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It has been a well-known fact since the early days of 
vision science (e.g., Alhazen, ca. A.D. 1030; see Sabra, 
1989) that not all points along an object’s boundary con-
tour are equally informative about that object’s shape. Att-
neave (1954) was probably the first to explicitly formulate 
the hypothesis that curvature extrema (i.e., points along 
the contour where curvature reaches a local maximum) 
are most informative about shape. He used two demon-
strations to support this hypothesis. In one demonstration, 
he asked subjects to mark salient points along the contour 
of a random shape and he showed that the frequency plots 
were centered on the curvature extrema (see Figure 1A). 
In a second demonstration that has become known as Att-
neave’s sleeping cat he created a version of a line drawing 
of his sleeping cat by connecting the curvature extrema by 
straight lines and he showed that this straight-line version 
was still easy to recognize.

Kennedy and Domander (1985), however, questioned 
Attneave’s (1954) hypothesis that points of maximum 
curvature are most informative for shape recognition. In 
three experiments, with a small number of fragmented 
contour stimuli depicting manmade objects, they showed 
that identification of these stimuli was better when frag-
ments were placed midway between extrema, and best 
when fragments were placed midway between midpoints 
and extrema. Kennedy and Domander concluded that the 
shapes of objects are best represented by samples of the 
contour that are selected to be evenly distributed, even if 
this means eliminating all of the points where curvature 
changes direction maximally (i.e., curvature extrema).

In a more recent study, with 12 silhouette stimuli de-
rived from the shadows cast by sweet potatoes, Norman, 

Phillips, and Ross (2001) attempted to replicate Attneave’s 
(1954) first demonstration more closely. Their results sup-
ported Attneave’s hypothesis. More specifically, 12 sub-
jects were asked to “copy” the silhouettes by positioning 
10 points until the dotted contour version resembled the 
original silhouette version as closely as possible. The fre-
quency plots (see Figure 1B) looked very similar to the 
one from Attneave’s study (see Figure 1A). In addition, 
by doing a curvature analysis, they were able to derive the 
strongest curvature extrema, positive maxima, as well as 
negative minima (indicated by closed and open circles, 
respectively; see Figure 1C). By superimposing the points 
selected by at least half of the observers (indicated by ar-
rows; see also Figure 1C), they then showed that the most 
informative points were almost always very close to the 
curvature extrema.

Norman et al. (2001) attributed the discrepancy between 
their results and those of Kennedy and Domander (1985) 
to stimulus and task differences. Kennedy and Domander 
had used fragmented contour stimuli depicting manmade 
objects (a window, a box, a stove, an electric clothes dryer, 
etc.), consisting mainly of rectangular surfaces bordered 
by straight edges; the only “curved” parts were sharp cor-
ners where the straight edges intersected. Norman et al., 
in contrast, used natural solid objects with convex and 
concave surface patches, projecting to smoothly varying 
convex and concave contour curvature (with few straight-
line segments and few sharp corners). Moreover, subjects 
in Kennedy and Domander’s study had to identify the 
fragmented contour pictures, whereas Norman et al.’s ob-
servers were asked to indicate important points while they 
inspected the complete silhouette stimuli.
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2007; see also the Appendix in Wagemans, Notebaert, & 
Boucart, 1998). Because we have continuous curvature 
values along the contours of these outlines, we can now 
address several hypotheses about the role of curvature 
singularities in shape perception in a thorough and sys-
tematic way. One step in this research program (for an 
overview, see De Winter & Wagemans, 2004), consists 
in asking whether subjects mark curvature extrema (or 
points in their close neighborhood) as salient points. Our 
stimulus set is probably ideal to address the issue of stim-
ulus variability, which appeared to be at stake when the 
results of Kennedy and Domander (1985) were compared 
with those of Norman et al. (2001), because Snodgrass 
and Vanderwart’s set of line drawings was taken to be rep-
resentative of all kinds of everyday objects, biological as 
well as manmade.

Second, we wanted to provide solid empirical data 
about perceptual saliency of contour points on outlines of 
everyday objects as a necessary stepping stone to perform-
ing experiments on identification of straight-line versions 
(De Winter & Wagemans, in press) and fragmented ver-
sions (Panis, De Winter, Vandekerckhove, & Wagemans, 
in press), using empirically validated points to connect by 
straight-line segments, or to position contour fragments. 
In the present study, we used purely subjective judgments 
(i.e., we asked subjects to mark points that they considered 
to be salient), but these additional identification studies 
will allow us to corroborate our findings with more objec-
tive performance data (see General Discussion). When we 
use the term “perceptual saliency,” with reference to our 
results, we mean “perceptual saliency as indicated by our 
subjects when they marked points along the contour.”

The article consists of three major parts. First, we de-
scribe the methods of data acquisition and analysis and 
we report some descriptive statistics. Second, we pre sent 
a thorough analysis of perceptual saliency, using several 
tools to obtain meaningful aggregated values from the huge 

Attneave’s (1954) hypothesis has not only triggered em-
pirical research; it has also inspired more theoretical work 
in at least two different directions. First, Resnikoff (1989) 
has formalized the notion of information using classic 
measures from information theory, and he has provided 
mathematical proof of the information concentration in 
curvature extrema. More recently, Feldman and Singh 
(2005) proposed an alternative quantification scheme. 
They extended Attneave’s original idea by showing that 
the same logic implies that negative curvature extrema 
(minima) must be more informative than positive cur-
vature extrema (maxima) because all natural objects are 
more convex than concave; closed contours must, there-
fore, always turn inward after turning away from the ob-
ject center. Second, using concepts and formalizations 
from projective and differential geometry, Koenderink 
and van Doorn (1976; Koenderink, 1984) have shown that 
contour fragments of positive curvature (or convexities) 
correspond to regions of positive Gaussian curvature on 
the 3-D surface (i.e., bump-like regions), whereas contour 
fragments of negative curvature (or concavities) corre-
spond to regions of negative Gaussian curvature on the 
3-D surface (i.e., saddle-like regions). Inflections (points 
where curvature changes sign and goes through zero lo-
cally) might then be informative points too, because they 
correspond to parabolic lines on the 3-D surface, separat-
ing convex and concave surface regions (Koenderink & 
van Doorn, 1982; Van Gool, Moons, Pauwels, & Wage-
mans, 1994).

