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Abstract Many humans exhibit a strong preference for fair-
ness during decision-making. Although there is evidence that
social factors influence reward-related and affective neural
processing, it is unclear if this effect is mediated by compul-
sory outcome evaluation processes or results from slower de-
liberate cognition. Here we show that the feedback-related
negativity (FRN) and late positive potential (LPP), two signa-
tures of early hedonic processing, are modulated by the fair-
ness of rewards during a passive rating task. We find that
unfair payouts elicit larger FRNs than fair payouts, whereas
fair payouts elicit larger LPPs than unfair payouts. This is true
both in the time-domain, where the FRN and LPP are related,
and in the time-frequency domain, where the two signals are
largely independent. Ultimately, this work demonstrates that
fairness affects the early stages of reward and affective
processing, suggesting a common biological mechanism
for social and personal reward evaluation.

Keywords Inequality-aversion .

Feedback-related-negativity . Late-positive-potential

Human social behavior is defined by a strong regard for the
welfare of others. Decades of work in behavioral economics
have shown that many individuals exhibit a preference for
fairness, even when maintaining equality among decision-

makers is risky or costly (Fehr & Fishbacher, 2003).
Although mutual cooperation tends to emerge in tasks where
it is possible to build a reputation (e.g., Kurzban & Houser,
2005), not all other-regarding behavior is consistent with rep-
utation building or even selfish payoff maximization. For ex-
ample, human decision-makers tend to prefer equitable wealth
distributions when anonymously distributing funds between
themselves and another individual (Eckel & Grossman, 1996;
Engelmann & Strobel, 2004). Anonymity prevented reciproc-
ity during these games, so selections of fair allocations are
likely mediated by a genuine preference for fair outcomes.
The finding that human decision-makers prefer fair out-
comes inspired econometric models that describe decision-
makers’ preferences as a function of both expected payout
and fairness (Fehr & Schmidt, 1999; Bolton & Ockenfels,
2000), thereby suggesting that fairness-seeking mediates
apparently altruistic-behavior.

A plausible hypothesis for the neural analog of suchmodels is
that reward-related neural activity elicited by vicarious rewards
mediates fairness-seeking behavior. It is well-established that
voluntary donation elicits activity in regions of the brain that
represent rewards (Harbaugh, Mayr, & Burghart, 2007; Moll
et al., 2006), suggesting that processes responsible for evaluating
others’ gains use the same neural circuitry that is responsible for
processing personal rewards. In fact, single-unit recordings from
non-human primates show that neurons in the anterior cingulate
cortex carry information about both the subject’s own rewards
and the rewards of other monkeys (Chang, Gariépy, & Platt,
2013). Collectively, these findings demonstrate that the brain
represents others’ rewards vicariously, suggesting a biological
basis for the effect of fairness on behavior.

Studies using functional magnetic resonance imaging
(fMRI) have established that fairness affects neural responses
in regions involved in reward-related processing. For example,
the neural activity in reward- and emotion-related regions
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differed following unfair offers during an ultimatum game - a
game in which a recipient (i.e., the participant) rejects or accepts
putative splits of a pool of money made by a proposer - specif-
ically when the offers were made by human proposers rather
than computers (Sanfey, Rilling, Aronson, Nystrom, & Cohen,
2003). Moreover, neural activity in regions involved in
emotion-related processing predicted decisions to accept or
reject offers, suggesting that emotional processing may influ-
ence decision-making strategies in social contexts. Later work
found that activity in the ventral striatum and ventromedial
prefrontal cortex, two regions with known roles in the pro-
cessing of subjective reward (Kable & Glimcher, 2007), were
differentially affected by payouts if they increased or de-
creased the wealth inequality between two subjects (Tricomi,
Rangel, Camerer, &O’Doherty, 2010). As neither subject could
influence the expected value of the outcomes, fairness-related
differences in neural responses could not be explained by stra-
tegic reasoning. Together, these studies show that fairness and
equity affect reward processing in the brain. Unfortunately,
due the poor temporal resolution of fMRI, it is unclear wheth-
er the previously observed effects of fairness on reward and
affective neural processing are mediated by compulsory
bottom-up processes or slower cognitive deliberation.

