
There is growing evidence and theoretical speculation 
that all major memory systems contribute to category 
learning (Ashby & O’Brien, 2005). For example, empiri-
cal evidence suggests that at least some types of category 
learning are mediated by working memory (DeCaro, 
Thomas, & Beilock, 2008; Maddox, Ashby, Ing, & Pick-
ering, 2004; Waldron & Ashby, 2001; Zeithamova & Mad-
dox, 2006), episodic/semantic memory (Hopkins, Myers, 
Shohamy, Grossman, & Gluck, 2004; Knowlton, Squire, 
& Gluck, 1994; Kolodny, 1994; Zaki, Nosofsky, Jessup, 
& Unversagt, 2003), or procedural memory (Ashby, Ell, 
& Waldron, 2003; Maddox, Bohil, & Ing, 2004). The one 
conspicuously absent system in this list is the perceptual 
representation memory system, or PRS (Schacter, 1990). 
There is empirical evidence that the PRS is active during 
perceptual categorization (Aizenstein et al., 2000; Reber, 
Stark, & Squire, 1998a, 1998b), but this evidence is from 
functional neuroimaging, not behavioral data. More spe-
cifically, we know of no evidence that the PRS mediates 
category learning performance. The goal of this article is 
to report such evidence.

The PRS has been described as the memory system that 
mediates “improvement in identifying or processing a stim-
ulus as the result of its having been observed previously” 
(Gazzaniga, Ivry, & Mangun, 2002). The type of learning 
mediated by the PRS is often referred to as repetition prim-
ing. The PRS is an implicit system that can operate without 
conscious awareness (Schacter, 1990), and behavioral ef-
fects of the PRS can be observed after only a single stimu-
lus repetition (e.g., Wiggs & Martin, 1998). Furthermore, 
the duration of these effects are long lasting. For example, 
Cave (1997) demonstrated that behavioral effects of the 
PRS can be seen as long as 48 weeks after a single stimulus 

(i.e., picture) presentation. Another finding relevant to the 
categorization literature is that PRS effects can be induced 
when the two stimuli are different but perceptually similar 
(e.g., Biederman & Cooper, 1992; Cooper, Schacter, Bal-
lesteros, & Moore, 1992; Seamon et al., 1997).

These results suggest that the PRS should be operat-
ing in most perceptual categorization experiments. This 
should be true for any experiment in which the presen-
tation of category exemplars is repeated, or in which a 
category contains multiple exemplars that have high per-
ceptual similarity. As mentioned above, functional neu-
roimaging data support this prediction (Aizenstein et al., 
2000; Reber et al., 1998a, 1998b). What is not so clear 
is whether the PRS by itself is ever sufficient to mediate 
the categorization process; in other words, is it ever pos-
sible for participants to use the PRS and no other major 
memory system when learning which response is associ-
ated with each stimulus in a categorization task?

Consider an experiment with two categories denoted A 
and B. Suppose each category contains either exemplars 
that are each presented equally often during the experi-
ment, or exemplars in which within-category similarity 
is roughly equal in the two categories. In either case, we 
could expect the PRS to be equally active on both A and B 
trials. In its original description, Schacter (1990) argued 
that the PRS did not “represent elaborative information 
that links an event to pre-existing knowledge” (p. 553). 
Instead, he proposed that the PRS could provide “a basis 
for a feeling of familiarity” (p. 553). Thus, in either of 
these experiments, after just a few trials, the PRS could 
signal to the participant that the stimulus was familiar; 
but this is all it could signal. For example, the PRS is not 
thought to encode an explicit memory of the category 
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egory A. The participant’s task is to respond “Yes” or “No” 
depending on whether the presented stimulus was or was 
not a member of Category A. In an (A, not A) task, the 
Category A members have a coherent structure since they 
are created from a single prototype, but the stimuli associ-
ated with the “not A” (or “No”) response do not. Typically, 
the two stimuli in every pair of “not A” category mem-
bers are visually distinct. Historically, prototype distortion 
tasks have been run in both (A, B) and (A, not A) forms, 
although (A, not A) tasks are most common.

We can summarize our arguments so far by stating our 
main hypothesis—the PRS should facilitate performance 
in (A, not A) prototype distortion tasks, especially when 
the level of distortion is low (and within-category similar-
ity is high); but the PRS by itself cannot mediate perfor-
mance improvements in (A, B) prototype distortion tasks. 
To our knowledge, this hypothesis was first proposed by 
Ashby and Casale (2003; see also Reber & Squire, 1999), 
and has received no behavioral tests. The goal of this ar-
ticle is to test this hypothesis.

There is some indirect support for this PRS hypothesis. 
First, a variety of neuropsychological patient groups that 
are known to have widespread category-learning deficits 
show apparently normal (A, not A) prototype distortion 
learning. This includes patients with Parkinson’s disease 
(Reber & Squire, 1999), schizophrenia (Kéri, Kelemen, 
Benedek, & Janka, 2001), or Alzheimer’s disease (Sinha, 
1999; although see Kéri et al., 1999). Second, several 
studies have reported normal (A, not A) prototype dis-
tortion learning in patients with amnesia (Knowlton & 
Squire, 1993; Squire & Knowlton, 1995), but impaired 
performance in (A, B) tasks (Zaki et al., 2003).

Third, neuroimaging studies of (A, not A) prototype 
distortion tasks have all reported categorization-related 
changes within occipital cortex (Aizenstein et al., 2000; 
Reber et al., 1998a, 1998b). In the only known neuroim-
aging study of the (A, B) prototype distortion task, Seger 
et al. (2000) also reported categorization-related activa-
tion in occipital cortex, but they also found significant 
learning-related changes in prefrontal and parietal corti-
ces. Occipital cortex deactivations are often seen in tasks 
that depend on the PRS (e.g., Wiggs & Martin, 1998), 
and these neuroimaging results have prompted proposals 
that the PRS is active in prototype distortion tasks (Reber 
& Squire, 1999). On the other hand, such deactivations 
are typically not correlated with behavioral measures 
(Schacter, Wig, & Stevens, 2007), so the neuroimaging 
data do not speak to the question of whether the PRS is 
mediating prototype distortion learning.

What would constitute evidence that the PRS is mediat-
ing learning in (A, not A) tasks? One empirical signature of 
the PRS is that it should be more sensitive to distortion than 
most declarative strategies. Increasing distortion decreases 
similarity to the prototype, and there is evidence that the 
PRS is highly sensitive to reductions in similarity. For ex-
ample, PRS activation is reduced (but not eliminated) if the 
second presentation of a word is in a different font from the 
first presentation (e.g., Jacoby & Hayman, 1987; Roediger 
& Blaxton, 1987). Similar reductions in PRS activation 
are also seen if the second presentation of an object is in 

prototype or of any other previously seen category exem-
plar. Presentation of the prototype should quickly elicit a 
feeling of familiarity from the PRS, but presentation of a 
stimulus that is perceptually distinct from the prototype 
would not elicit a memory of the prototype from the PRS. 
This would require some other memory system. There-
fore, other memory systems would be required to work in 
collaboration with the PRS to signal the participant which 
response to make in these experiments.

Now consider another experiment with two categories la-
beled A and B. Suppose now that Category A is the same as 
before—that is, it either contains a small number of exem-
plars that are repeated, or it is highly coherent and within-
category similarity is high. In contrast, suppose Category B 
contains many exemplars that are never repeated and that 
within-category similarity is so low that every pair of exem-
plars is highly distinct. In this case, the PRS will be active 
on Category A trials, but not on Category B trials. There-
fore, the participant should quickly develop a feeling that 
stimuli on A trials seem familiar, but stimuli on B trials do 
not. In this case, participants could feasibly adopt a decision 
rule of the following type: “If the stimulus feels familiar, 
I’ll respond ‘A’; if it feels unfamiliar, I’ll respond ‘B.’” This 
decision rule depends only on the PRS.

