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Abstract Many current computational models of object
categorization either include no explicit provisions for
dealing with incomplete stimulus information (e.g.
Kruschke, Psychological Review 99:22–44, 1992) or take
approaches that are at odds with evidence from other fields
(e.g. Verguts, Ameel, & Storms, Memory &amp; Cognition
32:379–389, 2004). In two experiments centered around the
inverse base-rate effect, we demonstrate that people not
only make highly informed inferences about the values of
unknown features, but also subsequently use the inferred
values to come to a categorization decision. The inferences
appear to be based on immediately available information
about the particular stimulus under consideration, as well as
on higher-level inferences about the stimulus class as a whole.
Implications for future modeling efforts are discussed.
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Missing information

It is a truism that humans must rely on incomplete
information about the world in order to make decisions.
When voting in an election, we are able to come to a
decision in spite of the fact that we do not have exhaustive
knowledge of the candidates’ positions, personalities, and
histories. Likewise, on a more basic level, we can recognize
objects in the world without full information – for instance,
we have all had the experience of recognizing someone
from afar despite only seeing the back of their head.

Though it seems self-evident that we are able to
categorize in the absence of perfect information, the ability

to do so is not broadly reflected in the architecture of
computational models of categorization. Models such as
ALCOVE (Kruschke, 1992), EXIT (Kruschke, 2001),
RASHNL (Kruschke & Johansen, 1999), and RULEX
(Nosofsky, Palmeri & McKinley, 1994) explicitly or
implicitly assume that a full complement of inputs will be
provided – that information about every relevant stimulus
feature is available for consideration in the categorization
process. Verguts et al. (2004) pointed out the problems
inherent in this approach, particularly in models involving
geometric distance computations of similarity among
exemplars. To make matters worse, missing input data can
interact in unpredictable ways with the peculiarities of
individual models’ architecture to produce entirely unex-
pected and unreasonable predictions. Convincing the
models to function within reasonable boundaries in the
presence of missing data can be problematic, as demon-
strated in the challenges Blair and Homa (2005) encoun-
tered when implementing the RASHNL model to fit a task
with a variable number of stimulus dimensions.

While some models (e.g. SUSTAIN: Love, Medin &
Gureckis, 2004) do include explicit provisions for dealing
with missing data, the usual approach is to ignore any
unknown stimulus features, factoring them out of similarity
computations entirely. In their ADDCOVE model, Verguts
et al. (2004) implemented an alternative approach in which
similarity is computed on the basis of feature-matching,
obviating the need for a special provision for missing data.
Although these remedies constitute an improvement over
models of categorization which make no provisions for
situations in which only partial information is available,
they are at odds with empirical work on how humans deal
with missing data. Specifically, existing models assume an
extremely low degree of flexibility among categorizers
when working with incomplete information. The typical
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approach is to treat all missing data in the same way,
regardless of the context – by ignoring it, by according it a
dummy value, and so on.

In this article, we seek to demonstrate that this one-size-
fits-all approach is in error. Rather, the reality of the
situation is quite complex: categorizers appear to make
sophisticated inferences about the identity of missing
stimulus features based on observed regularities among
stored exemplars. Specifically, people are sensitive to both
intercorrelations among features and higher-level inferences
about the properties of the stimulus set.

The literature on missing information in categorization is
quite sparse, but relevant research has been conducted in
the fields of multivariate prediction and multiple-cue
probability learning. The available literature suggests that
rather than ignoring missing features, people instead infer
default values and subsequently use those inferences in
making decisions or predictions. The exact identity of the
default value appears to change depending on the situation
(Ganzach & Krantz, 1990; White & Koehler, 2004). In
general, however, if a particular feature’s value is unknown,
people appear to infer the “mean” value, averaging over the
values of that feature observed during previous experience.