The present study had two major goals. First, we wanted 
to test Attneave’s (1954) hypothesis about the importance 
of curvature extrema for shape perception, using a much 
larger set of stimuli and observers than in previous stud-
ies. In another large-scale study, we created silhouette and 
outline versions of the famous Snodgrass and Vanderwart 
(1980) set of line drawings of everyday objects, and we 
obtained identification norms for them (Wagemans et al., 
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Figure 1. (A) Attneave (1954) demonstrated the importance of curvature extrema by 
showing that people mark them as more salient points along the contour of a random 
shape (higher frequency is represented by a longer line). This demonstration received 
further empirical support from a study by Norman et al. (2001) with 12 observers and 
12 silhouettes (cast shadows from sweet potatoes). (B) One example of a stimulus and 
a frequency plot as in Attneave’s demonstration (No. 1 from Figure 2 in Norman et al., 
2001). (C) Arrows indicate locations along the contour marked by half or more of the 
observers, whereas circles indicate curvature extrema (closed ones indicate positive 
maxima or M , open ones indicate negative minima or m ); the radius of the circle 
indicates the magnitude of the absolute curvature (No. 1 from Figure 5 in Norman 
et al., 2001). It is clear that the most salient points are situated at or near extrema, 
although not all extrema are equally salient.
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computer program assisted them in selecting the most salient points 
along the contour; then, using a computer mouse, subjects moved a 
blue diagonal cross freely on the screen but positioned on the out-
line shape. The blue cross followed the mouse pointer on the screen 
so that the Euclidean distance between the mouse pointer and the 
blue cross was minimal. To mark a point on the outline, subjects 
moved the blue cross in the desired position and then clicked the 
left mouse button once. At that position a small (3-pixel radius) blue 
filled circle became clearly visible and remained there. Subjects 
could remove a marked point by moving the blue cross to the neigh-
borhood of a marked point (the blue cross then became a red cross 
indicating the selection of that point) and clicking the left mouse 
button once. Subjects had to mark at least one point so that they 
could not inadvertently skip an outline, but they could mark as many 
as they considered necessary. Instead of enforcing an equal number 
of points (e.g., 10 points in the study by Norman et al., 2001), we 
preferred to leave this to our subjects to decide, because our stimulus 
set varied considerably in shape complexity (e.g., as parameterized 
by the number of inflections, the number of times curvature changes 
sign). Each outline remained on the screen for as long as the sub-
jects required—for at least 5 sec, again to avoid subjects rushing 
through the stimuli. The next outline appeared after the Return key 
was pressed. The position of each marked point was then recorded 
in data files. The order of stimulus presentation was randomized 
for each subject separately and the experimenter secured silence 
throughout the session until the last subject was finished (i.e., after 
35–40 min).

RESULTS AND DISCUSSION

Descriptive Statistics and Data Analysis 
Procedures

Data from individual subjects consist of contours (lists 
of x and y coordinates) with a number of points marked as 
salient. The number of points marked along the contour 
differs enormously between stimuli and subjects, with 
a grand average of 19.8 points (SD  7.4). The average 
number of points marked by each subject (averaged across 
stimuli) varies between 3.6 and 47.7 points (SD  7.4), 
with a median of 19.6 points (Q1  14.4, Q3  24.0). The 
average number of marked points per stimulus (averaged 
across subjects) varies between 3.6 and 66.0 (SD  11.2), 
with a median of 15.8 points (Q1  11.0, Q3  26.6). The 
average number of marked points per stimulus correlates 
quite strongly with the number of inflections per stimulus 
(r  .893, p  .0001).

The total database consists of all the points along all of 
the contour stimuli marked by all of the subjects, a total 
of 205,438 points. This is considerably greater than the 
1,440 points in the study by Norman et al. (2001), from 
12 subjects copying 12 stimuli using 10 points each. One 
way to test Attneave’s (1954) hypothesis is to investigate 
how far each marked point is from the different types of 
curvature singularities: positive maxima (M ), negative 
minima (m ), and inflections (I ). To calculate this, we 
took the so-called outline-distance, the Euclidean distance 
in pixels from point to point, accumulated for all points 
along the outline between the marked point and the target 
singularity. When relating each marked point to the near-
est exemplar of each of the three curvature singularities 
(i.e., using each marked point three times), the average 
distances are 15.65 pixels (SD  20.29) for M , 156.70 
pixels (SD  1,129.26) for m , and 152.53 pixels (SD  

database of empirically marked points. We also relate the 
location of the selected points to the location of curvature 
singularities. Third, we report results from an exploratory 
a posteriori analysis, in which we try to relate the empiri-
cally obtained perceptual saliency values to some factors 
determining perceptual saliency according to the literature. 
We consider our data set to be a useful benchmark to test 
novel hypotheses about perceptual saliency and a reliable 
normative source to select salient points for future studies 
with stimuli derived from them (e.g., straight-line and frag-
mented versions). Therefore, we will present the descrip-
tive, summary statistics and analyses in this article and we 
will make all of our stimuli and data available on our Web 
site for future use by the whole research community (see 
ppw.kuleuven.be/labexppsy/johanw/index.htm).

METHOD

Subjects
One hundred sixty-one subjects, all second-year psychology 

students at the University of Leuven, participated in this study as 
a mandatory component of their curriculum. It took place in two 
adjacent rooms with 33 personal computers in total. There were six 
sessions, with a maximum number of 30 students participating in 
each session.

Stimuli
The stimulus set consisted of 260 shapes in outline, derived 

from the 260 line drawings of everyday objects by Snodgrass and 
Vanderwart (1980). To convert the line drawings to outline shapes 
we proceeded as follows: First, silhouettes were made by filling in 
the interior surfaces in black, and their outlines were then extracted 
automatically and spline-fitted to obtain smooth curvature values at 
all points along the contour (for more details, see Wagemans et al., 
2007). Because 260 stimuli would be too much for one subject to 
handle in a single session of a half hour or so, we divided the stimuli 
into four equivalent subsets (see the Appendix), with a maximally 
matched distribution of the number of inflections, the number of 
living/nonliving objects, and the extent to which the outlines could 
be identified (based on Wagemans et al., 2007; see also De Winter 
& Wagemans, 2004).

All black, smoothly curved contour stimuli were presented on 
a white background at a viewing distance of approximately 0.7 m 
in the center of a 17-in. CRT display. The display resolution was 
set to 1,024  768 pixels and a refresh rate of 60 Hz. Stimuli were 
all contained in a box of 640  480 pixels, or a viewing angle of 
16.3º  12.2º.

Procedure
Each subject received one page with written instructions and a 

set of 65 contour stimuli, derived from real objects, as described 
above. On average, each outline was thus marked by 40 subjects, 
who were instructed to look carefully at each stimulus and to mark 
important or salient points. This task was described in the following 
manner: “Your task is to look carefully at each form and to indicate 
the points on the outline that are important. Important points are, 
for instance, points that attract your attention, but also points that 
can allow the reconstruction of the form.” These instructions served 
no other purpose than to clarify what we mean by salient or impor-
tant points. The reference to attention and reconstruction makes it 
easier for subjects to imagine what they could use as a basis for their 
judgment; it was by no means intended to replace more objective 
experimental tasks using attention or reconstruction paradigms (see 
General Discussion).

