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Mickes, Wixted, and Wais (2007) proposed a simple test of 
latent strength variability in recognition memory. They asked 
participants to rate their confidence using either a 20-point or 
a 99-point strength scale and plotted distributions of the re-
sulting ratings. They found 25% more variability in ratings for 
studied than for new items, which they interpreted as providing 
evidence that latent mnemonic strength distributions are 25% 
more variable for studied than for new items. We show here that 
this conclusion is critically dependent on assumptions—so much 
so that these assumptions determine the conclusions. In fact, 
opposite conclusions, such that study does not affect the vari-
ability of latent strength, may be reached by making different 
but equally plausible assumptions. Because all measurements of 
mnemonic strength variability are critically dependent on untest-
able assumptions, all are arbitrary. Hence, there is no principled 
method for assessing the relative variability of latent mnemonic 
strength distributions.

It has long been debated whether memory is served 
by a single mnemonic process or by several distinct ones 
(Schacter & Tulving, 1994; Wixted, 2007; Yonelinas & 
Parks, 2007). A current focus in this debate is the role 
of these processes in recognition memory. In a recogni-
tion memory paradigm, participants decide at test whether 
items were previously studied or are new. The results are 
often summarized with receiver-operating characteristic 
(ROC) curves. Empirically observed ROC curves tend 
to be asymmetric around the negative diagonal (see the 
dashed line in Figure 1B). These asymmetries, first popu-
larized by Ratcliff, Sheu, and Gronlund (1992) and repli-
cated repeatedly (for reviews, see Glanzer, Kim, Hilford, 
& Adams, 1999; Yonelinas & Parks, 2007) have served as 
a first-order phenomenon to be explained by theories of 
mnemonic process.

One single-process model of ROC asymmetry is the 
unequal-variance signal detection model, which posits 
that participants evaluate the mnemonic strength of items 
against criteria. The strengths for studied and new items 
are distributed as normal random variables. The effect 

of study is in two parameters: It both displaces the mean 
and increases the variability of the strength distribution. 
If the distributions for studied and new items were to have 
the same variance, the model would predict symmetric 
ROC plots (Figure 1B, solid line), which is not charac-
teristic of observed data. Asymmetric ROCs would result 
if the variances were unequal (Figure 1A, dashed line), 
and the unequal-variance model agrees with observed 
data (Wixted, 2007). For the unequal-variance normal 
model, the degree of asymmetry in ROCs is a function 
of the ratio of standard deviations (SDs) of the underly-
ing strength distributions. Let n and s denote the SDs 
of the strength distributions for new and studied items, 
respectively. Glanzer et al. (1999) and Yonelinas and Parks 
(2007) performed large meta- analyses with the unequal-
variance normal model and found that estimates of n / s 
tended to be around .8; that is, the studied-item distribu-
tions tended to be 25% larger in SD than did the new-item 
distributions. Figure 1C shows z-ROC curves; if strengths 
are distributed as normals, then the resultant curves are 
straight lines with slopes given by n / s.

Mickes, Wixted, and Wais (2007; hereafter, referred 
to as MWW) advocated a new and seemingly direct test 
of the ratio of variability for latent strength distributions 
without recourse to ROC analysis. Participants rated con-
fidence on a unidimensional scale with a large number 
of options. MWW plotted the distributions of ratings for 
studied and new words; Figure 2 shows their results. The 
distribution for studied items (solid bars) is more dispersed 
than that for new items (hatched bars). For the purposes of 
this article, we term these distributions response category 
distributions and the ratio of the SDs of these distributions 
the response category SD ratio. The key finding of MWW 
was that the response category SD ratio is 0.83, which is 
quite close to the 0.8 value observed from ROC analysis. 
Moreover, MWW found that this near equivalence holds 
on a participant-by-participant basis. On the basis of these 
equivalences, MWW concluded that latent strengths are 
more variable for studied than for new items. They used 
this conclusion to bolster support for the unequal-variance 
signal detection model, a single-process account of recog-
nition memory performance.

