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Abstract Conventionally, memory and reasoning are seen
as different types of cognitive activities driven by different
processes. In two experiments, we challenged this view by
examining the relationship between recognition memory
and inductive reasoning involving multiple forms of simi-
larity. A common study set (members of a conjunctive
category) was followed by a test set containing old and
new category members, as well as items that matched the
study set on only one dimension. The study and test sets
were presented under recognition or induction instructions.
In Experiments 1 and 2, the inductive property being gen-
eralized was varied in order to direct attention to different
dimensions of similarity. When there was no time pressure
on decisions, patterns of positive responding were strongly
affected by property type, indicating that different types of
similarity were driving recognition and induction. By com-
parison, speeded judgments showed weaker property effects
and could be explained by generalization based on overall
similarity. An exemplar model, GEN-EX (GENeralization
from EXamples), could account for both the induction and
recognition data. These findings show that induction and
recognition share core component processes, even when the
tasks involve flexible forms of similarity.

Keywords Inductive reasoning .Categorization .Recognition
memory . Concepts . Computational modeling

In Principles of Psychology (1890), William James identified
memory and reasoning as fundamental aspects of cognition.
However, he treated them as separate components, with the
coverage of the two topics appearing six chapters apart. Over a
century later, cognitive psychology textbooks still treat mem-
ory and reasoning in separate chapters, six chapters apart on
average (Heit & Hayes, 2008). More formally, psychological
models of memory (e.g., Hintzman, 1988; Shiffrin &
Steyvers, 1997) have generally focused on the retrieval of past
events rather than on how such events can be used to make
predictions about the future. Likewise, models of inductive
reasoning (e.g., Kemp& Tenenbaum, 2009; Osherson, Smith,
Wilkie, & López, 1990; Sloman, 1993) have paid little atten-
tion to the role of memory.

Some have previously attempted to bring the study of
reasoning and memory closer together. Global memory mod-
els have been used to predict how people both make probabi-
listic judgments (e.g., Dougherty, Gettys, & Ogden, 1999) and
abstract schema information from exemplars (e.g., Hintzman,
1986). Brainerd and Reyna’s (1993, 2010) fuzzy trace theory
has examined the overlap between memory and deductive
reasoning, but with an emphasis on the functional dissocia-
tions between judgments made in each task.

We have argued for an even closer relationship between
memory and reasoning (Hayes, Fritz, & Heit, in press; Heit
& Hayes, 2005, 2011; Heit, Rotello, & Hayes, 2012). In
particular, there are close parallels between the ways that
people use previously studied instances to decide whether a
novel probe has been seen before (i.e., recognition) and
whether the properties of familiar instances generalize to
the probe (i.e., inductive reasoning). In each case, probe
presentation is likely to cue the retrieval of a sample of
previously experienced instances and to involve a similarity
comparison between the probe and sample. Where the tasks
are likely to differ is in their thresholds for responding. A
positive recognition response is likely to require a high level
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of similarity between the study and test items. In contrast, an
inductive inference that a property generalizes from a famil-
iar base to a test item is likely to require a lower similarity
threshold.

This account has been supported by recent experimentation
and modeling. Heit and Hayes (2011) presented study instan-
ces under recognition (“memorize these items”) or induction
(“all of these items have ‘beta cells’ ”) instructions.
Recognition (respond “yes” if the item was seen during study)
or induction (respond “yes” if the item has beta cells) judg-
ments were thenmade about the items from a common test set.
The rate of positive responding to novel items was higher in
induction than in recognition. Nevertheless, a remarkably
close relationship was found between the response rates in
induction and recognition (the mean itemwise correlation
between the test responses in the two tasks was .86).
Moreover, both recognition and induction data could be fitted
by a single modeling architecture, GEN-EX (GENeralization
from EXamples), derived from exemplar models of categori-
zation (Nosofsky, 1986, 1988).

The relationship between recognition and more complex
forms of induction

These findings raise important issues regarding the relation-
ship between memory and reasoning, suggesting that more
than an analogy exists between the tasks. It may be that
“recognition” and “induction” are just convenient task
descriptions that refer to cognitive activities with many
common processes (Heit et al., 2012). According to this
“deep-correspondence” view, both tasks depend on a set of
lower-level mechanisms, such as generalization (e.g.,
Shepard, 1987) and recollection (e.g., Rotello & Heit,
1999, 2000). Although there may be parametric differences
between recognition and induction the same fundamental
mechanisms are assumed to underlie both kinds of judgments
(see Sun & Hélie, 2012, for a related argument).

An alternate view is that memory may be closely related to
some types of induction, but not to others. Heit and Hayes
(2011) examined the inductive projection of a relatively unfa-
miliar or “blank” property (“has beta cells”) between instances
of a single study category (large dogs) and closely related
probes (small, medium, and novel large dogs). Most models
of induction (e.g., Osherson et al., 1990; Sloman, 1993) have
assumed that the generalization of unfamiliar properties is
driven by an assessment of the “overall similarity,” or amount
of feature overlap, between the inductive base and target. This
closely parallels the processes that are typically assumed to
underlie recognition (Hintzman, 1988; Jones & Heit, 1993;
Ratcliff, 1990). Hence, it may not seem all that surprising that
Heit and Hayes (2011) found that the overall similarity be-
tween old and novel exemplars was important in both tasks.

In the present experiments, however, we examined the
relationship between recognition and a different form of
induction, one in which participants are more familiar with
the property being generalized. An important finding in the
induction literature is that the use of familiar or meaningful
properties can change the way that the similarity between
base and target items is computed in induction (e.g., Heit &
Rubinstein, 1994; Medin, Coley, Storms, & Hayes, 2003;
Shafto, Coley, & Baldwin, 2007). Heit and Rubinstein, for
example, found that people relied on taxonomic similarity
when generalizing anatomical properties across animal tri-
ads (e.g., generalization was stronger from sparrows to
hawks than from tigers to hawks), but relied on ecological
similarity when generalizing behavioral properties across
the same triads (e.g., generalization was stronger from tigers
to hawks than from sparrows to hawks).