Most categorization experiments are of the former type, 
in which case the PRS is predicted to be equally active 
on A and B trials. We predict that it should be difficult 
to find evidence from such experiments that the PRS is 
mediating the learning of category responses. Instead, we 
hypothesize that evidence for a role of the PRS in category 
learning should focus on experiments of the latter type—
that is, on experiments in which the PRS should be much 
more active on A trials than on B trials (or vice versa).

It turns out that there is a popular categorization para-
digm that commonly includes both types of task. In pro-
totype distortion category-learning tasks, the category 
exemplars are created by randomly distorting a single cat-
egory prototype. The most widely known example uses a 
constellation of dots (often 7 or 9) as the category proto-
type, and the other category members are created by ran-
domly perturbing the spatial location of each dot. These 
random dot stimuli and categories have been used in doz-
ens of studies (e.g., Homa, Rhoads, & Chambliss, 1979; 
Homa, Sterling, & Trepel, 1981; Posner & Keele, 1968, 
1970; Shin & Nosofsky, 1992; Smith & Minda, 2002).

Two different types of prototype distortion tasks are com-
monly used—(A, B) and (A, not A). In an (A, B) task, par-
ticipants are presented a series of exemplars that are each 
from some Category A, or from a contrasting Category B. 
The task of the participant is to respond with the correct 
category label on each trial (i.e., “A” or “B”). An important 
feature of (A, B) tasks is that the stimuli associated with 
both responses each have a coherent structure—that is, 
they each have a central prototypical member around which 
the other category members cluster. Thus, within-category 
similarity is equally high in both categories in (A, B) pro-
totype distortion tasks. In an (A, not A) task, on the other 
hand, there is a single central Category A and participants 
are presented with stimuli that are either exemplars from 
Category A or random patterns that do not belong to Cat-
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responses as a function of the relative dissimilarity to the A 
prototype. The PRS hypothesis makes the strong prediction 
that these endorsement proportions should decrease (with 
relative dissimilarity to the prototype) more quickly in the 
(A, not A) condition than in the (A, B) condition. This is 
because the PRS should be especially sensitive to distor-
tion, and because we predict that the PRS could facilitate 
(A, not A) performance more than (A, B) performance.

Note that the critical prediction relates to the relative 
dissimilarity of the stimulus to the A prototype. In the 
(A, not A) task, an A stimulus becomes more difficult 
to categorize as its distance to the A prototype increases 
(e.g., see Equation 2, below). In the (A, B) conditions, 
however, moving an A stimulus away from the A proto-
type increases difficulty only if the movement reduces the 
distance to the B prototype (see, e.g., Equation 1). Thus, 
our main focus will be on the probability of correctly re-
sponding “A” as a function of the relative distance to the A 
prototype. The PRS hypothesis predicts that this endorse-
ment probability should decrease more quickly with rela-
tive distance in (A, not A) tasks than in (A, B) tasks.

Of course, it makes sense to compare endorsement 
curves across tasks only if we somehow equate the amount 
of distortion within the two tasks. For this reason, we con-
structed the categories in such a way that the category 
separation was equal in each task for the two levels of 
distortion. To the greatest extent possible, we also tried 
to equate category separation across tasks. However, 
(A, not A) and (A, B) tasks are so fundamentally different 
that equating separation exactly might be impossible. For 
example, in an (A, not A) task the Category A exemplars 
are surrounded on all sides of stimulus space by “not A” 
category members, whereas in an (A, B) task “not A” 
(i.e., B) exemplars border Category A on only one side 
(e.g., compare Figures 2 and 3 below). We equated cat-
egory separation across levels of distortion by increasing 
the distance between the A and B prototypes in the high-
 distortion condition relative to the low-distortion condi-
tion. Details are given in the next section.

EXPERIMENT 1

Method
Participants and Design

Forty-four participants from the University of California, Santa 
Barbara, received course credit for their participation. We used a 
2  2 factorial design, with two different tasks [(A, not A) vs. (A, B)] 
crossed with two different levels of distortion (low and high). In the 
(A, not A) task, 9 participants participated in the low condition and 14 
in the high condition. In the (A, B) task, 10 participants participated 
in the low condition and 11 in the high condition. Each participant 
participated in only one experimental condition and all participants 
reported 20/20 vision, or vision corrected to 20/20. Each participant 
completed one session that lasted approximately 25 min.

Stimuli and Stimulus Generation
A prototype distortion task was used in all conditions. Each stim-

ulus pattern was composed of nine white circular dots displayed 
against a black background. Each dot could vary across trials in its 
horizontal (x) and vertical ( y) screen positions. An entire pattern 
subtended a visual angle of approximately 11º, which is roughly 
the size of the parafovea. Because there are 9 dots, each stimulus is 

a different color or seen from a different viewpoint from 
the first presentation (Biederman & Gerhardstein, 1993; 
Cave, Bost, & Cobb, 1996), or if it is a different token of 
the object presented first (Cave et al., 1996). For example, 
Koutstaal et al. (2001) used fMRI to compare PRS activa-
tion (i.e., repetition suppression; see the General Discus-
sion for more details) when the second presentation of an 
object was identical to the first, as opposed to when the 
second presentation was a different token of the same ob-
ject (e.g., a different umbrella from the one first presented). 
Koutstaal et al. (2001) reported reliable PRS activation 
when the second presentation was a different token, but 
the magnitude of this effect was about four times smaller 
than when the second presentation was identical to the first 
(e.g., Koutstaal et al., 2001, Figure 4, p. 193).

In each of these cases, the manipulated features were 
irrelevant to the task (e.g., font of the word, color of the 
object), and there is widespread evidence that changing a 
relevant feature reduces PRS activation much more than 
changing an irrelevant feature (e.g., Roediger & Srinivas, 
1993; Wiggs & Martin, 1998). In prototype distortion 
tasks (including our experiments) all relevant features 
are distorted when creating the exemplars of Category A. 
Thus, the PRS literature suggests that Category A pat-
terns that are dissimilar to the A prototype should only 
weakly activate the PRS. As a result, if the PRS is mediat-
ing performance, then the probability of responding “A” 
to a particular pattern should decrease quickly with the 
dissimilarity of that pattern to the A prototype.

In contrast, categorization strategies that depend on de-
clarative memory will tend to predict that this probability 
decreases more slowly as dissimilarity increases. For ex-
ample, suppose that participants notice that Category A 
exemplars are often characterized by some feature formed 
by a subset of the nine dots. One possibility might be a 
feature such as “the belt of Orion.” Because such features 
depend only on the location of a subset of the dots (three 
in the case of the belt of Orion), they will be present in all 
low-distortion patterns, but also in some high-distortion 
patterns (e.g., those where the dots that are not critical 
to the feature are distorted more than the subset of dots 
that define the feature). Thus, participants looking for dis-
tinctive features of this type should respond “A” to many 
high-distortion patterns. In other words, any pattern that 
strongly activates the PRS should display a distinctive fea-
ture such as the belt of Orion, but some patterns displaying 
that feature will not activate the PRS. Similarly, Smith and 
Minda (2001) showed that an exemplar-based decision 
strategy, in which participants compare the stimulus to 
stored representations of previously seen exemplars, also 
predicts a relative insensitivity to prototype similarity. In 
particular, exemplar models predict that the probability of 
an “A” response should decrease slowly as the dissimilar-
ity between the stimulus and prototype increases.

Experiment 1 tests these predictions in a 2  2 experi-
ment, in which the two types of prototype distortion tasks 
[(A, not A) vs. (A, B)] are crossed with two levels of dis-
tortion (low vs. high). In each experimental condition, the 
critical dependent variable is the proportion of correct “A” 
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ter of the screen. This eliminated the possibility that participants could 
use the overall spatial location of the pattern as a cue for responding.

