
A century of experimental study of associative learning
has inspired the development of several very successful
models that describe learning as a computational process. 
The most popular form of these models identifies the
content of associative learning with the strengthening or 
weakening of a link that connects some representation of 
the events that are temporally correlated. In this way, the 
learned response arises by a process of stimulus substitu-
tion within a network. For example, a positive temporal
correlation between the presentation of a conditioned 
stimulus (CS) and the occurrence of an unconditioned 
stimulus (US) leads to the strengthening of connections
bbetween those components of the network that are iden-
tified with perceptual or behavioral responses to each
stimulus. As a consequence of this strengthening, the CS 
is able to activate those components corresponding to the
US and, thus, elicit some subset of the responses that were 
ppreviously elicited only by the US.

Although much has been made of computational mod-
els that describe the manner in which connection strength 
changes during associative learning, the accuracy with
which these models map onto behavior depends on the
nature of the components that they connect. One funda-
mental issue that has been extensively debated concerns 
the distributed versus unitary nature of the way that stim-
uli are represented within the associative network. On one
side of this distinction are theories that assume that indi-
vidual stimuli are represented by multiple elements dis-
tributed across the network; on the other side are theories
in which whole stimulus patterns are represented by a sin-
gle configural unit. Adherents to strong versions of each 
view can be found in the literature, as well as examples of 
a hybrid approach that combines configural and elemend -
tal representations in the same associative network. This 

f review will begin by describing the primary examples of
the different theoretical approaches, as well as discuss-

fing empirical evidence held to support the existence of 
configural representations. We will then move on to the 

f primary objective of this article, to present an extension of
an elemental model recently proposed by Harris (2006).

Elemental and Configural Models
The notion that stimuli have distributed representations

t goes back more than half a century. Some of the earliest
models of associative networks considered stimuli to be 
made up of multiple elements, and associative learning
involved the strengthening of connections between the el-
ements of the CS and those of the US (Atkinson & Estes,
1963; Bush & Mosteller, 1951; Estes, 1950). One virtue

fof these models is that they provide a clear description of 
generalization and discrimination, based on the proportion 
of elements shared in common between stimuli. For ex-
ample, conditioning of Stimulus X involves the strength-

dening of associations between the set of X’s elements and 
those of the US, and therefore, conditioned responding to 
X will generalize to Y as a function of the number of X’s

f elements that are common to Y. The explanatory power of
this simple approach was greatly enhanced when it was

rcombined with a learning rule that used a common error 
term to compute changes in associative strength (Rescorla

 & Wagner, 1972). An important feature of this learning
t rule is that it provides a mechanism for the development
hof inhibition whenever the summed associative strength

( V ) of all elements active on a trial exceeds the asymp-
totic associative strength ( ) supported by the US on that
trial. This enables elemental models to anticipate error-

rless performance on even difficult discriminations. For 
example, in a discrimination in which one stimulus, X, is
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A and B is represented as a separate unit, in addition to 
the composite elements of A and B. When incorporated 
with the Rescorla–Wagner (1972) learning rule, training 
on a negative-patterning discrimination will imbue the 
AB configural unit with inhibitory strength, because it
is reliably present on nonreinforced trials, but never on
reinforced trials. This allows the configural unit to can-
cel much of the excitatory associative strength that gen-
eralizes from what has been learned on A  and B  trials 
(Rescorla, 1972; Whitlow & Wagner, 1972). By similar 
logic, during training on a biconditional discrimination, 
configural units for AB and CD compounds will acquire 
excitatory associative strength with the US, whereas sepa-
rate configural units for AC and BD compounds will ac-
quire inhibitory strength (Saavedra, 1975).

The approach described above assumes that a com-
pound of two or more stimuli is represented by the sum of 
elements of each stimulus plus a configural representation
of their conjunction. In this sense, it combines a configural
description of stimulus representation with an elemental
one. The explanatory power of this approach has been fur-
ther enhanced by recent theoretical extensions proposed 
by Wagner and Brandon (2001). According to their re-
placed elements model, configural units that are activated 
when stimuli are presented as a compound are not simply 
added to the array of elements representing each comd -
ponent stimulus but, rather, replace specific elements of 
the individual stimuli (see also Wagner, 2003, 2008). An 
associative network of this form not only has units that are 
uniquely present on trials with compound stimuli, but also 
has units that are uniquely present on single-stimulus tri-
als, so doubling the network’s opportunity to learn to dis-
criminate between a compound and its components. This
innovation is also important in allowing elemental mod-
els with configural elements to account for a variety of 
data that are otherwise troubling for the traditional added
configural element approach. In large part, the advantage 
of this replaced elements approach is that it reduces the
amount of associative strength that generalizes from indi-
vidual CSs to their compound.

