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Abstract Probability matching in sequential decision mak-
ing is a striking violation of rational choice that has been
observed in hundreds of experiments. Recent studies have
demonstrated that matching persists even in described tasks
in which all the information required for identifying a superior
alternative strategy—maximizing—is present before the first
choice is made. These studies have also indicated that maxi-
mizing increases when (1)the asymmetry in the availability of
matching and maximizing strategies is reduced and (2)nor-
matively irrelevant outcome feedback is provided. In the two
experiments reported here, we examined the joint influences
of these factors, revealing that strategy availability and out-
come feedback operate on different time courses. Both behav-
ioral and modeling results showed that while availability of
the maximizing strategy increases the choice of maximizing
carly during the task, feedback appears to act more slowly to
erode misconceptions about the task and to reinforce optimal
responding. The results illuminate the interplay between “top-
down” identification of choice strategies and “bottom-up”
discovery of those strategies via feedback.

Keywords Probability matching - Maximizing - Decision
making - Heuristics - Rational choice theory

When faced with a choice between two options, one of which
offers a higher probability of receiving a fixed payoff than
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does the other, a rational agent should always choose the
option with the higher payoff probability. For example, if
one option delivers one dollar 70 % of the time (and nothing
the rest of the time), while the other pays one dollar only 30 %
of the time (and otherwise nothing), a rational agent should
choose the 70 % option. This is true whether the choice is
faced once or repeatedly: The option offering the higher
probability of receiving the payoff should always be chosen.

Despite the clear superiority of this strategy (referred to as
maximizing), participants faced with a series of such choices
often show responding closer to probability matching—allo-
cating responses to the two options in proportion to their
relative probabilities of occurrence. In other words, people
bet on the 30 % option 30 % of the time, and the 70 % option
70 % of the time (James & Koehler, 2011).

This striking violation of rational choice has been studied
extensively over the last 60 years (Vulkan, 2000). Most
probability-matching experiments have used paradigms in
which participants had to learn, over successive trials, the
contingencies associated with each option (e.g., Shanks,
Tunney, & McCarthy, 2002).1 However, some recent studies

"It is important to note that in the tasks that we considered, the response
options were negatively correlated: On any given trial, if one option
delivered a reward, the other did not. This contrasts with the preparation
used in many nonhuman animal-learning studies, in which the options
have been independent (i.e., rewards can be delivered via either, both, or
neither option on any trial). In such situations, nonhuman animals are
often observed to allocate responses in a manner that equates the rein-
forcement rates per unit of consumption across choice options. This
behavior is captured by the “matching law” (Herrnstein, 1997), which
refers to an animal matching the relative frequency of choosing an option
with the relative frequency of reinforcement (reward delivery). As was
noted by Shanks et al. (Shanks et al. 2002), the term “matching law” is
distinctly confusing, because it does not predict probability matching in
the kinds of task that we consider. Instead, because the maximizing
response always has the highest momentary reinforcement rate in our
task, the matching law predicts maximizing at asymptote in the kind of
task that we used. (See Newell, Lagnado, & Shanks, 2007, chap.11, and
Shanks etal., 2002, for further discussion.)
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have investigated probability matching in tasks in which the
outcomes and their probabilities of occurrence are fully de-
scribed to participants (e.g., Gal & Baron, 1996; James &
Koehler, 2011; Koehler & James, 2009, 2010; Newell &
Rakow, 2007; West & Stanovich, 2003). The finding that
probability matching is common even in these situations is
remarkable, given that the described problems provide all of
the information necessary for rational responding (i.e., identi-
fication of the maximizing strategy as optimal), even before a
single choice is made.

Consider, for example, predicting the outcome of rolls of a
ten-sided die with seven green sides and three red sides, with a
fixed payment for each correct prediction. Here there is no
ambiguity about the optimal strategy (always predict green),
no need for a period of experimentation or exploration of the
environment to determine which option is best, and no need to
consider the possibility that outcome probabilities will change
across successive trials. Thus, from a normative perspective
(i.e., arational economic analysis of the problem), the decision
maker simply needs to identify the optimal strategy (predict
green) and execute it on every trial.

Newell and Rakow (2007) examined a problem like the
one described above, in which participants predicted the
outcomes of 300 rolls of a simulated die. Their experiment
confirmed that some participants adopted a matching strat-
egy from the outset. However, the experiment also high-
lighted a further intriguing finding: Those participants who
saw the outcome of each roll after making a prediction
(feedback condition) demonstrated an increasing rate of
maximizing across the 300 trials. By contrast, those who
received no feedback continued to match, or slightly over-
match, the objective probabilities throughout the entire se-
quence of trials. The facilitative effect of feedback was
observed despite the feedback being completely uninforma-
tive, and therefore normatively irrelevant—the die was fair,
the probabilities were stationary, and the relevant outcome
probabilities were already precisely known before any feed-
back was received. The finding that feedback nonetheless
influenced the rate of maximizing is puzzling, because it
suggests that people only gradually “learn” to choose opti-
mally in a task that (normatively) requires no learning.

