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Abstract This study builds on a specific characteristic of let-
ters of the Roman alphabet—namely, that each letter name is
associated with two visual formats, corresponding to their
uppercase and lowercase versions. Participants had to read
aloud the names of single letters, and event-related potentials
(ERPs) for six pairs of visually dissimilar upper- and lower-
case letters were recorded. Assuming that the end product of
processing is the same for upper- and lowercase letters sharing
the same vocal response, ERPs were compared backward,
starting from the onset of articulatory responses, and the first
significant divergence was observed 120 ms before response
onset. Given that naming responses were produced at around
414 ms, on average, these results suggest that letter processing
is influenced by visual information until 294 ms after stimulus
onset. This therefore provides new empirical evidence regard-
ing the time course and interactive nature of visual letter per-
ception processes.
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Event-related potentials

Letters are the building blocks of alphabetic writing systems.
They consist of two-dimensional visual patterns associated
with a single name, and in most alphabetic writing systems
each letter can be represented by uppercase and lowercase
forms (i.e., BA^ and Ba^ are both associated with the letter
name in French, /a/). Due to their visual simplicity, on one
hand, and their variability on various dimensions (e.g., size,
shape, case), on the other, letters present several interesting
properties for the experimental study of reading processes and
visual perception (Grainger, Rey, & Dufau, 2008). With this
kind of simple and easy-to-control experimental material, sev-
eral recent studies have shed new light on the functional orga-
nization of letter perception and on its temporal dynamics.

Concerning the functional organization of letter perception,
neuropsychological dissociations and classical electrophysio-
logical studies suggest that letter perception can be
decomposed into four levels of processing: a visual-feature
level (coding for elementary visual properties or visual
features; e.g., Hubel & Wiesel, 1959), a perceptual level
(coding for template representations of letters; e.g., Perri,
Bartolomeo, & Silveri, 1996), an abstract or shape-invariant
level (i.e., a level that is independent of the specific visual
properties associated with different cases and different fonts;
e.g., Miozzo & Caramazza, 1998), and a phonological level
(coding for the letter’s name; e.g., Mycroft, Hanley, & Kay,
2002; Rey & Schiller, 2006). This neuropsychological evi-
dence is generally consistent with the idea of a hierarchical
architecture of the ventral visual cortex, in which visual rep-
resentations become gradually invariant from their retinal im-
age representations (DiCarlo & Cox, 2007; Grainger et al.,
2008; Grill-Spector & Malach, 2004). Moreover, fMRI
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studies have revealed that computations corresponding to
these different stages of processing are distributed among dif-
ferent brain areas. Visual, abstract, and phonological process-
ing would then be spatially embedded in a network corre-
sponding to a specific set of cerebral areas (Rothlein &
Rapp, 2013).

Concerning the temporal dynamics of letter perception,
magneto-encephalographic (MEG) studies have revealed an
occipital activation at 100 ms after stimulus onset that is not
sensitive to the specific content of the stimulus and that has
been interpreted as reflecting low-level visual-feature process-
ing (Tarkiainen, Cornelissen, & Salmelin, 2002; Tarkiainen,
Helenius, Hansen, Cornelissen, & Salmelin, 1999).
Subsequent inferior occipito-temporal activation has been
found after 150 ms post-stimulus-onset and interpreted as
reflecting the earliest stage of stimulus-specific processing.
Similarly, several event-related potential (ERP) studies have
reported results consistent with those obtained in MEG, with
ERP differences reflecting low-level visual processing
appearing around 100 ms after stimulus onset (e.g.,
Carreiras, Perea, Gil-López, Abu Mallouh, & Salillas, 2013;
Petit, Midgley, Holcomb, & Grainger, 2006), followed by
stimulus-specific processing around 150–170 ms (Wong,
Gauthier, Woroch, DeBuse, & Curran, 2005). It has been pro-
posed that visual templates would be processed around 150–
170 ms (Rey, Dufau, Massol, & Grainger, 2009), followed by
abstract and phonological processing around 220 ms (Petit et
al., 2006). Recent evidence has suggested that phonological
processes (i.e., access to the letter’s name) may start earlier—
that is, between 150 and 190 ms—and that letter identification
processes would be supported by recurrent interactions be-
tween visual and phonological codes until response selection
(Madec, Rey, Dufau, Klein, & Grainger, 2012).