Previous investigations have attempted to address the
timing of the effects of fairness on reward processing by using
the superior temporal resolution of electroencephalography
(EEG). These studies have treated the feedback-related-
negativity (FRN) component of the event-related potential
(ERP) as a proxy for early reward processing, as the FRN
occurs approximately 200–400 milliseconds after stimulus
onset and tends to be more negative for bad outcomes than
for good outcomes (Holroyd & Coles, 2002; Hajcak, Moser,
Holroyd, & Simons, 2006). The FRN can also be modulated
by social context. For example, greater FRNs are typically
observed for unfair offers than for fair offers during the ulti-
matum game (Boksem & De Cremer, 2010; Mussel, Hewig,
Allen, Coles, & Miltner, 2014; Polezzi et al., 2008).
Unfortunately, reward and fairness were confounded in all
but one of these studies as the least fair offers favored the
proposer, and were thus the least valuable offers. The results
of the remaining study suggest that the FRNmay be larger for
unfair offers than for fair offers even when the fair offer is less
valuable, although they failed to find a significant effect
(Mussel et al., 2014). It is therefore unclear from the results
of previous studies alone whether physiological signatures of
early reward processing are affected by fairness. Moreover, as
the ultimatum game requires a response from the participant, it
is unclear whether the observed effects are truly due to out-
come evaluation or if they are related to upcoming decisions.

The current study aims to extend the aforementioned work
by determining the effect of the fairness of potential outcomes
on physiological correlates of reward processing using EEG.
If early physiological signatures of reward processing are

affected by the outcome fairness, then it is likely that social
outcome evaluation is carried out by bottom-up reward eval-
uation processes and is not entirely mediated by slow deliber-
ation or strategic consideration. Both the FRN and the late-
positive potential (LPP), an ERP component that occurs ap-
proximately 500 ms after the onset of stimuli with affective
valence (Hajcak, Dunning, & Foti, 2009), provide a measur-
able substrate for early reward- and affect-related neural pro-
cessing of outcomes. A passive outcome-evaluation task was
used that required participants to rate the pleasantness of
potential payouts that they and another individual could
receive. The distribution of wealth associated with each
payout was systematically manipulated so that offers were
either equitable, inequitable favoring the participant, or
inequitable favoring the other individual. Crucially, partic-
ipants could not influence their expected payout at all, so
reward-related neural responses in our task cannot be con-
taminated by signals related to decision making or perfor-
mance monitoring.

Methods

Participants

Twenty Stony Brook University undergraduates (13 females,
mean age of 21 years) with no history of neurologic damage
were recruited from the university’s participant pool. All par-
ticipants received partial course credit and monetary compen-
sation. Informed consent was obtained from all participants
before the start of the experiment. Two participants were
discarded due to excessive movement during EEG data acqui-
sition, leaving 18 participants for analysis.

Data acquisition and stimulus presentation

Sixty-four Ag/Ag-Cl electrodes were attached prior to the ex-
periment with a Compumedics Neuroscan Quick-Cap ar-
ranged with a standard 10–20 layout. Recordings were refer-
enced to the left and right mastoids. Electrodes placed on the
outer canthi of the left and right eyes and above and below the
right eye recorded the vertical and horizontal electrooculo-
gram. Impedances were kept below 10 kOhms at all electrode
sites. Electroencephalogram (EEG) data were recorded with
SynAmp amplifiers (Neuroscan Inc.) at a sample rate of
500 Hz and digitized using SCAN 4.3 software (Neuroscan
Inc.). All stimuli were presented on LCD monitors and re-
sponses were collected from a small button box mounted on
the arm of the chair in which participants were seated. Stimuli
were generated and presented using custom software built
using the PsychoPy toolbox in Python (Peirce, 2007).
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Task and stimuli

Participants rated monetary payouts that they and a second,
anonymous individual (henceforth Bthe other^) could poten-
tially receive. Participants were told that the other was a sec-
ond participant who would come in during a future experi-
mental session, and belief in the existence of the other was
confirmed verbally after the experiment. The sequence of task
events is given in Fig. 1a. At the beginning of each trial, a
payout to the participant and the other appeared. Two ther-
mometers with labeled tick marks indicated the value of the
payout to the participant (left) and the other (right).
Participants viewed the payout for 3 s followed by a 500-ms
fixation interval. Participants then rated the pleasantness of the
payout using a scale ranging from −3 (very displeasing) to 3
(very pleasing). The next trial began after a 500-ms inter-trial
interval.