Notwithstanding the popularity and success of the
hybrid elemental–configural approach described so far, d
there are alternative models that can solve complex prob-
lems such as negative patterning and the biconditional dis-
crimination within a purely configural or purely elemental
framework. A prime example of a pure configural model
is that proposed by Pearce (1987, 1994, 2002). In strik-
ing contrast to elemental models, Pearce’s model assumes
that each conditioning episode involves strengthening or 
weakening of just one association that connects a single 
configural unit representing the entire pattern of CS in-
puts (including the context) with the US. Negative pat-
terning and biconditional discriminations can be solved 
because responding on each trial type is governed by dif-ff
ferent associations arising from distinct configural units. 
Indeed, such a configural model is at risk of underesti-
mating the difficulty posed by these discriminations. To
take account of this, Pearce (1987) has proposed that each 
stimulus pattern fully activates its own configural unit but 
also partially activates configural units corresponding to

followed by the US and a second stimulus, Y, is not, gener-
alization from X to Y will be large if X and Y share many 
elements in common (i.e., they are similar). However, 
across continued training, associative strength will pro-
gressively shift away from the common elements toward 
the elements unique to X, reducing generalization to Y. At 
the same time, Y’s unique elements will develop inhibi-
tory associative strength that will cancel whatever excit-
atory strength generalizes via the common elements.

There are, however, discriminations that these elemen-
tal models remain unable to solve—in particular, condi-
tional discriminations in which the presence ( ) versus
absence ( ) of the US is not correlated with any identifi-
able stimulus. The best known of these is negative pat-
terning, in which two CSs, A and B, are consistently re-
inforced with the US when presented individually but are 
never reinforced when presented together as a compound.
There are many demonstrations that animals from numer-
ous species can solve this discrimination, in that they learn
to respond less on AB trials than on A  and B  trials
(Bellingham, Gillette-Bellingham, & Kehoe, 1985; Harris
& Livesey, 2008; Harris, Livesey, Gharaei, & Westbrook, 
2008; Kehoe & Graham, 1988; Pavlov, 1927; Rescorla,
1972, 1973; Whitlow & Wagner, 1972; Woodbury, 1943).
However, this discrimination poses an insoluble challenge
to simple elemental models, because every CS element
that is present on AB  trials is also present on A  or B
trials and every element present on A or B trials is
present on AB trials. Thus, because there is no single el-
ement that is present on reinforced but not nonreinforced 
trials or vice versa, there is no mechanism to prevent gen-
eralization of learning from A and B trials to AB
trials or to cancel that generalization with inhibition on 
AB  trials. An equally challenging problem for simple 
elemental models is posed by biconditional discrimina-
tions in which four stimuli are presented as four different 
pairwise compounds, two of which are reinforced and two
not. The discrimination is insoluble by simple elemental
models if each single stimulus is reinforced in one com-
pound and not in the other (e.g., AB and CD vs. AC
and BD ), ensuring that no single element is correlated 
(positively or negatively) with the US. Despite this, there 
are numerous demonstrations that animals can solve these
discriminations (Harris et al., 2008; Rescorla, Grau, &
Durlach, 1985; Saavedra, 1975), albeit with considerable 
difficulty.

Evidence that animals can learn the aforementioned 
conditional discriminations is often held up as proof that
associative learning operates on more than simple elemen-
tal units. Successful performance on these discrimina-
tions is taken as evidence that learning mechanisms must
represent the conjunction of stimuli (e.g., that A and B
occur together on AB trials) and that this conjunctive rep-
resentation can itself serve as the argument of an associa-
tion. This notion of configural representations itself has 
a long history. Since Spence (1952), many have assumed 
that, within learning systems, stimuli are represented by 
their elemental components plus a representation of the
configural nature of the way in which those elements
are combined. Thus, on AB trials, the conjunction of 
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activates half of the total number of elements in the net-
work. This ensures that any two stimuli, even if from very 
different modalities, will share a substantial proportion
of their elements in common. The second feature of the 
model concerns the activation of the elements. McLaren
and Mackintosh (2002) assumed that the activation func-
tion is steeply sigmoid to the point of approximating a 
step function. Thus, even though sensory input to the ele-
ments is graded along a continuum, the state of the ele-
ments themselves is, to a large extent, binary: They are
either fully activated when the input exceeds a threshold 
or inactive. It is the nonlinearity of the activation function, 
particularly when applied to the common elements, that
provides the means by which the McLaren–Mackintosh
(2002) model solves negative patterning and biconditional
discriminations.