These results are consistent with a model of letter identifi-
cation in which visual information (i.e., visual features and
letter templates) is processed and contributes to letter identifi-
cation in a time window roughly starting at 100 ms after stim-
ulus onset and with strong influence on visual codes between
150 and 190 ms. Abstract and phonological letter representa-
tions would then be progressively activated through
feedforward and feedback loops (Carreiras et al., 2014).
However, recent empirical evidence has suggested that visual
information still actively influences letter identification after
220 ms (Carreiras et al., 2013; Keage, Coussens, Kohler,
Thiessen, & Churches, 2014; Mitra & Coch, 2009).

In a masked-priming study, Mitra and Coch (2009) com-
pared the ERPs for letters and false fonts and found no
differences in priming between these conditions for the
P150, but also for the P260, suggesting that letter processing
is still influenced by visual information in this later time
window. Similarly, Carreiras et al. (2013) compared the mag-
nitudes of the priming effects for visually similar and
dissimilar letters on the P3 component and found a

modulation of the relatedness effect as a function of
similarity for this component, suggesting again that, even at
this relatively late stage of processing, letter identification
would still be modulated by visual similarity. Finally, Keage
et al. (2014) compared the ERPs for fluent and disfluent type-
faces (i.e., typefaces occurring rarely in our reading environ-
ment) in a one-back task, and they found significant differen-
tial activity between the two conditions on the N1 and P2/N2
components, but also on the P3 component (even if the effect
was only marginally significant), suggesting that the influence
of visual information may last longer than previously thought.

Following up on these recent findings, the goal of the pres-
ent study was to provide additional evidence on the time
course of visual influences during letter identification. To ad-
dress this issue, the present experiment exploits a key feature
of letters—that is, their dual visual coding in uppercase and
lowercase forms. For example, both the uppercase BA^ and
the lowercase Ba^ activate the same abstract, shape-invariant
letter representation, and the same phonological and articula-
tory representations. During letter naming, the same motor
response (i.e., /a/ in French) needs to be selected, and once
these articulatory-output codes are activated, we can assume
that the output-production processes are exactly the same for
naming BA^ and Ba.^ As is shown in Fig. 1, the processing of
BA^ and Ba^ should therefore be the same once this processing
is driven by abstract or phonological letter representations,
and is no longer influenced by visual factors. Therefore, any
observed differences in the processing of upper- and lower-
case versions of the same letters can be taken as evidence that
visual factors are still influencing processing.

Comparing the ERP signals of upper- and lowercase letters
from the presentation onset of these visual stimuli would
therefore allow us to detect the early visual processing differ-
ences that occur between these two visual categories. Previous
studies suggested that these early differences should appear
around 100 ms post-stimulus-onset (e.g., Carreiras et al.,

Fig. 1 Differences and similarities in the processing of uppercase and
lowercase letters that have dissimilar letter shapes (like BA^ and Ba^). The
gray box corresponds to processes that should differ (i.e., involving
different visual information), and the white boxes reflect processes that
should be the same (i.e., involving abstract [A], phonological [P], and
output [Out.] letter representations)
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2013; Petit et al., 2006; Tarkiainen et al., 2002; Tarkiainen et
al., 1999). Now, the logic of the present experiment was also
to look at ERPs from the onset of response production and to
move backward in time. Several recent studies have started to
use this kind of response-locked analysis in the domain of
word production, in order to better specify response selection,
response preparation, and response production processes (e.g.,
Riès, Janssen, Burle, & Alario, 2013; Van der Linden et al.,
2014). In the present study, the idea was that by comparing
ERPs locked on response onset for a group of matched upper-
case versus lowercase letters, and by moving backward in
time, the first difference obtained between these ERPs should
reflect the last influences of visual processing on letter identi-
fication. Response-locked ERPs should therefore provide new
evidence about the contribution of visual codes to letter iden-
tification and response selection processes.

Method

Participants

Twenty participants, 17 females and three males, with ages
ranging from 18 to 35 years (mean age = 21.85, σ = 4.45),
participated in the experiment. All participants were right-
handed native speakers of French with normal or corrected-
to-normal vision.