We argue here that MWW’s conclusion about the vari-
ance of latent distributions is unjustified. The problem is 
that this conclusion is exceedingly dependent on initial 
assumptions, so much so that the assumptions determine 
the conclusion. In fact, an opposing conclusion may be 
reached by relying on different but equally plausible 
assumptions. Moreover, MWW’s assumptions are not 
 testable; as a matter of mathematical logic, there is no way 
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ratio of variances (see Figure 3). Normality is a common 
assumption for analyzing observables in experimental 
psychology and underlies t tests, ANOVAs, and regres-
sion. The assumption of normality is benign in most appli-
cations, because these tests are robust to moderately large 
violations (Young & Veldman, 1965). Restated, as long 
as the underlying distributions are not extremely different 
from normals, these tests have real Type I error rates not 
much inflated over the nominal values. Moreover, con-

of gathering evidence for or against them. As is shown 
here, there are unavoidable limits on what may be learned 
about latent strength distributions.

LATENT DISTRIBUTIONS  
AND ROC ANALYSIS

Researchers assume that latent strengths are normally 
distributed when ROC asymmetries are interpreted as the 
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Figure 1. The effect of variance in the unequal-variance signal detection model with normal distributions. (A) The solid line shows a 
studied-item distribution with equal variance to the new-item distribution; the dashed line shows unequal variances. (B) Correspond-
ing receiver-operating characteristic (ROC) curves. The solid line (equal variance) is symmetric around the negative diagonal, and the 
dashed line (unequal variance) is asymmetric. The negative diagonal is shown as a dotted line. (C) Corresponding z-ROC curves are 
straight lines with slopes reflecting the ratio of standard deviations.
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Figure 2. Response category distributions from Mickes, Wix-
ted, and Wais (2007), Experiment 1. The standard deviation for 
studied items (solid bars) is 20% greater than that for new items 
(hatched bars). From “A Direct Test of the Unequal-Variance Sig-
nal Detection Model of Recognition Memory,” by L. Mickes, J. T. 
Wixted, and P. E. Wais, 2007, Psychonomic Bulletin & Review, 14, 
p. 860. Copyright 2007 by the Psychonomic Society, Inc. Adapted 
with permission.
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Figure 3. Latent strength distributions and corresponding receiver-operating characteristic (ROC) and z-ROC plots. The first three 
panels (A–C) yield exactly identical ROC and z-ROC curves, even though the relationship of standard deviations differs. (A) Normal 
distributions with unequal variance. (B) Log-normal distributions. (C) Inverse probit transforms of unequal-variance normals (see 
text for details). (D) Uniform distributions. The ROC curves are discriminable from normal-distribution ROC curves. (E) Gamma 
distributions. The ROC curves closely mimic but are not exactly identical to normal- distribution ROC curves.
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are the mean and SD, respectively. Let Y1 and Y2 denote 
the log-normal distributions in Figure 3B. We constructed 
these as Y1  exp(X1) and Y2  exp(X2). Although the 
log-normal and normal distributions are different, there 
is an important invariance concerning the areas under the 
curves. The criterion in Figure 1A is at .67 and divides the 
bottom 75% of the noise strength distribution from the 
top 25%. When these upper 25% are exponentiated, they 
are all above exp(.67); likewise, the bottom 75% of Y1 are 
below exp(.67). The same holds true for the signal distri-
bution. The criterion at .67 divides the bottom 25.5% from 
the top 74.5%. Consequently, 25.5% and 74.5% of Y2 are 
above and below, respectively, the criterion of exp(.67). 
The false alarm and hit rates are the percentages above 
criteria, or .25 and .745, respectively, for X1 and X2 and 
for Y1 and Y2. Hence, the point (.25, .745) is on both ROC 
curves in Figures 3A and 3B. In fact, this equivalency 
can be shown for all criteria, and consequently, the ROC 
curves in Figures 3A and 3B must be exactly identical. 
The same holds for z-ROC curves.

