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Abstract Research has shown that observers store surprising-
ly highly detailed long-term memory representations of visual
objects after only a single viewing. However, the nature of
these representations is currently not well understood. In par-
ticular, it may be that the nature of such memory representa-
tions is not unitary but reflects the flexible operating of two
separate memory subsystems: a feature-based subsystem that
stores visual experiences in the form of independent features,
and an object-based subsystem that stores visual experiences
in the form of coherent objects. Such an assumption is usually
difficult to test, because overt memory responses reflect the
joint output of both systems. Therefore, to disentangle the two
systems, we (1) manipulated the affective state of observers
(negative vs. positive) during initial object perception, to in-
troduce systematic variance in the way that visual experiences
are stored, and (2) measured both the electrophysiological
activity at encoding (via electroencephalography) and later
feature memory performance for the objects. The results
showed that the nature of stored memory representations var-
ied qualitatively as a function of affective state. Negative af-
fect promoted the independent storage of object features, driv-
en by preattentive brain activities (feature-based memory rep-
resentations), whereas positive affect promoted the dependent
storage of object features, driven by attention-related brain
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activities (object-based memory representations). Taken to-
gether, these findings suggest that visual long-term memory
is not a unitary phenomenon. Instead, incoming information
can be stored flexibly by means of two qualitatively different
long-term memory subsystems, based on the requirements of
the current situation.
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Recent research has shown that observers are able to success-
fully recognize thousands of visually presented objects after
only a single viewing, even when highly detailed knowledge
about visual features is necessary for correct recognition (e.g.,
Brady, Konkle, Alvarez, & Oliva, 2008), suggesting that
humans possess a visual long-term memory system with a
massive storage capacity for incoming visual information.
However, one important unanswered question concerns the
nature of the stored visual long-term memory representations.
From a perceptual perspective, two qualitatively different pro-
cessing steps are involved when visual scenes are initially
represented in the cognitive system, and both of their outputs
may provide the basis on which previously encountered ob-
jects are later recognized. First, signals from the retina are
analyzed to extract visual features such as orientation, color,
and so forth, a process by which highly detailed representa-
tions of independent features are created that are closely
linked to the physical properties of the visual scene. Second,
these independent feature representations are recoded on the
basis of a stored inner model of the structure of the world that
reflects learned regularities in the visual input, a process by
which informative features are integrated into coherent object
representations and uninformative features are discounted,
leading to the phenomenal experience of a visual scene that
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is segregated into coherent objects (Riesenhuber & Poggio,
1999; Serences & Yantis, 2006; Tarr, 1995; Treisman &
Gelade, 1980).

The prevailing view is that only the output of the object-
processing stage is stored in long-term memory, whereas the
initial independent feature representations are quickly lost
(Dehaene, 2014; Rensink, 2002). Such a view is based on
studies suggesting that information is stored in visual memory
in terms of objects (e.g., Cowan, 2001; Luck & Vogel, 1997),
as well as research in the domain of perceptual memory and
change blindness, demonstrating that sensory information is
available only for short amounts of time (e.g., Rensink, 2002;
Sperling, 1960). The underlying mechanism is often assumed
to be that only those sensory features selected by attention are
bound together into an object representation, and thereby con-
verted into a more durable form of representation that can be
stored in long-term memory (Gegenfurtner & Sperling, 1993;
Treisman & Gelade, 1980).

However, there is also evidence that initial sensory-based
representations can be stored over long time periods in surpris-
ing detail. One line of evidence shows that spatial frequency
information, which is considered to be extracted in a first, feed-
forward sweep in the visual cortex, can be retained with high
precision over at least 24 h (Magnussen & Dyrnes, 1994;
Magnussen, Greenlee, Aslaksen, & Kildebo, 2003; but see
Lages & Paul, 2006). Another line of evidence shows that a
single exposure to a visual image enhances processing when the
same stimulus is encountered again (i.e., repetition priming), an
effect that shows little decrease after days, months (Mitchell &
Brown, 1988), or even years (Mitchell, 2006), and that even
occurs for novel visual stimuli that observers have had no pre-
vious experience with (Musen & Treisman, 1990).