Some researchers (e.g., Feeney, Shafto, & Dunning,
2007; Smith, Shafir, & Osherson, 1993) have suggested that
such selective induction involves qualitatively different
mechanisms than when the induction concerns unfamiliar
properties. Whereas the latter case may be explained by
overall similarity, selective induction involves knowledge
of category–property relations (e.g., how predatory goals
affect behavior). For example, Smith et al. introduced a
new model for reasoning about meaningful properties that
differed greatly from an earlier model for blank properties
(Osherson et al., 1990). Although those studies did not focus
on recognition, one implication of this “differentiated induc-
tion” approach is that the relationship between recognition
and induction should be weaker when the induction
involves familiar properties. In other words, some forms of
induction potentially involve processes that differ funda-
mentally from those involved in recognition. For example,
whereas generalization of a relatively unfamiliar property
like “has beta cells” may involve overall similarity, gener-
alization of a more familiar property like “has water-
resistant skin” may involve a rule-based judgment about
whether an instance is likely to live in an aquatic habitat.

The main aim of these experiments was to examine the
deep-correspondence and differentiated accounts by com-
paring recognition and induction judgments involving fa-
miliar properties. In two experiments, we tested the
recognition–induction relationship when induction involved
meaningful properties that drew attention to different
dimensions of similarity (i.e., selective induction).
Crucially, we did not simply test the hypothesis that recog-
nition and induction are correlated. Rather, our goal was to
examine how the relationship between recognition and in-
duction is affected by the use of meaningful properties in
induction, and whether an exemplar-based approach could
still account for performance in both tasks.

To this end, in each experiment we examined whether an
extended version of the GEN-EX model could accommodate

782 Mem Cogn (2013) 41:781–795



inductive and recognition judgments. To preface our general
approach, we retained the original GEN-EX architecture, in
which recognition or inductive judgments about property
generalization are based on a common process of comparison
of the total similarity of a test probe to the previously experi-
enced category members. The model was extended, however,
by allowing the similarity between test probes and old cate-
gory members to be computed in multiple ways (e.g., overall
similarity and similarity with regard to habitat). This extension
of GEN-EX is important, because it is the first time that an
exemplar model has been used to explain induction and rec-
ognition involving flexible similarity relations that vary
according to the property being generalized.

The main modeling comparison was between the extend-
ed GEN-EX model, with flexibility similarity, and the orig-
inal GEN-EX model, with only one kind of similarity, to
assess whether flexible similarity itself leads to an improved
account of induction with meaningful properties. That is, we
did not aim to assess the GEN-EX model in absolute terms,
but rather we compared different versions of this model. To
anticipate an important result, for different experimental
conditions (e.g., generalizing familiar or unfamiliar proper-
ties in induction), the data supported different versions of
the model.

Experiment 1

In this experiment, a common set of study and test items was
presented under either recognition or induction conditions.
The study items were members of a conjunctive category
(aquatic mammals), and the test items belonged to the same
conjunctive category or to categories that matched the study
set on a single dimension (i.e., aquatic nonmammals or land
mammals). The test list also included foils that differed from
the study items on both dimensions (e.g., insects).

In the recognition condition, participants memorized
study items. In the induction condition, they learned about
animals that shared a novel property. Crucially, this property
was varied across induction conditions with the aim of
suggesting different kinds of similarity relations. In the
induction habitat condition, study items shared a property
designed to strengthen the similarity between items along
the habitat dimension. In the induction mammal condition,
the property was designed to strengthen mammalian simi-
larity. In the induction blank condition, the study items
shared an unfamiliar property (“has property X”).

Following Heit and Hayes (2011), we expected that in-
duction instructions would lead to higher rates of positive
responding to novel test items than would recognition
instructions. In the induction conditions, however, the pat-
tern of test responding across novel items should vary
according to the property being generalized. In the induction

blank condition, high rates of responding should be limited
to novel items with high overall similarity to the study set
(i.e., new aquatic mammals). The two conditions involving
familiar properties, however, should show evidence of se-
lective induction. In the habitat property condition, there
should be a relatively high rate of positive responding to
novel aquatic mammals, whereas the reproductive property
condition should show a high rate of responding to novel
land mammals.

The key theoretical question was whether recognition
shares core component processes with induction that in-
volve more complex and flexible forms of similarity. In
particular, we examined whether the exemplar-based model
GEN-EX could be extended to account for both recognition
and induction involving flexible similarity relations. The
deep-correspondence approach assumes continuity between
elementary and more-complex forms of induction. Namely,
it assumes that inductive predictions always involve consid-
eration of total old–new similarity, but that the basis for
computing similarity between study and test items depends
on the nature of the property being generalized. Following
this logic, an exemplar-based account like GEN-EX may
still offer a viable account of induction with familiar prop-
erties, as long as the similarity between old and new items is
assessed in an appropriate way. The main modeling com-
parison was between the extended version of GEN-EX, with
flexible similarity, versus the original version of GEN-EX,
to assess whether flexible similarity might improve the fit of
a unified model of induction and recognition.

Method

Participants A group of 140 university undergraduates par-
ticipated for course credit. Equal numbers were randomly
assigned to four conditions: recognition memory, induction
blank, induction habitat, or induction mammal. One of the
recognition participants responded “yes” to every foil and
was replaced. A further 180 undergraduates made pairwise
similarity ratings of the study and test stimuli but did not
participate in the main study.

Materials The stimuli were color pictures of animals
sourced from the Internet.1 Each picture showed an animal
in a left-facing side view on a white background. The study
list consisted of ten pictures of aquatic mammals (e.g., gray
whale, sperm whale, bottlenose dolphin, beaver, gray seal,
sea lion, and walrus). The test list consisted of 50 animal
pictures, including ten old items (the aquatic mammals
originally studied), ten new aquatic mammals (e.g., hump-
back whale, orca, harbor porpoise, platypus, and leopard
seal), ten new aquatic nonmammals (e.g., clownfish,

1 We thank John Coley for providing some of the animal images.
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octopus, swordfish, crab, and sea turtle), ten new land mam-
mals (e.g., cheetah, chimpanzee, gorilla, moose, and squirrel),
and ten foils (e.g., bee, eagle, butterfly, goanna, and spider).

Procedure The participants were tested individually on a
desktop computer. In the recognition condition, they were
instructed to memorize members of the study set. The ten
study pictures were shown in random order. Each 10-cm2

picture was presented for 1.5 s, with a 0.5-s interstimulus
interval during which the screen was blank. A 60-s unfilled
retention interval was then followed by the test phase, in which
50 test pictures were shown in random order. The participants
indicated whether or not they had seen each picture by clicking
the mouse on a “yes” or “no” onscreen button. The test items
remained visible until a response was made.2

In the induction conditions, we used an identical proce-
dure but had different study and test instructions. In the
induction blank condition, participants were told that the
goal was to learn which animals had “property X,” de-
scribed as “a newly discovered property.” At test, they were
told to respond “yes” to any animal that was likely to have
property X. In the induction habitat condition, the goal was
to learn which animals had “enzyme X,” described as “a
newly discovered enzyme that assists in the development of
water-resistant body covering.” The induction mammal con-
dition had similar study instructions, except that “enzyme
X” was described as “an enzyme in breast milk that is
passed to the young during feeding.” In the latter two con-
ditions, the test instruction was to respond “yes” to any item
that was likely to have enzyme X.