To ensure that subjects first looked at the outline as a whole, 
they were allowed to mark points on the outline only after 1 sec. A 
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20,000 points are marked twice, about 10,000 points are 
marked three times, and so on, with a very long right tail 
(a few points with a relatively high frequency). A second 
way to test Attneave’s (1954) hypothesis, then, is to com-
pare the frequencies of marking between the three subsets 
of marked points: one where an M  is the nearest neigh-
bor, one where an m  is the nearest neighbor, and one 
where an I is the nearest neighbor (see Figure 2A). As 
soon as we look at points marked at least twice, it is very 
clear that those closer to extrema (i.e., M  and m ) are 
much more frequent than those closer to inflections (I ). 
When we correct for the larger frequency of occurrence of 
I relative to M  and m  in the stimuli themselves (as in-
dicated above), the difference becomes even stronger. The 
same is true of points marked only once (see Figure 2B).

It is possible to plot these frequency values along with 
the curvature graph of each contour (see Figure 3A—
black and gray lines, respectively) and we can then take 
the local maxima of these saliency graphs; we call these 
the saliency maxima. A third way to test Attneave’s (1954) 
hypothesis now becomes to investigate how far these sa-
liency maxima are located away from the three differ-
ent types of curvature singularities (taking the outline-
distance between each saliency maximum and the target 
singularity).

However, two undesired effects emerged from the above 
procedure. First, the distributions of saliency maxima are 
always quite erratic. Two saliency maxima are often lo-
cated close to each other. It seems reasonable to assume 

1,129.50) for I. When relating each marked point to the 
nearest singularity only, regardless of which of the three 
(i.e., using each marked point only once), the majority 
of marked points (110,355 or 53.72%) was closest to an 
M  (average distance: 6.93 pixels, SD  11.10), then m  
(68,053 or 33.12%, average distance: 4.05 pixels, SD  
5.80), and finally I (27,030 or 13.16%, average distance: 
5.83 pixels, SD  8.39). However, both of these measures 
are strongly influenced by the frequency of occurrence—
which also differs strongly—of the three curvature singu-
larities in the stimuli themselves: 34.4% M , 25.2% m , 
and 40.5% I. The same order of frequency (I  M   
m ) is also reflected by the average number of singulari-
ties of each type per stimulus: For M , 22.6 (SD  13.3, 
median  18.0); for m , 16.6 (SD  12.9, median  
13.0); and for I, 26.6 (SD  19.7, median  22.0). When 
comparing the attraction of the three types of curvature 
singularities in the analyses reported below, we can com-
pensate for this predominance of I and M  over m  by 
dividing by these relative frequencies.

Instead of considering individually marked points, we 
can use the frequency of marking in each point along 
the contour as the major dependent variable. These raw 
frequency values vary between zero (when none of the 
participants marked a given point) and about 40, the num-
ber of participants for that stimulus (when all the par-
ticipants marked a given point). The distribution of these 
frequency values is very strongly left-skewed: The major-
ity of points—over 50,000—are marked only once, about 
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Figure 2. Histograms of raw and smoothed frequency values of marked points being closest to maxima (M ), minima (m ), or 
inflections (I). In (A) the uncorrected raw frequency values are plotted, whereas in (B) these values are corrected for the relative fre-
quency of occurrence of each type of curvature singularity (see text for further details). Raw frequencies of two or higher occur mainly 
for points associated with extrema, not with inflections. In (C) the uncorrected smoothed values are plotted, whereas in (D) these values 
are corrected for the relative frequency of occurrence of each type of curvature singularity (see text for further details). The highest 
frequencies relate to extrema, not inflections.



54    DE WINTER AND WAGEMANS

Gaussian function; the farther the points are away from 
point i, the less influence they have on the saliency value 
of point i. We used a Gaussian function, because we con-
sidered it more and more unlikely that a subject meant to 
mark point i the farther it was away from point i, and we 
assumed this deviation or noise to be distributed accord-
ing to a Gaussian function. An important parameter is the 

that such near neighbors do not reflect two independent 
salient points, but have become two points due to slight 
deviations in the marking location. To avoid this undesired 
result, we applied smoothing to the saliency frequencies. 
The smoothing technique calculated for each point i the 
weighted average of the frequency of point i and of points 
in the neighborhood of i. The weighting was done by a 
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Figure 3. (A) Stimulus example (No. 12, axe) with the raw frequencies of marked points superimposed on the contour (the 
size of the gray circle is proportional to the frequency). Below the stimulus example, the curvature graph is plotted in gray, and 
the raw frequency is plotted in black. The contour is traced counterclockwise, starting at the left corner point of the bottom 
part of the handle (indicated by the arrow). The curvature maxima and minima are clearly visible and appear to be attractive 
locations to be marked as salient points. (B) Same stimulus example and curvature graph but now with smoothed saliency being 
superimposed (see text for details). The selection of the specific smoothing parameters determines whether some points will be 
selected as salient points or not (see text for details). Many instances of selected saliency maxima (indicated by solid black dots) 
are situated at positive maxima (M ) or negative minima (m ).
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less the same conclusion—that, in general, highly salient 
points are very often close to the curvature extrema, as 
predicted by Attneave.

In a first analysis, we take all of the selected salient 
points, using all different combinations of seven smooth-
ing values (from 2 to 14 in steps of 2) and seven saliency 
thresholds (from 11 to 29 in steps of 3), and evaluate 
whether they are closest to an M , an m , or an I. To 
correct for the uneven occurrence of the three curvature 
singularities (see above), we express the frequency of 
a selected salient point being the closest to a curvature 
singularity of a particular type, relative to the frequency 
of occurrence of that singularity type. Figure 4A plots 
such frequencies for the whole range of parameter val-
ues, separately for M  (squares), m  (triangles), and I 
(circles). It is clear that extrema are selected most fre-
quently, in accordance with Attneave’s (1954) hypothesis, 
with negative minima (m ) being selected somewhat less 
frequently than positive maxima (M ), especially with 
a relatively large smoothing parameter. This difference 
tends to become smaller with a higher saliency threshold 
(i.e., including only the highly salient points). At the same 
time, inflections (I) tend to become more frequent nearest 
neighbors of selected salient points with larger smoothing 
values. These observations are supported by an ANOVA: 
The relevant main effects and interaction effects are all 
strongly significant ( p  .0001), with singularity type 
clearly being the strongest factor [F(2,72)  1,202.82], 
explaining more than 88% of the systematic variance.

In a second analysis, we took all of the selected salient 
points, for all the same combinations of seven smoothing 
values and seven saliency thresholds, and plotted the dis-
tance to its closest curvature singularity, an M , an m , 
or an I (see Figure 4B). This outline-distance is generally 
largest for M  points, smallest for I, and intermediate, but 
relatively smaller, for m . For larger smoothing values, the 
distance tends to become larger. This quasilinear increase 
is strongest for M  points when the saliency threshold is 
lower (thereby also considering the lower value saliency 
points), whereas it is fairly constant for m  and I. Again, 
these trends are confirmed by an ANOVA: The relevant 
main effects and interaction effects are all strongly sig-
nificant ( p  .0001), with singularity type clearly being 
the strongest factor [F(2,72)  756.02], explaining more 
than 58% of the systematic variance.