This approach has a number of advantages. As observed
by Ganzach and Krantz (1990), it results in the moderation
of predictions from incomplete data, whereas inferring a
more extreme value would result in a correspondingly
extreme prediction – a strategy that would perhaps lead to
maladaptive outcomes if widely applied. However, it is not
immediately clear how broadly the tendency to infer the
mean applies. Much of the previous research on missing
information has been in the paradigm of multiple-cue
probability learning rather than deterministic categorization,
which has traditionally been the focus of models such as
ALCOVE and SUSTAIN. While this is not necessarily a
problem, it may be the case that an environment in which
prediction is highly fallible and probabilistic encourages
categorizers to hedge their bets when dealing with missing
data, while more extreme inferences might be more
common in a fully deterministic environment.

In addition, there has been relatively little examination of
the effect of intercorrelated features on missing-feature
inference. Covariation among real-world object features is
very common, and indeed is one of the reasons why
categorization is useful – for example, the presence of a
spoiler on a car is generally associated with a relatively
high-powered engine. Thus, it seems relevant to ask
whether the tendency to infer mean values for unknown
features is a general strategy in categorization, or if mean
inference is simply the base case of a broader strategy of
predicting unknown feature values on the basis of observed
correlations with known features. White and Koehler
(2004) put a significant number of potential strategies for

missing-feature inference to the test; however, inference
from available information was not among them. In fact,
when White and Koehler described the work of Ganzach
and Krantz (1990) as demonstrating that missing cues are
replaced by mean values, they neglected to consider the
latter’s Experiment 2, which demonstrated that mean
inference does not extend to situations in which predictor
cues are intercorrelated. When such is the case, people
appear to infer a value for the missing cue based on the
values of the other cues with which it is correlated. For
instance, the participants in Ganzach and Krantz’s Experiment
2 were presented with intelligence and motivation scores for a
series of students, and were asked to use the scores to predict
the grade-point average (GPA) of each student. In one
condition, intelligence and motivation were highly correlated
with one another. When a student with an unknown
intelligence score was presented, participants did not always
infer that the student was of average intelligence; rather, the
predicted GPA scores indicated that participants inferred an
intelligence score roughly matching that of motivation.

This result may have important implications for future
models of categorization. As discussed above, no existing
computational models appear to deal with missing data in
this way: rather than predicting missing feature values
based on learned associations with known cues, they apply
some sort of blanket remedy such as simply ignoring the
unknown feature. However, as experiments in multivariate
prediction, the findings of Ganzach and Krantz (1990) are
still one step removed from the issue at hand – the use of
missing information in object categorization.

Our primary goal in this study is to examine whether
higher-level inferential processes indeed play a role in dealing
with missing feature values in categorization, in order to
inform future computational modeling efforts in the field. An
ideal category structure for testing missing-feature inference
would involve a critical cue that, though highly correlated
with other cues, nevertheless produces a considerable effect
by its presence or absence. With that in mind, we devised two
experiments involving missing information and the inverse
base-rate effect (IBRE).

The IBRE, first described by Medin and Edelson (1988),
is a perplexing categorization effect in which an ambiguous
transfer stimulus is classified counter to the principles of
normative Bayesian reasoning. In a simplified version of
the IBRE, participants learn to diagnose two diseases based
on the presence or absence of three symptoms. One disease
is common, and is characterized by the presence of
headaches and dizziness. The other is rare, and is
characterized by headaches and nausea. Headache is thus
an (I)mperfectly diagnostic symptom, and is symbolized
“I;” dizziness and nausea are (P)erfectly diagnostic of the
(C)ommon and (R)are diseases, respectively, and as such
are referred to as “PC” and “PR.” Thus, the common
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disease has symptoms I + PC, and the rare disease has
symptoms I + PR.

After participants are trained in this category structure,
they are presented with a set of novel transfer stimuli.
While the ambiguous stimulus I + PC + PR is generally
categorized as an instance of the common disease, in line
with base rates, the equally ambiguous PC + PR results in
the opposite pattern – it is most often categorized as rare.
Such a response pattern is puzzling: all other things being
equal, the most adaptive strategy would be to classify an
ambiguous stimulus as a member of the more common
category. This reversal is the inverse base-rate effect, and its
exact causes have been the subject of some debate (e.g.
Kruschke, 2001; Winman, Wennerholm, & Juslin, 2003;
Bohil, Markman, & Maddox, 2005; Winman, Wennerholm,
Juslin, & Shanks, 2005). For the purposes of the present
study, however, the exact reason behind the IBRE’s
existence is not important. As long as the effect exists, it
can be used to study missing-feature inference.