The finding is only puzzling, however, if one presuppo-
ses that the optimal maximizing strategy is readily generated
by the decision maker in response to the initial description
of the choice problem. At least for some people, the maxi-
mizing strategy might not come immediately to mind.
Koehler and James (2010) gave participants a version of
the die problem, but for one group they also provided a
“hint” about the possible choice strategies that might be
used. Specifically, before making their choices, the match-
ing and maximizing strategies were described and partici-
pants were asked which strategy was likely to earn more
money. Those given the hint (question) subsequently made
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significantly more maximizing choices than those who had
not been. This result suggests that the hint increased the
“availability” of the maximizing strategy and implies that
maximizing does not necessarily come to mind readily when
the fully described problem is presented. In short, even in a
described problem in which participants have all of the
information needed to identify the maximizing strategy as
superior, that strategy may simply fail to come to mind. The
observed impact of the hint manipulation implies that prob-
ability matching comes to mind more readily than maximiz-
ing as a candidate choice strategy in response to the problem
description.

One possible interpretation of the facilitative effect of
outcome feedback in a fully described problem is that feed-
back assists “top-down” identification of maximizing as the
superior strategy. That is, outcome feedback may encourage
monitoring of the reward rate for the currently used strategy as
well as a search for alternative strategies that might increase
payoffs. In the process, some participants who initially engage
in matching may “discover” the superior maximizing strategy
over the course of the choice sequence. Indeed, a number of
researchers have recently attempted to characterize the pro-
cesses by which participants use outcome feedback to search
for an optimal strategy in the binary prediction task (e.g.,
Gaissmaier & Schooler, 2008; Otto, Taylor, & Markman,
2011; Shanks etal., 2002). According to this interpretation,
providing outcome feedback and providing a “hint” in a
described problem both increase maximizing behavior by
making that strategy more available than it would otherwise
be (cf. Biele, Rieskamp, & Gonzalez, 2009).

To test this hypothesis, we ran two experiments using a
version of the die problem in which we crossed, factorially, the
presence/absence of the hint used previously by Koehler and
James (2010) and the trial-by-trial outcome feedback used by
Newell and Rakow (2007). If the impact of feedback was to
spur the generation of alternative strategies, which eventually
led to identification of maximizing as the optimal response,
then we should see an interaction whereby little or no effect of
feedback would be found among those participants given the
hint (for whom the maximizing strategy was already highly
available). This should be especially true of the subset of
participants who, when prompted with that hint, correctly
identified the maximizing strategy as superior.

An alternative possibility was that the hint effect ob-
served by Koehler and James (2010) would not generalize
to tasks involving trial-by-trial predictions with feedback. In
their studies, the participants only made predictions for ten
rolls, and did so without any information about the out-
comes. In a feedback version, it is possible that seeing the
regular occurrence of the low-probability outcome might
make it difficult to stick to the maximizing strategy, even
if, when prompted, one could correctly identify it as optimal
(cf. Goodnow, 1955).
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The contribution of our new experiments was that they
allowed us to examine the joint influences of two manipu-
lations—feedback and provision of a hint—that up to now
have only been studied in isolation. Investigating how these
two manipulations interact and the time course of their
effects, through both examination of the behavioral results
and application of reinforcement-learning models developed
for similar tasks (Biele etal., 2009; Yechiam & Busemeyer,
2005), would help shed further light on the cognitive under-
pinnings of probability matching, and maximizing, in the
binary prediction task.

Overview of the experiments

In both experiments, participants played a “die game” in
which payment was contingent on making correct predic-
tions about the outcome of rolls of a ten-sided die with
seven green and three red sides. The independent variables
in both experiments were the provision of a hint (present/
absent) preceding the prediction task (die game), intended to
make both the maximizing and matching strategies readily
available, and of feedback (present/absent) regarding the
outcome of each roll during the prediction task itself. The
principal differences between Experiments 1 and 2 were the
use of a real (Exp. 1) or a virtual (Exp.2) die and the number
of prediction trials (50 and 300 in Exps. 1 and 2, respec-
tively). The real die was used in Experiment 1 to counter the
criticism that participants might make suboptimal predic-
tions in virtual tasks because they doubt that the die is fair
and that the probabilities are stationary (e.g., Hertwig &
Ortmann, 2001). In Experiment 1, participants saw the same
physical die being rolled on every trial, thus presumably
eliminating, or at least substantially reducing, any skepti-
cism about the task parameters.

Experiment1
Method

Participants A total of 123 undergraduate students from the
University of Waterloo participated in return for course
credit and earnings from the experiment. They were ran-
domly assigned to one of the four experimental conditions
(with n per condition varying from 29 to 32). The data from
eight additional participants were excluded from the analy-
sis: five who had completed a similar task before, two who
failed to follow the instructions, and one who was red—green
colorblind.

Procedure Participants predicted the outcomes for a series
of 50 rolls of a ten-sided die with seven green sides and

three red sides. The participants were told that for every
correctly predicted outcome they would receive $0.10 (for
reference, 1 CAD = ~1.0 USD). Predictions were made on a
sheet of paper that organized the 50 rolls into five “games”
consisting of ten rolls each. The experimenter, who was
present when the predictions were made, rolled the die to
determine the outcomes. This was done either after each
prediction (feedback condition) or after all 50 predictions
had been made (no feedback condition). The outcomes were
recorded directly on the prediction sheet, and the total win-
nings were calculated and paid at the end of the session.