Both the payouts to both the participants were drawn from
a low interval of [0,9] or a high interval of [17,26]. The other's
payout was drawn from the same interval. Trials were split
into three conditions corresponding to the wealth distribution
between the participant and the other: disadvantageously in-
equitable payouts in which the other was given more than the
participant, advantageously inequitable payouts in which the
other was given less than the participant, and equitable
payouts in which the participant and the other were given
the same amount of money. To ensure that payout differ-
ences were readily apparent in the visual stimuli, we re-
quired the participant's payout to be at least $4 larger than
the other's during advantageously inequitable trials and at
least $4 smaller in disadvantageously inequitable trials. We
presented each of the 20 unique equitable trial types, 42

unique advantageously inequitable trials, and 42 unique
disadvantageously inequitable trials a total of three times
across six blocks, resulting in a total of 312 trials per subject.
The mean payout to the participant was $13 in the equitable
condition, and $10.17 and $15.83 in the disadvantageous and
advantageously inequitable conditions, respectively. Trials
were presented in a random order, and participants were in-
formed that the payout from one randomly selected trial would
be actualized at the end of the experiment.

Physiological data analysis

Continuous EEG data were down-sampled to 250 Hz, band-
pass filtered between .1 and 20 Hz with a FIR filter, and
partitioned into trials aligned at stimulus onset. We aligned
all trials to a common baseline for each channel by subtracting
the average of the 100-ms prestimulus interval from each tri-
al’s waveform. Trials with non-stereotypical artifacts were ex-
cluded from analysis by a semi-automated artifact detection
routine and remaining ocular artifacts were corrected using the
algorithm developed by Miller, Gratton, and Yee (1988).
Finally, mean waveforms were computed for each condition
and each participant, and these waveforms were used in all
further analyses.

Averaging in the time-domain was used to characterize the
FRN and LPP at a cluster of nine electrodes centered at CZ
(FC1, FCZ, FC2, C1, CZ, C2, CP1, CPZ, and CP2). For each
participant and each condition, the FRN and LPP were scored
as the mean voltage in the 300- to 400-ms and 500- to 800-ms
post-stimulus intervals, respectively. Participants’ scores were
computed separately for each wealth distribution condition.

Fig. 1 Task and behavior. (a) Temporal sequence of the outcome rating
task. Subjects completed a social outcome evaluation task in which
potential monetary payouts from the experimenter to the subject and an
anonymous other were rated. After a 1-s ITI, subjects fixated a central
cross for .5 s. A potential monetary payout was presented for 3 s. Payouts
fell into one of three categories: those in which the subject received less
than the other (disadvantageous inequity), those in which the subject