In both of the experiments reported in this article, we used
two pairs of IBRE categories. Thus, there were two rare
categories and two common categories in each experiment,
along with two PC features, two PR features, and two I
features. The different versions are denoted numerically –
feature PC1, category R1, and so on. The use of a four-
category task ensures that there is some degree of variance on
all features during the training period: the training stimuli
consist of I1 + PC1, I1 + PR1, I2 + PC2, and I2 + PR2,
meaning that each I feature is present in only half of the
training examplars. In contrast, in a task using only a single
category pair, the imperfectly diagnostic feature I would be
present in every single stimulus in the training phase (I + PC
and I + PR). The four-category approach is quite common in
the IBRE literature (e.g. Kruschke, 1996).

Presenting participants with the stimulus ? + PC + PR in
transfer (“?” representing an unknown value for the
imperfectly diagnostic feature) would result in a unique
opportunity for investigating how people deal with missing
information in a categorization task. Mean-value inference
theory (White & Koehler, 2004) predicts that people will
infer that the unknown feature, I1 or I2, is half-present (as
explained above, each imperfectly diagnostic feature would
have been present in half of all training stimuli). This
inference would result in a response pattern somewhere
between those of PC + PR and I + PC + PR – perhaps the
mean of the two, although other possibilities will be
explored in the General Discussion. Alternatively, if people
use known object components to make informed inferences
about hidden features, the presence of the PC and PR
features should lead to an inference that the I-feature is
present, as it was consistently paired with both PC and PR
during training. Such a tendency would lead to a response
pattern approximating that of I + PC + PR.

The design of Experiment 1 was sensitive to the
possibility of higher-level inferences based on abstract
rules about the stimulus class. For instance, each training
stimulus in the IBRE task contains only two present
features. From this, participants might derive a rule that
each stimulus may only have two present features, and
subsequently apply that rule when attempting to deter-
mine the value of the unknown feature in ? + PC + PR.
As such, we presented a number of novel transfer stimuli
(I, PC, PR, PC + PR, and I + PC + PR) before ? + PC +
PR so that participants could draw upon experience with
stimuli with varying numbers of present features when
making a judgment.

Experiment 1

Experiment 1 consisted of a text-based IBRE-type catego-
rization task (e.g. Kruschke, 2001), with an initial training
period followed by a transfer phase in which stimuli with
novel feature combinations were presented. In addition, at
the end of transfer, participants were asked to categorize
stimuli following the abstract form ? + PC + PR, in which
the presence or absence of the imperfectly diagnostic
feature was unknown.

Method

Participants 75 undergraduates from Simon Fraser Univer-
sity, a large institution in Western Canada, participated in
exchange for course credit in introductory Psychology
classes.

Materials/apparatus The experiment was conducted using
E-Prime stimulus presentation software, running on
Apple iMac computers. The stimulus set consisted of
text descriptions of fictitious birds, which followed a
simplified IBRE category structure. The birds differed on
six present/absent features: a feather on the head, a group
of spots on the body, a set of sharp claws, a shark-like
fin, a cluster of spikes, and a long, rounded tail. Feature
assignments and species names were counterbalanced
across participants.

Procedure Participants were instructed that they would be
learning to identify newly discovered Latin American birds
as members of one of four different species (Mexican,
Chilean, Bolivian, or Peruvian). The experiment began with
a training phase in which the four training stimuli, I1 +
PC1, I2 + PC2, I1 + PR1, and I2 + PR2, were displayed in
blocks according to a 4:1 base rate (see Table 1). Each trial
comprised a single screen of yellow text on a black
background. At the top was the sentence “A bird has been
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spotted by one of our observers.” Next, missing features
were listed (if applicable), then present features, then absent
features, each with a descriptive heading (see Fig. 1). The
order in which features in each section were listed was
randomized across trials.

