separate from the physical realm. Just about everyone
believes, for instance, that when our bodies die, we will
survive—perhaps rising to heaven, entering another
body, or coming to occupy some spirit world. And just
about everyone believes in free will. At both a phenom-
enological level and an intellectual level, we experience
ourselves as free agents. While our bodies are physical,
and can be affected by physical things, we have choice.

Accordingly, young toddlers explicitly distinguish certain
types of psychological states from brain-based, physical ac-
tions. So, for example, young children accept that certain ac-
tions, such as solving a math problem, require a brain, whereas
other psychological states/events, such as loving one’s brother
or pretending to be a kangaroo, do not (Bloom, 2004).

Although the above evidence suggests a deep divide be-
tween the psychological and physical domains for the pur-
poses of causal reasoning, such a divide does not necessarily
show that people will have broadly different metastructural
expectations about the relative numbers and types of causes
that serve to bring about events (which is at issue in the present
article). This more precise prediction derives from studies on
adult and childhood reasoning.

Specifically, naive ascriptions of free will suggest that the
causes leading up to our current mental states and actions are
multiple and nondeterministic (Nichols, 2004). On the other
hand, physical events may intuitively be expected to stem
from linear, deterministic processes and to result from a

Mem Cogn (2017) 45:442–455 443



handful of easily identifiable causal difference makers (Danks,
2007; Strevens, 2008). For example, when presented with a
description of a specific event, young children by around
5 years of age expect that human agents but not physical
objects are free and Bcould have done otherwise^ (Nichols,
2004). In related work, Walsh and Byrne (2007) had adults
reason about alternatives in reason–action sequences (e.g.,
pulling into a lane and missing a turn when trying to avoid
heavy traffic) or cause–effect sequences typically not involv-
ing salient psychological states as causes (e.g., traffic being
diverted onto a different route because of a fallen tree). The
authors found that people tended to think Bif only^ about
actions in a reason–action sequence, but tended to think Bif
only^ about causes in a cause–effect sequence. This result is
compatible with an interpretation whereby participants tacitly
believe that (physical) causes inevitably lead to their effects
(and thus, to change the outcome, one must change the cause).
However participants may infer that the relationship between
reasons and actions is not determinate in the same way.

Thus, taken together the above findings are suggestive that
we may intuitively believe that the causes responsible for
mental states and actions are multiple and nondeterministic,
whereas the causes for physical events may intuitively be ex-
pected to stem from more simple linear and deterministic
processes.

Present experiments

Here we conducted five sets of experiments asking whether
psychological and physical events are construed differently in
terms of the patterning of their causal inputs.We predicted that
people would attribute relatively fewer causes to physical than
to psychological events, because physical causal chains are
more likely to be construed as simplistic, linear, and determin-
istic, whereas psychological causal chains (e.g., those leading
to mental states, thoughts, etc.) are more likely to be thought
of as complex and nondeterministic. Although the definition
of the physical events used here was straightforward (i.e.,
events in which no social agent was involved), our operational
definition of Bpsychological events^ merits clarification. We
focused mainly on changes in mental states as opposed to the
taking of intentional actions, which has been the focus of other
work (e.g., looking at reason–action sequences, in Walsh &
Byrne, 2007). Nevertheless, the changes in psychological
states studied here sometimes did heavily imply an action
(e.g., making a decision to do x), and thus intersected with
the previous areas of study.

In addition to testing for effects of domain on inferences
about causes and causal structure, we also tested for domain
differences in the numbers of estimated effects that people
predicted would result from particular events. Although we
had no structured hypotheses concerning these results, their

inclusion potentially served as an informative comparison
condition for two reasons. First, it would provide information
with respect to whether any observed effects were specific to
reasoning about causes or might reflect more general biases
that would extend to other types of judgments. Second, this
comparison could prove informative to the growing literature
examining potential asymmetries in how people reason about
causes versus effects (Ahn&Nosek, 1998; Fernbach, Darlow,
& Sloman, 2010; Waldmann & Holyoak, 1992).

Experiment 1a

Our participants viewed descriptions of simple events that
were either psychological (e.g., BA teacher becomes
depressed.^) or physical (e.g., BA house burns down.^) in
nature. The physical events were designed to involve an inan-
imate object undergoing a change of state. The psychological
events involved a human being undergoing a purely psycho-
logical change of state (e.g., a teacher becoming depressed),
undergoing a change of mental state that implied an accom-
panying action (e.g., a politician changing her mind about a
policy), or performing an action that strongly implied an un-
derlying psychological state (e.g., bursting into tears),

Participants were then asked either to estimate the total
number of effects that would follow from the event or to
estimate the total number of causes that led to the event.

Method

Participants A total of 18 adults were recruited with
Amazon’s Mechanical Turk and were compensated a token
amount. The number of participants was matched with that
of pilot results and served to fix to within one or two partici-
pants the number of participants for Experiments 1b–1d below
(different sample sizes occurred due to differences between
the numbers of participants requested and the numbers of
responses actually received). For Experiments 1–5, the sample
sizes were decided in advance, and optional stopping was
never employed. In cases in which we received more or fewer
participants than we requested via Mechanical Turk, we al-
ways report all available data.

Workers were restricted to those having a 95 % or higher
hit approval rate and coming from the United States.
Compensation amounts were similar across all experiments
(1a-5) reported here, varying between $.15 and $.4. The se-
lection criteria of a 95 % or higher hit approval rate and being
in the US were also constant across all experiments. We did
not collect demographic information for the workers from the
particular studies carried out here, but previous large-scale
analyses (see Mason & Suri, 2012, for a review) have shown
that the majority of US respondents are female (55 % vs. 45%
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male), with an average age of 32, and earn roughly USD
30,000 per year.

