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One of the fundamental problems for cognitive science 
is understanding how people mentally represent stimuli. 
Many well-established approaches for determining stimu-
lus representations from empirical data rely on similarity 
between pairs of stimuli. Two of the most developed and 
widely used approaches for deriving a stimulus represen-
tation based on similarity are the geometric and featural 
approaches. In the geometric approach (Shepard, 1957), 
a stimulus is represented as a point in a multidimensional 
coordinate space, corresponding to continuous values on 
an (often limited) number of dimensions. The similarity 
between two stimuli is inversely related to the distance 
between the points in the psychological space, implying 
that similar stimuli lie close together, whereas dissimi-
lar stimuli lie far apart. Geometric representations can be 
generated from proximity data using a variety of multidi-
mensional scaling (MDS) algorithms (see, e.g., Borg & 
Groenen, 2005; Carroll & Arabie, 1980; Lee, 2001).

In the featural approach (Shepard & Arabie, 1979; Tver-
sky, 1977), a stimulus is represented in terms of the pres-
ence or absence of a set of discrete, often binary features. 
The similarity between two stimuli is a function of feature 
overlap, whereby common features increase overall simi-
larity, and distinctive features decrease overall similarity. 
Commonly used methods for extracting featural repre-
sentations from proximity data include additive cluster-
ing and additive tree algorithms (e.g., Lee, 2002; Navarro 

& Griffiths, 2008; Tenenbaum, 1996; Van Mechelen & 
Storms, 1995).

It has been argued that different approaches are suitable 
for different stimulus domains (see, e.g., Tversky, 1977). 
The present study addresses the relative appropriateness 
of the geometric and featural approaches, focusing on fa-
miliar and unfamiliar stimuli in semantic concepts.

EVALUATING GEOMETRIC AND 
FEATURAL REPRESENTATIONS

One straightforward way to investigate the appropriate-
ness of the different approaches to stimulus representa-
tion is to directly compare both approaches on their ability 
to account for empirically observed similarity data. For 
example, Pruzansky, Tversky, and Carroll (1982) reana-
lyzed 20 previously published similarity data sets, divid-
ing them into two groups depending on the nature of the 
stimuli: conceptual (e.g., vegetables) or perceptual (e.g., 
polygons). For 10 out of 11 studies involving conceptual 
stimuli, similarity data proved to be best accounted for by 
a featural representation. In contrast, 7 out of 9 studies in-
volving perceptual stimuli showed a clear advantage for a 
(low-dimensional) geometric representation. It was con-
cluded that the best-suited representation for high-level 
conceptual stimuli is a featural one, whereas low-level 
perceptual stimuli are best represented using geometric 
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stimuli. Stimuli that are artificially created by the experi-
menter are, by design, unfamiliar to the observer. In con-
trast, when focusing on semantic concepts, stimuli can 
differ in the extent to which an observer has prior, real-
world knowledge about them. For instance, about apple, a 
Western observer knows where they grow, what they taste 
like, what they look like, and so on, but there are other 
natural world items, such as exotic tropical fruits, that can 
be highly unfamiliar to the observer. Previous research by 
Smits, Storms, Rosseel, and De Boeck (2002) has shown 
that the relative success of exemplar and prototype models 
may depend on the degree to which the stimuli are famil-
iar. They showed that the advantage of the GCM over the 
GPM was larger for familiar stimuli than for unfamiliar 
stimuli.

Outline
In this article, we provide a systematic evaluation of 

geometric and featural representations based on the abil-
ity of categorization models to account for categorization 
decisions involving familiar and unfamiliar stimuli from 
semantic concepts. First, we provide a formal descrip-
tion of the four different models to be considered, two 
of which are existing, geometric categorization models, 
and two are their newly constructed featural counterparts. 
Next, we describe two previously published data sets 
involving the categorization of familiar and unfamiliar 
stimuli from semantic concepts, involving two semantic 
domains, food and animals. These data sets are then used 
to assess the relative merits of the geometric and featural 
categorization models separately for the familiar and the 
unfamiliar stimuli. The model comparisons suggest that 
familiar stimuli can be better represented using a featural 
approach than using a geometric approach, and that visu-
ally presented, unfamiliar stimuli can be better captured 
with a geometric representation, using a limited number 
of underlying dimensions. Finally, we relate our findings 
to previous findings concerning geometric and featural 
representations and discuss future work.