Step 2: Create the Category A exemplars. The Category A ex-
emplars were created by perturbing the Category A prototype by an 
amount that was determined by sampling from an 18- dimensional 
multivariate normal distribution with mean 0 and variance– 
covariance matrix equal to L

2 I for the low-distortion condition and 

H
2 I for the high-distortion condition (where 0 is a vector of zeros 

and I is the identity matrix). This algorithm is equivalent to perturb-
ing each of the 18 horizontal and vertical dot positions by sampling 
from a normal distribution with mean 0 and variance either L

2 or 

H
2. The values of L

2 and H
2 are listed in Table 1. In all cases, if a 

sampled distortion produced a pattern that included dots that would 
be displaced off the screen, then this distortion was discarded and a 
new sample was selected.

Step 3: Trim the categories. All exemplars more than two stan-
dard deviations from the prototype (in 18-dimensional space) were 
removed from the stimulus set. This trimming served two purposes. 
First, it prevented any overlap in the categories, and second, it allowed 
us to precisely control the separation between contrasting categories.

Step 4: Construct the Category B prototype. The Category B 
prototype was generated by randomly sampling nine (x, y) coor-
dinates over the whole screen space, subject to the following con-
straints: (1) the mean spatial position of all dots fell exactly in the cen-
ter of the screen, and (2) the (Euclidean) distance (in 18- dimensional 
space) between the A and B prototypes equaled 4 L   in the low-
distortion condition, or 4 H   in the high-distortion condition, 
where we used a numerical value of   150 in all conditions. Note 
that the constant , which does not depend on level of distortion, is 
the smallest possible distance between the nearest Category A and 
Category B exemplars.

Step 5: Create the Category B exemplars. The Category B 
exemplars were created by distorting the Category B prototype using 
Steps 2 and 3.

described by 18 numerical values (i.e., 9 horizontal positions and 9 
vertical positions). Examples of random dot patterns used in the task 
are given in Figure 1.

We begin by describing our method for generating stimuli from 
the (A, B) conditions.

Step 1: Construct the Category A prototype. The Category A 
prototype was created by randomly sampling nine (x, y) coordinates 
over the whole screen space (832  624 pixels), subject to the con-
straint that the mean spatial position of all dots fell exactly in the cen-

Low Distortion A A Prototype High Distortion A

Figure 1. The Category A prototype used in Experiments 1 
and 2, along with typical low- and high-distortion Category A 
exemplars.

Table 1 
Variance (in Pixels) Associated With  

Each Category in Experiment 1

(A, B) (A, not A)

   Low  High    Low  High  

A 4,715 16,570 A 4,715 16,570
 B  4,715  16,570  Not A  n/a  n/a  

distance =  
Δ

distance = 
Δ

2 L 2 L

2 H 2 H

High
Distortion

Low
Distortion

Category A
prototype

Category B
prototype

Category A Category B

Category A Category B

Figure 2. An illustration of the methods used to construct the Category A and B 
distributions used in the (A, B) tasks reported in this article (represented in 2-D).
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not given in the allotted time, the participant was prompted to speed 
up his or her response, and the trial was discarded. There was a 1-sec 
delay from the end of the feedback tone to the presentation of the 
next stimulus. Participants were naive as to the category structures; 
they were told that at the beginning of the experiment their responses 
would be guesses, but that—by using the trial-by-trial feedback pro-
vided to them—they could potentially reach 100% accuracy.

Results

We begin with standard accuracy-based analyses. Fol-
lowing this, we fit some popular cognitive-based catego-
rization models to the data.

Accuracy-Based Analyses
Figure 4 shows block-by-block accuracy averaged 

across participants for each of the four conditions, and 
Table 2 shows mean accuracy across all blocks in each 
of the four conditions. Even though the categories in the 
four conditions were constructed in such a way that the 
nearest exemplars in the contrasting categories were ap-
proximately equidistant, Figure 4 shows that accuracy 
was lower in the (A, not A) conditions than in the (A, B) 
conditions. These differences were significant both by a 
sign test [low distortion, 10/10, p  .001; high distor-
tion, 10/10, p  .001] and by a 2  2 ANOVA [F(1,40)  
53.47, p  .001].

Figure 4 and Table 2 also show that the effect of in-
creasing distortion level was different in the (A, B) and 
(A, not A) tasks. In the (A, B) conditions, increasing dis-

A schematic illustrating the results of applying these steps is 
shown in Figure 2 (i.e., in 2 dimensions rather than in 18). Note that 
in both the low- and high-distortion conditions, the smallest possible 
distance between the nearest A and B exemplars is the same (i.e., ). 
We next created the low- and high-distortion (A, not A) conditions 
to preserve this minimum-distance property.

Step 6: Create the Category A exemplars for the (A, not A) 
conditions. We used exactly the same A categories as in the (A, B) 
conditions.

Step 7: Create the “not A” exemplars. The “not A” stim-
uli were generated by sampling exemplars uniformly over all of 
18- dimensional screen space, subject to the constraint that the 
distance to the A prototype was greater than 2 L   in the low-
distortion condition and greater than 2 H   in the high-distortion 
condition.

Figure 3 illustrates the (A, not A) categories. The categories con-
structed with this algorithm were used in both experiments reported 
in this article.

Procedure
The participants were run in separate cubicles on separate iMac 

computers in a dimly lit room. The MATLAB programming lan-
guage was used to generate the visual stimuli on the screen, which 
was placed 35 cm from the participants. For the (A, B) conditions, 
participants were told that each stimulus belonged to either Group A 
or Group B. For the (A, not A) conditions, participants were told 
that each stimulus either belonged to Group A or not . Participants 
were instructed to indicate their response by pressing the appropriate 
labeled key on the keyboard. The “A” and “B” (and “A” and “not A”) 
group labels covered the “D” and “K” keyboard keys.

Each participant took part in only one experimental condition. In 
all of the conditions, participants depressed the two response keys 
with their index fingers, and trial-by-trial feedback was provided. 
A brief (1-sec) high-pitched tone (500 Hz) was presented if the re-
sponse was correct, and a low-pitched tone (200 Hz) was presented if 
the response was incorrect. Each participant completed 300 trials (10 
blocks of 30). Numerical feedback was provided at the end of each 
block of 30 trials indicating the percentage of correct responses during 
that block. Participants were given 5 sec to respond. If a response was 

A

A

A

A

not A

not A

not A

not A

Δ

Figure 3. An illustration of the methods used to construct the 
Category A and “not A” distributions used in the (A, not A) tasks 
reported in this article (represented in 2-D).
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Figure 4. Block-by-block accuracy for each of the four condi-
tions of Experiment 1.

Table 2 
Mean Accuracy in Experiment 1 Across All Participants  

for Each of the Four Conditions

Low High

   M  SD  M  SD  

(A, B) 93.7 0.98 93.4 0.95
(A, not A) 84.0 2.52 78.1 2.03

Note—Accuracy is given by percentage of correct responses across all 
10 experimental blocks.
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was computed to the Category A prototype. These distances 
were grouped into either three (low-distortion) or six (high-
distortion) distance bins and then the proportion of correct 
responses was computed for all stimuli within each bin. 
Note that neither the “not A” data from the (A, not A) task 
nor the “B” data from the (A, B) task were used in this 
analysis. In the case of the (A, not A) task, this is because 
the PRS hypothesis does not make strong predictions about 
how “not A” stimuli will be classified. It does make strong 
predictions about “B” trials in the (A, B) task, but correct 
“B” responses from the (A, B) task do not serve as a proper 
comparison with correct “A” responses from the (A, not A) 
task (since the stimuli were different). The “A” stimuli were 
identical in the (A, not A) and (A, B) tasks, so it is most ap-
propriate to compare correct “A” responses across tasks.