received more than the other (advantageous inequity), and those in which
the subject and the other received the same amount (equity). Then, after
another .5-s fixation period, subjects had 10 s to rate the pleasantness of
the payout. Exactly one payout was actualized at the end of the experi-
ment. (b) Mean ratings for each equity condition. Ratings were averaged
within subject, and then within-subject mean ratings for each condition
were averaged across subjects
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Time-frequency analysis is a powerful tool for disambigu-
ating temporally coincident ERP components based on their
spectral profile. Thus, to disambiguate the components of the
ERP, we used a wavelet-based approach to decompose event-
related potentials into time-frequency scalograms. A Morse
wavelet was chosen for the analysis due to its exact analyticity
and approximate symmetry in the frequency domain (Lilly &
Olhede, 2012), ultimately producing a more accurate estimate
of spatiotemporal energy than other, similar wavelets (e.g.,
Morlet). Morse wavelets have been previously demonstrated
to be suitable for analysis of EEG time series (Brittain,
Halliday, Conway, &Nielsen, 2007). A complexMorse wave-
let (γ = 3, β = 5) with 20 scales (linearly spaced from 1 to
20 Hz) was convolved with each participant’s mean time-
domain ERP waveform for each wealth distribution condition
to extract a scalogram of time-varying frequency components
comprising the ERP. Each three-dimensional scalogram was
converted into multiple two-dimensional time series by aver-
aging across scales corresponding to obtain time series of
power in frequency bands of interest. The average power in
a 100-ms pre-stimulus period was used to align all scales
in all scalograms to a common baseline. Analogous to the
time domain ERP scores, time-frequency domain scores
were obtained by averaging across scales in a given fre-
quency band and time points during a period of interest.
Previous work has found that the FRN is characterized by
a burst of power in the theta frequency range (Gehring &
Willoughby, 2004), suggesting that theta power several
hundred ms after stimulus onset is a valid time-frequency
domain proxy for the FRN (Bernat, Nelson, Steele, Gehring,
& Patrick, 2011). Thus, the average power in the 4–8 Hz
(theta) range during the 250- to 350-ms post-stimulus interval
was taken as an index of the FRN. Because the LPP is a
sustained change in scalp potential that can last up to several
seconds (Schupp et al., 2000), it is likely to result from neural
processes that fluctuate infrequently. Thus, power in the 1–
3 Hz (delta) range during the 500- to 800-ms post-stimulus
intervals was treated as an index of the LPP.

To compute scalp topographies in the time domain, we
used a current source density (CSD) analysis, in which we
took the difference between the CSD estimates for the equita-
ble and inequitable conditions. This allowed a between-
condition comparison of the relative source of current changes
that ultimately produce the observed ERPs. For time-
frequency domain signals, wavelet power was averaged
across time intervals of interest separately for the theta and
delta bands at each electrode for each subject in each condi-
tion. Then, the difference between the spatial distribution of
signals in the equitable and disadvantageously inequitable
conditions was plotted. For visualization, points between
channels were interpolated.

All EEG data preprocessing was done with the EEGLAB
toolbox (Delorme &Makeig, 2004), and subsequent ERP and

wavelet analyses were conducted using custom MATLAB
(Mathworks) software and the JLAB signal processing pack-
age (Lilly, 2011). Time-domain scalp CSD maps were com-
puted with the CSD toolbox (Kayser & Tenke, 2006). All
statistical analyses were conducted using R (R Core Team),
and p-values of all post-hoc pairwise tests were corrected
using the Bonferroni-Holm method.

Results

Behavior

Figure 1b illustrates the mean ratings given to the payouts.
There was a significant effect of wealth distribution on mean
rating (F(2,34) = 22.4482, p < 10-7). Post-hoc pairwise tests
show that advantageously inequitable payouts were given
higher ratings than disadvantageously inequitable payouts on
average (t(17) = 6.41, corrected p < 10-6), and equitable pay-
outs were rated more pleasing than disadvantageously inequi-
table payouts (t(17) = 5.70, corrected p < 0.001), although
advantageously inequitable payouts were indistinguishable
from equitable payouts (t(17) = .644, corrected p > 0.5).
These results demonstrate that payouts were judged on the
basis of the underlying distribution of wealth, which is ulti-
mately independent of the monetary value of the payout to the
participant in the present experiment.

Time-domain analysis

Figure 2 depicts the physiological effects of each type of pay-
out. Grand-average ERPs across all participants at a CZ-
centered cluster of electrodes are given in Fig. 2a. While the
shape of the FRN waveform and the spatial distribution of its
sources are consistent with previously reports (e.g., Holroyd,
Krigolson, & Lee, 2011), the FRN occurred later during
the present study than is typically observed. We attribute
its late arrival to the complexity of our compound stimuli
and the fact that subjects’ behavior suggests that they
computed the relative magnitude of the two payouts.
Accordingly, a later (i.e., 300–400 ms) post-stimulus window
was used to compute the FRN. There was a significant effect
of wealth distribution on FRN magnitude (F(2,34) = 3.298,
p < 0.05; Fig. 2b), though no post-hoc tests survived correc-
tion for multiple comparisons.