Results

Positive test responses Table 1 shows the mean proportions
of positive responses for each type of test item. These results
are also shown for individual items on the left side of Fig. 1.
(Note that within each type of test item, individual items are
ordered arbitrarily.) Positive responses to each type of test
item were entered into a series of one-way analyses of
variance (ANOVAs) with four experimental groups. Three
planned contrasts compared test responding in the recogni-
tion and induction conditions, responding in the induction
blank and the two “nonblank” conditions, and responding in
the induction habitat and induction mammal conditions.

Recognition performance was generally good, with a high
hit rate on old items (old aquatic mammals), a modest false
alarm rate of .25 on new aquatic mammals, and almost no
false alarms to other stimulus types. The ANOVAs revealed
that the rate of positive responding was higher for induction
than for recognition for all stimulus types except foils [old

items, F(1, 136) = 11.09, p < .001, partial η2 = .08; new
aquatic mammals, F(1, 136) = 81.15, p < .001, partial η2 =
.37; new aquatic nonmammals, F(1, 136) = 24.4, p < .001,
partial η2 = .15; new land mammals, F(1, 136) = 5.73, p =
.018, partial η2 = .04].

Positive responding to the new aquatic-mammal items was
equally high across all three induction conditions (F < 1.0).
We found fewer positive responses to aquatic nonmammals in
the blank than in the habitat condition, F(1, 136) = 4.63, p =
.03, partial η2 = .03. Likewise, there were fewer positive
responses to land mammals in the blank than in the mammal
condition, F(1, 136) = 9.24, p = .003, partial η2 = .06. As
expected, the patterns of positive responding differed across
the induction conditions with meaningful properties. For
aquatic nonmammals, rates of responding were higher when
habitat rather than mammalian properties were generalized,
F(1, 136) = 38.19, p < .001, partial η2 = .22. This pattern
reversed for responses to new land mammals, F(1, 136) =
9.56, p = .002, partial η2 = .07. Hence, the property manipu-
lation was successful in producing selective induction.

Correlations between reasoning and memory The propor-
tions of positive responses for each of the 50 test items were
averaged across participants within each experimental
group, and itemwise correlations between the mean item
responses in different groups were computed. Table 2 shows
a strong positive relationship between “yes” responses in
recognition and in all three induction conditions, replicating
the findings of Heit and Hayes (2011). Positive responding
in the induction blank and habitat conditions was more
strongly correlated than responding in the blank and repro-
ductive property conditions, z = 3.25, p = .001.

Modeling

We compared different nested versions of GEN-EX that
incorporated three different kinds of judgments about the
similarity between study and test items: judgments based on
overall similarity, on similarity with respect to living in
water, and on similarity with respect to reproduction.
Inferences about a property related to water resistance could
depend heavily on similarity with respect to the ability to
live in water, whereas inferences about a property related to
breast feeding could depend heavily on similarity with re-
spect to reproduction. Hence, four nested versions of GEN-
EX were compared. The most restricted version of the
model, GEN-EX o, included overall similarity alone. This
model corresponds to the original model used by Heit and
Hayes (2011), and hence was the baseline for assessing
other models. GEN-EX o+w+r was the most general ver-
sion, including three kinds of similarity information. We
also considered GENEX o+w and GENEX o+r, the inter-
mediate models including two kinds of similarity.

2 We did, however, measure response latencies. Across conditions, the
mean latency for positive responses was 1.9 s.
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Empirical similarity ratings First, we collected similarity
ratings for pairs of study and test stimuli. The ten study
items were paired with the 50 test items to generate 500
study–test pairs. These were divided into two sets of 250 by
randomly assigning equal numbers of the following pairs to
each set: old–study, old–new aquatic mammal, old–new
aquatic nonmammal, old–new land nonmammal, and old–
foil. Three groups of 60 participants rated 250 pairs on a
seven-point scale (1 = not similar at all, 7 = highly similar),
with equal numbers in each group rating pairs from one of
the two stimulus sets. One group rated the pairs on “overall
similarity,” a second rated pairs on similarity “with respect
to their ability to live in water,” and a third rated pairs on
similarity “with respect to how they reproduce.”

Table 3 shows the means for each group. Each cell is a
mean over ten pairs (e.g., the study–new aquatic mammals

cell gives the mean similarity of the ten aquatic mammal test
items to the study items). Old and new aquatic mammals
were rated as being similar to study items for all three kinds
of judgments. Foils were rated as having low similarity to
the study items. Notably, aquatic nonmammals and the
study items were rated as being similar with respect to
habitat, but not with respect to the other dimensions. Land
mammals were seen as being moderately similar to the study
items with respect to reproduction, but not on the other
dimensions. Hence, the three similarity judgments indexed
different types of relations between the study and test items.

Model fitting The GEN-EX model is described in detail in
the Appendix. Higher values of the c parameter indicate
greater discrimination (and less generalization). Heit and
Hayes (2011) found higher values of c for recognition than

Table 1 Experiment 1: Mean proportions (and standard errors) of positive responses and GEN-EX model predictions

Condition Test Item Type

Old New Aquatic Mammals New Aquatic Nonmammals New Land Mammals Foils

Empirical Results

Recognition .87 (.02) .25 (.04) .01 (.01) .00 (.00) .00 (.00)

Induction blank .94 (.02) .72 (.05) .32 (.06) .05 (.03) .03 (.02)

Induction habitat .98 (.01) .77 (.04) .46 (.07) .05 (.02) .07 (.02)

Induction mammal .91 (.02) .69 (.05) .06 (.02) .22 (.06) .03 (.01)

GEN-EX Model Predictions

Recognition .89 .23 .00 .00 .00

Induction blank .83 .78 .34 .04 .01

Induction habitat .86 .82 .50 .06 .01

Induction mammal .84 .78 .06 .19 .00

Empirical Results Model
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0.0

0.5

1.0

OLD AQM AQNM LAM LANM

Induction-Blank

0.0

0.5
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Induction-Mammal

Fig. 1 Experiment 1.
Probability of a positive
response to each type of test
item: Empirical results and
GEN-EX model predictions.
Note that within each type of
stimulus, each bar corresponds
to an individual test item, and
the individual items are ordered
arbitrarily. OLD, old items;
AQM, new aquatic mammals;
AQNM, new aquatic
nonmammals; LAM, new land
mammals; LANM, land
nonmammal foils
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for induction. The response bias parameter β did not play a
major role in explaining the results. The most general version
of the model incorporates all three types of similarity ratings,
with wo, ww, and wr parameters to reflect the respective
weights placed on distance information derived from overall
similarity, from similarity with respect to living in water, and
from similarity with respect to reproduction. These were pro-
portions that were constrained to add to 1, so in effect there
were only two free parameters for weighting.