First, note that the (A, B) endorsement curves contain 
fewer points than the (A, not A) curves. This is because of 
the inherent difficulty difference between the tasks. In the 

tortion had no effect on accuracy [t test, t(19)  0.15, 
p  .25; sign test, 5/10, p  .25]. In the (A, not A) condi-
tions, accuracy was lower when distortion was high [t test, 
t(21)  1.82, p  .1; sign test, 10/10, p  .001].

As described above, when testing the PRS hypothesis, 
the dependent measure of primary interest is the proportion 
of correct “A” responses as a function of the relative dis-
tance between the stimulus and the A prototype. The PRS 
hypothesis predicts that these endorsement curves, which 
are shown in Figure 5, should be steeper for the (A, not A) 
task. The Figure 5 curves were constructed in the following 
way. In the (A, not A) task, for each Category A stimulus, 
the distance was computed to the Category A prototype in 
18- dimensional stimulus space, and this value was used to 
assign the stimulus to one of 6 (low-distortion) or 12 (high-
distortion) distance bins. Next, within each bin, the propor-
tion of correct “A” responses was computed. In the (A, B) 
task, for each Category A stimulus, the relative distance1 
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Figure 5. The proportion of correct “A” responses in Experiment 1 for both 
the (A, B) and (A, not A) low-distortion (top panel) and high-distortion (bottom 
panel) conditions, as a function of relative distance to the A prototype.
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tortion tasks. Before concluding that our results support 
this hypothesis, it is important to determine whether mod-
els that assume that the same cognitive strategy is used in 
both tasks are compatible with our results. The two most 
popular cognitive accounts of prototype distortion perfor-
mance are from prototype theory and exemplar theory.

Prototype theory assumes that when an unfamiliar stimu-
lus is encountered, it is assigned to the category with the 
most similar prototype (e.g., Homa et al., 1981; Posner & 
Keele, 1968, 1970; Reed, 1972; Rosch, 1973, 1975; Smith 
& Minda, 1998). In prototype distortion tasks, the prototype 
model is equivalent to the ideal observer.2 Exemplar theory 
assumes that, when an unfamiliar stimulus is encountered, 
its similarity is computed to the memory representation of 
every previously seen exemplar from each potentially rel-
evant category. The probability that the stimulus is assigned 
to a particular category depends on the relative magnitude 
of the sum of all similarities associated with that category 
(Brooks, 1978; Estes, 1986, 1994; Hintzman, 1986; Lam-
berts, 2000; Medin & Schaffer, 1978; Nosofsky, 1986).

Let DxA denote the dissimilarity or psychological dis-
tance from stimulus x to the Category A prototype, and 
define DxB analogously. Then, according to the prototype 
model, the probability of responding “A” in an (A, B) task 
equals

 
P x P D D P Z

D D
xB xA

xB xA
(A,B)(A| ) ,

 
(1)

where  is normally distributed with mean 0 and variance 
2. The (A, not A) task is similar, except DxA is compared 

with a threshold T rather than with DxB. Specifically,

 
P x P T D P Z

T D
xA

xA
(A, not A)(A| ) .

 
(2)

The exemplar model bases category decisions on the 
sum of the similarities of the stimulus to all exemplars of 
the relevant contrasting categories. Let Sxi denote the simi-
larity of stimulus x to previously seen exemplar i. Then, 
according to the exemplar model, the probability of re-
sponding “A” in an (A, B) task (Ashby & Maddox, 1993; 
Medin & Schaffer, 1978; Nosofsky, 1986) equals

 

P x
S

S S

xi
i A

xi
i A

x

(A,B)(A| )

jj
j B

.

 

(3)

The parameter  is a measure of response variability. For 
example, it is inversely related to the value of  in Equa-
tions 1 and 2 (Ashby & Maddox, 1993). In (A, not A) tasks, 
the summed similarities to Category A exemplars are com-
pared with a threshold T (e.g., Nosofsky & Zaki, 1998),

 

P x
S

S

xi
i A

xi
i A

(A, not A)(A| )

T

.

 

(4)

Following Posner, Goldsmith, and Welton (1967) and 
Smith and Minda (2001), we assumed

(A, not A) task, there are many more Category A exemplars 
near exemplars in the contrasting category than in the (A, B) 
task, and as a result there are more stimuli of high difficulty. 
Second, note that a visual inspection of Figure 5 appears to 
support the PRS prediction that the endorsement curves are 
steeper for the (A, not A) task than for the (A, B) task.

To test this prediction statistically, the endorsement 
data from the first three relative distances of the low-
distortion conditions were subjected to a 2  3 ANOVA 
{2 tasks [(A, not A) vs. (A, B)]  3 relative distances 
from the A prototype} and the data from the first six 
relative distances of the high-distortion conditions were 
subjected to a 2  6 ANOVA {2 tasks [(A, not A) vs. 
(A, B)]  6 relative distances from the A prototype}. For 
the high level of distortion, there was a significant inter-
action between task type [(A, not A) vs. (A, B)] and rela-
tive distance [low distortion: F(5,138)  3.30, p  .01], 
which supports the conclusion that the proportion of “A” 
responses fell off more quickly in the (A, not A) condi-
tion than in the (A, B) condition. In the low-distortion 
condition, the interaction, readily apparent in Figure 5, 
was not significant [F(2,51)  0.63, p  .05]. In addi-
tion, there was a main effect of task type [(A, not A) vs. 
(A, B)] in the high- [F(1,138)  37.95, p  .001] but 
not in the low- [F(1,51)  1.4, p  .05] distortion con-
ditions, which confirms our conclusion that participants 
found the (A, not A) conditions more difficult than they 
found the (A, B) conditions. Finally, there was also a 
(less interesting) main effect of distance from prototype 
[low distortion, F(2,51)  10.97, p  .001; high distor-
tion, F(5,138)  6.41, p  .001].

A visual inspection of Figure 5 seems to indicate that 
the steepness of the (A, not A) endorsement curve rela-
tive to the (A, B) curve is greater in the low-distortion 
condition than in the high-distortion condition. Thus, 
the failure of this interaction to reach significance in the 
low-distortion condition is somewhat surprising. There 
are several possibilities. First, in the low- distortion con-
dition, the ANOVA included only three levels of dis-
tance, whereas in the high-distortion condition there 
were six levels of distance. As a result, the low-distortion 
ANOVA had fewer degrees of freedom and less power 
than the high-distortion ANOVA. Second, accuracy was 
very high at the two lower distances in both tasks of the 
low-distortion condition, and this ceiling effect may have 
obscured an interaction at the lower distances. There is 
some statistical support for this hypothesis. First, note 
that at the smallest distance, the (A, not A) and (A, B) 
proportions are virtually identical in the low-distortion 
condition. In contrast, at the third distance level—that 
is, the largest (A, B) distance—the (A, not A) propor-
tion is significantly lower than is the (A, B) proportion 
[t(17)  9.114, p  .001]. In summary, there appears to 
be a ceiling effect in the low-distortion condition. In gen-
eral, ceiling effects reduce interactions, and this seems 
to be the case here.

Model-Based Analyses
The PRS hypothesis predicts that participants will use 

different strategies in (A, not A) and (A, B) prototype dis-
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As is standard for these models, we assumed that the 
prototypes used by the prototype model were the true cat-
egory prototypes and that the similarities in the exemplar 
model were computed to all category members. We also 
more crudely fit versions of the models that were sensitive 
to the stimulus presentation order. In this version of the 
prototype model, the Category A prototype is estimated 
by computing the mean of all previously seen Category A 
exemplars. As a result, the Category A prototype is up-
dated after every Category A trial. In the dynamic version 
of the exemplar model the summed similarities in Equa-
tions 3 and 4 are computed only for those category exem-
plars already in memory. Thus, after every trial, another 
exemplar is stored in memory and on the following trial 
one more term is added to one of the sums. These more 
complex versions of the prototype and exemplar models 
made the same qualitative predictions as the simpler static 
versions, so we do not discuss them further.