Thus, it seems that visual experiences can be stored by two
separate visual long-term memory subsystems: a feature-
based memory subsystem retaining visual experiences in the
form of independent feature representations, and an object-
based subsystem retaining visual experiences in the form of
coherent objects (for such a model, see Johnson, 1983). If so,
an interesting possibility emerges: The nature of visual long-
term memories may not be unitary, but qualitatively different
depending on the subsystem used for storing.

One prerequisite for such an assumption is that incoming
visual information can be flexibly stored in either feature-
based or object-based form. Indeed, from a functional point
of view, such a differential storing of incoming information
was early postulated by Piaget (1970) in his model of assim-
ilation and accommodation, which has recently been elaborat-
ed in models of the so-called predictive brain (e.g., A. Clark,
2013). The basic idea is that functional storing requires the
storing of incoming information in relation to an already-
stored inner model of the structure of the world that reflects
learned perceptual knowledge about objects. As long as the
current inner model is appropriate, it can be imposed on
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incoming visual information so that visual experiences can
be resource-efficiently stored as coherent objects based on
the currently stored object knowledge (i.e., “assimilation” in
Piagetian terms, or “prediction” in predictive-brain terms).
Howeyver, in situations in which the current inner model does
not sufficiently represent the incoming information, the inner
model itself has to be refined on the basis of the inconsistent
information (i.e., “accommodation” in Piagetian terms, or
“prediction-error based refinement of predictions” in
predictive-brain terms). In such a case, it would be functional
to store visual experiences in the form of feature representa-
tions in order to refine current inner object models based on
the stored inconsistent feature information. Thus, depending
on the appropriateness of the currently stored inner object
models, visual experiences may be stored in the form of either
independent feature representations or coherent objects.

The aim of the present study was to examine whether the
storage format of visual long-term memory representations
indeed varies as a function of the appropriateness of currently
stored inner models. To empirically test such a hypothesis,
two requirements have to be met. First, experimental condi-
tions must be established that vary in the appropriateness of
the currently stored inner models, so that there is systematic
variance in the way visual experiences are stored. In particular,
to control for potentially confounding effects of differences
between visual stimuli, it would be optimal to vary only the
experienced appropriateness of the inner models and to use
identical visual stimuli. One possibility to optimally fulfill this
requirement would be to manipulate the affective state of ob-
servers. As has been proposed in prominent theories on af-
fect—cognition interactions, affect signals the validity of one’s
current inner model of the world, with positive affect validat-
ing and negative affect invalidating it (Clore & Huntsinger,
2007), with the consequence that positive affect triggers pro-
cesses of assimilation, and negative affect, processes of ac-
commodation (Bless & Fiedler, 2006), an assumption that
has been supported by behavioral (e.g., Fiedler, Nickel,
Asbeck, & Pagel, 2003) and neurophysiological (e.g.,
Kuhbandner et al., 2009) evidence.

The second requirement that will have to be met to test
whether incoming visual information is stored in the form of
independent feature representations or coherent objects is to
establish a measurement that can reliably identify qualitative
differences in the ways visual experiences are stored. One
possibility would be to measure memory for the features of
visually presented objects and examine whether the features of
an object are remembered in a dependent or an independent
way (Brady, Konkle, Alvarez, & Oliva, 2013). That is, if pre-
sented objects are stored in the form of coherent object repre-
sentations, feature memory should more likely behave in an
all-or-none fashion, because either an object would be remem-
bered, and thus all object-defining features, or an object would
not be remembered, and thus none of the features (dependent
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storage). By contrast, if presented objects are stored in the
form of feature representations, memories for individual fea-
tures should vary independently from each other, because they
have not been organized into coherent object representations
(independent storage).

However, inferring the existence of two separate visual
memory subsystems from behaviorally observed differences
in dependency between features alone may be difficult. The
reason is that the operating of the two memory subsystems is
not measured directly, but only inferred from a model-
dependent interpretation of observed memory results. One
possibility to examine the operation of the two memory sub-
systems more directly would be to measure neural activities
during initial encoding and examine whether successful re-
membering of features is driven by early preattentive or later
attention-related brain activities (i.e., a subsequent-memory
effect; Paller, Kutas, & Mayes, 1987). Because attention is
assumed to be a prerequisite for the integration of features into
coherent object representations (e.g., Treisman & Gelade,
1980), the former would indicate storage in the form of feature
representations, whereas the latter would indicate storage in
the form of coherent object representations.