The equivalence of ROC curves holds as follows. Let 
Y1  g(X1) and Y2  g(X2). If g is a strictly monotonic 
function, such as an exponential or a logarithm, the ROC 
of Y1 versus Y2 is identical to that of X1 versus X2. In Fig-
ure 3C, we constructed the distributions through the func-
tion (3x/2), which is strictly monotonic. There are un-
countably many different strictly monotonic functions g; 
hence, there are uncountably many nonnormal distribution 
pairs that give rise to identical ROCs and exactly straight-
line z-ROCs. In these nonnormal pairs, the slope of the 
straight line is unrelated to the SD ratio.

Not all distribution pairs produce the same ROCs. Fig-
ure 3D shows the case of uniforms: X1 ~ Uniform(0, 1); 
X2 ~ Uniform(0.5, 1.5). These distributions produce ROCs 
different from normals. We can transform X1 to a normal by 
taking g  1; for instance, Y1  1(X1) ~  Normal(0, 1). 
We cannot, however, use the same transform on X2, since 

1(X2) is undefined when X2  1. Hence, there is no 
common function g that can map each of two different 
uniforms into normals, and, consequently, the ROCs are 
different from normal pairs.

The argument above about identical ROCs (from Egan, 
1975) should be distinguished from the well-known ar-
gument about ROC mimicry (Lockhart & Murdock, 
1970). Lockhart and Murdock noted that many distribu-
tion pairs mimic straight line z-ROCs; for instance, the 
gamma distributions shown in Figure 3E produce nearly 
straight-line z-ROCs. Most recognition models, such as 
the dual-process model (Yonelinas, 1994), the extreme-
value distribution model (DeCarlo, 1998), or the mixture-
of-normals model (DeCarlo, 2002), mimic straight-line 
z-ROCs, rather than predicting linearity exactly. These 
distribution families that mimic straight line z-ROCs may 
theoretically be distinguished from normals with excep-
tionally large sample sizes. Egan’s argument is stronger 
than Lockhart and Murdock’s, because ROCs from trans-
formed distributions are exactly identical to the original 
distributions, as shown in Figures 3A–3C. The fact that 
SD ratios vary across distribution pairs that yield identi-

cerned researchers can always check whether their data 
are normally distributed and can use nonparametric tests 
if gross deviations are detected.

The situation is different for the analysis of ROC data. 
We follow Egan (1975) and show here that distributional 
assumptions, such as normality, completely determine 
the ratio of SDs. Figures 3A–3C show three examples in 
which ROCs are identical, yet the SD ratio varies with 
distributional assumptions. The top row shows the case 
in which strengths are distributed as normals with greater 
mean and variance for studied than for new items. The SD 
ratio, n / s, in the figure is 0.8. The resulting asymmet-
ric ROC and straight-lined z-ROC are shown. A criterion 
is drawn (vertical dashed line) for illustrative purposes, 
and it corresponds to hit and false alarm rates of .745 and 
.250, respectively. These values are shown as a point on 
the ROC and z-ROC plots.

Figure 3B shows the case for a different set of distribu-
tions: log-normals. These particular distributions were ob-
tained by exponentiating the normals in the top row. The 
SD ratio for these distributions is 0.114, which is more 
extreme than the 0.8 ratio in the top row. Surprisingly, the 
criterion that yields a false alarm rate of .250 also yields 
a hit rate of .745, the same values as with the normals. 
In fact, although the distributions in Figure 3B are not 
normal, the resulting ROC and z-ROC plots are exactly 
identical to the normal-distribution ROC and z-ROC plots 
in Figure 3A, respectively. Because the normals and log-
normals in Figures 3A and 3B produce exactly identical 
ROC and z-ROC plots, they can never be differentiated 
with ROC data, no matter how large the sample size. Im-
portantly, any statistical goodness-of-fit metric from ROC 
data will yield numerically identical support for the distri-
butions in Figures 3A and 3B.