Before completing the prediction task, one group of
participants (hint condition) read a description of two pos-
sible strategies that could be used in the game. Specifically,
they were told: “Consider these two strategies that could be
used in a 10 roll game: (a)you could predict green for all 10
throws, or (b)you could predict green for 7 throws and red
for 3 throws. Which strategy do you think will win more
money?” Participants in the no-hint condition were not
presented the alternative strategies before completing the
prediction task.”

Results

The number of times that each participant predicted the
dominant color (green) in each blockof ten trials was sub-
jected to a 2 (feedback) x 2 (hint) x 5 (block) mixed-model
analysis of variance (ANOVA; see Fig. 1).

We found a significant main effect of hint, F(1, 119) =
4.49, p = .036, npz = .036; those who received the hint
subsequently predicted green more often (M = 8.3 per ten-
roll game) than did those who did not receive the hint (M =
7.9 per ten-roll game).

There was a slight tendency for predicting the dominant
color more often in the feedback than in the no-feedback
condition (M of 8.2 vs. 8.0 per ten-game roll). However, this
effect was not statistically significant (p = .26, npz = .011).
The hint-by-feedback interaction also was not statistically
significant (p = .29, npz = .010). No significant effect of
block emerged, nor did that factor interact with either of the
between-subjects variables (F's < 1). The mean numbers of
green guesses in the first (M = 8.19) and final (M = 8.18)
blocks were virtually identical.

Among the hint condition participants, who were asked
prior to the prediction task to evaluate which strategy had
higher expected earnings, 64 % correctly identified the
maximizing strategy as being superior. The proportions
choosing maximizing were virtually identical in the hint

2 Following the prediction task, all participants in both experiments
were given a questionnaire that asked about the strategies that they had
adopted in the game (see Koehler & James, 2010), but those data are
not considered further here.
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Fig.1 Mean numbers of “green” guesses for a die with seven green
sides and three red sides, for each of the five blocks of ten rolls in
Experiment 1. Error bars indicate SEMs

no-feedback (65.5 %) and hint feedback (63.3 %) condi-
tions. The upper panels of Fig. 2 show the numbers of green
predictions by hint condition participants in the first ten-roll
game, as a function of which strategy they had endorsed.
The figures show that not all participants followed the
strategy that they had just endorsed when making their
trial-by-trial predictions. However, a comparison of the up-
per two (hint) and lower two (no hint) panels shows that a
much higher percentage of participants endorsed maximizing
in the hint condition (black bars, upper panels) than sponta-
neously chose green for all ten rolls of the first game in the no-

Fig.2 Numbers of “green”

Hint Feedback (Game 1)

hint condition (far right open bars, lower panels). This pattern
is consistent with the idea that the hint prompts participants to
realize that maximizing is optimal.

The mean number of green predictions across all trials for
participants who identified maximizing (matching) as supe-
rior was 8.6 (7.8) in the hint feedback condition and 8.8
(7.4) in the hint no-feedback condition. We found no signif-
icant difference in the numbers of green guesses as a func-
tion of either block or feedback for the participants who
correctly endorsed maximizing (Fs < 1).

Discussion

The key finding of Experiment 1 is that providing a hint
designed to make the maximizing and matching strategies
equally available increased levels of maximizing on the sub-
sequent prediction task. In contrast, provision of feedback
about the outcome of each die roll did not significantly in-
crease maximizing. The facilitative effect of the hint is con-
sistent with previous findings (Koehler & James, 2010) and
confirms that the effect of strategy availability generalizes to
situations involving trial-by-trial feedback.

In contrast to the hint effect, we found almost no evidence
that participants “learned” from feedback when no hint was
provided. This result is inconsistent with previous research
showing clear increases in maximizing over feedback-
reinforced trials of the die game (Newell & Rakow, 2007).

Hint No Feedback (Game 1)
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One difference, however, between Experiment 1 and the pre-
vious research was the relatively small number of prediction
trials. Newell and Rakow found that significant increases in
the rates of maximization only occurred after 100 or more
prediction trials. Thus, Experiment 1 may have provided
insufficient experience for “bottom-up” feedback to spur
the generation of the superior maximizing strategy.’ In
Experiment 2, we examined this possibility by retaining
the basic design of Experiment 1 but increasing the number of
prediction trials to 300 (as per Newell & Rakow, 2007). This
allowed us not only to attempt to replicate the findings of
Experiment 1 and of Newell and Rakow, but also to examine
the interplay of the hint and feedback over an extended num-
ber of predictions. The increased number of training trials also
facilitated the application of reinforcement learning models to
our data. These were applied in an effort to find converging
evidence of the roles played by the hint and feedback in the
binary prediction task.

Experiment2

Experiment 2 used the same 2 (feedback: present/absent) x
2 (hint: present/absent) design, task, and procedure (except
where specified below), but increased the number of predic-
tion trials to 300 and instantiated the task on a computer to
speed up the die “rolling” process.

Method

Participants A group of 100 first-year undergraduate stu-
dents (28 male, 72 female; M., = 19.8, SD = 3.3) from the
University of New South Wales participated in return for
course credit and performance-related remuneration.