Design The experiment had a 2 × 2 design with both concep-
tual domain (physical or psychological) and estimation type
(causes and effects) as repeated measures.

Materials and procedure Each participant read ten different
sentences online. Five referred to simple physical events, and
five referred to simple psychological events (as described
above). See the Appendix for a full list of the stimuli and the
by-item means for Experiments 1a–1d.

Participants were asked to estimate on a scale of 0–100
how many specific things were likely either to have caused
the event (Bcause^ condition) or to result from the event
(Beffect^ condition). The cause and effect questions were pre-
sented in blocks (with a block containing only cause or only
effect questions), and the order of presentation of the blocks
was randomized between participants. Within each block, the
order of all items was randomized.

Results

Each participant’s average estimation was calculated for the
following four conditions: physical cause, psychological
cause, physical effect, and psychological effect. A repeated
measures 2 × 2 analysis of variance (ANOVA) revealed a
significant interaction between conceptual domain and esti-
mation type [F(1, 17) = 15.42, p = .001, ηp

2 = .48].1 In a first
within-participants two-tailed planned contrast, we found that
the estimated number of causes for the physical items was
fewer than the estimated number of causes for the psycholog-
ical items (27.87 vs. 48.96) [t(17) = 5.17, p < .001, ηp

2 = .61].
The estimated numbers of effects, however, failed to differ
between conditions (38.77 vs. 38.37) [t(17) = .07, p = .95,
ηp

2 = .00].

Discussion

The results of Experiment 1a support the hypothesis that par-
ticipants show important domain differences in causal estima-
tion. In particular, the results suggest a specific pattern where-
by the number of estimated causes is systematically lower for
physical than for psychological events, whereas the estimated
number of effects is not.

Experiment 1b

In Experiment 1a, we picked a relatively arbitrary scale
(0–100) for our estimation task. It is unlikely that people
would be able to actually generate on the order of 20–40
causes for a given event, instead our account suggests that
these estimations reflect broad domain-specific expecta-
tions about the relative densities of causes in physical
versus psychological events. We would hypothesize that
such expectations could be modified to fit various
contexts.

To address this, in Experiment 1b we asked whether the
results above would generalize to a new scale (i.e., 0–10 in-
stead of 0–100). The underlying idea was that by specifying a
scale (0–10 vs. 0–100), participants can likely adjust the level
of granularity of their causal expectations to fit this scale. For
example, a participant might implicitly or explicitly reason
that if 100 is the maximum value of the scale, then he or she
should be thinking about relatively fine-grained causes or ef-
fects (of which there would be many). If 10 were the maxi-
mum, however, they should be thinking about relatively
coarse-grained causes or effects.

If the results from Experiment 1a were due to
metastructural expectations about the relative density (as op-
posed to the brute number) of causes associated with different
ontological classes of entities, then one would expect that the
effects from Experiment 1a should replicate, regardless of
how coarse- or fine-grained the implied causal structure was.
Thus, we would predict that those effects would replicate even
on a 0–10 scale.

Method

ParticipantsA total of 18 adults participated using Amazon’s
Mechanical Turk.

Design, materials, and procedure Experiment 1b was iden-
tical to Experiment 1a, except that the scale was changed from
0–100 to 0–10.

Results

A repeated measures 2 × 2 ANOVA again revealed a signifi-
cant interaction between conceptual domain and estimation
type [F(1, 17) = 5.24, p = .035, ηp

2 = .24]. In a first within-
participants two-tailed planned contrast, we found that the
estimated number of causes for physical items was fewer than
the estimated number of causes for the psychological items
(3.71 vs. 4.79) [t(17) = 2.13, p = .048, ηp

2 = .21]. The estimat-
ed numbers of effects, however, failed to differ between con-
ditions (6.2 vs. 5.8) [t(17) = 1.18, p = .26, ηp

2 = .08].
1 A power analysis revealed that at 18 participants, we had a statistical power
of .97 to detect this interaction.
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Discussion

These results are consistent with the view that the domain-
specific asymmetries in estimating the numbers of causes ver-
sus effects are due to differences in metastructural expecta-
tions pertaining to the relative numbers of causes in the phys-
ical versus psychological domains. One possible account of
these results is that the scale (i.e., 0–100 vs. 0–10) sets the
participants’ expectations about the size and scale of causes
and effects that are relevant for the task, and an expectation
about the number of causes is then applied to the relevant scale
according to the domain. This suggests that any estimation
effects found here (and in other experiments) would be more
likely to reflect broad expectations about causal density, which
can be adapted to context, than to reflect something about the
specific causes that a person brought tomindwhen diagnosing
various events.

Experiment 1c

Experiment 1c extended the findings above by testing a new
stimulus set (on a scale of 0–100). The primary goal was to
ensure that the effects observed above were not a consequence
of the particular stimuli that we chose to study and were likely
to be robustly generalizable.