MODELS

Two similarity-based views on category learning have 
been widely studied: the exemplar view and the prototype 
view (see Nosofsky, 1992; Vanpaemel & Storms, 2010, 
for overviews of empirical comparisons). The exemplar 
view assumes that a category is represented by all of the 
previously encountered category members, the exemplars. 
The prototype view assumes that a category is represented 
by an abstracted summary, reflecting the central tendency 
of the category. We first focus on existing MDS-based 
exemplar and prototype models and then modify these to 
featural models.

Geometric and Featural Exemplar Models
Probably the most successful exemplar model is the 

GCM (Nosofsky, 1984, 1986). It assumes that a categori-
zation decision about a stimulus is driven by the similarity 
of the stimulus to the relevant categories. In particular, in 
the case of two categories, A and B, the GCM assumes 

similarity. A similar observation, but phrased in terms of 
criteria related to nearest-neighbor analyses rather than 
fit criteria, was made by Tversky and Hutchinson (1986), 
based on 100 previously published similarity data sets.

A second way to gain insight into the appropriateness of 
both approaches stems from the fact that models of men-
tal stimulus representation not only have some status as 
models of human conceptual structure in and of itself, but 
also underlie higher level models of cognition, decision 
making, and perception. For example, most models of cat-
egorization rely on an underlying stimulus representation 
to account for categorization decisions (e.g., ALCOVE, 
Kruschke, 1992; GCM, Nosofsky, 1986; SUSTAIN, Love, 
Medin, & Gureckis, 2004). Therefore, in the context of 
categorization, the appropriateness of the geometric and 
featural approaches can also be assessed by compar-
ing different categorization models, relying on either a 
geometric or a featural representation, on their ability to 
account for empirically observed categorization data. A 
representation model can provide an excellent account of 
similarity data, but a categorization model relying on this 
representation can still fail dramatically in accounting for 
categorization data that are modeled on top of the repre-
sentation, a point most effectively demonstrated by Lee 
and Navarro (2002), focusing on ALCOVE.

Similarity Representation and Categorization
The present article relies on this second strategy to gain 

insight into the relative appropriateness of geometric and 
featural representations. Using categorization models to 
assess the suitability of geometric and featural represen-
tations requires the comparison of a categorization model 
relying on a geometric representation with a categoriza-
tion model relying on a featural representation. Many 
existing models of category learning differ in whether 
they assume a geometric or a featural representation, but 
these models tend to differ in more aspects than simply 
their stimulus representation, blurring the comparison of 
interest. Therefore, to reach our goal, we start from ex-
isting models of categorization that rely on a geometric 
representation and then develop their featural counterpart. 
Keeping every assumption but the stimulus representation 
constant assures the fairest comparison between the dif-
ferent stimulus representations.

In constructing the featural versions of the geometric 
categorization models, we adopt a similar approach to Lee 
and Navarro (2002), who developed a featural version of 
ALCOVE. To increase the generality of our investigation, 
we apply this strategy to two different, widely studied 
geometric categorization models, the generalized context 
model (GCM; Nosofsky, 1986) and the geometric pro-
totype model (GPM; Reed, 1972, also referred to as the 
MDS-based prototype model).

Semantic Concepts
In contrast to Lee and Navarro (2002), who relied on 

artificial stimuli and categories, we focus on semantic 
concepts, such as fruits and vegetables. One consequence 
of considering semantic concepts is that it is possible 
to make a distinction between familiar and unfamiliar 
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Geometric and Featural Prototype Models
The GPM (Minda & Smith, 2001; Nosofsky, 1987; 

Reed, 1972; Vanpaemel & Storms, 2008) is to a large ex-
tent similar to the GCM. Like the GCM, it assumes that 
categorization is driven by a similarity comparison of the 
stimulus to the category (Equation 1) and assumes a geo-
metric representation (Equations 3 and 4). The crucial dif-
ference with the GCM is how a category, and hence the 
similarity of a stimulus to a category, is defined. Rather 
than summing the similarity to all individual exemplars 
(Equation 2), the similarity of stimulus x toward Cat-
egory A is defined by the similarity of x toward one repre-
sentative item, the Category A prototype A:

 s x s x, , .A A  (6)