The second purely elemental model to be discussed 
here was developed by Harris (2006). Like the McLaren–
Mackintosh (2002) model, Harris’s model relies on nonlin-
earity in the activation of elements, but unlike McLaren–
Mackintosh, it does not rely on common elements to solve
complex conditional discriminations. Rather, it assumes 
that nonlinearity in element activation is introduced by
the operation of a limited-capacity attention buffer that
boosts element activation. According to the model, ele-
ments compete for attention on the basis of the rate of 
rise in their activation (before the attention boost). More 
strongly activated elements can enter the attention buf-ff
fer and, thus, receive a further boost to their activation 
strength, whereas weaker elements do not. Because access
to attention is strictly competitive, individual elements
can receive the boost to their activation in some instances 
(when pitted against weaker or fewer elements), but not 
under other circumstances (when pitted against stronger 
or a larger number of elements). For example, in nega-
tive patterning, some elements of A and B will enter the 
attention buffer on trials with A or B alone, but will be
unable to enter the buffer on AB compound trials because
the larger number of elements will increase the competi-
tion for access to attention. Thus, these elements provide a 
solution to negative patterning because their activation is
positively correlated with reinforcement; they are strongly
active (by virtue of receiving an attention boost) on A
and B  trials but are weakly active (being denied the at-
tention boost) on AB trials. In a similar way, elements
can solve the biconditional discrimination, due to inci-
dental differences in the competition for access to atten-
tion between different compounds. For example, if Stimu-
lus B has a greater number of strong elements than does
Stimulus C, this will mean that A’s elements face stiffer 
competition for attention in the AB compound than in the 
AC compound and, thus, some of A’s elements will re-
ceive the attention boost on AC trials, but not on AB trials.
In this way, activation of these A elements is correlated 
(negatively) with reinforcement, and their acquisition of 
inhibitory associative strength will contribute to solving 
the discrimination. It is important to note that counter-
balancing the identities of the different stimuli used in
this discrimination will equate stimulus properties at the 

other stimulus patterns and that the degree of this gener-
alized activation depends on the similarity (featural over-
lap) between the current stimulus pattern and the pattern
coded by each configural unit. For example, in negative 
patterning, trials with the AB compound will fully activate 
the AB configural unit but will also partially activate the 
A and B configural units (due to the overlap in their input
patterns), and trials with A or B individually will fully ac-
tivate the A or B configural unit but also partially activate 
the AB configural unit. Whereas learning (the change in 
associative strength) is confined to the fully activated unit 
on any trial, the partial activation of other units will pro-
duce responding that will interfere with correct perfor-
mance on the discrimination. Thus, an animal trained on a 
negative-patterning schedule will respond on AB  trials 
due to generalized activation of the A and B units but will 
eventually stop responding on those trials when the AB
configural unit develops sufficient inhibitory strength to 
cancel any excitatory strength arising from the general-
ized activation of A and B units.

Configural units that contain information about the
specific conjunctions of stimuli have proved popular tools
in enabling models of associative learning to solve condi-
tional discriminations of the sort described thus far. How-
ever, the configural units themselves bear some explana-
tory burden. A configural unit specifically codes for the
conjunction of stimuli and, therefore, stores a form of as-
sociative information that would normally be the purview 
of the associative process itself. But configural theories 
do not use associative mechanisms to acquire or store the 
associative information that is contained within a config-
ural representation. Thus, these models are left needing to
specify what mechanisms are responsible for coding and 
storing the associative information that is represented by 
configural units. The need for an adequate specification of 
these mechanisms is particularly apparent for models that 
combine elemental and configural representations. Other-
wise, such models are at risk of a combinatorial explosion
created by the potential that configural units exist for all
possible combinations of individual elements.