We created new sets of physical as well as psychological
items. Both stimulus sets were subdivided into complex and
simple events. For the physical items, the simple events in-
volved the functioning of a single artifact (e.g., BA computer
starts.^). The complex events involved a natural weather phe-
nomenon (e.g., BA hurricane formed.^), which typically
covers a wider physical area than that covered in an event
related to a physical artifact and typically involves one or
many physical substances, such as water, air, or lava (as in
BAvolcano erupted.^). For the psychological items, the simple
events were changes in the psychological state of a single
individual (e.g., BA professor changes his mind.^), whereas
the complex psychological events involved changes in the
psychological states of organizations of individuals (e.g., BA
corporation becomes interested in making computers.^)

We again predicted fewer estimated causes for the physical
than for the psychological events, for both simple and com-
plex events. On the basis of the previous results, we expected
that the estimated number of effects would not be less for
physical than for psychological events.

Method

ParticipantsA total of 19 adults participated using Amazon’s
Mechanical Turk (18 requested).

Design, materials, and procedure Experiment 1c was iden-
tical to Experiment 1a, except that it employed ten psycholog-
ical events and ten physical events. None of the sentences had
appeared in the previous experiments.

Results

An initial 2 (physical vs. psychological conceptual domain) ×
2 (complex vs. simple) × 2 (cause vs. effect estimation) re-
peated measures ANOVA revealed a number of findings.

It first revealed a main effect of complexity [F(1, 18) =
45.77, p < .001, ηp

2 = .21], with simple events receiving fewer
overall estimated causes/effects than did complex events
(23.41 vs. 44.44). This factor failed to interact with conceptual
domain [F(1, 18) < 1, p = .37, ηp

2 = .05], and there was no
three-way interaction between conceptual domain, judgment
type, and complexity [F(1, 18) < 1, p = .91, ηp

2 = .001]. These
results thus served as a validation of our manipulation of com-
plexity, certifying that complex events were indeed perceived
as being more complex (in terms of their causes and effects)
and that the (perceived) differences between complex and
simple events were similar across the physical and psycholog-
ical domains.

We again replicated the two-way interaction (found in the
other experiments) between conceptual domain and judgment
type [F(1, 18) = 15.25, p = .001, ηp

2 = .001]. A first planned
contrast between simple physical and psychological events
revealed a significant difference in the numbers of estimated
causes (12.94 vs. 40.25) [t(18) = 3.52, p = .002, ηp

2 = .41]. A
second planned contrast revealed a significant difference in
the numbers of estimated causes for complex physical versus
psychological events (29.41 vs. 52.95) [t(18) = 4.89, p < .001,
ηp

2 = .571].
However, the simple physical versus psychological events

did not differ significantly with respect to their estimated ef-
fects (17.01 vs. 23.45) [t(18) = 1.8, p = .09, ηp

2 = .15], nor did
the complex events (46.99 vs. 48.40) [t(18) = 0.26, p = .80, ηp

2

= .004].

Discussion

Experiment 1c suggested that the effects discovered in
Experiments 1a–1b were broadly generalizable, given that
they replicated in an entirely new stimulus set and held across
differing levels of baseline complexity.

Experiment 1d

Although the results in Experiments 1a–1c were consistent
with our predictions, unwitting experimenter bias in creating
our stimuli might still have unfairly weighted the results in
favor of our predictions. Effects of biasing by knowledgeable
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experimenters in stimulus creation have been demonstrated in
similar online contexts (Strickland & Suben, 2012), and we
were eager to avoid any such limitations in the present studies.
To address this concern, we had online participants who were
blind to our hypotheses first create sentences referring to phys-
ical versus psychological events, and then tested those stimuli
in the estimation task.

Method

Participants

Stimulus creation A group of ten adults were recruited using
Amazon’s Mechanical Turk.

Main experiment A group of 20 adults were again recruited
using Amazon’s Mechanical Turk (18 requested).

Design, materials, and procedure

Stimulus creation Participants were asked to create five
sentences referring to physical events and five sentences re-
ferring to psychological events. The participants received the
following verbatim instructions (for the physical vs. psycho-
logical conditions):

Physical sentence generation:
Please write in 5 different PHYSICAL sentences. All of
these sentences must have a PHYSICAL object as the
grammatical subject of the sentence, andmust describe a
purely physical event, which are characterized by a
change in the physical world. An example sentence
would be BA volcano erupts.^ Another example sen-
tence would be BAn airplane lands.^ Note that none of
the sentences may have a person or an animal as their
grammatical subject. So a sentence like BA thirsty man
drinks water^would not be acceptable because it has the
word Bman^ as the grammatical subject. Similarly, a
sentence like BA small dog barks^ would be unaccept-
able because it has an animal as the grammatical subject.
Psychological sentence generation:
Please write in 5 different PSYCHOLOGICAL
sentences. All of these sentences must have a person
as the grammatical subject of the sentence, and must
describe some psychological event, which is character-
ized by a change to a person’s mental states. An example
sentence would be BA person decides to believe in
God.^ Another example sentence would be BA criminal
decides to be a better person.^

It was decided in advance that we needed 20 stimuli from
the physical domain and 20 from the physical domain for our
main experiment.Wewanted to increase the overall number of

items being tested while still allowing the experiment to be
completed in a reasonable amount of time by online partici-
pants. Given that we were unsure how well participants would
be able to generate stimuli for the task, we decided to be
cautious by overestimating the number of total stimuli that
we received. Thus, we gathered ~100 participant-generated
stimuli, of which we planned to use 40.