While exploring several outline shapes visually, we no-
ticed that for larger contour segments which are almost 
uniformly (mostly positive) curved, the marked points 
tend to spread out more. There is much less agreement 
as to which point is most salient on such segments (see 
Figure 5). A good example of this is the positively curved 
side of the banana (A). In shapes with these large convex 
sections, factors others than those based on local curva-
ture changes come into play as well. For example, the se-
lection of four points in the case of the ball (B) is clearly 
determined by the horizontal and vertical axes, whereas 
the four selected points in the American football (C) in-
dicate the intersections of the long and short axes of the 
2-D ellipse (from the projected 3-D ellipsoid) with the 
contour. Subjects have the tendency to spread out their 

width or standard deviation of the Gaussian function. This 
smoothing parameter is expressed in image pixels. So, 
after this smoothing, we had a smoothed saliency value 
for every point on the contour: The higher this value, 
the more subjects chose that point (or points nearby) as 
salient (see Figure 3B). A second problem is that some 
(very) low value saliency maxima occur (e.g., point a in 
Figure 3B); it seems inappropriate to treat these points as 
salient points too, considering their low value. Therefore, 
we applied a saliency threshold, a simple cutoff: All points 
below a particular saliency value are no longer consid-
ered. It will be clear that the selection of an appropriate 
threshold value is not a trivial matter. In the example of 
Figure 3B, a lower threshold value would have included 
point b, whereas a slightly higher threshold value would 
have missed point c.

To summarize: (1) we smoothed the saliency fre-
quencies; (2) we obtained local maxima points of these 
smoothed saliency values; (3) we selected the saliency 
maxima above the saliency threshold (or equal to it), and 
considered these points as the selected salient points; and 
(4) we examined what the nearest neighboring curvature 
singularities were for each of the selected salient points. 
The problem was then to choose appropriate values for 
these two parameters, the smoothing parameter and the 
saliency threshold. We therefore decided to test a wide 
range of parameter values and to examine their effect. 
This constitutes the basis of the results reported in the 
second paragraph below. To avoid overloading the article 
with data, we will choose a range of parameter values that 
represent the general trends in our data, and we will limit 
ourselves to parameter values with fewer artifacts (e.g., 
floor–ceiling effects). A substantial part of the article will 
address the variability due to these parameter changes.

To conclude this more descriptive paragraph, we in-
clude histograms for the three subsets of marked points, as 
in Figures 2A and 2B, but now for the smoothed frequency 
(taking a smoothing parameter of 5 pixels and no thresh-
old): Figure 2C contains the histograms for the smoothed 
frequencies for marked points closest to M , m , and I as 
such, and Figure 2D corrects the number of observations 
by compensating for the larger frequency of occurrence 
of I, M , and m  in the stimuli themselves (see above). 
These graphs clearly show that high values of smoothed 
frequency (or saliency) occur almost exclusively at points 
that are closest to extrema, not at inflections. For moderate 
values of smoothed saliency (e.g., 5–15), points closest to 
M  are somewhat more frequent than points closest to 
m , whereas the reverse is true for relative high values of 
smoothed saliency (e.g., 20–30).

Selected Salient Points and Distance to 
Curvature Singularities

In line with the third approach to test Attneave’s (1954) 
hypothesis (introduced above), we will now examine more 
closely the set of salient points as marked by our observers 
(i.e., selected saliency maxima), and we will specifically 
investigate how they relate to the curvature singularities 
as computed mathematically on our contour stimuli. Sev-
eral procedures will be used that will all lead to more or 
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artifacts. In that case, it is clear that extrema are the most 
salient points on an outline shape and that M  and m  
points are chosen in approximately equal amounts. Inflec-
tions are rarely chosen as salient points.

This can be illustrated quite convincingly using rep-
resentative examples of our stimulus set, superimposing 
the most frequent markings on the contours along with 
the curvature singularities (using a data format similar 
to Figure 5 in Norman et al., 2001). In Figure 6, 12 ex-
amples are shown of these marked and annotated object 
contours (all 260 are available on our Web site): These 
examples are representative in the sense that they show 
animals as well as artifacts, relatively simple shapes as 
well as more complicated ones, and they contain many 
typical instances of marked singularities, as well as some 
nonmarked singularities and marked nonsingularities. The 
procedure to obtain these example figures is the follow-
ing: First, the smoothing value is set to 5 pixels and the 
saliency threshold is set to 13.3 pixels (i.e., the average sa-
liency across the whole stimulus set). Second, the extrema 
are shown by green squares for M  and red triangles for 
m , the size of the symbol being related to the absolute 

markings somewhat evenly along these contour segments, 
a tendency that may have played a role in Kennedy and 
Domander’s (1985) finding that fragments at midpoints 
between curvature singularities are helpful for identifica-
tion (see also Kennedy, Juricevic, & Bai, 2003).

Segments of quasiuniform curvature are also more sus-
ceptible to the chosen parameter values. In the example 
of the alligator (see Figure 5D), we gradually decreased 
the value of the saliency threshold from 10 to 8 and 6 
(holding the smoothing value constant at 6). Observe that 
with each chosen saliency threshold, additional saliency 
points appear (from 28 at the highest threshold to 31 at 
the intermediate threshold and 34 at the lowest thresh-
old). The newly appearing points are usually located at 
homogeneously curved sections along the contour (e.g., 
the back and the right side of the tail of the alligator). This 
illustrates again how difficult it is to select an appropri-
ate saliency threshold if one wants to select representa-
tive salient points (e.g., to be used in future experiments 
with straight-line versions or fragmented versions). It can 
be concluded from these results that it is best to select a 
smaller smoothing value (but as small as, say, 5) to avoid 
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Figure 4. (A) Frequency of selected salient points being closest to maxima (M ), minima (m ), or inflections (I), expressed relative 
to the frequency of occurrence of each type of curvature singularity. The different panels report these results for different saliency 
thresholds (from 11 to 29 in steps of 6), whereas the values on the x axes indicate the different smoothing values (from 2 to 14 in steps 
of 2). These smoothing parameters have some effect on the frequency values but clearly M  and m  are always much more strongly 
represented than I. (B) Distance between all the selected saliency maxima and their nearest singularity, shown separately for each type 
of curvature singularity (M , m , or I). The saliency thresholds (in the different panels) and smoothing values (on the x axes) are the 
same as in panel A. These smoothing parameters have some effect on the frequency values but for relatively small smoothing values 
(2 to 6) and for relatively large saliency thresholds (retaining only the most salient points), the distances to singularities are small (e.g., 
up to 4 pixels).
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Feldman and Singh (2005) proved mathematically that 
points of negative curvature are more informative than 
are points of positive curvature, because they are more 
surprising and less redundant. Whether this higher infor-
mation value, which was based only on local factors (ex-
cept for the assumption of closure), is also reflected by a 
higher perceptual saliency, as marked by our participants, 
can be verified in our large data set of saliency values. 
One way to address this question is to look at the relation 
between absolute curvature and smoothed saliency (using 
a fixed smoothing parameter of 5 pixels and a threshold 
of 0) and do this separately for contour points with posi-
tive and negative curvature. The linear regression through 
these data points reveals a much steeper slope for the 
positively curved points (20.20) than for the negatively 
curved points (4.73), with a comparable intercept (11.32 
and 13.81, respectively). This seems to provide evidence 
against the link between information value and saliency: 
For an equal value of absolute curvature, the saliency is 
higher for positively curved points than for negatively 
curved points. However, the fit of these linear regressions 
is relatively poor (R2  .163 and .043, respectively), and 
the results may be strongly influenced by some outliers. 
Restricting the range to absolute curvatures smaller than, 
or equal to, 1, yields a similar pattern, although somewhat 
less pronounced: The slope for the positively curved points 
(67.30) is somewhat steeper than for the negatively curved 
points (54.48), with a comparable intercept (8.92 and 
10.29, respectively), and reasonable fits this time (R2  
.407 and .339, respectively). The conclusion must be that 
points with negative curvature are not necessarily more 
salient than points with positive curvature, despite their 
higher information value. This conclusion is perhaps not 
very surprising, if one considers that Feldman and Singh’s 
analysis of information value was purely mathematical 
and local, whereas our saliency values are subjective and 
based on a much more global perceptual analysis of shape. 
In other words, we can conclude that pure mathematical 