We applied the model simultaneously to the four exper-
imental conditions, estimating separate c and β parameters,
as well as wo, ww, and wr parameters, for each. Thus, the
most general model, GEN-EX o+w+r, incorporated three
kinds of similarity, with 16 free parameters to account for
200 data points.

Table 4 shows the best-fitting parameter estimates for
GEN-EX o+w+r. Overall, the model fit the data well. The
correlation between the model predictions and response pro-
portions across 200 data points was .9729, with a root-mean
squared error (RMSE) of prediction of .0863. The estimated c
parameters are informative. This parameter is much higher for
recognition than for induction, corresponding to a high level
of discrimination between old and new items. The estimated
w parameters are also informative. All three kinds of similarity
appear to play roles in recognition (although we would have
expected a greater role for overall similarity). For the induc-
tion habitat and blank conditions, judgments seem to mainly
depend on overall similarity. Notably, this pattern is different
for the induction mammal condition, in which judgments
depend entirely on reproductive similarity. The β parameters
are all in a similar range, and we do not interpret them here.

With these parameter estimates, the predictions of the
GEN-EX o+w+r model are shown in the bottom half of
Table 1 and the right side of Fig. 1. The key results were
captured by the model predictions: There is greater overall
sensitivity to the difference between old and new items for
recognition than for induction. Recognition only shows
false alarms to other aquatic mammals. For induction blank
and induction habitat, the patterns of generalization are
similar: more positive responding to aquatic nonmammals
than to land mammals. For induction mammal, this pattern
reverses.

The more restricted versions of the model—GEN-EX o+w,
GEN-EX o+r, and GEN-EX o—were also fit, to see whether
all three kinds of similarity were required.3 Table 4 shows that
the GEN-EX o+w+r model gave a significantly better fit than
did any of the more restricted models, after adjustments for
model complexity. In other words, including three kinds of
similarity led to a better account of the data than did including
just overall similarity or overall similarity plus one other kind
of similarity.

Discussion

In this experiment, we examined the relationship between
recognition and different types of induction judgments for a
common study and test set. Overall, induction instructions
led to a higher rate of positive responding to novel test items
than did recognition instructions. Nevertheless, the proba-
bility of generalizing a property to test items was positively
correlated with the probability of recognizing those items.
Both findings are consistent with previous work (e.g., Heit
& Hayes, 2011; Hayes et al., in press).

The most crucial novel results involved induction con-
ditions using familiar properties. These properties were se-
lectively generalized in the induction habitat and induction
mammal conditions. The reproductive property was gener-
alized to novel land animals, but not to nonmammalian
aquatic animals. The habitat property showed the opposite
generalization pattern.

These results are broadly similar to previous reports of
selective induction driven by different types of familiar
properties (e.g., Heit & Rubinstein, 1994; Shafto et al.,
2007). However, our methods for examining inductive se-
lectivity differed markedly from those used in previous
studies. The previous studies of property effects in induction
involved evaluation of the strength of written arguments.
Our findings extend these effects to a task involving visual
presentation of exemplars and binary decisions about prop-
erty generalization. Likewise, in those previous studies,
computational models were not applied.

The selective generalization pattern found in the induc-
tion habitat and induction mammal conditions was a depar-
ture from the response patterns found in recognition (as well
as from the induction blank condition). Although the corre-
lations between responding in the two tasks remained

3 As in Heit and Hayes (2011), the nested models were compared using
the technique of Borowiak (1989). In brief, when model A is a
nonlinear model with a free parameters estimated using a least-
squares criterion, and B is a restricted version of this model with b
free parameters, the likelihood ratio statistic is 1 = (RSS A/RSS B)(k/2),
where RSS is the residual sum of squares of the model and k is the
number of data points to be predicted (here, 200). Borowiak showed
that –2 ln(1) has a χ2 distribution with (a – b) degrees of freedom (see
Rotello & Heit, 1999, 2000, and Jaeger, Cox, & Dobbins, 2012, for
other applications of this technique).

Table 2 Experiment 1: Itemwise correlations for positive responding
at test

Condition Induction
Blank

Induction
Aquatic

Induction
Mammal

Recognition .85* .82* .89*

Induction blank .98* .92*

Induction habitat .87*

* Significant at p < .001 or better

786 Mem Cogn (2013) 41:781–795



strong, the induction response patterns suggested the use of
more complex forms of similarity than was the case in
recognition. This interpretation was supported by the results
of fitting nested versions of GEN-EX. To obtain the best fit
of GEN-EX to recognition and induction involving mean-
ingful properties, we had to consider multiple forms of
similarity.

On the one hand, therefore, we found that the use of
familiar properties leads to some divergence between pat-
terns of responding in induction and recognition, and that
GEN-EX needs to incorporate multiple forms of similarity
to deal with these data. On the other hand, the best model
fits for induction and recognition always included a compo-
nent of overall similarity. Most notably, a single exemplar-
based architecture was able to capture the data from both
complex induction and recognition tasks. On balance, we
see these results as providing support for the deep-
correspondence view. In Experiment 2, we aimed to provide
a stronger test of this approach.

Experiment 2

Experiment 1 showed that more complex forms of similarity
need to be considered when examining the relationship
between recognition and induction with meaningful proper-
ties. In a new experiment, we sought to refine this conclu-
sion by examining task conditions that promote or inhibit
the use of more complex relations in induction. Previous
work has shown that the use of complex forms of similarity
in object comparisons and property induction is influenced
by the time that is available for test decisions (Goldstone &
Medin, 1994; Shafto et al., 2007). Shafto et al., for example,
found that more complex forms of similarity (e.g., ecolog-
ical relations between animals) were more likely to be used
in induction when participants were forced to spend time
deliberating about their judgments. Conversely, inductive
judgments made under time pressure were based primarily
on taxonomic similarity.