A significant effect of wealth distribution on LPP magni-
tude was also found (F(1.31,22.19) = 7.474, p < 0.01;
Fig. 2c).Mauchly’s test indicated that participants’ LPP scores
violated the assumption of sphericity (Χ2 = 0.468, p < 0.005),
so the degrees of freedom of the reported ANOVA were
adjusted with a Greenhouse-Geisser correction. LPPs elicited
by equitable offers were more positive than those elicited by
disadvantageously inequitable offers (t(17) = 2.480, corrected
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p < 0.05) and advantageously inequitable offers (t(17) =
3.131, corrected p < 0.05).

To look at the overall relationship of LPP and FRN scores,
we z-scored each across participants separately for each con-
dition, then combined all scores in all conditions into two
large vectors for each ERP component. Overall, LPP and FRN
scores were highly correlated (r = 0.54, p < 0.001, n = 54).
Because we scored the FRN and LPP so close to one-another,
it is highly plausible that this relationship is an artifact of

averaging in the time-domain rather than a functional coupling
of the neural processes underlying the LPP and FRN. Thus,
time-frequency analysis was used to isolate the two compo-
nents in time-frequency space.

Time-frequency domain analysis

Figure 3 illustrates the results from a time-frequency analysis
of participants’ responses to each type of payout. First, scalo-
grams were obtained for each participant (grand averages il-
lustrated in Fig. 3a). Power in the theta band (4–8 Hz) between
250 and 350 ms was used to index the FRN, and power in the
delta band (1–3 Hz) between 500 and 800 ms was used to
index the LPP. There was a significant effect of wealth distri-
bution on evoked power in the theta band (F(2,34) = 6.836,
p < 0.005; Fig. 3b). Equitable payouts elicited significantly
less theta power than disadvantageously inequitable payouts
(t(17) = 3.363, corrected p < 0.005) and advantageously
inequitable payouts (t(17) = 2.626, corrected p < 0.05),
but theta responses evoked by advantageously and dis-
advantageously inequitable payouts were not different
(t(17) = 0.918, corrected p > 0.2). Similar to the FRN,
the theta signal was greatest at central electrodes. There
was also a significant effect of wealth distribution on
delta power (F(2,34) = 5.844, p < 0.01; Fig. 3c), although
no post-hoc tests achieved significance. Delta was more fron-
tal than the LPP, but both signals were strong at central
electrodes.

Crucially, we observed no relationship between theta and
delta scores using the same approach that we used to deter-
mine the relationship between FRN and LPP scores in the
time-domain (r = -.0021, p > 0.9, n = 54), suggesting that
the neural processes generating power in the theta and delta
frequency bands (i.e., the processes generating the FRN and
LPP) are largely independent.

Discussion

The present study characterizes the effects of fairness, and
equity specifically, on physiological signatures of hedonic
processing. The FRN and the LPP, two ERP components
known for their role in reward and affective evaluation, were
modulated by the fairness of monetary outcomes. This was
apparent both in the time domain, where the magnitude of
both components was correlated, and in the time-frequency
domain where the components were largely uncorrelated.
Overall, our findings suggest that two distinct neural mecha-
nisms of hedonic processing are modulated by the overall
fairness of monetary outcomes.

The results of our experiments are readily interpretable in
the framework of behavioral economics. Both the theory of
inequality aversion put forth by Fehr and Schmidt (1999) and