To meet the requirements above in the present study, par-
ticipants were shown pictures of real-world objects that varied
along two feature dimensions (see Fig. 1) while experiencing
either positive or negative affect, and we recorded the electro-
encephalographic (EEG) signals of the participants while they
performed the perception task. To prevent strategic effects
during encoding, object pictures were shown for only a short
duration (200 ms) and we did not mention that memory for the
objects would be tested later.

To examine whether the objects were stored in qualitatively
different ways, behaviorally, we determined the degree of de-
pendency between stored features (for details, see the Method
section).!

Neurophysiologically, we compared poorer (one remem-
bered feature) and richer (two remembered features) object
memories and determined whether the number of remembered
features was driven by early, preattentive or later, attention-
related brain activities. If object memories were stored in the
form of either independent feature representations or coherent
objects as a function of affective state, then both the behavior-
al and EEG measures should systematically vary as a function
of'induced affect, with negative affect promoting independent
storage of object features driven by preattentive brain activi-
ties (feature-based memory representations), and positive af-
fect promoting dependent storage of object features driven by

Utis important to note that the dependency between object features cannot be
inferred from the probability of remembering both features of an object, be-
cause a memory response with two successfully remembered features might
reflect either dependent storage of the two features as a coherent object repre-
sentation or independent storage of the two individual features with sufficient
strength.

1S12,200 ms

Fig. 1 Experimental procedure. In an incidental study phase (left panel),
a series of visual objects was shown (200 ms each, with a blank
interstimulus interval of 2,200 ms) with the instruction to decide for
each object whether or not to buy it. In a surprise memory test (right
panel), participants were asked to select the object they had seen during
the study phase. Four response options were shown, originating from the
combination of two features (state and color) with two values each. The
object pictures shown here are for example only; for the pictures actually
presented, see Brady et al. (2008) and Brady et al. (2013)

attention-related brain activities (object-based memory
representations).

Method
Participants

We recruited 40 undergraduates (35 females, five males; Mg
=22.3 years, SD =4.1) who participated for course credit. The
sample size was based on a power analysis (G¥Power 3.1.7) in
order to allow sufficient power (3= .80, a = .05, two-tailed) to
detect medium-sized effects (d = 0.5). All participants provid-
ed written informed consent, reported normal or corrected-to-
normal vision acuity, and passed the Ishihara test for normal
color vision. The study was conducted in accordance with the
Helsinki Declaration and the University Research Ethics
Standards. The data reported here are a subset (with additional
EEG data collection) of the data already presented in
Spachtholz, Kuhbandner, and Pekrun, (2016). All data exclu-
sions, manipulations, and measures in the study are reported.

Material

We selected 200 images of real-world objects from pub-
lished sets of stimuli (Brady et al., 2008, 2013). For each
object we created four different images, resulting from
the combination of two different states (e.g.,
open/closed) and two different colors (e.g., yellow/blue).
The two state versions were already available from the
stimulus sets. To create two color versions, we first se-
lected a random hue value for the first version and then
rotated this hue value (which can be represented as an
angle on an isoluminant color circle) by 180° for the
second version. We selected only objects whose colors
were not intrinsically related to the objects (see Fig. 1 for
examples).
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Design and procedure

Participants were tested individually with E-Prime 2.0
(Psychology Software Tools, Inc., Pittsburgh, PA), using a
procedure adapted from Brady et al. (2013). The experiment
consisted of an incidental study phase and a surprise test
phase. During the study phase, we directed participants’ atten-
tion to the centrally presented objects by asking them to decide
whether to buy each of them. Each trial started with the pre-
sentation of an object for 200 ms, followed by a blank screen
for 1,700 ms, during which participants made their buying
decisions via button presses. The next trial started after a blank
screen of 500-ms duration.