Procedure The participants were told that they would play
30 games of ten rolls each (for a total of 300 trials) and
would be paid $0.02 (1 AUD = ~1.0 USD) for each correct
prediction. In the two feedback-present conditions, an image
of a ten-sided die rolled across the screen following each
prediction and the outcome was displayed. In the two
feedback-absent conditions, no die was shown and the par-
ticipants were told that the die would be rolled once all of
the predictions had been made, in order to determine pay-
ment. In all conditions, a participant-controlled interval
followed each ten-roll game, and each game was preceded

s

> We use the term “bottom-up,” when applied to the influence of
feedback, to contrast with the perceived “top-down” influence of an
intentionally applied strategy (e.g., matching or maximizing). In the
present context, we imply that this “bottom-up” influence is gradual,
emerging slowly over the course of successive prediction trials. We
acknowledge that in other contexts “bottom-up” processes can be very
rapid (e.g., perception).

by an instruction reminding participants that the same vir-
tual die was used in every game and that they would be paid
$0.02 for every correct prediction. The dominant color (i.e.,
which color covered seven sides of the die—red or green)
was counterbalanced across participants.

Results and discussion

Behavioral results Figure 3 plots the proportions of
dominant-color predictions for the four groups of partici-
pants, averaged across the six 50-trial blocks (five “games”
per block). A 2 (feedback) x 2 (hint) X 6 (block) mixed-
model ANOVA revealed a main effect of feedback, F(1, 96) =
8.82, p=.005, 77p2 =.079, a linear trend for block, F(1, 96) =
14.80, p <.001, np2 = .134, no main effect of hint (p = .511,
np2 =.005), but a significant linear interaction between Block
and feedback, F(1, 96) =18.22, p <.001, npz =.16. The two-
way interaction between hint and feedback was not significant
=11, np2 = .027), and neither was the linear interaction
between block and hint (p = .12, 77p2 =.025) or the three-way
interaction (p = .18, 1,” = .018).

To provide a like-for-like comparison between Experiments
1 and 2, we analyzed the initial 50 trials of Experiment 2 (i.e.,
the number of trials used in Exp.1). Therefore, for Block1
alone, a 2 (hint) x 2 (feedback) ANOVA was used to examine
the proportion of dominant-color guesses. This ANOVA
revealed that those given the hint made significantly more
dominant-color guesses (M = .83) than did those not given
the hint (M = .77), F(1, 96) = 5.06, p = .027, np2 =.050, but
there was no significant effect of feedback (p = .11, npz =.027).
This replicates the results of Experiment 1 (for the equivalent
number of trials). It shows that the change from a real to a
virtual die, the change in population (Canadian vs. Australian
participants), and the absence of the experimenter in
Experiment 2 did not significantly alter the results. As a
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Fig.3 Mean proportions of dominant-color guesses for each of the six
blocks of 50 rolls in Experiment 2. Error bars indicate SEMs
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complementary analysis, the Block6 data were analyzed using
the same ANOVA design. This ANOVA on Block6 revealed
essentially the reverse pattern of significances to that found in
Block 1. By Block6, the hint no longer had a significant effect
p=.22, npz =.016), whereas the proportion of dominant-color
predictions was significantly higher with feedback (M = .87)
than without (M = .78), F(1, 96) = 11.78, p = .001, 77p2 =.109.
Neither of these individual block analyses showed significant
interactions between hint and feedback.

In short, the hint manipulation had an influence on early
prediction trials but not on later ones, leading to no overall
main effect of hint. By contrast, the feedback manipulation
had no detectable influence on early prediction trials but did
exert an influence on later trials, yielding an overall main
effect of feedback as well as a FeedbackxBlock interaction.

Of those participants who were asked prior to the predic-
tion task to evaluate which strategy had higher expected
earnings, 74 % correctly identified the maximizing strategy
as being superior. The proportion choosing maximizing was
higher in the hint no-feedback (21/25 = 84 %) than in the
hint feedback (17/26 = 65 %) condition, but this difference
was not statistically significant, x*(1) = 2.32, p > .05.

The upper panels of Fig. 4 plot the numbers of dominant-
color guesses made in the first ten-roll game by participants
who endorsed either maximizing or matching in the hint
question. Consistent with Experiment 1, although not all
participants behaved strictly according to the strategy that

Fig.4 Numbers of dominant-
color guesses made by partici-

E

Hint Feedback (Game 1)

they endorsed, more participants prompted with the hint
identified maximizing as superior (black bars in the upper
panels) than spontaneously maximized when no hint was
provided (far right open bars in lower panels). This effect is
especially prominent in the no-hint no-feedback group, in
which matching was overwhelmingly dominant in the first
ten-roll game (lower right panel).

To investigate in more detail the interplay of feedback
and hint over the entire 300 trials, we examined the predic-
tion data across blocks for the subset of participants in the
hint conditions who explicitly identified maximizing as
optimal from the outset. Figure 5 plots these data and clearly
indicates that there was still a small benefit of receiving
outcome feedback across trials. In a Block x Feedback
ANOVA, this effect manifested itself as a significant linear
interaction, F(1, 36) = 6.02, p = .019, 77p2 = .143, indicating
that the difference in maximizing as a function of feedback
condition increased across blocks. No other effects in this
analysis were significant. (The proportions of dominant-
color predictions across blocks for participants endorsing
matching were .77 and .71 for the hint feedback and hint
no-feedback conditions, respectively.)