Fig. 2 Time-domain electrophysiological results. (a) Event-related po-
tentials at a CZ-centered cluster relative to the presentation of the payout.
Both the feedback-related negativity (FRN) and late positive potential
(LPP) were scored as the mean potential evoked by trials of each condi-
tion for each subject in the 300- to 400-ms and 500- to 800-ms range,
respectively. (b) Mean FRN scores and (c) mean LPP scores across sub-
jects with associated current source density (CSD) maps
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behavior during wealth allocation experiments (Engelmann &
Strobel, 2004) suggest that inequitable outcomes are less sub-
jectively valuable than equitable outcomes, particularly when
the decision-maker has the lowest payoff. Although not strict-
ly required by the theory, Fehr and Schmidt also suggest that
advantageously inequitable outcomes are generally more fa-
vorable than disadvantageously inequitable outcomes, as neg-
ative emotions brought on by the inequality are accompanied
by perceived losses in the case of disadvantageous inequity.
Our findings are grossly consistent with the predictions of this
theory, as the neural signatures of reward-related neural pro-
cessing considered by the present study favor equitable out-
comes over inequitable outcomes, and tend to favor advanta-
geous inequity over disadvantageous inequity. Additionally,
our findings suggest a potential neural substrate for inequality
aversion, as the influence of equity on early signatures of
reward processing suggest that fairness exerts its effects on
reward processing during bottom-up outcome evaluation pro-
cesses. While this does not exclude the possibility that top-
down processing can influence fairness-seeking behavior, it
does suggest that the brain is capable of rapidly integrating
social context into outcome evaluations.

The finding that the FRN is modulated by fairness is con-
sistent with findings from experiments conducted during
fMRI, given the hypothesized origin of the FRN. Early studies
hypothesized that the FRN originates from a cortical region
that receives dopaminergic projections from the basal ganglia,
such as the anterior cingulate cortex (Holroyd & Coles, 2002).
More recent work suggests that the FRN may originate

directly from activity in the basal ganglia (Foti, Weinberg,
Dien, & Hajcak, 2011). Thus, the present findings suggest that
social factors influence the early stages of reward processing
in the basal ganglia. This interpretation is consistent with pre-
vious work showing that reward-related activity in the ventral
striatum is affected by social inequality (Tricomi et al., 2010).
The current study adds to this previous work by demonstrating
that social factors exert their effects on early stages of
mesolimbic hedonic processing, suggesting that social infor-
mation is already present in neural processes reflecting
bottom-up outcome evaluation. It is possible that humans pro-
cess social factors by default, and may have difficulty
inhibiting evaluations of others’ welfare even when it does
not affect one’s own payoff. This interpretation is consistent
with the altruistic behavior observed in anonymous games
(e.g., Eckel & Grossman, 1996), as the recommendations of
reflexive social evaluation processes could contradict selfish
strategies that may require deliberation (Rand, Greene, &
Nowak, 2012).

We interpret fairness-modulated activity in the theta band
of the evoked spectral response as a separate index of the FRN
given its similar latency and duration. Previous reports have
implicated both early theta power within the evoked spectral
response and the FRN in performance monitoring and rein-
forcement learning (Cavanagh, Frank, Klein, & Allen, 2010;
Christie & Tata, 2009; Holroyd & Coles, 2002; Holroyd,
Krigolson, & Lee, 2011), therein identifying a functional anal-
ogy between theta and the FRN that strengthens our conclu-
sion that the two signals reflect the same neural processes.

Fig. 3 Time-frequency domain results. (a) Morse wavelet scalograms for
evoked responses at a CZ-centered cluster in each payout condition. The-
ta scores were computed as the mean power in the 4- to 8-Hz range in the
250- to 350-ms post-stimulus interval, and delta was scored as the average

in the 1- to 3-Hz range in the 500- to 800-ms post-stimulus intervals. (b)
Mean theta scores and (c) mean delta scores across subjects with associ-
ated scalp distributions of wavelet power
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Though our task does not involve learning an action-outcome
contingency, the neural loci of reinforcement learning signals
(e.g., the basal ganglia or the anterior cingulate cortex) are
typically modulated by reward even when the payoff contin-
gencies are fixed (Kable & Glimcher, 2007; Kolling, Behrens,
Mars, & Rushworth, 2012). Moreover, the FRN has also been
observed in outcome evaluation tasks that do not require
learning (Hajcak et al., 2006). The discrepancy between the
scalp distributions for the time and time-frequency domain
indices of the FRN probably result from convolution of the
time-domain FRN with unrelated evoked responses, such as
the LPP.