The study phase was divided into two blocks of 100 objects
each. At the beginning of each block, either positive or nega-
tive affect was induced, by asking participants to recall a hap-
py or sad autobiographical event for 3 min while listening to
appropriate music (Jefferies, Smilek, Eich, & Enns, 2008).
The order of the affect conditions and the assignment of ob-
jects to affect conditions were counterbalanced across partic-
ipants. In the test phase, participants completed a forced
choice recognition memory test. Each object was presented
in all four possible feature combinations, and participants
were asked to select the picture they had seen during the study
phase (see Fig. 1). Memory for half of the objects of each
affect condition was tested immediately after the study phase.
The remaining half were tested in a delayed memory test one
day after the study phase (the results from the delayed test
were not analyzed because participants’ performance showed
floor effects in both the negative condition, Mpy,q, = .03, SD =
.06, and the positive condition, Mpyoy, = .08, SD = .10).2

Participants initially completed 20 practice trials of the
study task using objects different from those used later in the
experiment. The success of the affect induction was retrospec-
tively measured after each affect-induction block using the
Affect Grid (Russell, Weiss, & Mendelsohn, 1989), which
assesses experienced affect on the dimensions of valence (1
= extremely negative, 9 = extremely positive) and arousal (1 =
low arousal, 9 = high arousal).

Data analysis

The degree of dependency between stored features can be cal-
culated as the strength of association between memories for the
individual features. For example, complete dependency would

% The discrepancy between the relatively low memory performance in the
delayed memory test and the previously reported high capacity of visual mem-
ory (e.g., Brady et al. 2008) can be explained by the fact that different task
parameters were used in the present study (stimulus presentation time of
200 ms vs. 3 s; incidental vs. intentional encoding; immediate vs. 24-h delayed
test). All of these parameters are known to decrease memory performance
(Andermane & Bowers, 2015; Block, 2009; Brady, Stormer, & Alvarez,
2016), and in fact, studies with similar parameters have shown comparable
feature memory performance (e.g., Brady et al., 2013).
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imply that if the first feature is remembered successfully, the
second feature should also be remembered, and if the first
feature is not remembered, the second feature should also not
be remembered. This strength of association corresponds to the
correlation between memory for the state feature and memory
for the color feature, which, for binary variables (remembered
vs. not remembered), can be calculated using the phi coeffi-
cient. Performing this calculation requires the probabilities of
remembering both features (Pgo), a single feature—that is,
either state (Pgingle state) OF €0l0T (Psingle color)—and none of
the features (Pnone) Of the objects. Ppoin, Psingle states
Pgingle Color a0d Pone are directly related to the observed pro-
portions of correctly reporting both features, only one of the
features (either state or color), or none of the features.
However, to estimate the respective probabilities, the effect
of guessing must also be considered. Observers could report
neither of the features correctly only when they remembered
none of features and did not guess any feature by chance. If
observers reported only one feature (either state or color) cor-
rectly, there would be two possibilities: Either they remem-
bered only one feature and did not guess the other feature by
chance, or they remembered neither of the features and guessed
exactly one by chance. If observers reported both features cor-
rectly, there would be three possibilities: They remembered
both features, they remembered only one feature (state or col-
or) and guessed the other by chance, or they remembered none
of the features and guessed both features by chance.

To estimate P Both» P Single_State» P Single_Color and P, None> WE for-
mulated a model representing these relations (see Table 1). The
best-fitting parameters were determined for each participant and
condition using maximum likelihood estimation (Myung, 2003),
in which the parameters were restricted to a range of [0, 1].

EEG recording and analysis

Electrocortical activity was recorded from 30 active electrodes
(Brain Products, Gilching, Germany), which were positioned
according to the extended 10-20 system and originally refer-
enced to an electrode at Cz. The signals were digitized with a
sampling rate of 500 Hz (BrainAmp Amplifiers, Brain
Products, Gilching, Germany), and the impedances of all

Table 1  Formulas for predicting the observed proportions of the four
possible response events from the probabilities of remembering both
features (Pgom), only one of the features (either state Pgjngic state OF
color Psingle color)> OF none of the features (Pnone)

Response Event Probability of Response Event

0 Features
1 Feature: State
1 Feature: Color
2 Features

Prone ¥ .25
PSinglefStale *54+ PNone *.25
PSinglciColor *5+ PNonc *.25

Pgoin + Psingle_state * -5 +
PSingleﬁColor *5+ PNone *.25
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electrodes were kept below 20 k2. Recording was done in a
dimly lit, sound-attenuated, and electrically shielded chamber.