The aim of Experiment 2 was not so much to demonstrate
that time pressure has an effect on reasoning, but to compare

Table 4 Experiments 1–2: Parameter estimates based on nested ver-
sions of GEN-EX

Experiment 1 Experiment 2

Slow Fast

Recognition

β .07 .14 .18

c 130.87 78.74 38.6

wo .09 .24 .95

ww .51 .44 .05

wr .49 .32 .00

Induction Blank

β .57

c 7.83

wo .91

ww .00

wr .09

Induction Habitat

β .52 .26 .52

c 6.89 6.07 11.73

wo .85 .77 .62

ww .10 .23 .38

wr .05 .00 .00

Induction Mammal

β .46 .46 .24

c 15.70 12.38 6.89

wo .00 .10 .85

ww .00 .00 .10

wr 1.00 .90 .05

RMSE .0863 .0751 .0941

Correlation .9744 .9821 .9729

χ2 over o+w model 45.09*** 118.96*** 0.04

χ2 over o+r model 44.11*** 0.00 1.79

χ2 over o model 45.72*** 78.36*** 1.79

The table shows estimated parameter values for the o+w+r model, the
goodness of fit (root-mean squared error [RMSE] and correlation) for
the GEN-EX o+w+r model, and comparative tests showing improve-
ment in goodness of fit over the o+w, o+r, and o models. *** p < .001

Table 3 Mean similarity ratings for each type of study–test pair

Similarity Condition Study–Test Pair

Study–Old Study–New Aquatic
Mammals

Study–New Aquatic
Nonmammals

Study– New
Land Mammals

Study–Foils

Overall similarity 4.80 4.65 3.14 1.14 1.45

Similarity with respect to living in water 6.05 5.88 5.56 1.42 1.52

Similarity with respect to reproduction 5.23 5.27 2.50 3.81 1.78

The maximum similarity rating was 7
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the effects of time pressure on the relationship between
reasoning and memory and to use these results as a further
test of the modified GEN-EX model. If flexible similarity in
induction is facilitated by having extra decision time, this
should lead to a greater divergence between induction and
recognition. Making judgments under time pressure, on the
other hand, should limit the use of flexible similarity, caus-
ing patterns of induction to more closely resemble recogni-
tion judgments.

To test these predictions, we followed the Experiment 1
design but manipulated decision time. We predicted that
flexible similarity would be more evident in induction when
participants were given extended time for test phase deci-
sions (slow conditions) than when test decisions were made
under time pressure (fast conditions). Hence, the correlation
between positive responding in induction and recognition
was expected to be lower in the slow than in the fast
conditions. With respect to modeling, we expected that in
the slow conditions, as in Experiment 1, all three forms of
similarity would need to be considered to provide an
optimal fit to the recognition and induction data. For
fast test judgments, however, a version of GEN-EX that
incorporates fewer kinds of similarity might be suffi-
cient. These predictions represent a further test of the
deep-correspondence view, in that they suggest that a
single architecture can capture changes in the induction–
recognition relationship over different decision times,
simply by varying the contributions of different forms
of similarity to the computation of total similarity be-
tween the test and study items.

Method

Participants A group of 186 university undergraduates par-
ticipated, mostly in exchange for course credit. Equal numb-
ers were randomly allocated to the six conditions created by
the factorial crossing of three types of instructions (recog-
nition, induction habitat, and induction mammal) and deci-
sion times (fast and slow). In the fast condition, 18
participants failed to respond within the response deadline
on more than 75 % of the test trials and were replaced.

Materials and procedure The study phase procedure was
the same as in Experiment 1, except that, because we were
primarily interested in changes in the use of flexible simi-
larity, we omitted the induction blank condition. The test
procedure was similar to Experiment 1, except for the timing
manipulation.

Those in the fast condition responded “as quickly as
possible without sacrificing accuracy.” Each test item was
presented onscreen, together with “yes” and “no” response
buttons, for 1.5 s. Participants had to respond within this
period or a buzzer sounded and a “time out” message was

displayed (and the data for that trial were excluded). Note
that the maximum response time in this condition was below
the mean response latency observed in Experiment 1 (see
note 2). In the slow condition, participants were told to
“think carefully” before responding. Each test item was
visible for 9 s, but no response could be made during this
period (the response buttons were grayed out). After this
period, the response buttons changed color and a response
could be made.

Results and discussion

Positive test responses The mean positive responses at test
are shown in the top panel of Table 5 and are broken down
by items in the left halves of Figs. 2 and 3. Group differ-
ences between response rates were examined in a series of
one-way ANOVAs. Planned contrasts compared the re-
sponse rates for recognition and induction (averaged across
induction conditions) and for the induction habitat and in-
duction mammal conditions. For all stimulus types, the rate
of positive responding was higher for induction than for
recognition (all ps < .001).

Those generalizing aquatic properties were more likely to
respond positively to new aquatic nonmammals than were
those in the mammal property condition, F(1, 180) =
134.17, p < .001, partial η2 = .43. As predicted, this differ-
ence was accentuated under slow decision conditions, F(1,
180) = 14.86, p < .001, partial η2 = .08. The pattern reversed
for responses to new land mammals, for which positive
responding was more common in the mammal property than
in the habitat property condition, F(1, 180) = 20.78, p <
.001, partial η2 = .10. In this case, responding was not
affected by decision time (Fs < 2.0).

Correlations between reasoning and memory responses The
correlations between responses to individual test items in
each condition are given in Table 6. The table shows a
strong positive correlation between responding in the rec-
ognition and induction mammal conditions, and that this
correlation was unaffected by decision time. Notably, the
correlation between responding in the recognition and in-
duction habitat conditions was lower in the slow than in the
fast condition, z = 1.67, p = .05, one tailed.

Modeling

The slow and fast conditions were modeled separately.
Within each decision condition, we applied the model si-
multaneously to the recognition and induction groups. We
estimated separate c and β parameters, as well as wo, ww,
and wr parameters for each condition. For each condition, in
the GEN-EX o+w+r model, 12 free parameters were used to
account for 150 data points.
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The best-fitting parameter estimates are shown in
Table 4. The model fit the data well for both slow and fast
judgments. For slow judgments, the correlation between the
model predictions and the response proportions was .9821,
and the RMSE was .0751. The fit for fast judgments was
also good, although slightly worse than the fit for slow
judgments (the correlation between predictions and re-
sponse proportions was .9729, with an RMSE of .0941).