Material

The stimuli consisted of upper- and lowercase roman alpha-
betic letters that were displayed in Inconsolata font (size 128;
see Fig. 2). Six letter pairs were selected on the basis of their
visual dissimilarities between uppercase and lowercase
shapes: a/A, b/B, d/D, e/E, n/N, and r/R. We also selected
the letter pair c/C as a visually similar control. The 19 remain-
ing letters, both in uppercase and lowercase, were used as
fillers to reduce anticipatory effects during the task. All stimuli
were presented on a 17-in. CRT monitor with a refresh rate of
85 Hz, as white signs on an 800 × 600 pixel black background
(32 × 24 cm). The experiment was controlled by a personal
computer using E-Prime (Psychology Software Tools,
Pittsburgh, PA).

Procedure

After completing informed consent, participants were seated
comfortably in a sound-attenuated and dimly lit room. They
were asked to read aloud the name of the target letter
appearing in the middle of the screen, as quickly and accurate-
ly as possible. They were also asked to remain as relaxed as
possible in order to avoid movements that could generate ar-
tifacts on the electroencephalographic (EEG) recordings (e.g.,

eye blinks, frowning). Finally, they were asked to keep their
mouth in resting position (semi-closed for all of them) be-
tween trials.

A trial started with a fixation cross (symbol B+^) for
200 ms, followed by an empty screen for a randomized dura-
tion ranging from 500 to 700 ms. The target letter was then
presented in the middle of the screen and remained until re-
sponse, or for a maximal duration of 1,000 ms. An empty
screen (black background) was finally presented for a random-
ized duration ranging from 1,000 to 1,300 ms.

The experiment started by a training session, during which
participants were randomly exposed to the 52 letters of the
alphabet (26 in uppercase and 26 in lowercase) and were
asked to perform the naming task. This was followed by the
experimental session, which was composed of 14 blocks of
125 trials. Each block started with five filler trials, followed by
pseudorandomized trials consisting of 100 target letters and 20
filler trials. The only constraint for the pseudorandomization
was to avoid name repetition of a target letter (e.g., no A→A,
A → a, a → A, or a → a). Filler trials were used during the
blocks to minimize anticipation effects. Each of the 12 target
letters (i.e., six uppercase and six lowercase) appeared ran-
domly 100 times during the entire experiment, leading to a
total of 1,750 trials. The total duration of the recording time
was approximately 90 min.

Behavioral data recording and preprocessing

Reaction times (RTs) were not recorded from the voice-key
triggering system provided with the serial response box of E-
Prime. This was because several studies have shown that

Fig. 2 Uppercase and lowercase letters displayed in Inconsolata font.
The boxed letters correspond to the six critical pairs of uppercase/
lowercase letters used in the experiment
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differences in microphone sensitivity can lead to important
differences in the detection of the acoustic energy produced
by the first and second phonemes (Duyck et al., 2008; Rastle
& Davis, 2002; Rey, Courrieu, Madec, & Grainger, 2013).
Therefore, letter naming was completely digitized at
22040 Hz on a single channel, in order to check for response
accuracies and to determine RTs offline. On each digitized
trial, we first employed a semi-automatic procedure by apply-
ing an algorithm based on the Teager–Kaiser operator, which
detects sudden variations of energy in the acoustic signal (Li,
Zhou, & Aruin, 2007; see also Riès, Legou, Burle, Alario, &
Malfait, 2012). Second, the results of this operator were con-
voluted through a moving average window, acting as a low-
pass filter discarding artifactual noises unrelated to the partic-
ipant’s answer. Third, we visually checked the detected onsets
and manually corrected them when needed. Every trial was
listened to, and the ones associated with errors or hesitations
were discarded. Finally, for every letter and every participant,
we relied on robust estimators (Wilcox, 2005, 2012); we com-
puted the median naming RTs1 and the median absolute devi-
ation of the medians (MAD), and discarded trials associated
with outlier RTs, as defined by the MAD–median rule (see
Davies & Gather, 1993; Rousseeuw & Van Zomeren, 1990;
Wilcox, 2012).

EEG data recording

The EEG was recorded from 64 Ag/AgCl Active-2
preamplif ied electrodes (BIOSEMI, Amsterdam,
The Netherlands; 10–20 System positions). The vertical
electro-oculogram (EOG) was recorded by means of one elec-
trode (Ag/AgCl) just below the right eye. The horizontal EOG
was recorded with two electrodes (Ag/AgCl) positioned over
the two outer canthi. The analog signal was digitized at
1024 Hz. Electrode offsets were kept below ±25μV.