Equations 1–4 were used to generate the predicted prob-
ability of responding correctly to every stimulus in each of 
the four experimental conditions of Experiment 1 for the 
prototype and exemplar models. These probabilities were 
then grouped according to the (Euclidean) distance from 
each stimulus to the A prototype in the (A, not A) condi-
tions (in 18-dimensional stimulus space) and according to 
the relative distance DxA DxB, in the (A, B) conditions. 
For both models, the parameters were estimated using the 
method of maximum likelihood. The two models each 
have three free parameters, so there is no reason to use a 
penalized measure of fit.

Figure 6 shows the best fits of the prototype model and 
Figure 7 shows the best fits of the exemplar model to the 
data from all four conditions of Experiment 1. Note first 
that all conditions contain extra data not shown in Figure 5. 
In the (A, not A) conditions, these are the proportion of 
correct “not A” responses, and in the (A, B) conditions, 
these are the proportion of correct “B” responses. For the 
reasons mentioned above, these were excluded from Fig-
ure 5. Second, note that both models provide slightly bet-
ter fits to the (A, not A) data than they do to the (A, B) 
data. This is at least partly due to the fact that both models 
had two free threshold parameters (i.e., T in Equations 2 
and 4) that could be manipulated to improve the fits to the 
(A, not A) data, whereas there were no analogous parame-
ters in the (A, B) conditions. Thus, both models had greater 
mathematical flexibility in the (A, not A) than in the (A, B) 
conditions. As a result, the better fits to the (A, not A) data 
do not necessarily mean that the models have greater psy-
chological validity in (A, not A) conditions.

Table 3 lists the overall goodness-of-fit values ( 2 ln L) 
for each model, as well as the fit values for each of the 
four conditions. The values of the best-fitting parameters 
are listed in the Figures 6 and 7 figure captions. Note from 
Table 3 that the prototype model provided the better fit in 
both (A, not A) conditions. In the (A, B) conditions, the 
fits of the two models were almost equal, although in both 
cases the exemplar model had a slight advantage. Overall, 
however, the prototype model provided a slightly better fit.

These fits should be interpreted with some caution, be-
cause they depend on our assumptions about how psycho-

 Dxi  log(1  Distancexi), (5)

where Distancexi is the Euclidean distance in 18- dimensional 
stimulus space between stimulus x and exemplar i. Follow-
ing Shepard (1987), we assumed that similarity and psy-
chological distance are related via

 Sxi  exp( Dxi). (6)

The PRS hypothesis predicts that when the PRS by itself 
is used to select a response in the (A, not A) task, the deci-
sion about whether to respond “Yes” will depend on how 
familiar the stimulus feels. At the computational level, this 
is similar to the decision strategy assumed by prototype 
theory. Because the prototype is the most likely stimulus 
in either category,3 it should elicit the greatest feeling of 
familiarity. As distance from the prototype increases, like-
lihood decreases and, therefore, so should familiarity.

In contrast, the decision strategy assumed by the exemplar 
model is less compatible with the decision strategy assumed 
by the PRS. For example, the exemplar model predicts that 
a stimulus from Category A that is highly similar to a previ-
ously seen atypical Category A exemplar is likely to elicit a 
“Yes” response. Such a stimulus should elicit some PRS ac-
tivation, and therefore seem vaguely familiar. However, it is 
important to note that a feeling of vague familiarity could also 
occur on “not A” trials. Even though within-category simi-
larity is low in the “not A” category, some pairs of “not A” 
category members will be highly similar, by chance. Thus, 
a feeling that a stimulus is vaguely familiar is not enough 
to signal a participant to respond “Yes.” As a result, a pure 
PRS strategy predicts that participants should respond “No” 
to all atypical Category A exemplars, whereas the exem-
plar model predicts that some of these stimuli should elicit a 
“Yes” response. The predictions of a pure PRS strategy and 
the exemplar model therefore disagree.4

The PRS hypothesis makes a number of specific pre-
dictions about how well the prototype and exemplar mod-
els should fit the Experiment 1 endorsement curves. First, 
as noted above, because the PRS hypothesis assumes that 
multiple systems are used, it predicts that both models 
should make systematic mispredictions—that is, since 
they both assume a single system. Second, it predicts that 
the empirical (A, not A) endorsement curves should be 
steeper than predicted by the exemplar model—that is, 
since it predicts that the PRS will mediate many (A, not A) 
responses. Third, it predicts that the empirical (A, B) en-
dorsement curves should be shallower than predicted by 
the prototype model—that is, since the PRS by itself is 
insufficient in the (A, B) task.

In the present application, the prototype and exemplar 
models both have three similar parameters. In both models 
there is one threshold parameter T for the low-distortion 
(A, not A) condition, and a separate T for the high- distortion 
(A, not A) condition. The remaining free parameter for the 
prototype model is 2, which is a measure of the magnitude 
of perceptual noise. Since the stimuli were similar in all 
four conditions, we assumed that 2 did not vary with task 
or level of distortion. For the exemplar model, a similar 
role is played by the  parameter, which is inversely related 
to perceptual noise (Ashby & Maddox, 1993).
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tioned above, each stimulus is described by 18 numerical 
values. Values 1 and 2 are the horizontal and vertical screen 
coordinates of the first dot, values 3 and 4 are the horizon-
tal and vertical screen coordinates of the second dot, and so 
forth. The distance between two patterns in stimulus space 
is computed by comparing the 18 numbers describing the 
first pattern with the corresponding 18 numbers that de-
scribe the second pattern. But this process assumes that we 
know how to number the dots from 1 to 9 in each pattern 
(so that dot 1 in the first pattern is compared with dot 1 
in the second pattern). If the two patterns are identical, or 
are both low distortions of the Category A prototype, the 
correspondence is obvious. But suppose that we wish to 
compute the distance between two “not A” patterns: In this 
case, the dots will have no obvious correspondence, and 
there will be 362,880 possible solutions to the correspon-
dence problem (i.e., 9!). It would clearly be impossible to 
collect empirical evidence to decide which solution is best, 

logical distance and similarity are related to physical dis-
tance in the 18-dimensional stimulus space (see Equations 
5 and 6). The assumptions we made are the most common 
choices (i.e., we know of no alternatives to Equation 5), but 
it is possible that some other method of measuring similar-
ity might have qualitatively changed these fits. Another 
problem with applying the models is that they both require 
some solution to the dot correspondence problem. As men-
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Figure 6. Prototype model fits to the Experiment 1 data shown in Figure 5. The best-fitting value of the standard deviation of per-
ceptual noise ( ) was 1.0613, and the best-fitting values for the thresholds (T ) were 6.006 for the low-distortion condition and 6.429 
for the high-distortion condition.

Table 3 
Goodness-of-Fit Values ( 2 ln L) for the Prototype  

and Exemplar Models in Experiment 1

   Prototype  Exemplar  

(A, B) low  2.93  2.91
(A, not A) low  5.63  5.72
(A, B) high 24.18 24.17
(A, not A) high 15.51 16.58

 Overall  48.25  49.38  
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only for Category A exemplars (i.e., again because the PRS 
hypothesis makes no predictions about “not A” trials).

Increasing regression lines (and positive correlations) 
mean that the empirical endorsement curves are steeper 
than predicted in a model, and decreasing regression lines 
(and negative correlations) mean that the empirical en-
dorsement curves are shallower than predicted in a model. 
Note that all three predictions of the PRS hypothesis are 
supported in Figure 8. First, both models systematically 
mispredict the empirical endorsement curves—the pro-
totype model predicts curves that are too steep and the 
exemplar model predicts curves that are too shallow. 
Second, the empirical (A, not A) endorsement curves are 
steeper than predicted by the exemplar model. Third, the 
empirical (A, B) endorsement curves are shallower than 
predicted by the prototype model.