There are alternatives to invoking configural solutions
to complex conditional discriminations. The key to solving 
the discrimination is to provide a means by which some
of what is learned on reinforced trials does not general-
ize to nonreinforced trials or vice versa. Configural mod-
els achieve this by ensuring that the associative change
that accrues to each configural unit does not generalize
effectively to trials with the single CSs or with different 
compounds. Two recent models have been developed that
show how the reverse asymmetry can be achieved within
a purely elemental associative network (Harris, 2006;
McLaren & Mackintosh, 2002). Both models represent
stimuli within a distributed network of elements, follow-
ing the principles developed in stimulus sampling theory
(Atkinson & Estes, 1963; Bush & Mosteller, 1951; Estes,
1950). Two key features enable the McLaren–Mackintosh 
(2002) model to solve complex conditional discrimina-
tions. The first is the assumption that all stimuli have
broadly distributed representations, in that any stimulus



4 HARRISARRIS ANDAND LIVESEYIVESEY

element, such that each element is connected to a subset of 
all elements, and associative learning depends on changes 
in the strength of those connections. Finally, the activation 
strength of an element is boosted by attention. Access to
attention is subject to competition between elements, and 
the size of the boost that an element receives is not linear 
(it is largely all-or-none).

The present proposal advances the model in two im-
portant ways. First, whereas the previous model was trial
based, the present proposal describes the behavior of the 
network “in real time.” That is, the model’s operations are 
specified as differential equations describing continuous 
changes across time, and each operation can be imple-
mented at a temporal resolution that can be defined within 
a single trial. Second, gain control plays a critical role in
regulating (normalizing) the behavior of the network as
a whole. In general terms, this means that the response 
of each element in the network to incoming stimulation
is attenuated by the activity of other elements in the net-
work. All units in the network are subject to at least one 
source of gain control that divisively normalizes their ac-
tivation. Gain control is responsible for both the competi-
tive aspect of the interactions between the elements in the
network and the nonlinear nature of each element’s acti-
vation (see also Harris, in press). Some of the functional 
consequences of the gain control process are similar to
the replacement process that operates in the replaced ele-
ments model (Wagner, 2003; Wagner & Brandon, 2001), 
especially because the effects of both gain control and 
replacement increase between stimuli that are perceptu-
ally similar. It should also be noted that the normalization
process described here makes the function relating input 
strength to element activation strength sigmoid, a property 
of the element activation function used in the McLaren–
Mackintosh (2002) model.

Network Structure
Figure 1 illustrates the structure of the network proposed 

here. Elements (E) are activated by sensory input (S) to 
varying degrees, depending on their tuning to the spatial
and featural properties of the sensory environment. In
this sense, each element can be said to have spatial and 
featural receptive fields, because they respond preferen-
tially to features of a particular quality (e.g., orientation or 
color) and in a given spatial location. For the purpose of 
modeling the representations of simple stimuli of the kind 
used in Pavlovian conditioning experiments (lights, tones, 
etc.), it is assumed that a given physical stimulus provides 
S input to a collection of E elements with similar spatial 
and/or featural receptive fields. The strength of activation 
of a given E depends on S and on internal input from other l
E elements to which it is connected. Learning depends 
on changes to the strength of these connections between
Es. The strength of these connections is initially zero but
increases or decreases as a consequence of temporal cor-
relations between elements’ activations.

We assume that connectivity between elements is not
uniform across the entire network, in that a given E is not
connected equally to every other E. To introduce vari-
ability in the network in our modeling, we have assumed 

group level, but incidental differences between stimuli at 
the individual level will remain, and it is at this level that
the discrimination is solved.

Comparison of the different configural and elemental
models described above has inspired many experimental
investigations aimed at discerning which theoretical ap-
proach provides a more accurate picture of learning in ani-
mals. However, before discussing those investigations, we 
first focus our attention on the last of the models described 
above. The next section presents a detailed extension of 
the elemental model proposed by Harris (2006). The need 
for this is twofold. First, in the original model, the non-
linear influence of attention on element activity arose by 
virtue of attention’s limited capacity, which meant that
attention would selectively boost activation of some ele-
ments but not others. The capacity of attention was de-
fined in simple numerical terms; it could only “hold” a 
fixed amount of element activity, rather like a bucket able
to hold a fixed volume of rocks of varying sizes. Although
this is an intuitively useful and computationally tractable
conceptualization of attention, it is difficult to see how a 
mechanism of this sort could be meaningfully operation-
alized within a neural network. Therefore, in the section 
that follows, we specify in greater detail the attention sys-
tem itself, refining the notion of a limited-capacity buffer 
by framing attention as a network in which gain control 
normalizes overall activity (thus effecting a form of ca-
pacity limitation).