EEG preprocessing

Offline, the data were referenced on the average of the 64
scalp electrodes. Continuous signals were band-pass filtered
by using a Butterworth filter of order 4 between 1 and 100 Hz.
Because the purpose of this experiment was to find the onsets
of differences between uppercase and lowercase letters, we
relied on the property of causal filters (filters applied in only
one direction, as opposed to noncausal filters applied in both
forward and backward directions) of preserving the onsets of
differences (Rousselet, 2012; VanRullen, 2011; Widmann &
Schröger, 2012). Filters were therefore applied in the forward
direction only for stimulus-locked analyses, and in the back-
ward direction only for response-locked analyses.

Stimulus-locked preprocessing The resulting signal was
then epoched between –200 and 1,000 ms (before and after
letter onset), and the epoch’s baseline was computed from –
200 to 0 ms. Epochs corresponding to incorrect or outlier trials
(as identified by the behavioral analysis) were rejected from
further processing. We relied on an independent components
analysis (ICA; Makeig, Bell, Jung, & Sejnowski, 1996), as
implemented in the runica EEGLAB function (Delorme &
Makeig, 2004; Delorme, Sejnowski, & Makeig, 2007), to
identify artifactual ocular components related to blink activi-
ties. They were identified and removed by visual inspection of
their scalp topographies, time courses, and activity spectra.

In order to reduce electromyographic (EMG) artifacts re-
lated to the articulation of the target letter on the EEG signal,
we used a blind source separation algorithm based on canon-
ical correlation analysis (BSS-CCA), which separates sources
on the basis of their degree of autocorrelation (De Vos et al.,
2010; see also Riès, Janssen, Dufau, Alario, & Burle, 2011).
BSS-CCA method was applied on nonoverlapping consecu-
tive windows of 1.2 s (corresponding to the maximum length
of an epoch), enabling the targeting of local EMG bursts re-
lated to articulation (we used the EEGLAB plug-in Automatic
Artifact Removal, implemented by Gómez-Herrero; available
at www.cs.tut.fi/~gomezher/projects/eeg/software.htm#aar).
EMG-related components were selected according to their
power spectral density. Components were considered to be
EMG activity if their average power in the EMG frequency
band (approximated by 15–30 Hz) was at least 1/5 of the
average power in the EEG frequency band (approximated by
0–15 Hz; see De Vos et al., 2010). Finally, all other artifacted
epochs were rejected after a trial-by-trial visual inspection.

Response-locked preprocessing RTs corresponding to vocal
responses (from the behavioral processing) were added as
triggers in the EEG signal, which was epoched between –
500 and +200 ms before and after, respectively, the onset of
the vocal response. The epoch’s baseline was computed from
0 (= onset of vocal response) to 200 ms (after the onset). We
then excluded epochs using the same principles and proce-
dures as in the stimulus-locked analysis—that is, epochs cor-
responding to outliers or incorrect trials were excluded from
further analysis. We then applied the same ICA algorithm to
identify and exclude blinks, and the same BSS-CCA algo-
rithm to exclude EMG activity related to articulation.
Finally, epochs previously marked as artifacted during the
stimulus-locked analysis were also excluded. Consequently,
the same epochs were kept for the stimulus-locked analyses
and the response-locked analyses.

EEG data analysis (stimulus- and response-locked)

The data from individual participants were analyzed using the
LIMO EEG toolbox, an extension to the EEGLAB

1 Due to the large number of data points per condition and per participant,
the median and the mean give substantially equivalent results.
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environment (Pernet, Chauveau, Gaspar, & Rousselet, 2011).
LIMO combines robust statistics and controls for multiple
comparisons, allowing the testing of every time frame (tf)
and every electrode (e), while controlling for Type I errors
without sacrificing power. We give details hereafter about
the rationale of our analysis, and more details can be found
in Pernet et al. (2011).