In general, the estimated c parameters show a pattern similar
to the one found in Experiment 1—namely, higher values for
recognition than for induction, corresponding to a higher level
of discrimination between old and new items. For the slow

conditions, the estimated w parameters also show a pattern
similar to the one in Experiment 1: Namely, recognition is
influenced by all three types of similarity, induction about
habitat is influenced mainly by overall similarity and aquatic
similarity, and induction about a mammalian property is influ-
enced mainly by reproductive similarity. The fast conditions
show a less specialized use of similarity: Namely, recognition
shifts to being based on overall similarity, and most impor-
tantly, induction about a mammalian property shifts from re-
productive similarity to also become based on overall
similarity. In general, the fast conditions appear to be more
sensitive to overall similarity than are the slow conditions.

Empirical Results Model
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Fig. 2 Experiment 2 fast
condition. Probability of a
positive response to each type
of test item: Empirical results
and GEN-EX model
predictions. Note that within
each type of stimulus, each bar
corresponds to an individual
test item, and the individual
items are ordered arbitrarily.
OLD, old items; AQM, new
aquatic mammals; AQNM, new
aquatic nonmammals; LAM,
new land mammals; LANM,
land nonmammal foils

Table 5 Experiment 2: Mean proportions (and standard errors) of positive responses and GEN-EX model predictions

Condition Test Item Type

Old New Aquatic Mammals New Aquatic Nonmammals New Land Mammals Foils

Empirical Results

Fast

Recognition .85 (.03) .38 (.03) .03 (.01) .00 (.00) .00 (.00)

Induction habitat .99 (.01) .87 (.02) .48 (.07) .05 (.02) .06 (.02)

Induction mammal .96 (.01) .80 (.04) .15 (.03) .31 (.07) .02 (.01)

Slow

Recognition .87 (.02) .39 (.05) .08 (.03) .03 (.01) .01 (.01)

Induction habitat .99 (.01) .92 (.03) .77 (.06) .08 (.04) .08 (.02)

Induction mammal .90 (.03) .74 (.04) .12 (.03) .22 (.07) .00 (.00)

GEN-EX Model Predictions

Fast

Recognition .84 .43 .00 .00 .00

Induction habitat .86 .82 .50 .06 .01

Induction mammal .91 .85 .49 .00 .00

Slow

Recognition .85 .39 .00 .00 .00

Induction habitat .94 .92 .77 .14 .06

Induction mammal .85 .80 .11 .21 .01
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The model predictions based on these parameter esti-
mates are shown in the lower panel of Table 5 and the right
halves of Figs. 2 and 3. The key empirical results were
captured. In slow conditions, there is greater sensitivity to
the difference between old and new items for recognition
than for induction, and recognition only shows false alarms
to other aquatic mammals. The induction habitat condition
shows more positive responding to aquatic nonmammals
than to land mammals, and for induction with a mammal
property, the pattern is reversed. In the fast conditions, there
is sharper discrimination between old and new items for
recognition than for induction, but little difference in the
generalization patterns of the two induction conditions.

More restricted models involving overall similarity alone
(GEN-EX o) or two forms of similarity (GEN-EX o+w,
GEN-EX o+r) were again applied, and their fits were com-
pared to the more general model. As is shown in Table 4, for
the slow conditions, the GEN-EX o+w+r model gave a
significantly better fit than did two of the three more re-
stricted models. However, it was not significantly different
in fit than the model using overall similarity plus reproduc-
tive similarity. In other words, adding reproductive similar-
ity led to a significant improvement in goodness of fit
beyond overall similarity, but in this case, adding water
similarity did not improve matters further. Although this
finding is somewhat different than that of Experiment 1,
note that habitat similarity was estimated to have a lower

impact on induction than the two other kinds of similarity in
Experiment 1. Crucially, for fast conditions, the model with
three kinds of similarity was not significantly better than any
of the restricted models. In other words, overall similarity
was sufficient to explain speeded memory and reasoning
responses.

To summarize, we again found evidence of selective use of
different types of similarity in induction, but the extent of
selective induction was modulated by decision time.
Slowing decisions led to enhanced property effects in the
induction habitat condition and further divergence between
the patterns of responding in induction and recognition.
Speeding up induction decisions tended to suppress the use
of complex similarity relations. The whole pattern of results
could be accounted for with the GEN-EX model, by incorpo-
rating only overall similarity for the fast conditions, and more
specialized similarity as well for the slow conditions. On
balance, we again take these results as being consistent with
the deep-correspondence view, treating the difference between
the original and extended versions of GEN-EX as a quantita-
tive one in terms of additional parameter values.

General discussion

In these two experiments, we examined relations between
inductive reasoning and recognition involving flexible
forms of similarity. In both, we found that the use of mean-
ingful properties led to selective inductive judgments based
on different kinds of similarity. This led to some divergence
between the response patterns for induction versus recogni-
tion, especially when people were encouraged to deliberate
about their judgments. Nevertheless, the empirical relation-
ship between induction and recognition test responding
remained relatively strong (with a minimum correlation of
.73). Moreover, an exemplar-based model that incorporated
multiple similarity measures was able to account for both
recognition and induction on the basis of flexible similarity.

Empirical Results Model

0.0

0.5

1.0

OLD AQM AQNM LAM LANM

Recognition

0.0

0.5

1.0

OLD AQM AQNM LAM LANM

Induction-Aquatic

0.0

0.5

1.0

OLD AQM AQNM LAM LANM

Induction-Mammal

0.0

0.5

1.0

OLD AQM AQNM LAM LANM

Recognition

0.0

0.5

1.0

OLD AQM AQNM LAM LANM

Induction-Aquatic

0.0

0.5

1.0

OLD AQM AQNM LAM LANM

Induction-Mammal

Fig. 3 Experiment 2 slow
condition. Probability of a
positive response to each type
of test item: Empirical results
and GEN-EX model
predictions. Note that within
each type of stimulus, each bar
corresponds to an individual
test item, and the individual
items are ordered arbitrarily.
OLD, old items; AQM, new
aquatic mammals; AQNM, new
aquatic nonmammals; LAM,
new land mammals; LANM,
land nonmammal foils

Table 6 Experiment 2: Itemwise correlations for positive responding
at test in the fast and slow decision conditions

Cond. Induction Habitat Induction Mammal

Recognition Fast .86* .89*

Slow .73* .90*

Induction habitat Fast .88*

Slow .78*

* Significant at p < .001 or better
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GEN-EX modeling provided additional insights into the
processes that underlie induction and recognition. One find-
ing (similar to those of Hayes et al., in press, and Heit &
Hayes, 2011) was that speeded recognition and induction
(Exp. 2) could be explained by generalization based on a
single similarity measure, assuming a broader gradient of
generalization for induction. A second important modeling
result was that the property effects found in self-paced (Exp.
1) and slow (Exp. 2) induction could not be explained by the
original version of GEN-EX. To account for these data, we
extended GEN-EX to include multiple similarity relations
(i.e., similarity with respect to habitat and reproduction). In
general, the parameters estimated from modeling were in-
formative—for instance, showing different generalization
gradients for recognition versus induction, and different
uses of similarity information for induction about different
properties.