Participants were able to inspect the descriptions for as
long as they wished before using the mouse to click one of
the response buttons, located in the corners of the screen.
Corrective feedback was provided. The clicked box would
turn green following a correct answer; on an incorrect
response, it would turn red and the correct answer box
would turn green. The training phase continued for 100
trials or until the participant reached a learning criterion of
40 consecutive correct answers, whichever came first.

The transfer phase was split into two stages. The first
consisted of standard IBRE transfer stimuli: I, PC + PR,
I + PC + PR, PC, and PR. Each stimulus in this phase was
displayed twice, for a total of four presentations of each
abstract feature combination. In the second stage, participants
categorized both versions of the missing-feature transfer
stimulus, ? + PC + PR, once each. No feedback was given

during transfer; instead, buttons simply turned purple when
clicked.

Results & discussion

Response proportions to transfer stimuli were collected
and compared, collapsing across category pairs. Thus,
categorizing a bird with features PC1 + PR1 as a member of
species C1 was considered to be equivalent to categorizing
PC2 + PR2 as species C2. Each transfer stimulus elicited a
small proportion of responses inconsistent with the category
pair (for instance, categorizing a bird with features PC1 + PR1
as a member of category C2); for the sake of brevity, however,
only consistent responses are reported below, and so they do
not sum to 100%.

Transfer phase response proportions are shown in Table 2.
A considerable IBRE was found, with PC + PR categorized
as a member of the appropriate common species 28.0% of
the time, and as rare 65.0% of the time. I + PC + PR was
categorized more often as common, 60.3%, than rare, 36.0%.
Finally, ? + PC + PR was categorized as common 56.7% of
the time, and as rare 39.0% of the time. All common-rare
differences within these three transfer stimuli were found to
be statistically significant (paired-samples t-tests, all ps <
.05). The proportion of common responses to ? + PC + PR
was significantly higher than both PC+PR, t(74) = -6.274,
p < .001, and the mean of I + PC + PR and PC + PR
(44.2%), t(74) = 2.804, p < .01. Finally, there was no
significant difference in the proportion of common responses
to ? + PC + PR and I + PC + PR, t(74) = 0.731, p > .40,
suggesting that participants assumed the unknown feature to
be present for the purposes of categorization.

These results are broadly in line with the findings of
Experiment 2 of Ganzach and Krantz (1990). The
missing feature was reliably correlated with the presence
of either PC or PR, and in the presence of both cues
people quite reasonably inferred that it, too, was present.
The same process appears to be at work in both
quantitative prediction and object categorization: people
will use available feature values to infer the identity of
unknown or missing features, and then use the inferred
values to come to a final decision. In Experiment 1, we
have extended the findings of Ganzach and Krantz (1990)
to the domain of object categorization, demonstrating that
current models of category learning are ill-equipped to
deal with incomplete information. However, it seems
unlikely that predicting features from intercorrelations is
the only contributing factor to missing-feature inference;
in all probability, there are many situations in which
abstract, higher-level reasoning plays a part as well.
Experiment 2 seeks to demonstrate an example of such a
situation.

Table 1 Sample category structure for Experiments 1&2

Species Frequency Abstract features Feature names

Chilean Common I1+PC1 Fin, tail

Bolivian Rare I1+PR1 Fin, spikes

Mexican Common I2+PC2 Claws, spots

Peruvian Rare I2+PR2 Claws, feather

Fig. 1 Response screen for Experiments 1 and 2, with the stimulus
displayed in the middle of the screen and clickable response boxes
in the corners. The bird described here is the missing-feature
stimulus ? + PC + PR
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Experiment 2

Experiment 2 is nearly identical in design to Experiment 1,
except with one important change: we present the missing-
feature stimulus ? + PC + PR immediately after the training
phase, and before the standard IBRE transfer stimuli. This
results in a comparatively impoverished exemplar space at
the time the participant views the missing feature stimulus:
all the stimuli experienced up to that point have had exactly
two present features. If participants are sensitive to high-
level regularities in the stimulus set when inferring values
for missing features, they may derive a rule that all stimuli
in the set must have exactly two features. Since PC and PR
are known to be present in the missing-feature stimulus, a
two-feature limit would render the unknown feature
necessarily absent and response proportions to the
missing-feature stimulus would be identical to those of the
transfer stimulus PC + PR. Intercorrelations among features
would be just as strong as in Experiment 1, however, so a
concordance between ? + PC + PR and PC + PR would
indicate that these perceived high-level constraints are even
more powerful determinants of participants’ inferences than
are correlated features.