At the individual level, trials corresponding to uppercase
and lowercase letters were averaged separately. At the group
level, we relied on a robust estimator of central tendency, the
trimmed mean, to assess the differences between upper- and
lowercase letters. For each electrode/time frame pair (e, tf),
taken independently, amplitudes collected on the group were
sorted, and the lowest 20 % and the highest 20 % of the
distribution were trimmed. For each (e, tf) pair, the remaining
amplitudes were then averaged. Since it preserves the central
part of the distribution, the trimmed mean has been proved to
be a robust and useful measure of location (see Wilcox, 2005;
Wilcox & Keselman, 2003). Moreover, the trimmed mean has
proven its utility in recent electrophysiological studies, be-
cause of the robustness of this measure to contamination by
extreme values (Desjardins & Segalowitz, 2013; Rousselet,
Husk, Bennett, & Sekuler, 2008). Inferential results were
computed by relying on the Yuen procedure, a robust coun-
terpart to the paired t test, with a threshold fixed at p < .05 (see
Wilcox, 2005, 2012). Because statistical tests were performed
for every (e, tf) pair, we corrected for multiple comparisons by
using a bootstrap T approach at the cluster level (with p < .01;
see Maris & Oostenveld, 2007; Pernet et al., 2011; Rousselet,
Gaspar, Wieczorek, & Pernet, 2011).

Results

Due to noisy EEG signals, three participants were excluded
from further analysis. Moreover, RTs corresponding to the
vocal responses of C/c trials were not analyzed further because
of major difficulties in determining the response onsets.
Indeed, it appeared that the onset of the phoneme /s/ (corre-
sponding to the first phoneme of the letter’s name C/c; i.e., /se/
in French) was confounded with the baseline noise, character-
ized by a frequency of 5000 Hz.

Behavioral results

First, trials associated with errors or hesitations were excluded
(M = 2.6 %, σ = 2.3 %, range = 8 %). Second, on the basis of
the remaining trials, we identified and excluded outlier trials
by relying on the MAD–median rule per letter and participant
(M = 5.2 %, σ = 0.9 %, range = 4%). Third, we excluded trials
identified as artifacted epochs during EEG preprocesssing (M
= 11.2 %, σ = 8.6 %, range = 29 %).

On the basis of the remaining trials, we computed median
RTs and confidence intervals (CIs) by using a percentile boot-
strap approach (with 2,000 bootstrap samples and α = .05)
corresponding to uppercase and lowercase letters, by partici-
pants. Figure 3 shows the median RTs for uppercase and low-
ercase letters by participants, and we found that uppercase
letters were named slightly but significantly faster. We then
compared the RTs for upper- and lowercase letters by relying
on the Yuen procedure.2 The trimmed mean for uppercase
letters was Mt = 408 ms (SE = 10 ms, CI = [385, 431]), and
the trimmedmean for lowercase letters wasMt = 414 ms (SE =
10 ms, CI = [391, 437]). The 6-ms difference between the two
conditions (with CI = [3, 10]) was significant (Ty = 3.86, p <
.005).3 Despite this small mean difference, Cohen’s effect size
value revealed that it corresponds to a large effect (d = 1.51).
The mean overall RT for naming upper- and lowercase letters
was estimated at 414 ms.

Stimulus-locked results

Epochs corresponding to the same trials used for the behav-
ioral analysis were included in the stimulus-locked analysis.
The mean ERPs corresponding to uppercase and lowercase
letters were computed for every participant, electrode, and
time frame. Figures 4a and b show significant Ty values,
masked for significance (p < .01 for the cluster statistic).

We observe three significant temporal windows. The first
one, from 110 to 140 ms, appears bilaterally at occipital sites
(P6, P8, PO8, PO3, PO7, O1) and fronto-central sites (FC1,
C1, FCz, Cz). The second one, from 150 to 190 ms, is mostly
localized at left occipital sites (PO7, P7, P9) and right fronto-
central sites (FC6, FC4, C4). The third one, from 200 to
240 ms, is mostly localized at right occipital sites (PO7, P7,
P9) and central sites (FC6, FC4, C4). Figures 4c and d, re-
spectively, represent the 20 % trimmed mean ERPs in the
uppercase and lowercase conditions, across participants, at
electrodes C1 and P7. The 95 % CIs are estimated by a boot-
strap percentile approach.