The second aspect of the model we develop here is its 
temporal resolution. In the previous version of the model
(Harris, 2006), each operation was defined at the level
of the individual trial. However, this trial-based opera-
tion does not capture all of the dynamic potential of the
model’s behavior—the way that stimuli interact through 
the acquisition of excitatory and inhibitory connections 
between their elements, and the way that competition for 
attention evolves over time within a trial. Accordingly, 
another objective here is to provide a more continuous 
description of the model, simulating its operations in “real
time.” This is important for any model intended to account 
for the influence of temporal variables, such as CS–US 
contiguity and intertrial intervals. But, as was just noted, it 
is particularly important for the present model, in order to 
adequately capture the dynamics of interelement interac-
tions. As we describe below, this is achieved by iterating 
each operation over many discrete moments within the 
trial, effectively dividing the trial into many minitrials, an
approach that has proved successful in numerous other 
“real-time” elemental models (e.g., McLaren & Mackin-
tosh, 2002; Sutton & Barto, 1981; Wagner, 1981).

THE PRESENTRR MODEL
An Attention-Modulated Associative Network

The present model retains a number of characteristics
of the earlier proposal by Harris (2006). Like the previ-
ous model, it considers stimuli to have distributed rep-
resentations within the associative network in that each
stimulus excites a population of elements. Each element 
has a fixed probability of being connected to every other 
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Each E element is paired with one inhibitory unit (I) and 
one attention unit (A). The activation of each E is normal-
ized by its paired I; each I is excited by its paired E (and to a
lesser extent, by other Es with similar receptive properties). 
Thus, I units exert suppressive gain control of E elements,
normalizing activity within the network. The attention buf-ff
fer of the previous model (Harris, 2006) is replaced by a r
network of attention units (A) that act to inhibit I units and 
thereby diminish their suppressive effect on E elements. 
Thus, attention increases activation of a given E element
by releasing it from inhibition by I. Activity in the atten-
tion units is also driven by sensory input: Each A unit
receives the same S as its paired E element. Finally, the 
activation of each A unit is normalized by activity in other 
A units in the attention network. Thus, the ability of a given
sensory input to excite its attention unit is diminished by 
other sensory inputs that compete for attention.

Computations
Above, we have described the basic structure of the

proposed network. What follows is a detailed description
of the computational operations performed by each unit
at each moment. We present a series of equations that
determine the activation strength—E— , I, and II A—of each
element, inhibitory unit, and attention unit, on the basis 
of external (sensory) input and l internal excitatory and inl -
hibitory inputs from other units in the network. (Note: We
use italics to refer to the activation strength of each E, I,
and A unit.) The general form of these equations derives 
from computational rules that have been used in numerous 
existing models of sensory systems that incorporate a gain
control process of normalization (e.g., Grossberg, 1973; 
Heeger, 1992; Reynolds & Chelazzi, 2004; Reynolds & 
Heeger, 2009), and the application of this gain control
mechanism to element activation has been discussed re-
cently by Harris (in press).

At any given moment, each E, I, and A unit has a re-
sponse potential (Rpot) that drives changes in that unit’s
activation (its actual response, R). Changes in Rpot are as-
sumed to be instantaneous, whereas changes in R are more 
gradual. It is convenient to define Rpot and R separately 
(and make a clear distinction between them) because Rpot
reflects the level of activity that a unit would eventually
reach if all the other variables in the system remained ex-
actly the same, whereas R reflects the actual activity of 
the unit at a given instant. R thus approaches Rpot. The
general form we use to calculate Rpot is shown below in
Equation 1:

R
N D

p

p ppot
Input

Input
. (1)

In Equation 1, the response potential (R(( pot) of a unit is
given by the sum of its inputs (from S and E elements), 
divided by those same inputs plus normalizing inputs
(N ) and a constant D. For E elements, the normalizing 
inputs come from the I units; for I units, the normal-
izing inputs come from A units; and for A units, the nor-
malizing inputs come from other A units (as illustrated in
Figure 1 and defined in Equations 3, 4, and 5 below).

that the existence of a connection between any two E ele-
ments is probabilistic. In our modeling, we have set the 
likelihood that Ei is connected to EjE  at .5 (consistent with
Harris, 2006), which means that any E is, on average, con-
nected to 50% of the rest of the E network. We have cho-
sen this binary form of connection variability because it is 
simple and intuitive. However, an alternative would be to
vary the plasticity of each connection, such that every E is
connected to every other E but the plasticity of each con-
nection (  in Equation 6, below) would vary (when 0, 
the connection would be effectively absent). As has been
explained by Harris (2006), the assumption of variability
in the network’s connectivity provides an effective means
by which to explain a variety of phenomena, such as evi-
dence that some CS–US associations are acquired more
quickly than others. For instance, the fact that animals
learn a taste–illness association much faster than a noise–
illness association (Garcia & Koelling, 1966) could be ex-
plained as extensive connectivity between gustatory and 
gastrointestinal elements and relatively poor connectivity
between auditory and gastrointestinal elements. Varia-
tions in connectivity can also explain Rescorla’s (2000, 
2001, 2002a, 2002b) demonstrations that the rate of learn-
ing about two CSs differs, even when they are conditioned 
together in compound, if their initial associative strengths 
differ (see Harris, 2006).