Implications for the relationship between memory
and reasoning

The results have important implications for understanding
the relationship between inductive reasoning and memory.
According to the differentiated view, induction works dif-
ferently depending on whether unfamiliar or familiar prop-
erties are being generalized (see, e.g., Smith et al., 1993).
For example, whereas an unfamiliar property like “has en-
zyme x” might invite similarity-based induction, a more
familiar property related to aquatic habitat might invite the
use of a rule based on prior knowledge, such as respond
“yes” to all aquatic creatures. Hence, it should be difficult to
explain induction and recognition involving complex simi-
larity within a single exemplar-based architecture.

By contrast, the deep-correspondence view assumes a
continuity in process between induction involving overall
similarity and induction involving more abstract relations.
According to this view, a close relationship may still exist
between the processes that underlie recognition and induc-
tion involving more abstract forms of similarity, especially
when the specific requirements of each task (e.g., the re-
sponse instructions) are made more comparable.

Overall, our empirical and modeling results support the
deep-correspondence view. In both studies, we have found
higher rates of positive responding to old test items than to
similar lures in conditions involving meaningful properties,
including those involving unfamiliar properties. This sug-
gests that exemplar similarity was crucial to induction and
recognition and that participants were not simply responding on
the basis of rules suggested by prior knowledge of the stimuli.
Indeed, further modeling, summarized in the Appendix,
showed that rule-based models without an overall-similarity
component did a poor job of explaining the recognition and
induction data.

The logic of our studies has been to take strong correla-
tions between tasks, and the ability of the same model with
only parametric changes to account for multiple tasks, as
evidence for the deep-correspondence view. Hence, we have
aimed to make a positive contribution by articulating the
relatively novel deep-correspondence view and to offer
GEN-EX as an existence proof that a single framework
can capture induction and recognition judgments involving
complex forms of similarity. We acknowledge what may
seem to be a limitation of our work: We did not implement
formal models corresponding to the differentiated-induction
view. Proponents of that view might argue that the correla-
tions would need to be even stronger, or they might propose
that separate models for recognition, induction with blank
properties, and induction with meaningful properties could
also fit the data. We have little doubt that separate models
could account for these data, albeit at a considerable cost in
parsimony. Alternatively, it might be argued that the extend-
ed version of GEN-EX is fundamentally different from the
original. We see this difference, however, as being quanti-
tative rather than qualitative, involving the addition of sim-
ilarity functions with nonzero parameters for sensitivity.

To some it may seem self-evident that a close relation
exists between reasoning and memory, when responses on
both tasks can be affected by the similarity between familiar
and novel items. It is worth restating that we did not simply
test the hypothesis that recognition and induction are corre-
lated due to their common use of similarity, but rather we
examined how the use of similarity varies for induction
about different properties and due to response time manip-
ulations. Additionally, it is important to note that some
theoretical approaches predict that performance levels on
memory and reasoning tasks will only be weakly related
or, in some cases, statistically independent. For example,
fuzzy trace theory (Brainerd & Reyna, 1993, 2010) suggests
that reasoning and memory are often driven by different
processing components (e.g., reasoning is predominantly
driven by gist representations, and recognition is affected
by verbatim traces). As a result, accuracy in deriving valid
deductive conclusions can be stochastically independent of
memory for the relevant premises (e.g., Brainerd & Reyna,
1993). Our results suggest that such memory independence
may be limited to deductive reasoning. By contrast, in
induction, memory for the details of the inductive base
(i.e., the study instances in the present experiments) appears
to be critical for property generalization (see also Heit &
Hayes, 2011; Heit et al., 2012).

In general, we hope that this work will spur on further
model development by other researchers. For example, re-
cent Bayesian models of induction (e.g., Kemp &
Tenenbaum, 2009) have improved on earlier models (e.g.,
Heit, 1998, 2000) by applying a similar framework to in-
duction with both highly meaningful and less-meaningful
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properties. However, these Bayesian models of induction
have not yet been applied to recognition. Likewise, another
promising approach to explain studies like our own may be
to extend connectionist models (see Glick, 2011). The aim
of our own modeling has been to provide an existence proof
for the viability of a unified model and to show the role of
flexible similarity, rather than to rule out other possible
unified models of recognition and induction.

Our results suggest that “recognition” and “induction”
may be useful task descriptions, but that these labels do
not necessarily map onto fundamental distinctions in
human cognition. If we are looking for critical distinc-
tions between different types of cognitive activities, it
may be better to focus on the distinction between judg-
ments based on broad or narrow definitions of similarity
or on fast as opposed to slow judgments (cf. Heit et al.,
2012).

Relationship to previous work on the relations
between memory, reasoning, and categorization

An important implication of these findings is that a
single exemplar-based framework can be used to explain
recognition, induction involving blank properties, and
induction involving meaningful properties. Although dif-
ferent types of similarity were involved in the general-
ization of novel and familiar properties, the core
assumptions of GEN-EX (i.e., generalization based on
total similarity, where similarity follows a negative ex-
ponential function of the distance between test and
study items) were maintained in modeling the data from
all induction and recognition conditions.

Exemplar models incorporating assumptions similar
to those of GEN-EX have been successful in accounting
for patterns of categorization and recognition of the
same stimulus sets (e.g., Nosofsky, 1986, 1988,
Nosofsky, Little, & James, 2012) but have rarely been
applied to inductive reasoning (see Heit, 1992; Holyoak,
Lee, & Lu, 2010). Currently, an intense debate concerns
the degree of overlap between the processes involved in
categorization and induction (cf. Gelman, 2003;
Sloutsky, 2010). Our view is that while there are com-
monalities between categorization and induction, differ-
ences seem to exist as well. For example, categorization
directs attention to diagnostic features that discriminate
between members of contrasting categories, whereas
feature inference directs attention to relations between
features within a category (e.g., Sweller & Hayes, 2010;
Yamauchi & Markman, 1998; see Kemp & Jern, 2009,
and Markman & Ross, 2003, for discussion of other
differences between induction and categorization).
Hence, the application of the exemplar-based GEN-EX
model to more complex forms of induction and

recognition represents a significant extension to previous
work with exemplar models.