Offline, the continuous data of the study phase were segment-
ed into epochs of — 600 to 1,800 ms, time-locked to stimulus
onset, and epochs containing electrode or movement artifacts
were removed. The data were then subjected to an infomax
independent components analysis, and artifactual components
were identified by visual inspection of the component topogra-
phies and power spectra. The main sources of artifacts were eye
blinks, eye movements, and muscle activity. Components iden-
tified as artifactual were removed, and the remaining compo-
nents were back-projected into EEG signal space. Epochs were
again inspected and were rejected if they contained residual
artifacts. On average, 93 trials (range 78—100 trials) per partici-
pant remained for the analysis (negative: Mpop = 24.4, Msingle =
17.8; positive: Mpom = 24.5, Msingic = 16.6). The relatively small
number of trials per condition was compensated for by the large
sample size of the study. The analysis was performed using
Fieldtrip (Oostenveld, Fries, Maris, & Schoffelen, 2011) and
custom MATLAB code. For the event-related potential (ERP)
analysis, epochs were band-pass-filtered (0.05 to 40 Hz),
resliced into epochs from — 150 to 750 ms relative to stimulus
onset, and re-referenced to an average reference. A baseline
correction was applied using the entire prestimulus interval.

For the statistical analysis, in a first step we identified
subsequent-memory effects (i.e., time clusters in which activ-
ity was related to the number of stored object features) for each
affect condition separately. To this end, we contrasted the ac-
tivity at encoding for trials in which both features were later
recalled correctly (Both,y,) versus trials in which a single fea-
ture was later recalled correctly (Single,s). For this purpose, a
two-stage randomization procedure was used for each sample
point after stimulus onset (Blair & Karniski, 1993; Karniski,
Blair, & Snider, 1994). At the first stage, paired ¢ tests were
performed for each electrode and the resulting 7 values were
recorded. Then the sum of the squared ¢ values, #,m,, Was
calculated over all electrodes, as a measure of both the strength
and the spatial extent of the differences between conditions.
Then, to correct these results for multiple comparisons across
electrodes, 10,000 permutation runs were performed in which
conditions were randomly swapped within participants. In
each run, paired ¢ tests were performed for each electrode
and fg,» was recorded. This created a distribution of values
of t,um> that would be expected under the null hypothesis of no
difference between conditions. From this reference distribu-
tion, the corrected p value (p..) for a given observed £ ,m»
from the first stage of the analysis could be calculated as the
proportion of permutation runs yielding an equal or higher
value of £5,»- To also account for multiple comparisons across
time, time clusters with significant differences between the
conditions were only considered when they extended over
six or more consecutive sample points (i.e., 12 ms or longer;
for a similar procedure, see Volberg & Greenlee, 2014).

In a second step, we compared the subsequent-memory
effects between affect conditions. To this end, we averaged
activity over the time windows of the subsequent-memory
effects detected in the first step of the analysis. Then, first,
we examined whether these effects were evident in each affect
condition separately, and second, we determined whether the
effects differed between affect conditions by using additional
permutation tests.

Results

Two participants were excluded because their proportions of
reporting neither of the two features correctly were greater
than .25, indicating that they did not have any memory for
the features.

Affect induction

As compared to the positive condition, participants’ ratings in
the negative condition were lower on both the valence dimen-
sion (Mneg = 3.0, SD = 1.1; Mpos = 7.3, SD = 1.0), #(37) = —
15.9,p <.001,95% C1[3.77,4.87], d,=2.57, and the arousal
dimension (Mg = 3.6, SD = 1.6; Mpos = 5.8, SD = 1.9), #(37)
=-6.1, p <.001, 95% CI [1.47, 2.95], d, = 0.99, indicating
that the affect induction was successful.