Although different proposals have been made to define a 
prototype, the most common definition of A is the aver-
age of all n Category A members:

 A
A

for = 1,k k
jn

j k D1 , . . . , .  (7)

Given a featural representation of the stimuli, a featural 
prototype model (FPM) can be constructed by Equa-
tions 1, 3, 5, and 6, where the prototype A of Equation 6 
is defined by the modal values of the features of all Cat-
egory A members.2

DATA

We considered two previously published data sets in-
volving food items (fruits and vegetables; Smits et al., 
2002) and animal items (carnivores and herbivores; Ver-
beemen, Vanpaemel, Pattyn, Storms, & Verguts, 2007). 
We briefly summarize the stimuli and data collection pro-
cedures, but refer the interested readers to these publica-
tions for a description in full detail.

Smits et al. (2002) used a stimulus set consisting of pic-
tures of 109 fruits and vegetables. Of these 109 stimuli, 
35 fruit stimuli and 44 vegetable stimuli were obtained 
using an exemplar generation task and can therefore be 
considered as highly familiar, well-known stimuli, such 
as carrot. The remaining 30 stimuli were mostly exotic 
items, such as ram butan, purchased in specialty shops that 
import food from Central African and Southeast Asian 
countries. A group of 30 participants classified the fa-
miliar stimuli as belonging to either fruits or vegetables, 
whereas a different group of 20 participants did the same 
for the unfamiliar stimuli.

Similarity ratings were computed using the following 
procedure.3 A first group of participants generated fea-
tures for the categories fruits and vegetables. The 10 most 
frequently generated features for both categories were se-
lected. However, 3 features occurred in both lists. Conse-
quently, a set of 17 different features was used for a feature 
applicability judgment task, completed by a second group 
of participants. From these feature applicability vectors, a 
matrix containing all pairwise similarities was obtained by 
correlating these vectors for all 109 stimuli, after summing 
over participants.

that the probability of stimulus x being classified in Cat-
egory A is given by:

 P x
s x

s x s x
( | )

( , )
( , ) ( ) ( , )

,A
A

A B1
 (1)

where 0   1 serves as a response bias parameter 
toward Category A, and s(x, A) denotes the similarity of 
stimulus x toward Category A. The more similar a stimu-
lus is considered to Category A, the more likely it is to 
be endorsed in that category. Being an exemplar model, 
the similarity of stimulus x toward Category A is defined 
by the sum of the similarity of stimulus x toward all Cat-
egory A exemplars:

 s x s x j
j

( , ) ( , ).A
A

 (2)

In the GCM, the similarity between two stimuli x and j, 
s(x, j ), is computed from a geometric stimulus represen-
tation,1 in which x and j are represented as points in a 
D-dimensional space with coordinates x  (x1, . . . , xD) 
and j  ( j1, . . . , jD). The similarity between two stimuli is 
assumed to be an exponentially decreasing function of the 
distance between the stimuli, indicating that similar stim-
uli lie close together and dissimilar stimuli lie far apart:

 s x j c d x j( , ) exp[ ( , )],  (3)

where 0  c  is a scaling parameter and d(x, j ) is the 
Minkowski distance between x and j, given by:

 d x j w x jk k k
r

k

r

( , ) | | ,
/1

 (4)

where wk denotes the weight of the k th dimension, and 
all D weights are restricted to sum to 1. The distance be-
tween two stimuli increases with the number of dimen-
sions where there is a mismatch, as well as with the size 
of the mismatch. Further, these mismatches are weighted 
by the importance of a particular dimension in a given cat-
egorization task. The metric r is usually given a value of 
either 1 or 2, corresponding to a city-block or a Euclidean 
distance, respectively.