curvature at that point (curvature is multiplied by 20 pix-
els, but the maximum radius is set to 7 pixels). In between 
the selected extrema, the inflections are indicated as blue 
circles with fixed radii of 3 pixels. Third, the radii of the 
open circles, indicating the selected marked points, are 
related to the saliency (radius  saliency/4). In many ex-
amples, the most salient points are located at the strongest 
curvature extrema (positive maxima as well as negative 
minima). This visualization of the results is probably the 
most convincing evidence in favor of Attneave’s (1954) 
hypothesis.

Factors Determining the Saliency  
of Marked Points

In this part of the article, we will examine possible fac-
tors that might determine the saliency of the points along 
the contour marked by our subjects. Attneave’s (1954) 
hypothesis concerned only a simple binary distinction 
between curvature extrema and other points (the former 
being salient, the latter not) and Norman et al.’s (2001) ar-
ticle also did not report the role of other factors underlying 
the empirically obtained saliency values. As our preceding 
descriptive results have indicated, curvature extrema are 
often marked as salient points; but certain other points are 
salient too, and clearly not all curvature extrema are equally 
salient. We want to understand some of the variability in 
our saliency measure in terms of contributing stimulus 
factors. The present analysis is basically correlational in 
nature and the results will have to be followed up by future 
psychophysical experiments that are specifically designed 
to test the role of the putative factors parametrically (using 
appropriate controls for possibly confounding factors). 
Despite the post hoc nature of these analyses, however, we 
believe it is useful to report some of these results because 
they might add insight into what determines the saliency of 
a point along the contour of an object. Several of these post 
hoc analyses address issues raised in the literature, whereas 
others are based on our own intuitions.

 

 

A B C

D

Figure 5. Stimulus examples with smoothed saliency values superimposed on the 
contours (in gray) and selected saliency maxima indicated by solid black dots. (A) Ba-
nana (No. 16), (B) ball (No. 14), and (C) American football (No. 95). These examples 
show that contour segments with smooth, quasihomogeneous positive (convex) cur-
vature often yield saliency values that are spread out, which make it more difficult 
to reach the threshold. (D) Alligator (No. 3). The number of selected saliency maxima 
(marked by solid black dots) increases from 28 to 31 and 34 when the saliency thresh-
old decreases from 10 to 8 and 6.
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vature peak with limited spatial extent will not be very 
salient visually. Therefore, rather than using absolute cur-
vature as such, it is useful to normalize the absolute cur-
vature by some measure of the extent of the shape in the 
neighborhood of the point. In their work on the saliency 
of a part boundary (usually an m ), Hoffman and Singh 
(1997) proposed to divide the curvature of a point by the 
length of the chord connecting the two neighboring inflec-
tions (see Figure 8A). As can be seen in Figure 7B, this 
normalization does not improve the correlations. They 
are still generally low (only slightly above .20 when no 
threshold is applied, lower than .20 in all other cases), they 
decrease with higher saliency thresholds, but they now 
reach a maximum for smoothing values around 4 or 6. 
As an alternative basis for normalization, we can take the 
chord length between the two midpoints in between the se-
lected salient point and each of its two neighboring salient 
points (see Figure 8B). As can be seen in Figure 7C, this 
alternative normalization yields larger correlations for the 
smoothed saliency values without a threshold (above .40 
when the smoothing parameter is not larger than 8), but as 
soon as a threshold is applied, the correlations are around 
.30 at best (for smoothing parameters, around 4 or 6).

information (in terms of curvature sign and value) was not 
the only factor influencing selection by the participants.

For all of the remaining factors, we will report the cor-
relation between the parameterization of the factor (as 
computed on our stimuli) and the empirically determined 
saliency values after smoothing. We will plot these correla-
tions for all different combinations of seven smoothing val-
ues (from 2 to 14 in steps of 2) and seven saliency thresh-
olds (from 8 to 26 in steps of 3), as well as the smoothed 
data without a threshold (threshold  0). These plots are 
included in Figure 7 (using different panels for the differ-
ent factors being examined). We will make use of some 
additional figures to illustrate the specific procedures used 
to compute the relevant stimulus factors (see Figure 8).

A simple factor to examine is the absolute curvature of 
a point. As can be seen in Figure 7A, this factor produces 
generally low correlations (between .20 and .35 when no 
threshold is applied, lower than .20 in most other cases) 
and they decrease with larger smoothing values and higher 
saliency thresholds. One reason that absolute curvature 
may not be such a strong factor is that it can vary a lot 
from one point to another, especially in contours derived 
from natural objects (due to discretization). A strong cur-

 

 

 

 

 

 

 

 

 

 

 

 

012 – Axe 021 – Bear 024 – Beetle 033 – Bow

112 – Revolver044 – Candle 055 – Chicken 106 – Glove

182 – Rabbit 201 – Seal 203 – Shirt 217 – Star

Figure 6. Stimulus examples (indicated by their names and numbers within the set by Snodgrass and Vanderwart, 1980) with curva-
ture singularities and selected saliency maxima superimposed on the contour. Squares indicate M , triangles indicate m , and dots 
indicate I. Open circles indicate selected saliency maxima. The size of the symbols reflects their absolute curvature (for extrema) or 
their saliency (for saliency maxima). This figure can be compared more or less to Figure 5 in Norman et al. (2001), also illustrated as 
Figure 1C before. The complete set of stimuli and results is made available on our Web site (see ppw.kuleuven.be/labexppsy/johanw/
index.htm).
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further and connect the neighboring salient points with 
line segments (see Figure 8E). The disadvantage of taking 
our saliency-based reference points is that they depend on 
the smoothing parameters (e.g., with a different saliency 
threshold, the neighboring salient points will change).