Figure 3C shows a different example of the same equiv-
alence. The distributions come about by passing the nor-
mals through an inverse-probit transform as follows. Let 
X be a normal. The distributions shown, denoted Y, are 
produced from Y  (2X/3), where  is the cumulative 
distribution function of the standard normal. The SD ratio 
for these distributions is 1.1; that is, the noise distribution 
is more dispersed than the signal distribution is. Although 
the distributions may seem strange, they may be used to 
model variables with finite upper and lower bounds, such 
as the firing rates of nerve cells. Even though the new-
item distribution is more dispersed than the studied-item 
distribution is, the ROC and z-ROC plots are identical to 
those in the previous examples. The three models in Fig-
ures 3A–3C make exactly identical ROC and z-ROC pre-
dictions and can never be distinguished. This equivalence 
of ROCs demonstrates a key fact: Models with different 
SD ratios may produce identical ROC predictions. There-
fore, estimation of SD ratio from ROC data is impossi-
ble; any numeric result reflects arbitrary and untestable 
assumptions.

It is worthwhile to consider how these ROC equiva-
lences occur. Let X1 and X2 denote the normal distribu-
tions in Figure 3A. In this case, X1 ~ Normal(0, 1) and 
X2 ~ Normal(1.5, 1.25), where the arguments of the normal 
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or vice versa. Once again, the inference about SD ratios is 
critically dependent on an assumption; furthermore, this 
assumption is untestable.

MWW used far more response categories than usual (20 
and 100 in Experiments 1 and 2, respectively). Unfortu-
nately, adding more response categories does not mitigate 
the measurement difficulties. As an extreme case, consider 
an infinite number of response categories, which may be 
implemented by having participants turn a dial to indicate 
the strength of the test item. It is reasonable to ask whether 
this approach can provide a principled assessment of latent 
distribution variability, because, if so, a large number of 
response categories may be seen as an approximation to 
setting a dial. The situation seems promising, because—
unlike response category data—the values of the dial may 
be measured on a ratio scale (such as angular displacement) 
and judgments may be made directly without recourse to 
criteria. One problem, however, is that these judgments are 
made on a physical scale of angular displacement, rather 
than on a psychological scale of mental strength. Psycholo-
gists have long known that the transformation between the 
two is not trivial (e.g., Fechner, 1966; Stevens, 1957). If 
this transformation is linear, the variance of the distribu-
tions on the dial settings reflects the relative variance of 
latent strengths. Yet this assumption of linearity is prob-
lematic, since the resulting conclusions about variance 
are completely dependent on it. If the transformation is 
logarithmic or exponential, the wrong conclusion will be 
reached. Moreover, there is no way of testing the linearity 
assumption in MWW’s paradigm.

cal ROCs and z-ROCs (Figures 3A–3C) shows that these 
ratios reflect nothing more than arbitrary and untestable 
distributional assumptions.