To decide which 40 to use for the main task, the underlying
goal was to get a fair spread across the participants. Thus, we
numbered the physical (and psychological) stimuli such that
the first participant’s first item would labeled B1,^ the second
participant’s first item B2,^ and so forth. Once we reached the
tenth participant, the second item produced by the first partic-
ipant would be labeled B11,^ the second item produced by the
second participant B12,^ and so forth. However, any stimulus
that did not conform to the instructions was eliminated in this
process (e.g., the sentence BThe lion roars^ was eliminated as
a physical item because it violated the rule about not having an
animal as a grammatical subject). We then simply selected
Stimuli 1–20 from each conceptual domain. This procedure
generated a total of 40 items, with at least three items selected
from each participant.

Main experiment Experiment 1dwas identical to Experiment
1a, with the exception that there were now 40 total items (20
physical and 20 psychological).

Results

The results of Experiment 1d broadly replicated the pattern of
results found in Experiment 1a. The interaction between con-
ceptual domain and estimation type was again significant
[F(1, 19) = 24.82, p < .001, ηp

2 = .57]. A first planned contrast
revealed that the estimated number of causes for physical
items was lower than the estimated number of causes for the
psychological items (20.47 vs. 32.33) [t(19) = 2.16, p = .04,
ηp

2 = .20]. The estimated number of physical effects was ac-
tually greater than the estimated number of psychological ef-
fects (34.89 vs. 26.44) [t(19) = 2.54, p = .02, ηp

2 = .25].

Discussion

The pattern of results found in Experiment 1a was replicated,
even in a stimulus set generated by a set of participants blind
to the present hypothesis. Thus, in Experiment 1d the number
of estimated causes was again systematically lower for phys-
ical than for psychological events, whereas the estimated
number of effects was not. The stimuli used in generating
these results were unlikely to have been influenced by unwit-
ting experimenter bias, and likely also had the advantage of
being ecologically valid in the sense that they were represen-
tative of the types of events that people would naturally con-
sider in their everyday lives.
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Experiment 2

The goal of our present research is to test for potential domain-
specific expectations that may apply across a range of exper-
imental contexts and dependent variables. Toward that goal,
Experiment 2 asks whether the pattern of results we previous-
ly observed applies beyond our basic estimation task. This
time, we asked participants to actively produce hypothetical
causes and effects for various events and tested whether the
same domain-biasing effect would result.

Method

Participants A total of 42 adults were recruited using
Amazon’s Mechanical Turk (40 requested). We approximate-
ly doubled the standard sample size from Experiments 1a–1d,
given that we were unsure how participants would perform in
this task and how many participants would complete the task
(given that it was more time-intensive and more demanding).

Of these participants, nine failed to complete more than
75 % of the survey and were thus excluded from all further
analyses.

Design, materials, and procedure Experiment 2 was identi-
cal to Experiment 1b, except that participants were asked to
list (instead of estimate) as many causes versus effects as
possible for the event. Participants were provided with 12
blank slots for each item in which to enter their responses.
We deliberately restricted the pragmatically relevant set of
causes/effects to 12 blank slots, primarily to ensure that the
task would be doable in a short amount of time (given that we
expected any domain-specific expectations to be relative as
opposed to scale-specific, this change did not affect our ability
to ask the primary theoretical question of interest).

Results

Each participant’s average number of responses was calculat-
ed for each of the experimental conditions. The results mir-
rored those found in Experiments 1a–1d. The interaction be-
tween conceptual domain (i.e., physical vs. psychological)
and judgment type (i.e., cause vs. effect) was significant
[F(1, 32) = 31.85, p < .001, ηp

2 = .50].
Planned contrasts revealed that participants generated few-

er hypothetical causes for physical than for psychological
events (2.50 vs. 3.65) [t(32) = 6.22, p < .001, ηp

2 = .55]. On
the other hand, participants generated roughly equal numbers
of effects for physical versus psychological events (2.31 vs.
2.43) [t(32) = 1.44, p = .16, ηp

2 = .06].

Redundancy ratingsWe alsowished to ensure that the results
above were not driven by redundancy in the responses. For
example, perhaps participants generated more psychological

than physical causes, but the psychological causes were most-
ly redundant. This would mean that the numbers of different
causes listed might not differ between the domains.

Thus, three independent coders were instructed to rate each
participant’s responses for redundancy. First we explained
how the basic task worked, and then we instructed them as
follows:

We are trying to understand whether participants listed
any Bredundant^ answers. That is, we want to know
whether any row contains multiple causes (or effects)
that are exactly the same in meaning. We are asking that
you read each row left to right and count the number of
redundant causes or effects contained in that row only
(for many rows of answers, this number may well be
zero). Please consider answers to be redundant only if
they are the same in meaning. Answers that are only
similar in structure or meaning should not be considered
redundant unless they are by and large the same in
meaning.

Each rater provided a number of responses equivalent to
the total number of items that were shown to participants
(2,640 responses per rater). The average pairwise percentage
agreement between and raters was 95.81 %, ranging between
96.17 % and 95.42 %. Thus, the raters showed a high level of
agreement.

For each experimental participant, we averaged across the
raters to compute the percentage of redundant responses that
the relevant experimental participant provided for each of the
four experimental categories. We then averaged across partic-
ipants to compute a mean percentage of redundant responses.
These were as follows: physical diagnosis = 4.31 %, psycho-
logical diagnosis = 3.23 %, physical prediction = 3.28 %,
psychological prediction = 3.99 %. A 2 × 2 repeated measures
ANOVA revealed no main effect of conceptual domain [F(1,
32) < 1, p = .72, ηp

2 = .004]. Similarly, we observed no main
effect of judgment type [F(1, 32) < 1, p = .94, ηp

2 = .00] and
no significant interaction between conceptual domain and
judgment type [F(1, 32) = 3.40, p = .08, ηp

2 = .096]. Finally,
t tests mirroring the planned contrasts from the main experi-
ment revealed a lack of significant differences between the
conditions. Thus there was no significant difference between
the physical and psychological diagnoses [t(32) = 1.28, p =
.21, ηp

2 = .05], and there was also no significant difference
between the physical and psychological predictions [t(32) =
1.34, p = .19, ηp

2 = .05].