Our results suggest that fairness also affects the LPP. Given
that the LPP is modulated by emotional intensity rather than
emotional valence (Schupp et al., 2000), the observed findings
are consistent with the interpretation that equitable outcomes
are more affectively salient than inequitable outcomes. This
interpretation is also consistent with a recent study that
observed relationships between LPP magnitude and
BOLD activity in a number of regions, including the ven-
tral aspects of prefrontal cortex (Liu, Huang, McGinnis-
Deweese, Keil, & Ding, 2012). Parts of the ventral pre-
frontal cortex project to the limbic system (Carmichael &
Price, 1995) and are involved in both subjective value
representation (Kable & Glimcher, 2007) and processing
of outcome inequality (Tricomi et al., 2010). Thus, it is
possible that the LPP observed in the current study re-
flects sustained affective processing of equitable outcomes
by cortical regions involved in outcome evaluation.
Despite the central distribution of the LPP in the time-
domain, spectrotemporal delta power was distributed fron-
tally. Previous work has shown that the topography of the
LPP tends to shift frontally following affective picture
presentation despite an initial central/parietal distribution
(e.g., Hajcak & Olvet, 2008), which may be due to a
stationary but increasingly strong frontal delta component.
Nonetheless, the latency and duration of the observed delta
power provide converging evidence that it is simply a
spectrotemporal measure of the LPP, thereby strengthening
our conclusion that the LPP observed in the present study
reflects sustained prefrontal reward processing.

Although the FRN appears to suggest that equitable out-
comes are more favorable than inequitable outcomes, partici-
pants’ explicit ratings suggested otherwise. Superficially, this
mismatch appears inconsistent with the idea that the FRN
reflects subjective evaluation and casts doubt on an interpre-
tation of our findings that is centered on reward circuitry.
Interestingly, a similar discrepancy between neural activity
and subjective ratings was found by Tricomi et al. (2010).
Those authors speculate that overt, behavioral evaluations
(much like our participants’ trial-by-trial ratings) reflect both
the basic reward-related and affective processing that are cap-
tured by physiological measures, but also the complex cognitive

processes that might lead to strategic or self-serving responses
(e.g., a desire to appear fair). Given the superior temporal reso-
lution permitted with EEG, our results suggest that the FRN and
LPP reflect early stages of the evaluations, with explicit
behavior potentially reflecting additional, later stages of
evaluation. Future work exploring factors that predict
discrepancies between the ERP and ratings during social
reward evaluation could offer insights on the nature of
these later stages of evaluative processing.

Given that the expected value of equitable offers was
greater than the expected value of disadvantageously ineq-
uitable offers, one could argue that our observed effects
are explained entirely by personal evaluation. However,
expected value alone is not sufficient to explain the effects
of equity on time-frequency signals. Specifically, equitable
offers elicited significantly less theta power than advanta-
geously inequitable offers even though advantageously in-
equitable offers had a higher expected value to the partic-
ipant. If the gains of the other were ignored, then advan-
tageously inequitable payouts should have elicited more
power than equitable payouts. It is therefore not likely that
the participants only considered personal value when eval-
uating each payout, and that the equity of the payout had
a strong influence on reward-related processing.

The basal ganglia and the ventral prefrontal cortex have been
implicated in the processing of social inequality (Tricomi et al.,
2010), and are hypothesized to underlie the FRN (Foti et al.,
2011) and LPP (Liu et al., 2012), respectively. Thus, the present
study offers a temporal characterization of social outcome eval-
uation that is distributed throughout the brain.We find that ERP
components as early as several hundred ms following stimulus
presentation carry information about equity, suggesting that the
brain rapidly integrates social information into existing reward
circuitry during outcome evaluation. Thus, it is possible that
self- and other-oriented rewards use a common neural currency,
consistent with econometric models that collapse self and other
oriented gains onto the same subjective dimension (e.g., Fehr &
Schmidt, 1999). Future experiments could test the common-
currency hypothesis using source localization or simultaneous
fMRI to determine whether ERPs elicited by equitable and
inequitable gains are anatomically congruent.
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