Modeling the data In a further effort to examine the effect
of a hint on performance and learning, we applied a
reinforcement-learning model to all of the data from the hint
feedback and no-hint feedback conditions. We focused on
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Fig.5 Mean proportions of dominant-color guesses for each of the six
blocks of 50 rolls in Experiment 2 for participants in the two hint
conditions who endorsed maximizing as the optimal strategy when
prompted with the hint before the prediction task. Error bars indicate
SEMs

these two conditions because, as can be seen in Fig. 3, the
conditions without feedback showed very little evidence of
learning across blocks. Our key interest for this modeling
exercise was to investigate how learning from feedback was
affected by the presence/absence of a hint. Specifically, we
wanted to see whether modeling could provide convergent
evidence for the “top-down”/“bottom-up” interplay of the
hint and feedback, respectively. To achieve this goal, we
applied two advice-reinforcement combination (ARC) models
developed by Biele etal. (2009), which we will discuss in the
next section” (see also Yechiam & Busemeyer, 2005).

The models We considered two models: the ARC-initial and
ARC-outcome models. These models are alike, in that they
pertain to a decision environment in which participants could
rely on both advice and individual learning experience when
choosing their decision strategy. The models differ in terms of
the temporal effect of advice on learning: ARC-initial assumes
that the effect of advice is strongest at the earliest stage of
learning and decays with time, whereas ARC-outcome
assumes that the effect of advice on learning grows over time,
so that it is more pronounced later on (Biele etal., 2009). The
behavioral results from Experiment 2 suggest that the ARC-
initial model should provide a better fit to the data because the

hint (advice) appears to confer an early advantage (see Fig. 3).

Both models share the assumption that the participant
enters the decision environment with an initial propensity for
each of the two response options. Upon choosing a response
option, the accuracy of the choice is used to update the
propensity of the chosen option. Independent of the choice
made, differential propensities to choose one response over

4 We thank Lael Schooler for suggesting the application of this model.

the other decay with time. Response sensitivity (updating in
response to feedback) and decay rates are free parameters in
both versions of the model.

ARC-initial allows for an initial propensity favoring the
optimal response option. An initial bias ¢ of 0 would indi-
cate no bias, and positive values of initial bias ¢ would
indicate an apriori preference for the optimal response. In
total, ARC-initial has three free parameters to estimate:
response sensitivity A, memory decay ¢, and initial bias ¢.
ARC-outcome does not allow for an initial propensity fa-
voring the optimal response option. Instead, the reward rate
for the optimal response, when it is correct, is enhanced by a
free parameter p specifying additional reinforcement for
choosing the recommended option. ARC-outcome also has
three free parameters: response sensitivity A, memory decay
v, and additional reinforcement p. A more detailed descrip-
tion of both models may be found in the Appendix.

Model results Individual parameter estimates were obtained
for both the ARC-initial and ARC-outcome models for each
of 52 participants (26 per condition). Full details of the
model fitting may also be found in the Appendix. Most
importantly, only the ARC-initial model successfully con-
verged (i.e., obtained stable parameter estimates), so we will
limit our discussion to the results of that model. The fact that
only the ARC-initial model converged successfully lends
further credibility to our claim that the effects of the hint are
most pronounced at an early stage of learning.

The ARC-initial model had a higher parameter estimate of
response sensitivity A for the hint feedback condition (mean =
1.14, 95 % CI = 0.63—1.65) than for the no-hint condition
(mean = 0.73, 95 % CI = 0.43-1.03) (Cohen’s d = 0.41).
This signifies that participants in the hint condition were more
sensitive to differences in choice propensities. Recall that a
response sensitivity A of 0 corresponds to random guessing,
whereas a response sensitivity A approaching infinity corre-
sponds to strictly consistent behavior. Participants in the hint
condition, then, responded in a slightly more consistent—and
hence, rational—fashion, given that the higher value indicates
more maximizing. The parameter estimates of memory decay
 were similar between the two conditions (mean = 0.21, 95 %
CI=0.15-0.27,and mean = 0.17, 95 % CI = 0.14-0.20, for the
hint feedback and no-hint feedback conditions, respectively),
suggesting equal amounts of decay (Cohen’s d = 0.32). This
makes sense, because feedback was provided in the same
fashion in both conditions. The third parameter, ¢, quantifies
the initial propensity toward the optimal response, relative to
the nonoptimal response. In our task, in which participants had
all of the information necessary for identifying the optimal
response at the outset—regardless of the hint—one would
expect L > 0 in both conditions. This was indeed the case, but
in addition the parameter was estimated to be higher in the hint
feedback condition (mean = 26.6, 95 % CI = 18.9-34.3) than in
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the no-hint feedback condition (mean = 18.2, 95 % CI = 10.5—
26.0) (Cohen’s d = 0.45) This difference demonstrates that, on
average, the hint increased the initial propensity toward maxi-
mizing; the fact that the difference was not large simply reflects
that, regardless of the hint, some participants respond optimally
and some do not (cf. the frequency distributions showing
individual differences in optimal responding in Fig. 4).