Memory performance

Overall, the model for estimating Pgoth, Psingle States
Psingle Colon ad Pxone fitted the data very well (R2pos = .97,
RZNeg = .96; positive affect condition: Mpgoy, = .28, SD = .17;
MPSingle_state = .20, SD = .13; MPSingle_color =.09, SD = .11,
Mpnone = 43, SD = .22; negative affect condition: Mpgom, =
.24, 8D = .19; MPSing]eﬁstate =.27,8D = .17, MPSing]eﬁcolor =
15, 8D = 125 Mpnone = 35, SD = .21; see Fig. 2A).

The mean numbers of remembered features across all ob-
jects did not differ between the positive (M = .85, SD = .35)
and negative (M = .89, SD = .14) affect conditions, #(37) =
0.95, p =.347,95% CI [ .05, .14], d, = 0.15, indicating that
available memory resources did not differ between affect con-
ditions (see Fig. 2B). The dependency (i.e., the phi coefficient)
between the two object features was higher in the positive
affect condition (M = .38, SD = .38) than in the negative affect
condition (M = .11, SD = .41), 1(37) = 3.26, p = .002, 95% CI
[.10, .44], d, = 0.53 (see Fig. 2B).

EEG results
The permutation test revealed four subsequent-memory ef-
fects (two in an early and two in a late time range).

Figure 3A shows the results for the early time range (0 to
400 ms), and Fig. 4A shows the results for the late time range
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Fig. 2 Memory performance. (a) Probabilities of remembering either
both features (state and color), only a single feature (either only state or
only color), or none of the features, shown as function of affective state.
(b) Mean numbers of remembered features across objects and the depen-
dency between the state and color features are shown as a function of

(400 to 750 ms). These figures depict the p values after cor-
rection for multiple comparisons (pcor, as described in the
Method section) for the comparison between amplitudes in
trials in which both features were reported correctly (Bothgy,
trials) and amplitudes in trials in which a single feature was
reported correctly (Single, trials).
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Fig. 3 EEG results: Subsequent-memory effects—early time range. (a)
Results of the first permutation test for ERP differences at encoding
between trials in which both features versus only a single feature were
subsequently reported correctly, for the negative (upper panel) and posi-
tive (lower panel) affect conditions. The bars mark significant
subsequent-memory effects. (b) Scalp distributions of 7 values and results
of the second permutation test for the difference between activities (both
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Early ERP effects For the negative affect condition, one
subsequent-memory effect was identified from 86 to 100 ms.
The amplitudes in Both,y, trials were smaller than those in
Single, trials over a broad range of central and parietal elec-
trodes (see Fig. 3B, upper panels), whereas the time course of
amplitudes was characterized by a negative-going deflection
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vs. single trials), averaged over each of the time clusters (upper panels:
86100 ms; lower panels: 130—162 ms) identified in panel A, as a func-
tion of affect. (¢) ERP waveforms as a function of the number of correctly
remembered features (both vs. single trials) and affect condition (upper
panels: negative affect; lower panels: positive affect) at the electrodes
marked by asterisks on the head plots in this column. Light gray rectan-
gles mark the time clusters identified in panel A



Cogn Affect Behav Neurosci (2017) 17:1141-1150

1147

(see Fig. 3C, upper panels). Both the topographical distribu-
tion and time course of the subsequent-memory effect are well
in line with a difference in the amplitude of the visual C1
component, which is typically characterized by a widespread
centro-parietal negativity peaking around 70-100 ms (see,
e.g., V. P. Clark, Fan, & Hillyard, 1994) and is generally con-
sidered to be preattentive (V. P. Clark & Hillyard, 1996). A
permutation test for the activity averaged over the time inter-
val of the effect (86100 ms) showed that the subsequent-
memory effect was significant in the negative affect (p.or =
.010) but not in the positive affect (p.or = .913) condition (see
Fig. 3B, upper panels); the interaction was significant (p¢or =
.023). Taken together, this indicates that the storage of object
features is related to the amplitude of the preattentive C1 in
negative but not in positive affective states.