Note that our findings in the (A, not A) conditions repli-
cate the results of Smith and Minda (2001), who showed that 

so any choice is arbitrary.5 Fortunately, there are mathe-
matical reasons to believe that this choice will have little 
effect on the model fits (see our discussion of stimulus 
dimensionality in the General Discussion). We chose the 
null solution,6 but it is impossible to know whether one of 
the other 362,880 possible solutions might have changed 
the outcome of this fitting process.

As described above, the PRS hypothesis predicts that the 
prototype and exemplar models should both make certain 
systematic mispredictions when fit to the empirical en-
dorsement curves. These predictions are most easily tested 
by examining the residuals associated with each model—
that is, by examining the difference between the predicted 
probability and the observed proportion of responses at 
each relative distance. These residuals are shown in Fig-
ure 8 for each of the four conditions, along with the best-
fitting regression line and the correlation between residual 
and distance. In the (A, not A) task, the residuals are plotted 
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Figure 7. Exemplar model fits to the Experiment 1 data shown in Figure 5. The best-fitting value of the gamma parameter ( ) was 
1.1088, and the best-fitting values for the thresholds (T ) were 0.8507 for the low-distortion condition and 0.8585 for the high-distortion 
condition.



THE PRS AND CATEGORY LEARNING    993

effects in the (A, B) conditions. It is true that (A, B) accu-
racy was high at both levels of distortion, but note that the 
exemplar and prototype models both systematically mis-
predicted the (A, B) results, and that these mispredictions 
were qualitatively the same as in the (A, not A) conditions. 
Both models can perfectly fit data in which accuracy is 
perfect. Yet the exemplar model predicted endorsement 
curves that were too shallow in the (A, B) conditions, and 
the prototype model predicted curves that were too steep; 
(A, B) accuracy was, therefore, not too high to differenti-
ate between these models.

the exemplar model predicted endorsement curves that were 
shallower than the curves they observed in their (A, not A) 
conditions. Zaki and Nosofsky (2004) reported that when 
participants were trained on only high-level distortions, the 
(A, not A) endorsement curves became less steep. Note that 
this result is also predicted by the PRS hypothesis. When 
training only entails high-level distortions, activation of the 
PRS by Category A exemplars will be low, and as a result, 
the endorsement curves should be less steep.

Figure 8 also argues against the hypothesis that our 
main conclusions in Experiment 1 were driven by ceiling 
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Experiment 1. The (A, not A) figures only include A trials. Also shown are the best-fitting lines and the correlation coefficients—that is, 
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contribute to category learning (e.g., an explicit reasoning 
system, a procedural-learning system) either benefit from 
or require trial-by-trial feedback (e.g., Ashby, Alfonso-
 Reese, Turken, & Waldron, 1998; Ashby, Queller, & Ber-
retty, 1999). Thus, we expect that performance in (A, B) 
tasks should be affected by the loss of trial-by-trial feed-
back much more than performance in (A, not A) tasks.

Experiment 2 tested this prediction—namely, that 
eliminating the signal indicating whether each catego-
rization response is “correct” or “incorrect” should be 
more deleterious to (A, B) performance than to (A, not A) 
performance. The category structures and methods were 
identical to those used in Experiment 1, with the single 
difference that, in Experiment 2, there was no trial-by-trial 
feedback. The use of identical methods in the two experi-
ments allows us to use the Experiment 1 results as a full 
feedback control for Experiment 2.

Method
Participants and Design

Forty-one participants from the University of California, Santa 
Barbara, received course credit for their participation. We used 
a 2  2 factorial design, with two different tasks [(A, not A) vs. 
(A, B)] crossed with two levels of distortion (low vs. high). In the 
(A, not A) task, 8 participants participated in the low-distortion con-
dition and 10 in the high-distortion condition. In the (A, B) task, 
8 participants participated in the low-distortion condition and 15 in 
the high-distortion condition. Each participant participated in only 
one condition; all participants reported 20/20 vision, or vision cor-
rected to 20/20. Each participant completed one session that lasted 
approximately 25 min.

Procedure
The methods used in Experiment 2 were identical to those used 

in Experiment 1, except that trial-by-trial feedback was removed 
from the task. Block feedback, however, was provided—that is, after 
every 30 trials, participants were informed of their percentage of 
correct responses on the preceding 30 trials. The instructions given 
to participants in Experiment 2 were similar to the instructions given 
to participants in Experiment 1, except they were told they would 
be provided no information as to whether each of their responses 
was correct or incorrect. In addition, participants were told that they 
should not change their categorization strategy after they felt confi-
dent that they had learned the categories. Participants in the (A, B) 
conditions were also told that it did not matter which response key 
they used for Category A, and which key they used for Category B. 
However, they were encouraged to use the same category/response 
key mapping throughout each block of the experiment.

Results

The absence of feedback meant the assignment of 
responses to buttons was arbitrary. Therefore, for each 
block, we computed the percentage of correct responses 
with each assignment and assumed that participants used 
the assignment for which accuracy was above chance. 
Overall accuracy is shown in Table 4. Note that the results 
are very different from Experiment 1, where performance 
was much better in the (A, B) conditions (see Table 2). 
In Experiment 2, performance was slightly better in the 
(A, not A) conditions (more on this below). Thus, remov-
ing feedback led to much larger drops in accuracy in the 
(A, B) conditions than in the (A, not A) conditions. When 
distortion was low, overall accuracy dropped from Experi-

Discussion

The results clearly show that the proportion of correct 
“A” responses decreased with the relative distance between 
the presented stimulus and the Category A prototype more 
quickly in the (A, not A) task than in the (A, B) task. The 
results from these two tasks also differed qualitatively in 
other ways. First, even though the distance between the 
nearest exemplars in contrasting categories was approxi-
mately equal in the two tasks, participants performed more 
poorly in the (A, not A) tasks than in the (A, B) tasks. Sec-
ond, overall accuracy was invariant across distortion levels 
in the (A, B) task (see Figure 4), suggesting that participants 
dealt with distortion optimally. In contrast, (A, not A) per-
formance deteriorated when distortion was increased. Note 
that the PRS hypothesis predicts that increasing distortion 
levels should be more detrimental in the (A, not A) task 
because when distortion is increased, fewer Category A 
members will be similar to the A prototype; and, therefore, 
fewer trials will induce strong PRS activation.

The two leading cognitive accounts of prototype dis-
tortion tasks—prototype and exemplar theories—both 
provided good quantitative fits to the Experiment 1 data. 
Even so, both models made systematic mispredictions. 
In particular, the prototype model predicted endorsement 
curves that were too steep and the exemplar model pre-
dicted endorsement curves that were too shallow.

The PRS hypothesis correctly predicted that the 
(A, not A) endorsement curves were steeper than the 
(A, B) curves, that the exemplar model (A, not A) en-
dorsement curves would be too shallow, and the prototype 
model (A, B) curves would be too steep. At this stage of 
its development, the PRS hypothesis does not make spe-
cific quantitative predictions. Therefore, it should not be 
viewed as an alternative to prototype or exemplar models. 
In this sense, it is somewhat like Nosofsky’s (1986; Nosof-
sky & Johansen, 2000) attention optimization hypothesis, 
which also does not make precise quantitative predictions, 
but nevertheless does make qualitative predictions about 
what should happen when quantitative models are fit to 
categorization data.