E I

E I

A

A

S

Figure 1. Illustration of the basic structure of the associative 
network proposed here. Sensory input (S) activates a set of ele-
ments (E; just two elements are shown here for clarity of exposi-
tion). Learning depends on changes in the strength of connections 
between the E elements, which, by default, have an initial strength
of zero. Each E activates a paired inhibitory unit (I) and weakly 
activates the inhibitory units of other elements that have similar
spatial and featural receptive fields. The inhibitory units reduce
activation of their paired E element. Thus, I units exert gain con-
trol, normalizing the activation of each E, depending on the extent 
of activation of surrounding Es. The activity of each I unit, and
thus of each E element, is regulated by a network of attention 
units (A). Each A unit is excited by the same sensory input that ac-
tivates the corresponding E element, and that A unit inhibits the 
corresponding I unit, thus increasing activation of the E element 
(releasing E from inhibition). Finally, inhibition among A units 
normalizes their activity.
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sity of a stimulus (e.g., the contrast of a visual grating) and 
the response magnitude of neurons tuned to that stimulus
(Crowder et al., 2006). In keeping with such evidence, we 
use a form of equation that gives a sigmoid shape to the 
element activation function.

In all the simulations that we present here, p 2 for the 
activation functions of E and I units, and p 5 for A units. 
This makes the behavior of A units more nonlinear, in that 
their activation is closer to being all-or-none.

Equation 1 defines a unit’s response potential to its in-
puts at a given instant in time. However, we assume that 
the unit cannot change instantaneously from its existing
activation level to the new level specified by this response,
since this would imply an infinite rate of change. Rather, 
the response potential defined in Equation 1 gives the ac-
tivation strength that the unit would ultimately reach if 
the current inputs were maintained at a constant level for 
an indefinite period. We assume that the real response of 
each unit approaches this potential in a gradual manner in 
real time. This is defined in Equation 2:

dR
dt

R Rpot . (2)

The rate of change of the activation (R(( ) of a unit is pro-
portional to the difference between its existing activation 
and the unit’s response potential (R(( pot) to the current inputs 
(as defined in the equations below). In all our calculations, 
the rate parameter, , differs when the unit’s activity is ris-
ing versus falling. In our simulations, we have set 0.5 
when (R(( pot R) 0, and  0.2 when (R(( pot R) 0. 
Thus, unit activity rises more rapidly than it decays.

Equations 1 and 2 describe the general form of the func-
tion relating the response of a unit to its input. Below, we
give the specific equations for each E, I, and A unit.

Activation of E. Input to each element is given by 
the sum of its external (sensory) input (S) and internal

Equation 1 is a monotonically increasing function that 
asymptotes at 1. If N is zero (i.e., there is no normalizing N
influence on the unit’s activity), Rpot reaches half height 
(R(( pot .5) when Input p D. As N increases, the functionN
is effectively shifted to the right such that the strength of 
Input p must increase by NpNN in order for Rpot to reach half 
height. The constant D scales the range of Input values 
over which critical changes in Rpot occur and prevents the
denominator of the equation from equaling zero. In all
the simulations presented here, D  0.04 in all equations. 
The power, p, determines the slope of the function. As
is illustrated in Figure 2, when p 1, the function is a
simple monotonically increasing curve. Higher values of 
p make the function sigmoid, and increasing p increases 
the maximal slope.