Rather than relying on a geometric representation to 
compute the similarities in Equation 2, as the GCM as-
sumes, a featural exemplar model (FEM) computes these 
similarities starting from a featural stimulus representation, 
in which x and j are represented as vectors of m binary 
variables x  (x1, . . . , xm) and j  ( j1, . . . , jm), where 
xk  1 if x possesses the k th feature, and xk  0 otherwise. 
Following Lee and Navarro (2002), we assume that simi-
larities can be computed from featural distances, implying 
that Equation 3 is sensible also in the context of featural 
representations. Further, rather than on the geometric dis-
tance of Equation 4, the FEM relies on the following fea-
tural distance:

 d x j w x j w x jk k k k k k
kk

( , ) .1 1  (5)

Like the geometric distance used in the GCM, the fea-
tural distance used in the FEM is sensitive to mismatches 
only—that is, the number of features on which stimuli 
match does not affect the distance.
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ter (the feature that applies to all stimuli) was excluded 
since it cannot add to any distances between stimuli and 
is redundant in the categorization model, leaving a set of 
cluster solutions with 11 to 25 effective clusters. Note 
that additive clustering focuses on common features only, 
whereas the featural distance employed in the featural 
categorization models (Equation 5) is based on distinc-
tive features. Although contradictory at face value, these 
choices were inspired by Gati and Tversky’s (1984) pro-
posal that in categorization decisions, dissimilarities are 
weighted more heavily, whereas in similarity decisions, 
common features tend to be weighted more heavily (see 
Lee & Navarro, 2002, for an in-depth discussion).

Evaluating the Geometric and  
Featural Categorization Models

Each geometric model (GCM and GPM) had four free 
parameters for each data set: the bias parameter , the 
sensitivity parameter c, and two free dimension weights, 
because dimension weights are restricted to add to 1. The 
metric parameter r was not treated as a free parameter 
but was fixed at r  2, because the dimensions identi-
fied by the MDS procedure are most likely integral rather 
than separable. Each featural model (FEM and FPM) 
relying on q effective clusters had q 1 free parameters: 

, c, and q 1 free feature weights, because the weights 
are restricted to sum up to 1.

All models were evaluated using the Bayesian informa-
tion criterion (BIC; Schwarz, 1978), which is defined by 
BIC  2 ln L  k ln n, where ln L is the maximized log 
likelihood, k is the number of free parameters, and n is 
the number of data points. The BIC increases whenever 
either the lack of fit ( 2 ln L) increases or the parametric 
complexity (k) increases. Because the goal is to select a 
model that fits the data well and at the same time is low 
in complexity, the model with the smallest BIC is to be 
preferred. In this sense, BIC balances goodness-of-fit and 
model complexity. An additional advantage of BIC is that 
there exists a useful framework within which to evaluate 
the significance of magnitude differences in BIC values 
across models. For two models A and B, the difference in 
BIC, BICBA  BICB  BICA, approximates twice the 
logarithm of the Bayes factor (2 ln BFAB) for comparing 
A and B, for which Kass and Raftery (1995, p. 777) have 
suggested an interpretative scale of evidence. In particu-
lar, the evidence in favor of Model A (or, equivalently, 
against Model B) ranges from not worth more than a bare 
mention (for 2 ln BFAB in the range 0–2), to positive (2–6), 
to strong (6–10), to very strong ( 10).

Figure 1 depicts BIC  BIC(featural)  BIC(geomet-
ric) for the geometric and featural models, across all 15 
cluster solutions considered. Positive values indicate evi-
dence for the geometric models (GCM and GPM, respec-
tively), whereas negative values indicate evidence in favor 
of the featural models (FEM and FPM, respectively). The 
crosses ( ) refer to the data concerning the familiar stim-
uli, whereas the asterisks ( ) refer to the data concerning 
the unfamiliar stimuli. Panels A and C depict the results 
for the food domain and panels B and D depict the results 

Verbeemen et al. (2007) used a stimulus set consist-
ing of pictures of 101 carnivores and herbivores. Of these 
101 stimuli, 35 carnivores and 38 herbivores were again 
obtained from an exemplar generation task for each of the 
categories, implying that these were familiar, well-known 
category members, such as cow. The remaining 28 stimuli 
were exotic, unknown animals, such as indri. A group of 
32 participants classified all stimuli as being carnivores or 
herbivores. As in Smits et al. (2002), another group of par-
ticipants was asked to generate features, but contrary to 
the procedure followed by Smits et al. (2002), the features 
were generated at the level of the exemplars, rather than at 
the category level. A final group of participants rated the 
applicability for each of the 39 most frequently generated 
features to each of the 101 animals. A similarity matrix 
was then obtained by correlating the summed feature ap-
plicability vectors for all 101 stimuli.