For the positive affect condition, in contrast, one
subsequent-memory effect was identified from 130 to 162
ms. The amplitudes in Both,y trials were higher than the
amplitudes in Single,,s trials over a range of posterior and
occipital electrodes (see Fig. 3B, lower panels), whereas the
overall time course of the amplitudes was characterized by a
positive-going deflection (see Fig. 3C, lower panels). Both the
topographical distribution and time course of the subsequent-
memory effect are well in line with a difference in the ampli-
tude of the visual P1 component, which is typically character-
ized by an occipital positivity peaking around 100-150 ms
(see, e.g., Di Russo, Martinez, Sereno, Pitzalis, & Hillyard,
2002) and is generally considered to be attention-related (see,
e.g., Mangun & Hillyard, 1991). A permutation test for activ-
ity averaged over the time interval (130-162 ms) showed that
the subsequent-memory effect was significant in the positive
affect condition (p.or = -003) but not in the negative affect
condition (p.or = .500) (see Fig. 3B, lower panels); the inter-
action was significant (p ., = .045). Taken together, this indi-
cates that the storage of object features is related to the
attention-related P1 amplitude in positive but not in negative
affective states.

Late ERP effects For the negative affect condition, we iden-
tified two subsequent-memory effects (436502 and 616634
ms); see Fig. 4A, top panel. For both effects, the amplitudes in
Both,, trials were smaller than those in Single, trials over a
broad range of parietal and occipital electrodes (see Fig. 4B).
No subsequent-memory effects were observed in the positive
affect condition (Fig. 4A, bottom panel). A permutation test
for the activity averaged over each of the time intervals
showed that the subsequent-memory effects were significant
in the negative affect condition (p.,,s = .006 and .030, respec-
tively, in the 436-502 ms and the 616-634 ms interval) but not
in the positive affect condition (p.o,s = .647 and .988, respec-
tively); both interactions were significant (pco,s = .025 and
.050, respectively).

Encoding effects To examine whether the differences be-
tween affect conditions regarding subsequent-memory effects
were related to differences in encoding processes, we com-
pared the average activities over Both,,s and Single,y, trials
in each of the time clusters of the four subsequent-memory
effects between affect conditions. We did not observe any
significant differences, all p.,,s > .356 (see Fig. 5), indicating
that the encoding processes in the four time clusters did not
vary as a function of affect.

Discussion

The present findings demonstrate that visual long-term mem-
ory is not a unitary phenomenon but consists of two qualita-
tively different memory subsystems that can be used flexibly
for storing incoming visual information. When participants
experienced negative affect during initial encoding, visual ob-
jects were more likely to be stored in the form of independent
feature representations mediated by preattentive brain activi-
ties. By contrast, when participants experienced positive affect
during initial encoding, visual objects were more likely to be
stored in the form of coherent object representations mediated
by attention-related brain activities. Taken together, this indi-
cates that incoming visual information can be stored flexibly
either by a feature-based memory subsystem that retains visu-
al experiences in the form of independent feature representa-
tions or by an object-based memory subsystem that retains
visual experiences in the form of coherent object representa-
tions, depending on the requirements of the current situation
as signaled by the affective state of the observer.

Such an assumption is further corroborated by the observed
affect-dependent effects of stimulus evaluation on subsequent
object memory, as measured by postperceptual differences in
the ERP signals. To ensure that participants attended to the
stimuli, they were asked to make evaluative (buying) deci-
sions about each stimulus, and because the stimuli were visi-
ble for only 200 ms, these evaluations had to be based on
stored mental representations of the objects. As was indicated
by the analyses of the late ERP effects, subsequent feature
memory varied as a function of evaluation-related brain activ-
ities only in the negative, not in the positive, affect conditions
(see Fig. 4). In particular, such a differential subsequent mem-
ory effect was found despite the fact that comparable brain
activities were observed during the initial evaluation (see
Fig. 5). Such a pattern of findings suggests that evaluation
processes operated on distinct types of representations, de-
pending on the affective state. In the negative affect condition,
individual features were differentially affected by evaluation
processes, indicating that independently stored feature repre-
sentations were operated upon. By contrast, in the positive
affect condition, features were comparably affected by
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Fig. 4 EEG results: Subsequent-memory effects—Ilate time range. (a)
Results of the first permutation test for ERP differences at encoding
between trials in which both features versus only a single feature were
subsequently reported correctly, for the negative (upper panel) and posi-
tive (lower panel) conditions. The bars mark significant subsequent-
memory effects, and the dashed lines represent the mean reaction times
for each affect condition. (b) Scalp distributions of # values and results of
the second permutation test for the difference between activities (both vs.

evaluation processes, indicating that coherent object represen-
tations were operated upon.