The respective correlations for these three measures 
based on turning angle are shown in Figures 7D, 7E, and 
7F. The turning angle based on neighboring inflections 
(see Figure 7D) yields correlations that are generally low 
(between .15 and .30) and do not vary much with the 
smoothing parameters. Our variants of the turning angle, 
using the neighboring salient points (see Figure 7F) or 
the midpoints between them (see Figure 7E), produce 
the highest correlations of all of our measures, especially 
when no threshold is applied (between .60 and .85). In 
line with the neurophysiological results reported earlier 
(Pasupathy & Connor, 1999), we have strong evidence 
that the turning angle between the two flanking line seg-
ments of a corner is an important factor for the perceptual 
saliency of the corner point—more important than the 
local curvature in the corner point itself. Note that subse-
quent neurophysiological work has indicated that higher 
level shape encoding in the monkey cortex makes use of 
lower level encoding of curved fragments (Pasupathy & 
Connor, 2001, 2002), and may correspond strongly with 
human shape encoding (Op de Beeck, Wagemans, & Vo-

The generally weak correlations between curvature and 
saliency are consistent with neurophysiological research 
(Pasupathy & Connor, 1999) showing that cells in mon-
key area V4 are more tuned to specific angles between 
two adjacent lines of a corner and less to the degree of 
curvature at the apex of the angle—although both data 
sets are quite different in many respects (e.g., humans 
vs. monkeys, subjective judgments vs. cell responses). 
In relation to this, Hoffman and Singh (1997) proposed 
the turning angle as another factor determining the sa-
liency of a part boundary, which we might extend to the 
saliency of a marked point. The turning angle is simply 
the amount of turning from one normal to another normal 
(using the angle smaller than 180º). Rather than taking 
the normal, we calculated an estimate by fitting a regres-
sion line through the target point and its 10 surrounding 
contour points (5 at each side), and we then used its slope 
to compute the turning angle. This procedure has the ad-
vantage of being less sensitive to small local irregularities. 
Again, we can use different basis points of line segments 
to compute the turning angle between. Similar to Hoffman 
and Singh’s measure, we can use the two neighboring in-
flections of each salient point (see Figure 8C). Similar to 
our preceding normalization procedure, we can also use 
the midpoints between two consecutive salient points (see 
Figure 8D), or we can extend the local neighborhood even 
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Figure 7. Correlations between stimulus factors and saliency for different smoothing values (along the x axes) and for different 
saliency thresholds (shown as different lines). Panels (A) to (C) show the results for different measures of absolute curvature at a local 
point, (D) to (F) for different calculations of the turning angle between the contour segments neighboring the selected target point, and 
(G) to (I) for more global part measures (see text for further details).
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them (see Figure 8F). Hoffman and Singh (1997) pro-
posed two factors determining the saliency of a part (they 
used “part” in the stricter sense of natural parts or com-
ponents). One is the size of the part relative to the whole 
object (i.e., the area of the gray part in Figure 8F, divided 
by the area of the whole outline to which it belongs). The 
second is what they called stick out: the degree to which 
a part protrudes from the object (i.e., the length of the 
contour segment of the gray part in Figure 8F, divided by 
the length of the base). The larger a part, and the more 
it sticks out, the more salient it is. When we are dealing 
with salient points of positive curvature, the relevant parts 
belong to the inside of the object (hence, figural parts). 
When we are dealing with salient points of negative cur-
vature, in contrast, the relevant parts belong to the outside 
of the object (hence, background parts or figural holes). 
To be able to distinguish between the relevance of factors 
influencing the saliency of parts in both of these contexts, 
we will report the analyses separately for positive and 
negative points.

A third factor that we also considered relevant is the 
so-called “compactness” of the part. Zusne (1970) has 
defined compactness of overall shapes as the area of the 
shape divided by the squared contour length. Intuitively, 
shapes are most compact if their area is as large as pos-
sible for the shortest possible contour length. A round 
shape is very compact, whereas a shape with a lot of parts 
sticking out has a low compactness. We hypothesize that 
the saliency of a part may be related to the inverse of com-
pactness (i.e., fewer compact parts are more salient in the 

gels, 2001, 2003). Our data set shows clearly that a point 
is considered more salient when its two neighboring line 
segments form a sharp angle. As expected, the correlations 
between saliency and our variants of the turning angle de-
pend rather strongly on the smoothing parameters. The 
curves for the different smoothing parameters now tend 
to follow an inverse U-shaped function, with peaks (high-
est correlations) around a smoothing value of 6 pixels. 
As before, the correlations decrease with higher saliency 
thresholds but now, in contrast to the results for the other 
factors, the correlations are still considerable (between .40 
and .65) even for thresholds of 8, 11, and 14.

Extending the local neighborhood around a salient 
point even further (from chord length to normalize cur-
vature in a salient point, to turning angle between two 
neighboring segments), we then examined the role of the 
2-D part of the shape surrounding the salient point. (Note 
that we use the term “part” in a theoretically neutral way, 
not in the sense of making any claims about whether the 
2-D piece of shape is a perceptually meaningful part or a 
structural component of the whole shape. The segmenta-
tion of shapes into natural parts is not at stake here. This 
issue has been studied in detail elsewhere; see De  Winter 
& Wagemans, 2006; Hoffman & Richards, 1984.) We 
selected both salient points neighboring the salient point 
under consideration (as before) and we then connected 
them with a line segment, constituting a base line. The 
relevant part around a salient point is now defined as the 
part of the shape inside the contour bordered by the two 
neighboring salient points and the base line connecting 

Figure 8. Illustrations of the principles to compute the stimulus factors. (A) Chord length between 
two inflections (in between two extrema). (B) Chord length between two midpoints (in between two 
selected salient points). (C) Turning angle measured between the normals at the two inflections 
neighboring the selected salient point. (D) Turning angle measured between the two straight line seg-
ments connecting the selected salient point and the midpoints to the two neighboring salient points. 
(E) Turning angle measured between the two straight line segments connecting the selected salient 
point and the two neighboring salient points themselves. (F) Illustration of the 2-D part defined 
around a selected salient point. Possibly relevant stimulus factors for this 2-D part are relative size, 
stick out, compactness, and contour fragment length (see text for further details).
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tors that have been tested (i.e., sign of curvature and the 
nine factors plotted in Figure 7). To keep the reported data 
within a manageable amount, we performed this analysis 
for only one combination of parameter values: a smooth-
ing value of 4 pixels and a threshold of 0. These values 
were chosen because they generally produced the largest 
correlations (see Figure 7). The results of this regression 
analysis are given in Table 1. The R2 for the overall model, 
including all 12 factors, was .74. The majority of the ex-
plained variance can be attributed to our third measure of 
line turning (taking neighboring salient points to define 
the line segments; see Figure 8E for the definition and 
Figure 7F for the results): .79  .79  .62 (  83.78% 
of the systematic variance). Also important are stick out 
and compactness, each contributing −.22  −.22  .048 
(  6.47%) and −.17  −.17  .029 (  3.91%), respec-
tively. Adding our normalized absolute curvature measure 
(using midpoints between salient points rather than in-
flections) adds about 1% explained variance; so all in all, 
although we are analyzing factors determining the percep-
tual saliency of points along the contour, the more global 
factors seem to be more important than the local ones.