We assume that p takes values greater than or equal to 2, 
on the basis of psychophysical and neurophysiological evi-
dence suggesting that the responses of sensory units follow
a sigmoid function. The rate of change in perceived magni-
tude of a stimulus decreases as the absolute magnitude of 
the stimulus increases, as captured by the Weber–Fechner 
law and Stevens’ power law (Stevens, 1962). However, the
opposite relation has also been observed frequently for the 
lowest end of many stimulus dimensions. That is, for stim-
uli near detection threshold, observers become more sensi-
tive in discriminating the relative magnitudes of stimuli as
their absolute magnitude increases (Arabzadeh, Clifford, 
& Harris, 2008; Solomon, 2009). These two contrasting 
psychophysical effects indicate that the relationship be-
tween the physical intensity of a stimulus and its perceived 
intensity reverses as the stimulus intensity increases; the
function is positively accelerated at low intensities and 
negatively accelerated at higher intensities. This sigmoid 
form of the function has been confirmed in numerous ex-
periments using electrophysiological recordings in cats or 
primates to determine the relationship between the inten-
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2. The relationship between input and response potential (R(( pot) ac-
cording to Equation 1 (with D 0.04). The panel on the left shows that when
p 1, the response is a monotonically increasing but continuously decelerating
function of input that approaches an asymptote of 1. When p 1, the function 
becomes sigmoid but still approaches an asymptote of 1. The panel on the right
shows how the function is affected by the size of the normalization input (N(( ): 
The function is shifted to the right as N increases from 0.4 to 0.8 (this correN -
sponds approximately to the change in value of N between presentation of aN
single stimulus of 20 elements and a compound of two such stimuli).
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The input to each I unit is normalized by input from a 
specific A unit. This input is scaled by a factor, kakk , which 
allows the attention units to strongly suppress I units. In 
the simulations presented here, kakk 4.

Activation of A. Activity in the attention units is com-
puted using Equation 5, which, as for E and I units, takes
the general form of Equations 1 and 2. Equation 5.1 de-
fines the normalized response potential of A. Unit AxA  re-
ceives the same sensory input as Ex (i.e., Sx). This sen-
sory input is normalized by activity in every other A unit. 
Equation 5.2 defines how this normalizing input, A , is 
calculated from the sum of scaled activations across all 
A units except AxA . Thus, the attention field functions as 
a competitive network of fully connected units, where 
all connections are suppressive and have the same fixed 
strength (w). In order for the attention field to act appro-
priately, w should be inversely proportional to the number 
of elements. In the simulations we present here, w was set 
to 0.04.

dA

dt
A Ax

xpot , (5)

where

A
A D

x
p

x
p

x
ppot

S

S
,

A w A Ax i
i

n

x
1

. (5.2)

Associative change. In the previous model (Harris, 
2006), the connections between elements changed strength
(V ) according to a summed error term (Rescorla & Wag-
ner, 1972), reflecting the difference between external
input to US elements ( ) and the sum of internal inputs to
the US elements from CS elements. This requires that the 
associative mechanism explicitly distinguish between ex-
ternal and internal inputs and represent information about 
their difference. Such a requirement violates the local ac-
tivity principle, according to which associative change in
the connection between two elements is determined solely
by activity in those two elements (McLaren & Dickinson, 
1990). However, by formalizing associative processes in 
real time, it is possible to specify an algorithm that func-
tions in a fashion very similar to that of the summed error 
term rule, but in which associative change is determined 
by the activation state of the recipient element, rather than
requiring that the recipient element compare between its 
different sources of input. This is possible because, when
operating in real time, the summed error term is gener-
ally proportional to the instantaneous change in activation
of the recipient element. For example, when the external 
input to a US element is greater than the sum of internal 
inputs from CS elements, activity in the US element rises. 
In the present model, we use a rule for determining as-
sociative change that is similar to an idea first suggested 
by Konorski (1948; see also McLaren & Dickinson, 1990)
and later incorporated into the real-time associative model 
developed by Sutton and Barto (1981). According to this 
rule, changes in the strength of a connection are deter-

associative input from other elements. In real time, the
input to an element x combines the external input (Sx),
which changes instantly, reflecting the onset and offset of 
external stimuli, with the current associative input to x.
The associative input is the product of each element’s ac-
tivation and the strength (V ) of its associative connection 
to Ex. The equation for calculating inputs to E is shown 
below (3.2). In these calculations, we have set at zero the 
lower limit on total summed input to any element. This 
constrains the activity in any unit to be nonnegative. Equa-
tions 3 and 3.1 follow the form specified in Equations 1
and 2 to define the response of element Ex based on these 
inputs and its normalization by the paired I unit. Note that
we have set the power, p 2.