The primary conclusion from this modeling exercise was
that a model that characterizes “top-down” advice (i.e., the
hint) as being combined early in learning with “bottom-up”
reinforcement from outcome feedback provides a good ac-
count of the data. Moreover, the parameter estimates for this
model differ in sensible, interpretable ways across the con-
ditions. The fit of this model and the differences in param-
eter values across conditions are somewhat remarkable,
given that the model was developed by Biele etal. (2009)
for a task in which participants had to learn the contingen-
cies associated with different response options—unlike our
task, in which all of this information was readily available. It
is, therefore, perhaps unsurprising that while the differences
in parameter values were consistent with our account (e.g.,
higher A and ¢ in the hint feedback condition), the differ-
ences were not significant across conditions (all s < 1.6).

General discussion

This research sought to shed light on a puzzling finding:
Despite having all of the information necessary from the
outset to identify (and employ) maximizing as a superior
strategy in a simple sequential-choice task, participants receiv-
ing outcome feedback steadily increase their maximizing rate
across trials (Newell & Rakow, 2007). In Experiment 1, we
found that the provision of a hint about the earning potentials
of two different strategies had similar facilitative effects on
maximizing rates (cf. Koehler & James, 2010), but we failed
to find any evidence that outcome feedback increased maxi-
mization rates. This is inconsistent with our hypothesis that
feedback helps some participants to “discover” the optimal
strategy. The results of Experiment 2, however, suggested a
somewhat more complicated interplay of feedback and strat-
egy availability: Although the hint served to make maximiz-
ing more available in early trials, as the opportunities for
learning increased (i.e., the number of trial-by-trial predictions
surpassed that of Exp.1), outcome feedback did gradually
begin to exert its influence on responding, even when a hint
had been provided. This influence extended to those partic-
ipants who had correctly identified maximizing as optimal
when prompted with the initial hint (see Fig. 5).

The results clarify the roles of two sources of information
that can help guide participants toward optimal responding in
the die task. One source—the hint—appears to act on the
initial expectancies or strategies that participants generate
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(“top-down”’) when they are faced with the description of the
task (James & Koehler, 2011). Without being explicitly en-
couraged to consider ways of responding, a proportion of
participants simply fail to realize that maximizing is the opti-
mal response, and so are seduced into responding in a way that
is “representative’ of the probabilities underlying the task (cf.
Kahneman & Tversky, 1972; Koehler & James, 2010). When
a hint is provided, it pushes some of these participants toward
maximizing from the outset (see Figs. 2 and 4).

The other source of information—outcome feedback—acts
more gradually (“bottom-up”) and triggers a trial-by-trial
search for alternative choice strategies that helps at least some
participants discover the maximizing strategy. Importantly,
this period of discovery takes time; the effect of outcome
feedback was not apparent within the first 50 trials of either
experiment. The application of a reinforcement learning mod-
el to our data supports these general conclusions. The better-
fitting model was one that combined an initial propensity to
choose the maximizing response outcome, which was stron-
ger in the hint than in the no-hint condition, with a mechanism
that learned gradually from feedback.

Another consistent pattern from these experiments is that
when neither a hint nor feedback is provided, in the aggre-
gate, many participants are prone to start with, and stay
with, the matching strategy. One possible interpretation of
this result (suggested by a reviewer) is that participants, in
this condition in particular, misapprehend the requirements
of the task (see, e.g., Hilton, 1995). Specifically, they might
believe that they are being asked to produce a potential
outcome distribution for the die rolls, rather than to make
independent predictions for each trial. If this were the case,
probability matching would be an appropriate strategy.

While this is possible, we think that this interpretation is
unlikely for several reasons. First, the incentive structure of
the task (payment for each correct prediction) clearly empha-
sizes the importance of independent predictions—and partic-
ipants were reminded of this structure after every ten trials in
Experiment 2. Second, a classic study by Goodnow (1955)
demonstrated that although instructions to consider a two-
choice task similar to ours as a problem-solving task (“find
the pattern”) resulted in less maximizing than did an instruc-
tion to treat it as a “‘gambling task,” those given the latter
frame still fell well short of maximizing. Third, when the die
task is presented purely as a described problem (in which there
are no prediction trials, and thus no ambiguity about the task
requirements), a significant proportion of people still endorse
probability matching as the optimal strategy (Newell &
Rakow, 2007; West & Stanovich, 2003). Thus, the observed
irrationality cannot purely reside in a failure to understand the
task requirements.

Over the years, many other reasons have been proposed
for the persistence of probability matching despite its sub-
optimality, some of which may be applicable to our data.
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Perhaps one of the most enduring is that the utility of
predicting the rare event might outweigh the often small
monetary benefit of maximizing, and might alleviate the
boredom of continually making the same response (e.g.,
Goodnow, 1955; Shanks etal., 2002). In the words of one
participant from the Goodnow study (in which the reinforce-
ment was 70 % left, 30 % right): “It’s easy to win on the left;
the real skill comes in winning on the right.” As was pointed
out by Goodnow, “One could win on the right key by
betting on it very often but... this would be no more a test
of skill than deer-hunting with a machine gun” (p.113).
While it is possible that some of our participants were
attempting some “skilled” predictions of the rare event, the
use of a familiar chance device (a die) with precise outcome
probabilities (and no memory) ought to at least somewhat
discourage pattern-seeking and other attempts at “skilled”
prediction. Of course, many manipulations discourage “skill
development” (substantial monetary rewards, extended
practice, etc.; see Shanks etal. 2002); our contribution is to
show that two such factors—a hint and feedback—operate
via somewhat different mechanisms.