The reason for the existence of two memory subsystems
may be that two opposing requirements have to be met for
adaptive learning (A. Clark, 2013; Piaget, 1970). On the one
hand, to keep stability, incoming information has to be proc-
essed with respect to a currently stored inner model of the
structure of the world that reflects learned regularities in the
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s 24
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Fig. 5 EEG results: Encoding effects, showing scalp distributions of
encoding-related activities (averaged across both and single trials) for
the negative (upper panels) and positive (lower panels) affect conditions,
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single trials), averaged over each of the time clusters (upper panels: 436—
502 ms; lower panels: 616—634 ms) identified in panel A, as a function of
affect. (¢) ERP waveforms as a function of the number of correctly re-
membered features (both vs. single trials) and affect condition (upper
panels: negative affect; lower panels: positive affect) at the electrodes
marked by asterisks on the head plots in this column. Light gray rectan-
gles mark the time clusters identified in panel A

visual input (assimilation). On the other hand, to allow for
adaptation, the currently stored inner model has to be continu-
ously refined on the basis of newly incoming information (ac-
commodation). The object-based memory subsystem seems to
serve the function of assimilation; the feature-based memory
subsystem seems to serve the function of accommodation.
Interestingly, such an assumption suggests that the two memory
subsystems may not differ only in storage format, but also in the
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allocation of available processing resources across the features
of an object. If the object-based memory subsystem serves to
store incoming information on the basis of currently stored
inner models, then available resources should be allocated more
broadly across features, in order to minimize matching errors. If
the feature-based memory subsystem serves to refine current
inner models, then resources should be more strongly focused
on individual features, in order to maximize perceptual preci-
sion for future model refinement. Indeed, there is preliminary
evidence for such an assumption. As has already been reported
in a related article with an increased behavioral sample
(Spachtholz et al., 2016), available resources are traded be-
tween the quantity of encoded features and their individual
strength as a function of affect, with positive affect promoting
quantity and negative affect promoting strength.

The aim of the present study was to examine the nature of the
visual representations stored in long-term memory.
Interestingly, several previous studies have examined the nature
of the visual representations stored in short-term memory (e.g.,
Fougnie, Asplund, & Marois, 2010; Luck & Vogel, 1997;
Wheeler & Treisman, 2002). Similar to the findings of the pres-
ent study in the domain of long-term memory, in short-term
memory it also seems to be the case that incoming visual infor-
mation can be stored in either feature-based or object-based
form. That is, the features of the environment seem to be initially
stored in parallel in independent visual memory systems, and by
focusing attention on some of the features, they are bound to-
gether and maintained in visual short-term memory as integrat-
ed “objects.” However, a number of fundamental differences
between visual short-term and long-term memory suggest that
the term “object” may refer to qualitatively different types of
representations in short-term versus long-term visual memory.
From a functional perspective, it is commonly assumed that
visual short-term memory serves the function of stabilizing
quickly fading sensory information for a few seconds across
eye movements and blinks (e.g., Hollingworth, Richard, &
Luck, 2008). By contrast, visual long-term memory serves the
function of storing object information for future encounters with
those objects. In particular, the functional storing of object in-
formation in long-term memory requires the storing of incoming
information in relation to already-stored perceptual knowledge
about the objects. This differential functionality is also reflected
in methodological differences between the studies on visual
short-term and long-term memory. Whereas visual short-term
memory is typically measured by the ability to indicate whether
a display consisting of meaningless simple stimuli, such as col-
ored squares or oriented lines, is the same as the one presented
about 1 s before (i.e., a change detection task), visual long-term
memory is typically measured by the ability to indicate whether
areal-world object was part of a personally experienced episode
from the past. Thus, given these functional and methodological
differences, the relationship between the representations stored
in short-term and long-term memory is difficult to infer from the

existing research, which may be an interesting avenue to inves-
tigate in the future (e.g., Brady, Stérmer, & Alvarez, 2016).

Author note P.S. and C.K. developed the study concept and
the design, performed the data analysis, and wrote the manu-
script. Both authors approved the final version of the manu-
script for submission.
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