RESPONSE CATEGORY DISTRIBUTIONS

MWW noted that their inferences about SD ratios from 
ROCs are dependent on the assumption of normality. This 
dependence, in fact, is part of the rationale for measur-
ing SD from response category distributions. Response 
categories form an ordinal scale; that is, higher ratings in-
dicate greater strength. Measurements of central tendency 
and dispersion, however, are predicated on interval scales, 
which are stronger than ordinal scales. For response cat-
egories to form an interval scale, differences in ratings 
must be linearly related to differences in latent strength. 
For instance, the difference in strength between Catego-
ries “14” and “15” must be the same as that between Cat-
egories “4” and “5.” Clearly, the interval-scale assumption 
is too strong, since there is no reason to believe that the 
difference between Categories “14” and “15” is the same 
as that between Categories “4” and “5.” The interval-scale 
assumption is equivalent to assuming that the criteria on 
latent strength are equally spaced and cover the support 
of the distributions. As was shown by MWW, if this as-
sumption does not hold true, the variance of the response 
categories will not reflect that of the underlying latent dis-
tributions. MWW provided the example in Figure 4, in 
which an equal-variance normal model may give rise to 
larger response category SD for studied than for new items 
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Figure 4. Criteria placement determines standard-deviation (SD) ratio. (A) The response category mass is more concentrated in 
a few categories for new items than for studied ones. The resulting response category SDs are larger for studied than for new items. 
(B) The response category mass is more concentrated for studied items than for new ones, resulting in the reciprocal SD ratio. From 
“A Direct Test of the Unequal-Variance Signal Detection Model of Recognition Memory,” by L. Mickes, J. T. Wixted, and P. E. Wais, 
2007, Psychonomic Bulletin & Review, 14, p. 862. Copyright 2007 by the Psychonomic Society, Inc. Adapted with permission.
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mnemonic strength distributions and used the same crite-
ria. All of the variability, therefore, was due to sampling 
noise. For each hypothetical experiment, we generated 
data for 14 participants, each tested on 150 studied and 
150 new items. These sample sizes are those from MWW, 
Experiment 1. From these data, we computed both types of 
standard-deviation ratios for each participant (see MWW 
for details). Over 1,000 such hypothetical experiments, 
the average correlation between these two ratios was .77, 
with 95% of the values between .46 and .93. In a second 
simulation, we set a high degree of participant variabil-
ity in sensitivity, criteria, and true SD ratio.2 The average 
correlation between the ratios was .60, with 95% of the 
values between .14 and .88. These simulation results show 
that correlations in SD ratios are to be expected. They are 
unsurprising, since both measures are conditioned on the 
same raw data. In sum, there are no aspects of MWW’s 
data incompatible with an equal- variance model.

CONCLUSION

Latency and Variability
The key finding of the analyses above is that it is logi-

cally impossible to measure the ratio of variability across 
latent distributions. Any conclusion about the ratio simply 
reflects a priori assumptions that are not testable. MWW 
used the measurement of latent variability to bolster sup-
port for unequal-variance normal signal detection, their 
preferred single-process explanation of recognition mem-
ory phenomena. We show here that MWW’s data offer no 
support for unequal variances in particular, or for single-
process accounts in general.

We suspect that ROC analysis will prove important 
and helpful in adjudicating between single- and multiple-
process accounts. However, we are not convinced that the 
current approach of specifying parametric models is best. 
Popular models (such as the unequal-variance normal 
model, or Yonelinas’s dual-process model) are perhaps 
specified too finely, since ROC data provide only ordinal 
constraints on latent strengths. As an alternative, research-
ers may wish to focus on ordinal, rather than parametric, 
properties of latent strength distributions.

Dominance of ROC Curves
One promising ordinal property is dominance of ROC 

curves, which is illustrated in Figure 6 and defined as fol-
lows. Consider an experiment with two levels of a factor 
manipulated at study—for example, two levels of study 
duration. Figure 6A provides an example of strength dis-
tributions for new items (solid), as well as for studied 
items from Condition 1 (dashed) and Condition 2 (dash-
dotted). Studied-item strength in Condition 1 is unam-
biguously larger than that in Condition 2. More formally, 
the studied-item strength distribution for Condition 1 
stochastically dominates that for Condition 2. Stochastic 
dominance implies that the cumulative probability distri-
bution functions of the studied-item distributions order as 
in Figure 6B. This stochastic dominance implies that the 
ROC curves order as well and never cross (see Figure 6C). 

THE NUMERICAL EQUIVALENCE  
OF THE SD MEASURES

MWW showed that SD ratios, whether computed by ROC 
or by response category, are about the same. Moreover, this 
near equivalence holds, more or less, on a participant- by-
participant level; in fact, the correlations of the measures 
were .83 and .61 in two experiments. As we have shown, 
the normality assumption is critical in interpreting the 
ROC SD ratio; the equal-spacing assumption is critical in 
interpreting the response category SD ratio. Perhaps this 
numerical equivalence indicates that both assumptions are 
likely and that both SD ratio values are valid.