Naturally, though, even without the prompts provided by
the hint and feedback, some participants do identify maxi-
mizing as the superior strategy. In Experiment 1, four par-
ticipants (out of 31, 13 %) in the no-hint no-feedback
condition predicted the dominant color on all 50 trials, and
in Experiment 2, two participants (out of 23, 9 %) from this
condition predicted the dominant color on all 300 trials
(with a further two only making a suboptimal prediction
once across all trials).

The presence of such individuals suggests that some
fundamental cognitive abilities (over and above the impact
of the independent variables) contribute to maximizing be-
havior in binary prediction. Some support for this interpre-
tation comes from the correlations between participants’
scores on the Cognitive Reflection Test (CRT, a measure
of controlled/deliberative thinking; Frederick, 2005) and
their numbers of maximizing responses in the prediction
task. On completion of the prediction task, participants in
both experiments reported here answered the three-item
CRT; the correlations between CRT scores and the numbers
of dominant-color predictions were » =.33 and .23, ps < .05,
in Experiments 1 and 2, respectively. This pattern of corre-
lations is consistent with recent research showing that the
CRT is a potent predictor of performance on a range of
“heuristics-and-biases”-type tasks, including a fully de-
scribed version of the die problem used here (Koehler &
James, 2010; Toplak, West, & Stanovich, 2011). Taken
together, these findings suggest that, for some individuals,
the fully described die problem indeed yields maximizing,
as would be expected from a rational agent. For others,
though, the maximizing strategy does not come readily to
mind in response to a description of the problem, but instead

must be “discovered” through the generation and trial-by-
trial testing of alternative choice strategies.

Appendix: Details of the model and model
implementation

The ARC-initial and ARC-outcome models share the assump-
tion that the decision maker (DM) enters the decision envi-
ronment with an initial propensity for each of the two response
options, g,(f) and g»(¢). Upon choosing a response option, the
accuracy (and, as such, the reward) of the choice is used to
update the propensity of the chosen option. Independent of
choice, ¢;(f) and ¢,(f) decay with time. The probability to
choose either of the two response options is defined as the
odds of a function of ¢;(¢) and ¢,(¢) (see Eq.2). After making a
response, ¢;(?) and ¢,(¢) are updated according to

qi(t+1)=(1 —9)*q(t) +r(), (1)
@t+1)=(1 r(t)

where ¢ is a free decay parameter determining the DMs
memory for past experiences. A memory decay ¢ of 0 corre-
sponds to perfect memory, whereas a ¢ of 1 corresponds to
acting strictly on the outcome of the most recent trial. The
quantity 7(¢) is the reward received if the option was chosen,
and zero if the option was not chosen. The choice propensities
determine the probability of choosing the optimal response
(i.e., the dominant color) according to

p(t) = exp[d * q1 ()] /{expld * ¢1 ()] + exp[A + g2(1)]},
(2)

where 1 is a free parameter specifying the DMs sensitivity to
differences in choice propensities. A response sensitivity A of
0 corresponds to random guessing, whereas a response sensi-
tivity A approaching infinity corresponds to strictly rational
behavior (i.e., either maximizing or minimizing, depending on
whether the DM has the correct choice propensities).

We implemented both the ARC-initial and ARC-outcome
models in the Bayesian software program WinBUGS (Lunn,
Thomas, Best, & Spiegelhalter, 2000).> For the parameters
to be estimated, we used the following priors: 4 ~ U(0,5)
and ¢ ~ U(0.1, 0.9), where U indicates a uniform distribu-
tion, with the lower and upper bounds of the parameter in
parentheses. Additionally, ¢ ~ U(0, 100) for the ARC-initial
model and p ~ U(0,10) for the ARC-outcome model. For
each parameter, we ran three separate chains, each of which
consisted of 2,000 iterations, of which the first 1,500 were

5 The model files can be accessed from D.v.R.’s website:
www.donvanravenzwaaij.com.
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treated as burn-in samples. Burn-in samples are meant to
calibrate the sampling process and are not included in the
posterior distribution (see Lee & Wagenmakers, 2011, for a
more elaborate explanation of Bayesian modeling).

We examined whether the models converged successfully
(i.e., whether stable parameter estimates could be obtained)
by calculating an “R-hat” for each parameter (Gelman &
Rubin, 1992). R-hat is a statistic that compares the sample
variances between separate chains to the sample variances
within the chains. When the chains are indistinguishable, so
are the between- and within-sample variances, and R-hat
equals 1. A guiding principle is that an R-hat higher than
1.05 is considered inadequate (no stable parameter estimates
could be obtained). For the ARC-initial model, seven of the
156 parameters had an R-hat higher than 1.05, suggesting
that the model converged successfully. In contrast, 80 out of
the 156 parameters of the ARC-outcome model had an R-hat
higher than 1.05, indicating that the ARC-outcome model
did not converge successfully for these data.’®

The next step in model evaluation was to assess model
fit. As a means to assess model fit, we generated model
predictives of the data based on the posterior distribution
and compared these to the actual data. Using these so-called
posterior predictives, we calculated the proportions of times
the dominant color was predicted to be chosen for each
participant. We then calculated the mean absolute deviations
between the predictives and the data and compared these for
the two models and for two simple heuristics: maximizing
(picking the dominant color exclusively) and matching
(picking the dominant color 70 % of the time). Doing so
led to mean proportional discrepancies in dominant-color
responses of 2.2 percentage points for the ARC-initial mod-
el, 0.3 percentage points for the ARC-outcome model, 14.5
percentage points for the maximizing model, and 15.8 per-
centage points for the matching model.