Method

60 undergraduates at Simon Fraser University participated
in exchange for course credit in introductory Psychology
classes.

The procedure was identical to that of Experiment 1,
with the exception of trial order: the missing-feature stimuli

(? + PC + PR) were viewed before the standard IBRE
transfer stimuli (PC + PR, I + PC + PR, PC, PR, and I).

Results & discussion

In the standard IBRE transfer phase, responses were largely
in line with the results from Experiment 1 (see Table 3).
I + PC + PR was categorized as a member of the
appropriate common species 62.5% of the time and as a
member of the rare species 32.1% of the time. By contrast,
PC + PR elicited 32.1% common categorizations, compared
to 60.0% rare. Finally, ? + PC + PR was judged to be a
member of the appropriate common species 37.5% of the
time, and a member of the rare species 52.9% of the time.
Differences between common and rare responses within each
of these three transfer stimuli were all found to be significant
(paired-samples t-tests, all ps < .05). In addition, I + PC + PR
was categorized as common significantly more often than was
PC + PR, t(59) = 5.684, p < .001. ? + PC + PR was
categorized as common significantly less than I + PC + PR,
t(59) = 4.924, p < .001, but was statistically no different
from PC + PR, t(59) = 1.217, p > .20. However, ? + PC +
PR elicited fewer common responses than the mean of PC +
PR and I + PC + PR (47.3%), t(59) = 2.393, p < .05.

While participants in Experiment 1 appeared to infer that
the unknown feature was present, the opposite seems to be true
here: people responded to the incomplete stimulus as though
the unknown feature were absent. The ordering of transfer
stimuli, being the only change between Experiments 1 and 2,
has radically altered the course of missing-feature inference.
This result is predicted by neither mean-substitution theory

Stimulus Consistent common
responses (%)

Consistent rare
responses (%)

Inconsistent
responses (%)

I 79.3 15.0 5.7

I + PC + PR 60.3 36.0 3.7

PC + PR 28.0 65.0 7.0

? + PC + PR 56.7 39.0 4.3

PC 87.3 5.7 7.0

PR 5.0 87.3 7.7

Table 2 Distribution of catego-
rization responses to transfer
stimuli (Experiment 1)

Stimulus Consistent common
responses (%)

Consistent rare
responses (%)

Inconsistent
responses (%)

I 71.3 21.3 7.4

I+PC+PR 62.5 32.1 5.4

PC+PR 32.1 60.0 7.9

?+PC+PR 37.5 52.9 9.6

PC 80.8 6.7 12.5

PR 3.3 86.7 10.0

Table 3 Distribution of catego-
rization responses to transfer
stimuli (Experiment 2)
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nor the correlated-predictors special case described by
Ganzach and Krantz (1990). In fact, an inference of absence
is the opposite of what one would expect – in any training
stimulus containing either PC or PR, the appropriate
imperfectly diagnostic feature was always present. Assuming
that the unknown feature is absent is in direct opposition to
the feature associations learned during the training phase.

What could cause such a counterintuitive inference? We
propose that over the course of training, participants
developed a sensitivity to a higher-order regularity of the
stimulus class – namely, that each bird had exactly two
present features. This was a reasonable assumption for
participants to make, as every training stimulus had exactly
two present features; at the time of the missing-feature
transfer phase, there had been no variance in the number of
features a bird could possess. Birds with one or three
features did not appear until the standard IBRE transfer
phase, which in Experiment 2 came after the missing-
feature stimuli. Thus, when presented with a bird known to
possess two features with a third of indeterminate value,
participants drew upon the two-feature-only rule and
assumed the unknown feature to be absent.