Discussion

The results of Experiment 2 supported the conclusion that the
asymmetries in causal reasoning between physical and psy-
chological events are due to general cognitive tendencies that

448 Mem Cogn (2017) 45:442–455



apply not only in the specific estimation tasks studied in
Experiments 1a–1d, but also in a different task type involving
a different dependent variable (i.e., the production of causes
and effects).

Experiment 3

In Experiment 3, we examined in detail one particular factor
that may (at least partially) account for the reduced numbers of
estimated and imagined causes in physical events: a greater
expectation in the physical domain of simple linear causal
chains, as opposed to multiple converging factors combining
to bring about an outcome.

Method

Participants A total of 42 adults were recruited using
Amazon’s Mechanical Turk (40 requested). We were again
uncertain how participants would respond to this task, and
thus conservatively opted to (approximately) double the sam-
ple size relative to Experiment 1d (i.e., the experiment that
was most similar to the present experiment).

Design, materials, and procedure Experiment 3 was identi-
cal to Experiment 1d, except that participants were asked to
choose the diagram that best illustrated the causes or the ef-
fects of the event. One diagram presented a linear chain,
whereas the other presented multiple converging causes/
multiple diverging effects (see Fig. 1).

Results

Each participant’s percentage of linear choices was calculated
for each of the four experimental categories. As in our previ-
ous experiments, the interaction between conceptual domain
and judgment type was marginally significant [F(1, 41) =
3.87, p = .056, ηp

2 = .06].
Participants displayed a significant preference for linear

causes in physical relative to psychological events (64.86 %
vs. 38.90 %) [t(41) = 4.21, p < .001, ηp

2 = .3]. They also
showed a significant preference for linear effects in physical
relative to psychological events (54.14 % vs. 38.84 %) [t(41)
= 2.57, p = .01, ηp

2 = .14], but this preference was smaller than
in the cause condition, thus creating the (marginally) signifi-
cant interaction.

Discussion

The results of Experiment 3 supported the hypothesis that
people have a greater expectation for linear causal chains in
the identification of causes for physical as opposed to psycho-
logical events. Even though participants had no practice or
training in matching such diagrams to events, they showed a
differentiation in the kinds of diagrams that applied to physical
and psychological events.

Experiment 4

In Experiment 4, we further probed the relative preferences for
linear chain causality in physical versus psychological events,
by asking whether such linear chains are related to imputed
deterministic processes. Here we employed participants’ con-
ditional probability judgments (i.e., the probability of an effect
given an cause) after participants had chosen a diagram
depicting either linear or multiple converging causes for a
given event.

Method

Participants A total of 214 adults were recruited (200 re-
quested) using Amazon’s Mechanical Turk, allowing for ap-
proximately ten participants per passage per condition.

Design The present experiment was based on a two-factor
design (psychological vs. physical), with two dependent var-
iables (choice of causal structure and conditional probability
judgment).

Materials and procedure Participants were randomly
assigned to read about a single event, taken from a list of 20
possible events. The list of possible events was composed of
descriptions of ten physical events and ten psychological

Event

Cause

Cause

Cause

Cause

Cause

Cause

Event

Cause

Cause

Cause Cause

Cause

Cause

Fig. 1 For each event, the participants in the Bcause^ condition were
presented with a choice between a linear causal structure and a causal
structure depicting multiple converging causes. The participants in the
Beffect^ condition saw similar structures, except that the directionality
of the causal arrows in the diagrams was reversed
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events taken from a subset of the items generated in
Experiment 1d above (see the asterisked items in the
Appendix for Exp. 1d). Upon reading their assigned event
stimulus, participants were first asked to choose the diagram
that best illustrated the causes of the event. The diagrams used
were identical to those employed in the Bcause^ condition
from Experiment 3. Thus, one diagram presented a linear
chain, whereas the other presented a diagram of multiple con-
verging causes (in a manner identical to the Bcause^ condition
in Exp. 3). After making their choice, participants were then
presented with a new diagram matching their preferred causal
diagram. For example, if the participant had previously chosen
a linear option, that participant then saw a new linear diagram
that was identical to the previous one, with the exception that
one of the nodes was highlighted in red (selected at random).
The participant was asked to indicate the probability that the
event would occur given the presence of this cause.