On the basis of the combination of model convergence
and model fit, our preferred model of choice was the ARC-
initial model, which both converged successfully and fit the
data very well, as compared to the simple heuristics.

Author note The support of the Australian Research Council (Grant
Nos. DP 110100797 and FT110100151) to the first author is gratefully
acknowledged, as is funding from the Natural Sciences and
Engineering Research Council of Canada to the second author. We
thank Helen Archibald for assistance with data collection, and
Christin Schulze and Lael Schooler for insightful comments on
an earlier draft.

¢ Additionally, we implemented a hierarchical version of the ARC-
initial model in which parameters were drawn from a group distribu-
tion per condition. This model did not converge successfully either,
with 54 of the 162 parameters having an R-hat higher than 1.05.

@ Springer

References

Biele, G., Rieskamp, J., & Gonzalez, R. (2009). Computational models
for the combination of advice and individual learning. Cognitive
Science, 33, 206-242.

Frederick, S. (2005). Cognitive reflection and decision making.
Journal of Economic Perspectives, 19, 24—42.

Gaissmaier, W., & Schooler, L. J. (2008). The smart potential behind
probability matching. Cognition, 109, 416-422.

Gal, 1., & Baron, J. (1996). Understanding repeated choices. Thinking
and Reasoning, 2, 81-98.

Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation
using multiple sequences. Statistical Science, 7, 457-472.

Goodnow, J. J. (1955). Determinants of choice-distribution in two-
choice situations. The American Journal of Psychology, 68,
106-116.

Hermnstein, R.J. (1997). The matching law: Papers in psychology and
economics(H. Rachlin & D.I. Laibson, Eds.). Cambridge, MA:
Harvard University Press.

Hertwig, R., & Ortmann, A. (2001). Experimental practices in eco-
nomics: A methodological challenge for psychologists? The
Behavioral and Brain Sciences, 24, 383—403.

Hilton, D. J. (1995). The social context of reasoning: Conversational
inference and rational judgment. Psychological Bulletin, 118,
248-271.

James, G., & Koehler, D. J. (2011). Banking on a bad bet: Probability
matching in risky choice is linked to expectation generation.
Psychological Science, 22, 707-711.

Kahneman, D., & Tversky, A. (1972). Subjective probability: A judg-
ment of representativeness. Cognitive Psychology, 3, 430-454.

Koehler, D. J., & James, G. (2009). Probability matching in choice
under uncertainty: Intuition versus deliberation. Cognition, 113,
B123-B127.

Koehler, D. J., & James, G. (2010). Probability matching and strategy
availability. Memory & Cognition, 38, 667-676.

Lee, M.D., & Wagenmakers, E.-J. (2011). A course in Bayesian
graphical modeling for cognitive science. Available at http://
www.ejwagenmakers.com/BayesCourse/BayesBook.pdf

Lunn, D. J., Thomas, A., Best, N., & Spiegelhalter, D. (2000).
WinBUGS—A Bayesian modelling framework: Concepts, struc-
ture, and extensibility. Statistics and Computing, 10, 325-337.

Newell, B. R., Lagnado, D. A., & Shanks, D. R. (2007). Straight
choices: The psychology of decision making. Hove: Psychology
Press.

Newell, B. R., & Rakow, T. (2007). The role of experience in decisions
from description. Psychonomic Bulletin & Review, 14, 1133—
1139.

Otto, A. R., Taylor, E. G., & Markman, A. B. (2011). There are at least
two kinds of probability matching: Evidence from a secondary
task. Cognition, 118, 274-279.

Shanks, D. R., Tunney, R. J., & McCarthy, J. D. (2002). A re-examination
of probability matching and rational choice. Journal of Behavioral
Decision Making, 15, 233-250.

Toplak, M. E., West, R. F., & Stanovich, K. E. (2011). The cognitive
reflection test as a predictor of performance on heuristics and
biases tasks. Memory & Cognition, 39, 1275-1289.

Vulkan, N. (2000). An economist’s perspective on probability matching.
Journal of Economic Surveys, 14, 101-118.

West, R. F., & Stanovich, K. E. (2003). Is probability matching smart?
Associations between probabilistic choices and cognitive ability.
Memory & Cognition, 31, 243-251.

Yechiam, E., & Busemeyer, J. R. (2005). Comparison of basic
assumptions embedded in learning models for experience-
based decision making. Psychonomic Bulletin & Review, 12,
387-402. doi:10.3758/BF03193783


http://www.ejwagenmakers.com/BayesCourse/BayesBook.pdf
http://www.ejwagenmakers.com/BayesCourse/BayesBook.pdf
http://dx.doi.org/10.3758/BF03193783

	Probability matching in risky choice: The interplay of feedback and strategy availability
	Abstract
	Overview of the experiments
	Experiment 1
	Method
	Results
	Discussion

	Experiment 2
	Method
	Results and discussion

	General discussion
	Appendix: Details of the model and model implementation
	References