EVALUATING THE GEOMETRIC 
AND FEATURAL MODELS OF 

CATEGORIZATION

All four categorization models (GCM, FEM, GPM, 
and FPM) were evaluated on both data sets. To assess the 
appropriateness of the two approaches to similarity rep-
resentation as a function of stimulus familiarity, catego-
rization responses to well-known, familiar stimuli were 
analyzed separately from categorization responses to un-
known, unfamiliar stimuli. Of interest is the comparison 
of the relative performance of the GCM versus the FEM 
and of the GPM versus the FPM.

Generating the Stimulus Representations
Smits et al. (2002) and Verbeemen et al. (2007) used 

the (computed) pairwise similarities to derive geometric 
representations of all 109 items of the food domain and 
all 101 items of the animal domain, respectively. Based on 
the stress profile, a three-dimensional MDS solution was 
chosen for both the food domain and the animal domain. 
These two previously generated geometric representations 
were employed in the present article.

Rather than using the features generated by the partici-
pants as the featural representations, featural representa-
tions were generated using the same computed pairwise 
similarities that were used to generate the geometric 
representations, in order to compare the geometric- and 
feature-based approaches as accurately as possible. The 
featural representation is thus not restricted to have as 
many features as or fewer features than the original feature 
vectors. The procedure to derive the featural representa-
tion (and the geometric representation as well) is seen as 
a data reduction technique, implying that the features (or 
dimensions) that make up the representation do not need 
to correspond to the features used to compute the pairwise 
similarities.

To derive a featural stimulus representation, for each 
domain, cluster solutions with 12 to 26 clusters were com-
puted using the additive clustering algorithm described 
in Lee (2002). For all representations, the universal clus-
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and the animal (panel B) domains, across all 15 cluster 
solutions. As far as the unfamiliar stimuli are concerned, 
the evidence is somewhat less strong, but for all but 3 of 
the 15 cluster solutions, the geometric representation is 
best supported by the data, again for both domains. The 
same general picture emerges for the prototype models 
(second row). Again, the featural representations are 

for the animal domain, for the exemplar models (GCM 
and FEM) and the prototype models (GPM and FPM), 
respectively.

Figure 1 shows a surprisingly consistent pattern. Fo-
cusing on the exemplar models (first row), there is over-
whelming evidence for a featural representation when fa-
miliar stimuli are considered for both the food (panel A) 
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Figure 1. Empirical comparison of geometric and featural categorization models across 15 cluster solutions. Panel A compares 
geometric and featural exemplar models in the food domain, panel B compares geometric and featural exemplar models in the animal 
domain, panel C compares geometric and featural prototype models in the food domain, and panel D compares geometric and featural 
prototype models in the animal domain. The crosses ( ) refer to the data concerning the familiar stimuli, whereas the asterisks ( ) 
refer to the data concerning the unfamiliar stimuli. Positive values indicate evidence for the geometric models; negative values indicate 
evidence for the featural models.
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when categorizing. This connection between unfamiliarity 
and perceptual information, on the one hand, and famil-
iarity and conceptual information, on the other hand, ties 
together the present findings with the previous findings 
based on similarity analyses.

In sum, our finding fits nicely with the idea of a grad-
ual increase in knowledge: An observer who knows little 
about an unfamiliar semantic stimulus can only judge it 
using surface perceptual information, a process that is 
best captured by geometric representations. As the ob-
server becomes increasingly acquainted with a stimulus, 
knowledge about the semantic stimulus grows. Catego-
rization then becomes increasingly based on conceptual 
rather than perceptual information, which is best captured 
by featural representations.

Future Work
Despite the clarity and interpretability of the observed 

pattern in the model comparison results, people most 
likely use a mixture of both conceptual and perceptual 
information for categorizing both unfamiliar and familiar 
semantic stimuli. Interestingly, recent work on stimulus 
representation has started to explore hybrid representa-
tions, incorporating both a geometric and a featural rep-
resentation (Lee & Navarro, 2005; Navarro & Lee, 2003). 
In such a hybrid representation, a stimulus is allowed to 
take continuous values on a number of dimensions and to 
have a number of discrete features at the same time. As-
sessing the performance of categorization models based 
on such hybrid representations is an important goal for 
future research.
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