Results

Each item’s percentage of linear choices was calculated for
each of the two experimental categories. We performed a
by-item analysis, as opposed to a by-participant analysis
(as we had done in the previous experiments), because
each participant saw only a single item, thus making it
impossible to average individual participants’ means for
individual conditions. An independent-samples t test re-
vealed that, as in Experiment 3, the percentages of linear
choices differed significantly between the physical and
psychological domains (51.33 % vs. 22.86 %) [t(18) =
3.53, p = .002, ηp

2 = .41].
For each item, we then calculated the average conditional

estimated probability (without distinguishing multiple con-
verging from linear causal types). An independent-samples t
test revealed that the estimated probability of an effect given a
physical cause was seen as being higher than the estimated
probability of an effect given a psychological cause (50.55 vs.
36.30) [t(18) = 4.12, p = .001, ηp

2 = .49].
For each conceptual domain, we separately calculated the

average linear estimated conditional probability as well as the
average converging-causes estimated conditional probability.
The means were as follows: physical/linear = 55.69, physical/
converging = 41.32, psychological/linear = 46.91,
psychological/converging = 33.37. A 2 × 2 ANOVA with
Judgment Type as a within-items factor (one item from the
psychological domain was excluded from this analysis be-
cause it received no linear responses) and Conceptual
Domain as a between-items factor revealed a nonsignificant
interaction [F(1, 17) < 1, p = .87, ηp

2 = .002].
There was, however, a main effect of causal type, whereby

the conditional probabilities in the linear chains were judged
to be higher than those for the converging causes (51.3 vs.
37.66) [F(1, 17) = 10.21, p = .005, ηp

2 = .38].

Discussion

The results of Experiment 4 replicated and extended those
from Experiment 3, by showing a relative preference for linear
causal chains leading to an event in the physical as compared
to the psychological domain. These results also yielded two
further insights into the mechanisms of domain-specific causal
reasoning. First, linear chains are conceived of in more deter-
ministic terms, with individual causal nodes having more
power to bring about a given effect (i.e., there is a higher
estimated probability of an effect, given a cause). Second,
averaged across causal schemas (i.e., linear or converging),
the physical domain is considered to be more deterministic
than the psychological domain. The fact that physical events
are more readily associated with simple, deterministic chains
may play a role in reducing the expected number of causes for
physical events (observed in Exps. 1a, 1b, 1d, 2, and 5).

Experiment 5

Experiments 1–4 suggested differing expectations in causal
reasoning for the physical and psychological domains. One
might therefore expect that simply framing an ambiguous phe-
nomenon as being physical versus psychological would bring
about significant changes in reasoning about its causes versus
effects. In this manner, the same phenomenon could be con-
strued quite differently when it was immersed in a different set
of inferred causal structures. Experiment 5 tested this
prediction.

Experiment 5 also addressed a minor design issue present
in Experiments 1a–1d. Whereas in those experiments estima-
tion type (cause or effect) was varied within participants (thus
introducing the possibility that one type of judgment might
influence the other), here we eliminated this possibility by
varying estimation type between participants.

Method

Participants A total of 192 adults were recruited (200 re-
quested) using Amazon’s Mechanical Turk for the primary
experiment. This requested sample size was set on the basis
of a pilot experiment with a similar sample size (but that tested
only a single item).

Design The experiment was based on a 2 × 2 mixed design
with conceptual domain (physical vs. psychological) as a re-
peated measure and estimation type (causes and effects) as a
between-subjects variable.

Materials and procedure Participants were shown a series of
ten texts like the following:
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Consider the phenomenon of having low self-esteem.
Modern research has begun to show that that low self-
esteem is a purely PHYSICAL phenomenon. That is,
having low self-esteem is really just a PHYSICAL pro-
cess in the brain. Despite the fact that many people think
of low self-esteem as being inherently psychological,
most research shows that this isn’t the case at all.
Now imagine that someone you know has low self-es-
teem. Given that low self-esteem is a physical phenom-
enon in the brain, how many specific things do you
think are likely to have CAUSED their low self-esteem?

Roughly half the participants (random assignment) were
asked to estimate on a scale of 0–100 how many specific
things were likely to have caused the event (Bcause^ condi-
tion, exemplified above), whereas the other half were asked to
estimate how many specific effects were likely to result from
the event (Beffect^ condition).

Our items consisted of mental conditions that could plau-
sibly be conceptualized as being either inherently physical
(i.e., brain-based) or psychological. These were low self-es-
teem, political conservatism, anxiety, bulimia, depression, ob-
sessive compulsive disorder, antisocial personality disorder,
anorexia, compulsive gambling, and posttraumatic stress
disorder.

For each participant, exactly half of the items were de-
scribed as being inherently physical (i.e., brain-based) phe-
nomena, as in the example above. The other half of the items
were described as being inherently psychological (i.e., mind-
based) phenomena.

We pseudorandomized the particular pairings of which five
items were described as physical and which were described as
psychological by randomly generating two separate lists. On
the first list, the following items were physical: low self-es-
teem, political conservatism, anxiety, bulimia, depression, and
obsessive compulsive disorder. The rest were psychological.
On the second list, this was reversed. These lists were identical
across the cause and effect conditions. Participants were ran-
domly assigned to one of two lists. All items were presented in
a randomized order to participants.

Results

The individual participant averages were calculated for each
of the experimental conditions. We first tested for effects of
list (from the pseudorandomization) and observed no main
effects or significant interactions with either conceptual do-
main (psychological vs. physical) or estimation type (cause vs.
effect). We thus collapsed across lists for all further analyses.

A 2 × 2 ANOVA with Judgment Type as a between-
participants factor and Domain Framing as a within-
participants factor revealed a significant interaction [F(1,
190) = 6.88, p = .009, ηp

2 = .035].

This interaction was driven by a pattern of results that was
similar to those in the previous experiments. Two planned
contrasts revealed that the estimated number of causes was
significantly lower for physical than for psychological events
(31.89 vs. 39.80) [t(96) = 3.38, p = .001, ηp

2 = .11]. On the
other hand, the estimated numbers of effects failed to differ
significantly between physical and psychological events
(47.77 vs. 48.16) [t(94) = 1.08, p = .24, ηp

2 = .001].