GENERAL DISCUSSION

Which points along the contour of a 2-D shape are most 
salient? This simple question was the starting point of 
the present study. More than half a century ago, Attneave 
(1954) proposed that local maxima of positive curvature 
and local minima of negative curvature are the most sa-
lient points along the contour. Subsequent mathematical 
work has substantiated Attneave’s intuition by explaining 
its geometric basis (e.g., Koenderink, 1984) and by prov-
ing that curvature extrema are indeed more informative in 
the sense of information theory (Feldman & Singh, 2005; 
Resnikoff, 1989). The empirical support, however, was less 
strong so far. Norman et al. (2001) were the first to show 
empirically obtained saliency data along with mathemati-
cally computed curvature data but their study used only 12 
observers and 12 quasirandom shapes (shadows cast by 
sweet potatoes). Using identification of contour-deleted 
line drawings of everyday objects, Kennedy and Domander 
(1985) had shown that points midway between extrema 
were more informative than the extrema themselves.

sense that they stick out more). We therefore define the 
inverse of compactness of our parts as the squared length 
of the contour of the part (i.e., contour segment from each 
neighboring salient point to the salient point under consid-
eration, plus the length of the base), divided by the area of 
the gray part in Figure 8F.

The respective correlations for these three measures 
based on the part surrounding the salient point (i.e., rela-
tive size, stick out, and inverse of compactness) are shown 
in Figures 7G, 7H, and 7I. The two measures affecting 
part saliency, according to Hoffman and Singh (1997)—
relative size and stick out—yield rather weak correlations 
with point saliency in our data set, except for unthresh-
olded saliency values with a small smoothing value. For 
relative size (see Figure 7G), the correlations for the un-
thresholded saliency values drop from around .40 and .45 
(for a smoothing parameter of 2 and 4 pixels, respectively) 
to about .20 (for a smoothing parameter of 12 or 14 pix-
els). For stick out (see Figure 7H), the correlations for 
the unthresholded saliency values are more stable for an 
increasing smoothing parameter (from .40 to about .30). 
All the other correlations with stick out are low, except 
for two correlations around .25 or .30 for a smoothing pa-
rameter of 4 or 6 pixels and a threshold of 8 pixels. When 
we tested the correlations separately for points with posi-
tive and negative curvature (for those parameter values for 
which the correlations are maximal in the overall set, i.e., 
a smoothing parameter of 4 pixels and no threshold), they 
turned out to be quite stable: for relative size (r  .44 and 
.45 for parts surrounding a point with positive and nega-
tive curvature, respectively; both ps  .05), and for stick 
out (r  .43 and .36), respectively; both ps  .05). The sa-
liency of a point is therefore affected more or less equally 
by the saliency of the surrounding part, whether the part 
is positive (protrusions) or negative (indentations). As ex-
pected, the inverse of the compactness of the surrounding 
part also turns out to affect the saliency of a point (see 
Figure 7I): For the unthresholded data, the correlations 
vary between .40 and .60 (with a peak at a smoothing pa-
rameter of 6 pixels). Points are more salient when the parts 
in which they are embedded are less compact.

Because it is quite likely that some of the tested fac-
tors correlate with one another, it is also useful to perform 
an overall multivariate linear regression with all 10 fac-

Table 1 
Results From the Stepwise Multiple Regression Analysis of Smoothed 

Saliency Against 10 Stimulus Factors

   SE   SE  t(12,360)  p level

Intercept 8.19 0.17 49.35 .0000
Turning angle_SP 0.79 0.01 0.21 0.00 70.19 .0000
Stick out −0.22 0.01 −2.64 0.08 −33.88 .0000
Compactness −0.17 0.01 −0.03 0.00 −26.62 .0000
ABS(curv)_NormMP 0.12 0.01 0.40 0.02 16.17 .0000
Turning angle_MP 0.09 0.01 0.02 0.00 10.18 .0000
Turning angle_I −0.07 0.00 −0.01 0.00 −14.63 .0000
Relative size 0.06 0.01 0.95 0.10 9.80 .0000
ABS(curv) −0.05 0.01 −1.29 0.18 −7.23 .0000
Sign −0.04 0.00 −0.43 0.05 −9.12 .0000
ABS(curv)_NormI −0.02 0.01 −0.02 0.00 −3.78 .0002

Note—See text for further details.
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and marking the outlines vs. first marking dots next to 
the shape and then meticulously copying them onto the 
contour). Yet despite these considerable differences, the 
results were quite comparable, which is reassuring with 
respect to the methodological validity of both approaches. 
Our method allowed us to test many more shapes and sub-
jects. This strengthened the external validity of our re-
sults, and enabled the extensive correlational analysis of 
factors determining perceptual saliency of points along 
the contour of shapes.

Moreover, the tools that we have developed to analyze 
these data (e.g., smoothing and thresholding the raw fre-
quency data) can be used to select salient points for other 
studies using different experimental paradigms to test the 
role of particular contour points for recognition more di-
rectly. Indeed, our methods, like those used by Attneave 
(1954) and Norman et al. (2001), were not used to investi-
gate the role of curvature extrema for shape recognition. Al-
though Attneave and Norman et al. asked subjects to select 
points for shape reconstruction, they did not actually test 
whether the shapes that could be reconstructed from these 
selected points would then be recognizable by an indepen-
dent sample of subjects. We have actually done this since 
performing the present study. In one study, we have created 
straight-line versions derived from the contour stimuli (as 
in the case of Attneave’s cat), and we have confirmed that 
they are more identifiable when the straight-line segments 
connect curvature extrema than when they connect inflec-
tions, and also when they connect salient points (using the 
data from the present study) rather than points midway 
between salient points (see De Winter & Wagemans, in 
press). In another study, we placed contour fragments on 
the selected points (see Kennedy & Domander, 1985) and 
now fragmented versions were generally more identifiable 
when the fragments were placed on midpoints rather than 
on salient points (see Panis et al., in press, Experiments 1 
and 2). When only a restricted number of dots were shown, 
outlines were more identifiable with dots on salient points 
than on midpoints (see Panis et al., in press, Experiment 3). 
Furthermore, in both of these studies, the variability be-
tween stimuli was considerable (see also Panis & Wage-
mans, 2007). These differences—between stimuli and be-
tween different ways of testing identifiability of outlines 
reconstructed from salient points—support the need to 
study the role of curvature singularities thoroughly, using 
a variety of paradigms. We consider the present study an 
important step in such an extensive investigation.