General discussion

The results of Experiments 1 and 2 indicate that the process
of missing-feature categorization is a good deal more
complex than previously suspected. Instead of simply
inferring the mean value for an unknown stimulus feature,
it appears that people engage in a complex inferential
reasoning process to come to a decision about its identity.
They take into account correlations with other features,
using known values to predict unknown ones and subse-
quently using the inferred values to generate an appropriate
category response. Beyond that, they also draw on
experience with the relevant stimulus class to make broad
generalizations about what ought to be possible, such as the
number of features that can be present. To our knowledge,
in spite of the importance of being able to make decisions
on the basis of limited information, no current computa-
tional model of object categorization accounts for either of
these effects. One potential formalization of missing-feature
inference from intercorrelated cues comes from the named
error model of Ganzach and Krantz (1990). In this model,
judgments about a numerical outcome (say, predicting GPA
from intelligence and motivation scores) are made as a
result of a multiple-regression equation, with provided cues
as predictors. The mean of each variable in the equation is
set to zero for simplicity, and each cue is accorded a
particular slope. Inferring the mean for a missing feature,
then, is essentially equivalent to setting its value to zero,

taking the term out of the equation entirely and moderating
the predictions of the model. A special case occurs when
the predictors are intercorrelated; in this case, the value of a
missing predictor is inferred on the basis of the known
cues, and the inferred value is then used as usual to predict
an outcome. Ganzach and Krantz did not provide an
explicit explanation of exactly how this informed inference
process takes place, saying only that an extreme value for a
known cue will be reflected in a correspondingly extreme
inferred value for a strongly correlated unknown cue.

Rather than presenting intercorrelated predictors as a
special case, it seems both more parsimonious and more
generalizable to say that the inferred value of an unknown
cue is always based on what information is available.
Consider a stimulus containing k features in which the
value of one feature, Xu, is unknown. We could infer the
value of Xu from the available cues using multiple
regression:

Xu ¼ B1X1 þ B2X2 þ :::þ Bu�1Xu�1 þ Buþ1Xuþ1 þ :::þ BkXk:

When all other features Xi are uncorrelated with Xu, each
slope Bi=0, and the inferred value for the missing feature
Xu equals zero – defined as its mean value over all
previously stored exemplars. This formulation of missing-
feature inference adequately explains empirical results in
both correlated- and uncorrelated-cue situations without
recourse to special cases, and could be implemented in
connectionist models of categorization using a set of
weighted, gated connections between input nodes.

While Experiment 1 has demonstrated that intercorrela-
tions among features are useful in missing-feature infer-
ence, Experiment 2 showed that other mechanisms are also
at work. The response patterns suggest that people decided
on the identity of the unknown feature in ? + PC + PR as
though making an assumption about the stimulus class
constructed during the training phase – namely, that birds
have exactly two present features. Any model that hopes to
explain the results of both experiments must contain some
competitive mechanism to determine the relative impor-
tance of these different influences. Whatever that mecha-
nism might be, it is clear that, at least in the present case,
regularities across the stimulus class have a powerful effect
on responding. The responses to ? + PC + PR were
statistically identical to either I + PC + PR (in Exp 1) or
PC + PR (in Exp 2), rather than an in-between response as
one might expect from a compromise between different
influences. Nevertheless, it seems possible that these
mechanisms might jointly determine responding, and in
other circumstances stimulus class information might have
a less overwhelming effect. The role of these kinds of
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higher level regularities and their underlying cognitive
mechanisms are attractive topics for future research.