EXPERIMENT 2

The results of Experiment 1 provide the first known be-
havioral evidence supporting a role for the PRS in category 
learning. They verified a prediction of the PRS hypothesis 
that the probability of correctly responding “A” should de-
crease with distance to the A prototype more quickly in 
(A, not A) tasks than in (A, B) tasks. Despite the simplic-
ity of this hypothesis, however, it also makes other strong 
predictions. For example, the PRS does not depend on 
feedback for learning, simple repetition is sufficient (e.g., 
Schacter, 1990; Wiggs & Martin, 1998). Therefore, if the 
PRS plays a key role in (A, not A) tasks, then performance 
in these tasks should not depend critically on trial-by-trial 
feedback. In contrast, we have argued that learning in 
(A, B) tasks must be mediated primarily by memory sys-
tems other than the PRS. Our results do not identify these 
other systems, but the systems most commonly thought to 
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repetition. Therefore, the PRS hypothesis correctly pre-
dicts the increasing nature of the low- distortion (A, not A) 
learning curve in Experiment 2.

Second, note that in the low-distortion (A, not A) con-
ditions, Experiment 2 performance is consistently better 
than Experiment 1 performance. Thus, removing feedback 
in this condition actually improved performance (this dif-
ference is significant by a sign test: 10/10, p  .001). In all 
other conditions, however, accuracy is considerably lower 
in the absence of feedback. An ANOVA on the (A, not A) 
data indicated a main effect of distortion [F(1,39)  
29.02, p  .001] and an interaction between feedback and 
distortion [F(1,39)  10.23, p  .01], but no main ef-
fect of feedback [F(1,39)  2.57, p  .1]. In contrast, for 
the (A, B) data, the main effects of feedback [F(1,42)  
75.90, p  .001] and distortion [F(1,42)  28.00, p  
.001] were both significant, but the interaction between 
feedback and distortion was not. These results strongly 
suggest that feedback was more critical to performance 
in the (A, B) conditions than in the (A, not A) conditions.

Recall that the absence of feedback meant that the as-
signment of responses to buttons was arbitrary. Therefore, 
for each block, we computed the percentage of correct 
responses with each assignment and assumed that partici-
pants used the assignment for which accuracy was above 
chance. This procedure, although necessary, slightly over-
estimates the true accuracy, since it guarantees that guess-
ing can never produce accuracy below chance. So one 
possibility is that the higher (A, not A) accuracy without 
feedback in the low-distortion condition is because of this 
slight bias in our estimation procedure. To test this hy-
pothesis, we reanalyzed the data, assuming that each par-
ticipant used the same assignment of responses to buttons 
throughout the experiment. This did not change the con-
clusion that (A, B) performance was significantly worse 
without feedback, but under this assumption there no lon-
ger was a significant difference between low-distortion 
(A, not A) performance with and without feedback.

Another result of interest—briefly mentioned above and 
visible in Table 4 and by comparing the top and bottom 
panels of Figure 9—is that when distortion was low, unsu-
pervised performance was generally better in the (A, not A) 
task than in the (A, B) task. This difference is not signifi-
cant with ANOVA, but it is significant by a sign test (9/10, 
p  .011). Recall that this is the opposite of the pattern 
seen in Experiment 1. With feedback, the (A, not A) task 
was more difficult. When distortion was high, there was 
no significant difference between (A, not A) and (A, B) 
performance (i.e., either by ANOVA or a sign test).

In summary, the results of Experiment 2 strongly sup-
port the prediction of the PRS hypothesis that feedback is 
more important in the (A, B) task than in the (A, not A) 
task. The prototype and exemplar models do not make 
predictions in unsupervised experiments, so neither model 
can be fit to the Experiment 2 data.

Discussion
Experiment 2 showed that, as predicted by the PRS 

hypothesis, removing trial-by-trial feedback had a much 
greater effect on performance in the (A, B) task than in 

ment 1 to Experiment 2 by 9% in the (A, B) condition, 
and it actually increased in the (A, not A) condition (i.e., 
by 5%). When distortion was high, removing feedback 
caused a 22% drop in accuracy in the (A, B) condition, 
compared with a 9% drop in the (A, not A) condition.

Figure 9 shows block-by-block learning curves from 
each of the four conditions, together with the learning 
curves from the corresponding conditions of Experi-
ment 1. The top panel of Figure 9 shows data from the 
(A, not A) conditions and the bottom panel shows data from 
the (A, B) conditions. Note first that in the low- distortion 
condition of the (A, not A) task, accuracy consistently 
increases across blocks in the absence of any feedback. 
This is especially critical because learning that depends on 
the PRS should not require feedback, but it does require 
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Figure 9. Block-by-block accuracy in Experiments 1 and 2. The 
top panel shows results for all (A, not A) conditions and the bot-
tom panel shows results for all (A, B) conditions.

Table 4 
Mean Accuracy in Experiment 2 Across All Participants  

for Each of the Four Conditions

Low High

   M  SD  M  SD  

(A, B) 84.8 1.25 70.8 1.38
(A, not A) 88.9 0.73 69.4 1.20

Note—Accuracy is given by percentage of correct responses across all 
10 experimental blocks.
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more successful in Experiment 2 in the (A, not A) condi-
tions. We believe that this possibility is unlikely for two rea-
sons, one logical and one empirical. First, there is no logi-
cal reason participants should adopt this strategy. In both 
the (A, not A) and (A, B) tasks, there are two categories of 
stimuli, each with its own separate response; and on every 
trial, feedback was given signaling the category member-
ship of the stimulus on that trial. So, if participants learned 
only one category in the (A, not A) conditions, there is no 
reason not to adopt this same strategy in the (A, B) condi-
tions. Second, this hypothesis predicts that there should 
have been a main effect of feedback when comparing Ex-
periments 1 and 2, not an interaction; in other words, if 
participants in Experiment 2 found that, in the absence of 
feedback, the (A, not A) task was less difficult than the 
(A, B) task, because they only had one category to learn 
in the (A, not A) task but two in the (A, B) task, this same 
ordering of task difficulty should have been seen in Ex-
periment 1 when feedback was provided on every trial. But 
instead, the opposite result was observed—that is, under 
supervised conditions, the (A, B) task was easier.

As it happens, there is another feature of the stimuli 
used in the present experiment that might facilitate the use 
of the PRS in the (A, not A) conditions—namely, that the 
dot patterns vary on many perceptual dimensions rather 
than on few. We have hypothesized that PRS activation 
in the prototype distortion task requires many category 
exemplars to be similar to the prototype. In the prototype 
distortion task, every exemplar is a unique distortion of 
the prototype. Therefore, the PRS should be more active 
if random distortions produce many stimuli similar to the 
prototype. With stimuli that vary on only one dimension, 
random distortions of a prototype will produce some ex-
emplars with a lower value than the prototype on the stim-
ulus dimension and some with a higher value. As a result, 
a few distortions will be close to the prototype (and there-
fore similar) and many will be further away (and there-
fore more dissimilar). In fact, in one dimension, only two 
exemplars can be the nearest neighbors of the prototype. 
All other exemplars must be more dissimilar to the proto-
type than these two can be. In two dimensions, however, 
five exemplars can be the nearest neighbor of the proto-
type, because now the exemplars can cluster around the 
prototype at all compass points instead of simply falling 
to the left or right. As stimulus dimensionality increases, 
this trend accelerates. For example, with 8-dimensional 
stimuli, 240 different exemplars can all be nearest neigh-
bors of the prototype, and with stimuli that vary on 24 di-
mensions, the number of possible nearest neighbors of the 
prototype increases to 196,560 (Odlyzko & Sloane, 1979). 
Thus, random distortions of the prototype are likely to 
produce more exemplars highly similar to the prototype 
when the stimuli vary on many perceptual dimensions. 
With nine dots, the random dot patterns vary on 18 stimu-
lus dimensions. As a result, many distortions of the proto-
type will lie very near the prototype in stimulus space and 
will likely activate the PRS.7 Thus, the PRS hypothesis 
predicts that the difference between (A, not A) and (A, B) 
learning observed in the present study should be less pro-
nounced with stimuli that vary on fewer dimensions.

the (A, not A) task. In the (A, not A) task, overall accu-
racy was only about 2% lower in the absence of feedback, 
whereas (A, B) accuracy dropped by an average of 16% 
when feedback was removed. In the (A, B) task, large ac-
curacy drops were seen at both levels of distortion (9% 
in the low-distortion condition and 22% in the high-
 distortion condition), but in the (A, not A) task, accuracy 
only dropped in the high-distortion condition (by 9%). 
In the low-distortion (A, not A) task, accuracy actually 
improved by about 5% when feedback was removed. This 
is important, because the PRS hypothesis predicts that the 
effects of the PRS on performance should be greatest in 
the low-distortion (A, not A) condition.