In sum, our study has clearly confirmed Attneave’s 
(1954) hypothesis that curvature extrema are salient 
points, while also showing that the perceptual saliency of 
a point is determined strongly by nonlocal factors—such 
as the turning angle between two neighboring line seg-
ments and how far the 2-D part sticks out from the shape. 
This combination of local, semilocal, and global influ-
ences on shape perception appears as a recurring theme in 
this line of work (see also De Winter & Wagemans, 2004, 
2006; Panis et al., in press; Panis & Wagemans, 2007; 
Vandekerckhove, Panis, & Wagemans, 2007). Moreover, 
our study has provided an extensive benchmark data set to 
test future ideas about the perceptual saliency of contour 

The present large-scale study was designed to provide 
solid empirical data to answer the question formulated 
above. We presented 260 contour stimuli, derived from line 
drawings of everyday objects (Snodgrass & Vanderwart, 
1980) to 161 observers and asked them to mark salient 
points along the contours. Each stimulus was marked by 
about 40 subjects and our database contains over 200,000 
marked points. We have analyzed this database in several 
ways to test Attneave’s (1954) hypothesis, and we have 
attempted to find stimulus factors that correlate with the 
empirically obtained saliency values.

Regarding Attneave’s (1954) hypothesis, the results 
from all of the analyses clearly converged in the conclu-
sion that curvature extrema are reported by participants 
to be more salient than are other points, such as inflec-
tions. More than 85% of the marked points were closer to 
a local curvature maximum (M ) or negative minimum 
(m ) than to an inflection (I ). Points that were marked 
more than once were predominantly closer to M  or to 
m  than to I. High values of smoothed saliency occurred 
almost exclusively at points that are closest to extrema. 
Very salient points were also very close to either M  or 
m  (4 pixels or less). When the empirically obtained sa-
liency peaks are plotted on the contours, along with the 
mathematically computed curvature singularities, the re-
sults are quite convincing (see Figure 6): Strong curvature 
extrema appear to be highly salient points. However, some 
salient points do not occur at high peaks of positive or 
negative curvature. Clearly, more than just local absolute 
curvature determines perceptual saliency of points along 
the contour. Likewise, for equal absolute curvature values, 
negative ones were not more salient than positive ones 
(rather the opposite), showing that our subjects’ mark-
ings of salient points are determined by other factors than 
mere information value as derived from a mathematical 
and local analysis (Feldman & Singh, 2005).

In an extensive correlational analysis, we have shown 
that the strongest factor underlying perceptual saliency 
is the turning angle between the line segments connect-
ing a salient point to each of its two nearest neighboring 
salient points: A contour point is more salient when its 
neighboring line segments form a sharp angle. This result 
converges quite nicely with neurophysiological evidence 
showing that cells in monkey area V4 are more tuned to 
specific angles between the two line segments of a corner 
than to the degree of curvature at the apex of the angle 
(Pasupathy & Connor, 1999, 2001). Moreover, two impor-
tant factors determining point saliency were more global 
characteristics of the part defined by a triplet of salient 
points (a corner point and its two nearest neighbors), stick 
out (Hoffman & Singh, 1997) and compactness (Zusne, 
1970). A point is more salient when the 2-D part sur-
rounding it is less compact and sticks out more.

It is worth pointing out the differences between our 
study and the earlier ones by Attneave (1954) and Norman 
et al. (2001) in terms of stimuli (outlines derived from line 
drawings of everyday objects vs. random shapes), instruc-
tions (selecting and marking a freely chosen number of 
“salient” points along the contour vs. ten points selected 
for reconstruction) and procedures (quickly viewing 
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points or even about shape perception in general (as long 
as contour curvature plays a role).
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APPENDIX

As explained in the Method section, the stimuli used in this study are 260 outlines of everyday objects derived 
from the original set of line drawings by Snodgrass and Vanderwart (1980). In another study with 183 differ-
ent subjects (Wagemans et al., 2007), we have obtained identification norms for these outline versions. On our 
Web site we make all of the stimuli and norms available, as well as some additional information like the number 
of inflections along the contours (ppw.kuleuven.be/labexppsy/johanw/index.htm). Here we only report how 
the 260 stimuli were divided into 4 balanced subsets of 65 stimuli (the numbers refer to those in Snodgrass & 
Vanderwart, 1980):

Subset A
Stimuli 2, 6, 14, 17, 19, 20, 26, 27, 28, 32, 39, 50, 52, 57, 58, 65, 69, 72, 74, 80, 83, 85, 87, 98, 100, 110, 111, 

118, 120, 123, 131, 137, 142, 143, 147, 149, 157, 158, 159, 160, 165, 167, 174, 176, 177, 188, 193, 194, 200, 
205, 208, 209, 216, 220, 226, 228, 230, 232, 235, 236, 246, 250, 256, 259, and 260.

Subset B
Stimuli 1, 4, 7, 10, 11, 18, 24, 25, 38, 40, 43, 48, 53, 54, 60, 62, 66, 68, 78, 81, 88, 89, 95, 96, 97, 99, 105, 

108, 109, 116, 117, 124, 126, 127, 130, 138, 148, 150, 151, 153, 154, 155, 162, 163, 170, 173, 181, 183, 184, 
191, 192, 201, 204, 212, 214, 223, 224, 227, 229, 233, 237, 238, 242, 257, and 258.

Subset C
Stimuli 8, 12, 15, 35, 37, 45, 47, 49, 56, 61, 71, 76, 77, 79, 82, 90, 91, 92, 93, 94, 102, 104, 106, 107, 112, 

119, 121, 125, 128, 129, 133, 134, 135, 139, 140, 141, 145, 152, 161, 164, 166, 180, 182, 187, 189, 195, 196, 
198, 199, 202, 206, 207, 210, 211, 213, 217, 219, 222, 225, 239, 243, 244, 247, 253, and 255.

Subset D
Stimuli 3, 5, 9, 13, 16, 21, 22, 23, 29, 30, 31, 33, 34, 36, 41, 42, 44, 46, 51, 55, 59, 63, 64, 67, 70, 73, 75, 84, 

86, 101, 103, 113, 114, 115, 122, 132, 136, 144, 146, 156, 168, 169, 171, 172, 175, 178, 179, 185, 186, 190, 
197, 203, 215, 218, 221, 231, 234, 240, 241, 245, 248, 249, 251, 252, and 254.

As can be seen in the table below, these four subsets were comparable in number of inflections (mean and SD 
for each subset of 65 stimuli), the average identifiability (in percentages, with SDs), and the number of living 
objects within each subset of 65 stimuli.

 
Number of 
Inflections

 
Identifiability

 

Number of
Subset  M  SD  M  SD  Living

A 16.5 15.1 63.7 37.3 16
B 16.1 14.1 60.8 40.5 17
C 15.9 14.1 61.1 40.9 17
D  15.7  14.0  61.8  39.9  18
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revision accepted for publication June 22, 2007.)