Alternative explanations may exist for the observed
effects. There is some evidence that “missingness” can be
informative in itself: Jaccard and Wood (1988) demonstrated
that missing information in the description of an alternative
makes it somewhat less attractive. It could thus be argued
that the apparent inference of absence in Experiment 2 is the
result of treating exemplars with missing features as though
they were discrepant from all existing exemplars without
missing features. If this provision for dealing with missing
information were added to the ELMO model, for instance
(Juslin, Winman, & Wennerholm, 2001), presenting ? +
PC + PR immediately after training would result in a very
similar response pattern to PC + PR, since both transfer
stimuli differ on the value of the I-feature from the relevant
stored exemplars I + PC and I + PR. ADDCOVE (Verguts
et al., 2004), or a modified version with the ability to model
the IBRE accurately, would react in a similar way, treating ?
+ PC + PR as a partial mismatch to both training exemplars.
This approach, called the unknown-diagnostic method by
White and Koehler (2004), predicts that regardless of where
the mean value of a particular feature lies, a stimulus with
that feature missing will be categorized the same way. White
and Koehler carried out just such a manipulation in their
Experiment 3 by varying the distribution of feature values
and found the prediction of the unknown-diagnostic method
to be false. Moreover, a model incorporating the unknown-
diagnostic method would likely be unable to account for the
results of our Experiment 1: ? + PC + PR would be treated as
an equal match to PC+PR and I + PC + PR (one discrepant
feature, two matching), rather than being categorized
identically to the latter.

A potential concern stems from the fact that the previous
literature on mean inference as a strategy for dealing with
missing data has focused on continuously valued dimen-
sions for which calculating a mean value is sensible – grade
point average, for instance. Here, however, the features
were binary-valued, making the calculation of a “mean”
value somewhat problematic. In the absence of a definitive
prediction for the binary-valued case, we reasoned that
mean-inference theory would predict a response pattern
resembling the midpoint between the absent and present
cases. This encompasses two distinct possibilities: first, that
the feature is always inferred to be “half-present” (assuming,
of course, that a half-present feature leads to a response pattern
roughly at the midpoint between absence and presence); and
second, that it is inferred to be present on half of the trials and
absent on the rest. It is not out of the question that binary-
valued predictors constitute a special case; however, the idea
that missing-feature inferences are informed by intercorrela-
tions among features even with continuously valued dimen-

sions is further supported by Experiment 2 of Ganzach and
Krantz (1990).

Applicability of existing computational models

The results of both experiments appear to run counter to the
assumptions of dominant models regarding missing data in
categorization. If presented with the stimulus ? + PC + PR,
SUSTAIN (Love et al., 2004) would remain agnostic about the
value of the missing feature; ALCOVE (Kruschke, 1992)
would treat it as a match to both PC + PR and I + PC + PR;
and ADDCOVE, a model specifically designed to account for
missing data, would treat it as a match to neither (Verguts
et al., 2004). In none of these cases is it evident that an
inference of presence or absence would result; indeed, it
seems most likely that each strategy would result in response
proportions falling somewhere between I + PC + PR and
PC + PR, with the ordering of transfer stimuli having little or
no effect.

Testing the actual performance of the above models is
problematic due to differences between the tasks for which
some of the models were designed and the IBRE paradigm
used in the present experiment. SUSTAIN, for instance,
was developed to model tasks such as those used by
Shepard, Hovland, and Jenkins (1961) in which there exists
a significant amount of within-category variation. In
contrast, in the training phase of the IBRE task, the
mapping of exemplars to categories is one-to-one: four
exemplars, four categories. In this situation of zero within-
category variation, SUSTAIN accords all dimensions an
equal amount of attention over the course of the training
phase (Love et al., 2004), which ultimately cripples the
model’s ability to accurately model responses to IBRE
transfer stimuli. Likewise, ADDCOVE does nothing to
mitigate its predecessor ALCOVE’s inability to accurately
model effects such as the IBRE (Verguts et al., 2004;
Kruschke, 1992). EXIT, a model which has proven to
model the IBRE extremely well (e.g. Kruschke, 2001) is a
better candidate. A short description of the model, and of
the challenges for its implementation and usage in the
context of the present study, follows.