MWW’s data, however, show that both assumptions 
cannot hold simultaneously. If both held, the distributions 
in Figure 2 would be normal, but they have substantial and 
opposing skewness. The implication is that at least one of 
the assumptions is wrong, in which case at least one of 
the ratios does not measure the intended construct; it is 
difficult, therefore, to take seriously the near equality of 
the two measures.

TWO EQUIVALENT MODELS

We demonstrate the arbitrariness of MWW’s conclu-
sion that studied-item latent strengths are more vari-
able than new-item latent strengths by constructing 
two completely equivalent models of their data from 
Experiment 1. The first account, shown in Figure 5A, 
is an unequal-variance account, which is in line with 
MWW’s conclusions. The SD of the studied item distri-
bution was fixed to 1.25; hence, the true slope of z-ROC 
curves is .8. Free parameters were d  and the criteria 
(shown as dotted vertical lines); these free parameters 
were estimated by minimizing the mean-squared error 
between the predicted response category proportions and 
observed proportions. The resulting predicted response 
category distributions are shown in Figure 5C. The cor-
relation of these distributions with the empirical distri-
butions obtained by MWW was .98 (see Figure 2). The 
second account is shown in Figure 5B. The distributions 
in Figure 5B have about equal variances (the SD ratio is 
0.99). We constructed these distributions by monotoni-
cally transforming the distributions in Figure 5A; in this 
case, the transform was (2X/3), where X denotes the 
normal distribution in Figure 5A. Because this transform 
is strictly monotonic, the resulting z-ROC curves are ex-
actly straight lines with a slope of .8. With the drawn 
criteria,1 the model yields predictions exactly identical 
to those of the model in Figure 5A—namely, the predic-
tions in Figure 5C. Hence, a model with equal variances 
explains important aspects of MWW’s data as well as 
does one with unequal variances.

As was mentioned previously, MWW reported a posi-
tive correlation between ROC and response category SD 
ratios across participants. To explore whether these cor-
relations are expected under the equal-variance model of 
Figure 5B, we simulated data. In our first simulation, we 
assumed that all participants shared the same underlying 
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Figure 5. Equivalent accounts of MWW’s data. (A) An unequal-variance account. (B) An equal-variance account. (C) Resulting 
response category distributions are exactly identical for both accounts.
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Figure 6. Receiver-operating characteristic (ROC) dominance (left column) and a violation thereof (right column). (A, D) Strength 
distributions for new items (solid) and for studied items in Condition 1 (dashed) and Condition 2 (dash-dotted). (B, E) Cumulative 
probability distribution functions of studied-item strength distributions. (C, F) Resulting ROC curves.
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NOTES

1. Let c1, . . . , c19 denote the 19 criteria in Figure 5A and let c*
1, . . . , 

c*
19 denote the same in Figure 5B. Response category predictions for the 

two models are preserved when c*
i  (2ci /3).

2. Individual d  (before transform) was sampled from the distribu-
tion  Normal(1.145, 0.33); individual  (before transform) was sam pled 
from exp[Normal(0.2, 0.2)]; individual criteria (after transform) were 
the order statistics from 19 draws of a beta(1.5, 1.1) (see Rouder & Lu, 
2005, for a discussion and parameterization of the beta distribution). 
These settings correspond to a large amount of individual differences 
on all parameters.

(Manuscript received April 8, 2009;  
revision accepted for publication November 4, 2009.)

The right columns in Figures 6D–6F provide an example 
where stochastic dominance is violated. In Figure 6D, for 
example, the strongest strengths for Condition 1 are stron-
ger than the strongest strengths for Condition 2, yet the 
opposite holds for the weakest strengths. Consequently, 
the ROCs do not order (see Figure 6F).

A single-process model would have to be quite complex 
to handle ROC crossings such as that in Figure 6F. If these 
cases can be documented, such phenomena may be more 
parsimoniously accounted for by two-process models. 
Conversely, a systematic failure to find ROC crossings 
lends support to the applicability of one-process, strength-
based accounts. Because ROC dominance is an ordinal 
property, it is defined without recourse to untestable para-
metric assumptions.
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