Response-locked analysis

A statistical analysis similar to the one computed with the
stimulus-locked data was performed. On the basis of the be-
havioral analysis, the mean RTover all letters and participants
was equal to 414 ms, which was taken as the average response

2 The Yuen procedure compares the marginal trimmed means (notedMt)
for each condition. The statistical test produced by this procedure, which
is a robust analogue to the t value, will be subsequently referred as to Ty.
3 Note that similar results were obtained with a standard computation of
the mean—that is, the mean for uppercase letters beingMupper = 410 ms,
and the mean for lowercase letters beingMlower = 417 ms. Consistent with
our robust analysis, a classical paired t test indicated a significant differ-
ence between these two conditions: t(16) = 6.21, p < .005.
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onset. In Fig. 5, the results are displayed by going back in time
from this value. Figures 5a and b show a significant window

of differences between +294 and +224 ms, relative to the
stimulus onset at 0. This difference appears bilaterally at oc-
cipital sites, mostly at right sites (P4, P6, and PO4), and
fronto-central sites, mostly at left sites (FC1, C1, FCz, and
Cz). Figures 5c and d, respectively, represent the trimmed
mean ERPs related to the uppercase and lowercase conditions,
across participants, at electrodes O1 and AF7. The 95 % CIs
are estimated by a bootstrap percentile approach.

Discussion

Three main results were obtained in this experiment. First, at a
behavioral level, we found that uppercase letters are named
faster than lowercase letters (6 ms, 95 % CI [4, 9]). Despite its
small magnitude, this effect is large according to Cohen’s d
(1.51). Second, when the comparison between the ERPs to
uppercase and lowercase letters was made with a stimulus-
locked approach, a first difference was obtained around
120ms after stimulus onset. Third, when the same comparison
was made with a response-locked approach, an initial differ-
ence was detected (backward) at 120 ms before response

Fig. 3 Median reaction times (RTs) for lowercase and uppercase letters
for each participant. The different colored lines represent the 95 %
bootstrap confidence intervals for uppercase and lowercase letters

Fig. 4 Stimulus-locked analysis for the lowercase-versus-uppercase
comparison. (a) Ty values masked for significance on the basis of a
cluster test (p < .01). The y-axis represents the 64 recording electrodes
of the scalp, with electrodes 1 to 7 being FP1, AF7, AF3, F1, F3, F5, and
F7; electrodes 8 to 19 being FT7, FC5, FC3, FC1, C1, C3, C5, T7, TP7,
CP5, CP3, and CP1; electrodes 20 to 27 being P1, P3, P5, P7, P9, PO7,
PO3, and O1; electrodes 28 to 32 being Iz, Oz, POz, Pz, and CPz;
electrodes 33 to 42 being FPz, FP2, AF8, AF4, AFz, Fz, F2, F4, F6,

and F8; electrodes 43 to 56 being FT8, FC6, FC4, FC2, FCz, Cz, C2,
C4, C6, T8, TP8, CP6, CP4, and CP2; and electrodes 57 to 64 being P2,
P4, P6, P8, P10, PO8, PO4, and O2. (b) Topographic maps of Ty values,
masked for significance, from 120 to 240 ms. (c) Trimmed means and
95 % confidence intervals of the event-related potentials (ERPs)
corresponding to lowercase and uppercase letters, for the electrode C1,
between –200 ms to 500 ms (with 0 corresponding to letter onset). (d)
Same as panel c, but for electrode P7
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onset, which corresponds to 294 ms on average after stimulus
onset, given that letter-naming latencies were on average
around 414 ms.

The faster responses to uppercase than to lowercase letters
might seem counterintuitive, since lowercase letters appear
more frequently in our environment than uppercase letters
do (New & Grainger, 2011). However, in the present situation
the stimuli were presented in isolation, whereas in an ecolog-
ical reading situation lowercase letters are rarely presented in
isolation, but are embedded within words. Therefore, context
effects could account for the faster recognition of uppercase
letters, which may appear more frequently in isolation. This
difference could also be due to more elementary visual prop-
erties, such as the relative luminance or contrast of the stimuli.
Indeed, the amount of white pixels on a black background
may explain the small but consistent advantage of uppercase
letters and the speeded recognition.

The stimulus-locked ERP difference at 120 ms between
uppercase and lowercase letters is consistent with the report
of low-level visual-processing differences within this time
window (Carreiras et al., 2013; Petit et al., 2006; Tarkiainen
et al., 2002; Tarkiainen et al., 1999). This difference can sim-
ply be interpreted in terms of elementary visual differences
between these two sets of letters, leading to a divergence in
the evoked electrical responses. Moreover, this result

demonstrates that the selected upper- and lowercase letters
were sufficiently visually different to induce differential low-
level visual processing, as revealed by these ERP differences.
Although we did not rely on an analysis emphasizing compo-
nent latencies—since we tested every time point and every
electrode in this study—the early difference at 120 ms at oc-
cipital sites (see Fig. 4d) is consistent with a positive shift in
time for the lowercase as compared to the uppercase N1.
Therefore, the subsequent significant differences, around
150–190 ms and around 200–240 ms, are more difficult to
interpret, because they could simply result from the initial
difference obtained at 120 ms, which could have produced a
processing advantage for uppercase letters (and later on, faster
overall RTs).