EXIT is a connectionist model with exemplar-specific
attentional learning. Activation propagates from the input
nodes through to an exemplar-comparison module, which
determines the attentional weights used to translate the
input pattern into output probabilities. When information
about a stimulus is missing, the usual remedy is to simply
exclude the unknown features from comparison in the
exemplar module. This is the approach assumed to be taken
by ALCOVE (Verguts et al., 2004). In EXIT, however, the
exemplar module merely determines how the model attends
to the input pattern – we are still left with the issue of how
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activation spreads from an incomplete input to the output
nodes. Normally, the activation of a given output node k is
determined as such:

aoutk ¼
X

i

wkiaia
in
i

where ai
in is the value of the ith feature (0 if absent, 1 if

present), αi is an attentional weight derived from the
exemplar module, and wki is a learned input-to-category
association weight (Kruschke, 2001). When a feature is
absent, it contributes no activation to any of the output
nodes: wki αi ai

in = 0. Therefore, if we were to simply
exclude an unknown feature from contributing to the
activation of any output nodes, this would amount to the
same thing as simply assuming it to be absent, an approach
at odds both with previous research (Jaccard & Wood,
1988; Ganzarch & Krantz, 1990; White & Koehler, 2004)
and with the empirical data above.

In spite of this discrepancy, EXIT shows the most promise
of the aforementioned models for modification to handle
incomplete information in an IBRE task. As such, we
implemented a modified version of EXIT which instantiates
mean-inference theory in dealing with missing information
(Ganzach & Krantz, 1990; White & Koehler, 2004).

Mean-inference EXIT

Mean-inference EXIT (MEXIT) constitutes a rather minor
departure from the standard EXIT model. MEXIT contains
a vector of running means for each object feature and

updates it at the end of each trial. Since features in EXIT are
coded as 0 when absent and 1 when present, the running
means can also be thought of as percentages of trials in
which each feature is present. When a feature value is
missing, it is replaced with the appropriate mean value for
the purposes of both exemplar similarity computation and
output node activation.

We ran constrained function-minimization simulations
fitting MEXIT to the human data from both experiments.
Starting parameters included the default EXIT values as
well as the parameter values which best fit the standard
IBRE transfer stimuli alone for each experiment. The best
fitting solutions are shown in Tables 4 and 5 for Experi-
ments 1 and 2, respectively. As can clearly be seen, mean
inference does a poor job of fitting the qualitative pattern of
the data. In simulations of both experiments, the missing-
data stimulus ? + PC + PR elicited a proportion of
consistent common responses nearly equal to the midpoint
between the proportions of consistent common responses to
PC + PR and I + PC + PR.

The results of the above experiments demonstrate two
distinct deficiencies in how current models of categorization
deal with missing data: they have no mechanism by which an
unknown feature’s value can be predicted using the values of
known features, and they cannot account for higher-level
assumptions about unknown feature values. Perhaps the
fundamental error which previous models and theories all
commit is the assumption that the same inference will always
be made for a particular unknown feature. Whether a feature
is inferred to be present, absent, matching, nonmatching, or
the mean, or ignored entirely, the remedy fails to take into

Stimulus Consistent common
responses (%)

Consistent rare
responses (%)

Inconsistent
responses (%)

I 67.9 17.9 14.2

I + PC + PR 60.9 36.3 2.8

PC + PR 30.4 61.3 8.3

? + PC + PR 45.2 49.4 5.4

PC 82.0 5.1 12.9

PR 2.5 89.8 7.7

Table 4 Best fit of MEXIT to
transfer phase data from
Experiment 1

Overall RMSD=2.7321.

Stimulus Consistent common
responses (%)

Consistent rare
responses (%)

Inconsistent
responses(%)

I 74.7 14.9 10.4

I + PC + PR 64.9 33.4 1.7

PC + PR 35.4 58.0 6.6

? + PC + PR 49.5 46.4 4.1

PC 88.5 3.2 8.3

PR 2.1 91.2 6.6

Table 5 Best fit of MEXIT to
transfer phase data from
Experiment 2

Overall RMSD=3.7831.
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account the rest of the stimulus. We believe this approach to
be misguided. Instead, the present experiments point to a
dynamic, context-sensitive process in which categorizers
make the most informed inferences possible given the
available information, the stimulus set, and the structure of
the task itself.

In real world decision-making, it is rare to have a full
complement of relevant information. Indeed, categories are
useful precisely because they enable us to make inferences
about the unknown. While computational models of
category learning have made great strides in the past three
decades, the problem of missing data remains largely
unaddressed; as long as this remains the case, the
applicability of models to real-world categorization situa-
tions will be unnecessarily limited. It is our hope that future
research will take into account this important issue.
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