GENERAL DISCUSSION

Because the A categories were identical in the (A, not A) 
and (A, B) conditions, participants received identical Cate-
gory A training in the two tasks. In addition, category sepa-
ration was approximately equal in all conditions of both ex-
periments. Despite these similarities, (A, not A) and (A, B) 
performance differed qualitatively in Experiments 1 and 2: 
(1) when feedback was provided (A, B) performance was 
unaffected by distortion level, whereas (A, not A) perfor-
mance deteriorated with increasing levels of distortion; 
(2) (A, not A) performance was significantly more sensi-
tive to prototype similarity than was (A, B) performance; 
(3) (A, not A) performance was worse than (A, B) perfor-
mance when trial-by-trial feedback was given, but equal or 
better when training was unsupervised; and (4) when dis-
tortion was low (A, not A) performance actually improved 
when feedback was removed, whereas (A, B) performance 
deteriorated. Collectively, these differences argue strongly 
that learning in (A, not A) and (A, B) prototype distortion 
tasks is mediated by functionally separate systems.

The PRS hypothesis correctly predicted most of these 
results a priori. In particular, it predicted that (A, not A) 
performance would worsen as distortion level increased. It 
predicted that (A, not A) performance would be more sensi-
tive to relative distance to the A prototype than (A, B) per-
formance would be, and it predicted that removing trial-by-
trial feedback would harm (A, B) performance more than it 
would harm (A, not A) performance. In addition, our mod-
eling results showed that the two most popular cognitive 
theories of learning in prototype distortion tasks—namely, 
prototype theory and exemplar theory—provided good 
quantitative fits to the Experiment 1 data, but at the same 
time they both made certain systematic mispredictions. In 
particular, Figure 8 shows that neither model could account 
for the observed steepness of the (A, not A) and (A, B) 
curves. The prototype model predicted curves that were too 
steep and the exemplar model predicted curves that were 
too shallow. Finally, we know of no unsupervised versions 
of prototype or exemplar theory, so neither model appears 
to make any a priori predictions about Experiment 2.

An alternative account of our results might be that in the 
(A, not A) conditions, participants learned only a single 
category (i.e., Category A), whereas in the (A, B) condi-
tions they learned two. This hypothesis might be used, for 
example, to explain why learning without feedback was 
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a smaller and smaller neural response (e.g., Raichle et al., 
1994; Schacter & Buckner, 1998; Wiggs & Martin, 1998). 
As a result, there have been specific proposals that repeti-
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Linking PRS activation to repetition suppression 
should facilitate the development of a neural theory of the 
PRS, but several important questions remain unanswered. 
First, if the PRS is a purely perceptual memory system, 
we might expect to see its effects limited to sensory areas 
of cortex (including sensory association areas). It is true 
that repetition suppression is often seen in visual cortex, 
but it has also been reported in other nonsensory brain 
areas, including prefrontal cortex (e.g., Demb et al., 1995; 
Raichle et al., 1994; Wagner, Desmond, Demb, Glover, 
& Gabrieli, 1997). Second, the neural mechanisms that 
mediate repetition suppression are also unclear. For ex-
ample, it is unclear whether repetition suppression is due 
to a sharpening of tuning curves (Wiggs & Martin, 1998) 
or to rapid response learning (Dobbins, Schnyer, Verfael-
lie, & Schacter, 2004; Logan, 1990).

The repetition priming that is mediated by the PRS has 
long been thought to be a form of perceptual learning (e.g., 
Kirsner & Dunn, 1985), so the extensive literature on per-
ceptual learning (e.g., Dosher & Lu, 1999; Fahle & Poggio, 
2002) and its neural basis (e.g., Gilbert, Sigman, & Crist, 
2001; Petrov, Dosher, & Lu, 2005) might provide answers 
to these questions. The present results suggest that the cate-
gory learning literature should closely monitor this debate.

This article reported behavioral dissociations between 
(A, not A) and (A, B) prototype distortion tasks. In the 
past, little attention was paid to whether a prototype dis-
tortion task was of the (A, not A) or (A, B) variety. We 
predict that similar results should be seen in other types 
of category learning tasks, besides prototype distortion, 
which compare (A, not A) and (A, B) conditions, as long 
as the A and B categories are characterized by high within-
category similarity and the “not A” category members are 
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that human category learning recruits multiple memory 
systems (Ashby & O’Brien, 2005). Different memory sys-
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that have been hypothesized by memory researchers.
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with the summed similarity of the presented stimulus to all previously 
seen exemplars, regardless of their category membership (i.e., rather 
than just to all previously seen Category A exemplars). This is because 
the PRS includes no record of the category membership of previously 
viewed stimuli. Note that this sum should be roughly equal for an atypi-
cal Category A exemplar that was highly similar to some previously seen 
Category A member and for a “not A” exemplar that was highly similar 
to some previously seen “not A” member.

5. One might choose an optimal solution, such as the correspondence 
that minimizes the Euclidean distance between the two patterns. There 
are two problems with this approach, however. First, there is no empirical 
evidence that such a choice gives a better account of perceived similarity 
than other choices, and second, there are many different ways to define 
the optimal solution (e.g., minimize bending required to bring the two 
patterns into alignment).

6. By this, we mean we did nothing. Therefore, for Category A pat-
terns we assumed that each dot corresponded to the dot in the prototype 
pattern from which it was distorted. For “not A” patterns, we randomly 
labeled each dot.

7. Note that this highly nonintuitive property of high-dimensional 
spaces reduces the importance of the dot correspondence problem. Es-
pecially with “not A” category members, many stimuli will be approxi-
mately equidistant from each other, regardless of which dot assignment 
choice is made.

(Manuscript received October 29, 2007; 
revision accepted for publication February 26, 2008.)
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NOTES

1. The exact values used to group the Category A stimuli in (A, B) 
tasks were (DxA  DxB  DAB)/2, where DAB is the distance between the 
prototypes of Categories A and B. Adding the DAB constant and dividing 
by 2 ensures that the scales for the (A, not A) and (A, B) conditions are 
equal. For example, suppose that DAB  100, and consider a stimulus on 
the line connecting the two prototypes that is 30 units from the A proto-
type. Then, in the (A, not A) conditions, this stimulus would be placed in 
the bin marked 30 (since DxA  30). In the (A, B) condition, this same 
stimulus would also be placed in the bin marked 30 [since (DxA  DxB  
DAB)/2  (30  70  100)/2  30].

2. This is because the category exemplars are created by distorting 
the prototype by adding independent and identically distributed noise to 
each stimulus dimension (e.g., Ashby & Gott, 1988).

3. These likelihood predictions follow because we created the Cat-
egory A members by distorting the horizontal and vertical locations of 
each dot in the prototype by adding samples from independent and iden-
tically distributed normal distributions (with mean zero).

4. An exemplar-based model that would be more consistent with a 
pure PRS strategy would replace the summed similarity in Equation 4 
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