Discussion

Experiment 5 supports the hypothesis that differing tendencies
in reasoning about causes (from a given effect) may be due to
biases that are specific to the cognitive domains, whereas such
biases in reasoning about effects (from causes) are not present.
Thus, people will estimate different causal densities for rela-
tively ambiguous but well-known phenomenon depending on
whether they are framed as being inherently physical or
psychological.

General discussion

Whether it is simply estimating numbers of causes and effects
(Exps. 1a–1d and 5), listing hypothetical causes and effects
(Exp. 2), matching abstract causal structures depicted in dia-
grams to events (Exps. 3 and 4), or generating conditional
probabilities (Exp. 4), adults consistently think about psycho-
logical and physical events as being embedded in different
kinds of causal structures. This tendency is so strong that it
is found even when the same well-known phenomenon is
simply framed in psychological versus physical terms (Exp.
5).

Domain specificity

In particular, when estimating the number of things that have
caused a given effect, participants consistently estimated that a
lower number of causes were likely to have brought about
physical than psychological events. However, no such
domain-specific effects consistently held for the estimation
of effects from a given cause, thus suggesting an asymmetry
in diagnostic reasoning (i.e., reasoning from effects to causes)
versus predictive reasoning (reasoning from causes to effects),
consistent with other such observations (Ahn & Nosek, 1998;
Fernbach et al., 2010; Waldmann & Holyoak, 1992). This
asymmetry also suggests that the domain effects found here
are specific to causal estimation and do not reflect a general
response bias (e.g., to indicate lower numbers for physical
events) that would be obtained in any type of judgment task.

Our results also point to a potential mechanism explaining
the decreased estimates of causes for physical versus psycho-
logical events: Causes of physical events are more likely to be
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conceptualized as deterministic and simple linear causal
chains than are the causes of psychological events. On the
other hand, psychological events are more likely than physical
events to be seen as resulting from multiple, converging
causes in a nondeterministic fashion (possibly due to naive
intuitions about free well that are associated with psycholog-
ical events). It may be that these domain-specific qualitative
differences in the complexity of the imputed causal structures
translate into differing quantitative estimates of the numbers
of likely causes.

This result is compatible with previous work suggesting
that people conceive of relationships between nonpsycho-
logical causes and effects differently than those between
psychologically imbued reason–action sequences (Walsh
& Byrne, 2007). People may have different default expec-
tations in the two domains because the causal relationship
between reasons and actions is not typically as stable as the
causal relationship between non-psychologically-driven
causes and effects (Juhos, Quelhas, & Byrne, 2015;
Walsh & Byrne, 2007). Thus, a single action may be
thought of as resulting from multiple causes, as when one
drives down a street to achieve multiple goals (e.g., going
to the grocery store, picking up children from work, and
dropping off something at a post office). On the other
hand, a person may perform multiple actions to achieve a
single goal. For example, to become a better athlete, one
may lift weights, train more often, run, swim, and read
books. But Byrne and colleagues hypothesized that these
Bmany-to-one and one-to-many mappings of reasons to ac-
tions are uncharacteristic of causal relations, which tend to
have a simpler one-to-one mapping of causes to effects^
(Juhos et al., 2015, p. 58).

Our work may provide further insight into this theo-
retical perspective. First, it suggests that the many-to-one
and one-to-many mappings found in previous work may
not simply be inherent to reason–action sequences.
Instead, such mappings may extend further to cover a
far larger range of psychological event types (including
but not limited to the causes and effects of reasons and
emotions). Second, our results suggest that in the physi-
cal domain (which consists only of cause–effect se-
quences), the simplicity of mappings is asymmetric.
Although there does appear to be a simpler inferred map-
ping from effects to causes than in the psychological
domain, there seems to be no systematic difference be-
tween psychology and physics when reasoning from
causes to effects.

There are, however, some important limitations to note
with regard to our general conclusions. First, at best, our re-
sults would show that imputed linearity and determinism (as-
sociated with physical events) are correlated with lower esti-
mates for causes. Such a correlation, even if established,
would not demonstrate the further point that linear

assumptions actually produce a reduction in causes. More
work would be needed to show this.

Second, there are question marks regarding the specific
interpretations of Experiments 3 and 4. In Experiment 4,
participants gave higher conditional probability ratings for
causes leading to physical events than for causes leading
to psychological events. This may reflect, as we sug-
gested, a greater sense of determinism in the physical than
in the psychological domain. Alternatively, however, peo-
ple may have interpreted our request to estimate the prob-
ability of the effect given the cause as a request to esti-
mate the probability of the effect given only the cause
(known as a Bcausal power judgment^; Cheng, 1997).
This possibility would be in line with recent work by
Cummins (2014a), showing that people indeed have a
general tendency to misinterpret the test question in this
way. In this case, our results would be indicative of
domain-specific biases regarding causal power that may
be partially or entirely independent of intuitions regarding
determinism.

Relatedly, it is well established that in diagnostic infer-
ence (i.e., reasoning from effects to causes), alternative
causes spontaneously come to mind, whereas in predictive
causal inference (i.e., reasoning from causes to effects)
disablers (i.e., causes that might prevent the event in ques-
tion from occurring) spontaneously come to mind (Byrne,
1989; Cummins, 2014b; Cummins, Lubart, Alksnis, &
Rist, 1991; Markovits, 1986). This could not straightfor-
wardly explain the interaction between judgment type and
conceptual domain in Experiment 3 or the differences be-
tween physical and psychological diagnoses observed in
Experiments 3 and 4. Nevertheless, conceptual domain
may interact with the activation of spontaneous causes
and disablers, and this may account for some of the var-
iance observed here. Follow-up studies examining this
possibility could prove informative.