More crucially for the purpose of the present study, by
comparing the ERPs to uppercase and lowercase letters locked
on vocal responses, the difference found around 120 ms be-
fore the onset of the vocal response (made, on average, around
414 ms) suggests that the offset of visual influences would
take place, on average, around 294 ms. This result is consis-
tent with recent findings on letters that had used the priming
paradigm (i.e., Carreiras et al., 2013; Mitra & Coch, 2009) and
that suggested an influence of visual information as late as
300 ms after stimulus onset (for a similar result, see also
Keage et al., 2014). Moreover, since we tested for statistical

Fig. 5 Response-locked analysis for the lowercase-versus-uppercase
comparison. (a) Ty values masked for significance on the basis of a
cluster test (p < .01). See Fig. 4 for the correspondence between the
numbers on the y-axis and electrodes. (b) Topographic maps of Ty
values, masked for significance, from +275 to +235 ms. (c) Trimmed

means and 95 % confidence intervals of the ERPs corresponding to
lowercase and uppercase letters, for the electrode O1, from +600 to –
100 ms (+414 ms being the mean response onset, 0 corresponding to
letter onset). (d) Same as panel c, but for electrode AF7
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significance at every time point and every electrode from the
vocal response, our methodology provides a means to assess
more precisely the offset of visual influences, which is there-
fore estimated on average at 290–300 ms.

This result provides additional constraints for models of
letter perception processes (Grainger et al., 2008). Indeed,
the facts that visual information still influences letter process-
ing until 294 ms post-stimulus-onset and that participants start
producing letter names on average around 414mswould leave
120 ms (i.e., 414 – 294 ms) for processing nonvisual informa-
tion (i.e., abstract and phonological representations) and gen-
erating the output articulatory response. This small time win-
dow (i.e., 120 ms) is certainly computationally too short to
encompass all of these nonvisual processes, suggesting that
visual and nonvisual processes cannot be encapsulated, and
have to interact earlier in time (Carreiras et al., 2014).
Similarly, the fact that abstract or phonological effects have
been reported much earlier than 290–300 ms (e.g., Madec
et al., 2012; Petit et al., 2006) also indicates that visual and
nonvisual levels of processing are coactivated at some point in
time during letter identification, and would therefore interact
following a cascaded interactive-activation framework
(McClelland & Rumelhart, 1981).

Before concluding, one can note that the logic of the pres-
ent study rests on the assumption that the end product of
processing is the same for both uppercase and lowercase let-
ters before producing the vocal response. However, one could
argue that even if response selection is completed and the
motor program corresponding to the letter’s name has been
activated, some kind of visual processing could still be occur-
ring in parallel, sustaining the visual representation of the just-
processed letter in a short-term memory buffer. This possibil-
ity cannot be excluded, even though it would not seem to have
any major consequences on the present results. Indeed, this
potentially sustained visual activity is certainly independent of
the vocal response that we used as a trigger in the present
response-locked analyses. By averaging the EEG signal on
the onset of the vocal responses, we eliminated any activity
that was not specifically related to the generation of that re-
sponse (like any potentially sustained visual activity). The
remaining difference that we observed is therefore likely due
to differences in visual processing that contributed toward
letter identification and response selection.

To summarize, the present study was mainly concerned
with the time course of letter perception and with determining
the offset of visual influences, which according to our data
would end around 290–300 ms after stimulus presentation.
Our results and previous empirical findings therefore suggest
that visual information is processed in a time window starting
around 100 ms after stimulus onset and lasting around 190–
200 ms. This long-lasting time window (i.e., 200 ms) is con-
sistent with a cascaded interactive-activation model of letter
perception in which visual information feeds forward

information to abstract and phonological letter representations
well before the processing of such visual information has ter-
minated. The end product of this cascaded interactive process
would be the selection of the output motor response.
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