Another important finding was that the time available for
an inductive judgment influenced the types of similarity
relations used in induction and recognition. Few previous
studies have investigated the time course of processing in
induction. By contrast, considerable attention has been de-
voted to time-dependent changes in recognition processes
(e.g., Gronlund & Ratcliff, 1989; Rotello & Heit, 1999,
2000) and categorization (e.g., Lamberts, 2002; Little,
Nosofsky, & Denton, 2011). Gronlund and Ratcliff, for
example, showed that the details of studied items can influ-
ence recognition under short decision deadlines, but that
judgments based on relations between items require more
decision time. The degree to which multiple stimulus
dimensions need to be considered in order to accurately
categorize stimuli has also been shown to follow a predict-
able time course (Little et al., 2011).

This suggests that future research on inductive reasoning
would benefit from a fine-grained analysis of changes in the
availability of different kinds of stimulus information over
the course of induction. This would be particularly interest-
ing to examine in paradigms similar to those used here,
where multiple forms of similarity can contribute to induc-
tive judgments.

An important theme of the present study was that
similarity can be treated as a flexible construct in mem-
ory and reasoning. Of course, additional processes may
influence responding in each task. For example, some
forms of memory (e.g., the recall-to-reject phenomenon
examined by Rotello & Heit, 1999) may operate like
logical reasoning. It may not be possible to reduce such
effects to a weighted combination of different types of
similarity. Future work that examines such forms of
reasoning and memory may uncover more dramatic dis-
sociations than those found here. Nevertheless, the pres-
ent work shows that a much closer relationship exists
between recognition and induction than has previously
been acknowledged. Recognition and induction appear
to share component processes, even when these tasks
involve flexible forms of similarity.
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thank Elizabeth Balboa, Melony Bowling, Wendy Contreras, Graham
Ellis, Ryan Hoffman, Melissa Lim, Helen Paton, Ann Martin, Alex
Parnell, and Aljanee Whitaker for their assistance with this research.

Appendix

The original version of GEN-EX is closely related to
Nosofsky’s (1986) generalized context model (GCM) of
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categorization, which was itself, as its name implies, a
generalization of Medin and Schaffer’s (1978) context
model (but see Heit & Hayes, 2011, pp. 78–79, for a
discussion of differences between GEN-EX and GCM).
GEN-EX is embodied by two equations. Equation A1
shows the familiarity rule: The familiarity of each test
stimulus, fam, equals its summed similarity to n studied
items. Similarity is assumed to be a negative exponen-
tial function of the distance, dist, between the test and
study items. The free parameter c reflects the specificity
of responding to test items; lower values of c corre-
spond to broader generalization, while higher values
correspond to narrower generalization gradients.

fam testð Þ ¼
Xn

i¼1

exp �c dist test; studyið Þ½ � ðA1Þ

resp testð Þ ¼ fam testð Þ
fam testð Þ þ b

� �
ðA2Þ

The response rule is shown in Eq. A2. Essentially,
the probability of a positive response is a monotonic
function of a test item’s familiarity. The response rule
has a single scaling parameter, β. A lower value of β
corresponds to a greater overall tendency to respond
positively.

This modeling process was carried out separately for
recognition judgments and for each type of induction
judgment, with each type of judgment having its own c
and β parameters. Hence, it was possible, for example,
to compare the c parameter for recognition versus
induction, to assess the idea that recognition has nar-
rower generalization and that induction has broader
generalization.

For each type of judgment, we treated overall distance as
a linear combination of three sources of information, de-
rived from the empirical ratings of overall similarity, simi-
larity with respect to ability to live in water, and similarity
with respect to reproduction. Hence, Eq. A1 could be re-
written as Eq. A3.

fam testð Þ ¼
Xn

i¼1

exp �c wodisto test; studyið Þ þ wwdistw test; studyið Þ þ wrdistr test; studyið Þ½ �f g ðA3Þ

The three w parameters are weighting parameters; they
represent the relative contributions of each source of informa-
tion. These parameters were constrained to add to 1. The three
components of total distance, disto, distw, and distr, were
derived, respectively, from the three types of similarity judg-
ments: overall similarity, similarity with respect to ability to
live in water, and similarity with respect to reproduction.
Again, it was assumed that similarity would be a negative
exponential function of psychological distance (e.g.,
Nosofsky, 1986; Shepard, 1987), as is illustrated by Eq. A4.

sim x; yð Þ ¼ exp �c dist x; yð Þ½ � ðA4Þ
Similarity ratings were normalized to the range of 0 to 1.

Equation A4 was used to convert similarity ratings to distan-
ces; that is, Eq. A4 was solved for distance as a logarithmic
function of similarity, to calculate distances as a function of
similarity. For this purpose, the c parameter was arbitrarily set
at 1 (allowing c to vary did not improve model fit).

Rule-based extensions

The original Heit and Hayes (2011) article also considered
the possibility of rule-based responding—for instance, “re-
spond yes to all large dogs.” There, it was found that

including a rule-based component generally improved the
fit of GEN-EX, although exemplar similarity dominated the
responses. Rule-based responding is not the focus of the
present article, where we simply aimed to show that a model
based on flexible exemplar similarity is adequate to explain
results from memory and reasoning. In general, here we
came to conclusions comparable from modeling. For
example, in Experiment 1, we implemented rule-based
components to respond positively to all mammals, all
aquatic creatures, and all aquatic mammals. Adding these
rules did significantly improve the overall fit of the mod-
el, beyond the role of exemplar similarity, although, again,
the estimated role of exemplar similarity was much higher
than the role of rule-based responding. A model based on
rule-based responding alone fit the data relatively poorly,
and adding exemplar similarity to that model improved
the fit very substantially, suggesting a critical role for
similarity between the study and test items. Overall, the
need for exemplar similarity is evident from the close
correspondence between data and the model on individual
items in Figs. 1, 2, and 3. In particular, a rule-based
model does not explain the higher rates of responding to
old items in the figures, as compared with new aquatic
mammals (AQM).
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