Computational role

What role do these construal biases play in causal induc-
tion? As we described earlier, causal induction can be
viewed as a domain-general process supplemented by
domain-specific biases (Griffiths & Tenenbaum, 2009).
Future research might address the interaction between
these two facets of causal reasoning. For example, the
bias to attribute fewer causes to physical than to psycho-
logical events may guide information search, choices of
intervention, or evaluation of alternative hypotheses in
tasks that more directly look at causal induction.

The present findings may also connect with the litera-
ture on the Billusion of explanatory depth^ (Mills & Keil,
2004; Rozenblit & Keil, 2002), in which participants ini-
tially rate their understanding of causal mechanisms as
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being much greater than it actually is. This is a fact that
they recognize upon reading a subsequent expert explana-
tion. The present task of estimating the number of causes
is similar to the assessment of one’s mechanical under-
standing in the IOED paradigm, thus raising the intriguing
possibility that participants might show a greater illusion
of explanatory depth for psychological than for physical
events if participants’ biases do not map cleanly onto the
actual causal structure. On the other hand, if participants’
biases do track some element of true causal structure, then
one might expect to find equivalently large illusions of
explanatory depth in both domains.2

It is not surprising that people think about their so-
cial and physical worlds differently. It is, however,
much more remarkable that across a wide range of so-
cial and physical events, people have sharply contrasting
expectations about the causal structures in which social
and physical agents are typically embedded, even as
they do not appear to have any explicit awareness of
these contrasts.
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Appendix: By-item breakdown of stimuli
for Experiments 1a–1d

The first number gives the average number of estimated
causes, and the second number the average number of estimat-
ed effects. All averages are rounded to the nearest whole
number.

Experiment 1a

Physical

A house burns down. (27/42)
Awindow breaks. (26/23)
An airplane explodes. (34/61)
A car starts. (17/30)
A fire is ignited. (35/38)

Psychological

A teacher becomes depressed. (50/29)
A man decides to leave his family. (40/55)

A person is surprised. (51/30)
A politician changes her mind about a policy. (44/45)
Awoman bursts into tears. (59/33)

Experiment 1b

Physical

A house burns down. (4.55/7.83)
Awindow breaks. (2.83/3.72)
An airplane explodes. (4.5/8.44)
A car starts. (2.94/4.39)
A fire is ignited. (3.72/6.61)

Psychological

A teacher becomes depressed. (5.44/6.56)
A man decides to leave his family. (5.56/8.16)
A person is surprised. (4.06/4.06)
A politician changes her mind about a policy. (4.72/5.78)
Awoman bursts into tears. (4.17/4.44)

Experiment 1c

Physical

Simple (artifact) A computer starts. (31/62)
A light is turned on. (26/40)
An airplane lands. (28/52)
A cigarette is lit. (26/66)
A bottle is opened. (33/33)

Complex (nonartifact) There is a gust of wind. (45/67)
It begins to rain. (33/72)
A hurricane forms. (47/75)
A volcano erupts. (27/66)
A tidal wave occurs. (38/78)

Psychological

Simple (individual) A person decides to believe in God. (61/
57)

A lady becomes happy. (60/46)
A professor changes his mind. (42/51)
A criminal decides to be a better person. (49/45)
A man suddenly feels lonely. (53/44)

Complex (organization) One country decides to attack an-
other. (66/77)

A corporation becomes interested in making computers.
(51/57)

A military unit forms a plan to siege a castle. (55/56)2 We thank an anonymous reviewer for this suggestion.
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A police department makes up its mind to arrest a senator.
(37/51)

A basketball team becomes motivated. (53/42)

Experiment 1d (items from Experiment 4 with asterisk)

Physical

A radio makes a noise. (14/20)
*A car crashes. (32/43)
Awave crashes. (13/16)
*Rain falls. (16/57)
*The earth spins. (32/65)
A cloud floats. (19/10)
*A building collapses. (31/64)
A volleyball gets hit. (6/8)
*A ship sinks. (32/47)
*An earthquake shakes. (25/65)
The rockets separate from the space capsule. (30/29)
The rock hits the tree. (11/9)
*Lightening strikes the ground. (16/25)
A pebble falls down a waterfall. (13/7)
*The sun shines. (22/74)
*The ground opened up. (35/58)
The faucet leaks. (7.3/11)
*A landslide falls. (28/53)
Water falls off the cliff. (16/24)
The ball rolls. (13/12)

Psychological

*The woman cries. (40/17)
A person decides to believe in reason. (29/46)
A man becomes happy. (38/40)
*A child becomes frustrated. (38/28)
A man feels elated. (33/29)
A man became angry. (39/30)
*A nurse felt crestfallen. (27/15)
*A mother becomes exhausted. (43/31)
*He missed his wife. (26/15)
*My nephew has become depressed and angry. (38/29)
A teacher becomes less depressed. (26/26)
He fell in love with his tutor. (17/20)
*The child misses his father. (11/21)
*A parent loses her patience. (41/31)
A politician feels embarrassed. (28/28)
*The boy was frustrated. (37/24)
*I became withdrawn. (39/27)
The volleyball player believes in his strength. (20/16)
The man was depressed. (38/31)
A friend has suicidal thoughts. (40/30)
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