dE

dt
E Ex

xpot , (3)

where

E
I D

x

p

x

p

x
ppot

Input E
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Input E Sx x i i
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V E
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if S Input Ex i i
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xV E
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Activation of I. The activation of I units is determined 
by a function of the general form of Equations 1 and 2. 
The input to each I unit is a weighted sum of activities in 
all E elements, as shown below in Equation 4.2, and that 
input is normalized by inhibition from attention units (A), 
as shown in Equation 4.1. The inputs to I units from E
elements can be thought of as a network of connections,
with each connection being weighted (z) in the range 
from 0 to 1. For the input to a given inhibitory unit, Ix, 
the weighting (zi,x) applied to each Ei is determined by
the similarity of Ei’s spatial and featural receptive field 
with the receptive field of the unit, Ex, undergoing nor-
malization by Ix. Smaller values of zi,x reflect less similar-
ity between Ei and ExE , and therefore, ExE receives stronger 
suppressive normalization from those Ei with more simi-
lar sensory tuning. Thus, zxz ,x 1 (such that Ex provides
the largest input to Ix) and every other zi,x is less than 1.
For any Ei that has no overlap in receptive field with ExE
(e.g., an element that responds to stimulation in a different 
sensory modality) zi,x 0, thus providing no normalizing 
influence.

dI

dt
I Ix

xpot , (4)

where

I
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x

p

x

p

a x

ppot

Input I

Input I
, (4.1)

Input Ix i x i
i

n

z E, .
1



88 HARRISARRIS ANDAND LIVESEYIVESEY

and
d V

dt
k

dV

dt
x y

v x y
x y

2

2

,
,

, . (8)

The parameters kk  and kv are constants set to values 
between 0 and 1, which govern the rate of change of as-
sociability and of learning, respectively. The gradually
changing weights and element associabilities allow learn-
ing to proceed in a relatively stable fashion across erratic 
fluctuations in activation. The gradual change in also
provides some scope for conditioning to occur across in-
tervals between the CS and US, beyond that which is pos-
sible from residual activation of CS elements after the CS 
is no longer present. The simulations here use kkk .33 
and kv .05. However, for the sake of parsimony, it is 
worth noting that under most conditions, the model does
a more than adequate job with kkk  and kv both set to 1, in
which case Equations 7 and 8 can be replaced with

x xE (7.1)

and
dV

dt
x y

x y
,

, . (8.1)

Modeling Learning Across a Single Trial
We will now give a brief explanation of the basic work-

ings of the model before moving on to simulations of 
experimental data. Figure 3 shows changes in activation 
over single trials to illustrate the operations of the model. 
Here, the model consists of only one context element, one 
CS element, and one US element, with full connectivity
between each. In each case, the US onset coincides with 
the CS offset.

Figure 3A plots activation of E, I, and A units for both 
the CS and US across a simulated conditioning trial in 
which the elements each receive a boost from attention.
The ECS and EUS elements reach a high level of activa-
tion, whereas the ICS and IUS units are largely suppressed 
by activation of ACS and AUSAA . To illustrate the effect of 
attention, Figure 3B shows the same trial, but this time 
simulated with attention removed. There are two obvious
consequences of this removal. First, both I units show high
and sustained activity. Second, activity in both E units is
reduced, being partially suppressed by the I units. As a
direct consequence of both of these changes, the forma-
tion or strengthening of positive associations will be lim-
ited by the loss of E activity, and the rise in I will drive 
inhibitory learning. Figure 3C shows a typical learning 
trial after extensive conditioning, where performance is
near asymptotic levels. In comparison with Figure 3A, the 
IUS unit is activated relatively early in response to associa-
tive activation of the EUS element by ECS. The rise in IUSII
leads to a period of inhibitory learning between ECS and 
EUS before the US is presented. When the US is presented,
activation of the AUSAA unit suppresses the IUS unit, lead-
ing to a period of growth in associative strength. Learning 
reaches asymptote when these two changes cancel each
other out. When the US is omitted after extensive condi-

mined by the change in activation strength of the recipient 
element. However, the rule used here differs from those
previous proposals in one respect: It was assumed by
Konorski and by Sutton and Barto that the strength of a 
connection increased when activity in the recipient unit 
rose and decreased when activity in the recipient unit 
fell; the model proposed here assumes that the strength 
of a connection between two elements increases when the
recipient element’s activity rises, but the strength of the 
connection decreases when activity rises in the inhibitory 
unit (I) of the recipient element. A fall in either E or E I does I
not produce any change in V. Thus, rather than tying the VV
direction of associative change to the direction of change
in activity of the recipient element, our rule ties the direc-
tion of associative change to the rise in excitation versus 
inhibition of the recipient element. The rises in E and E I
(dE/EE dt and t dI/II dt) are calculated exactly as in Equations 3 
and 4. As in other models, the change in VxVV ,y is also scaled 
by a third parameter ( x), which reflects the associability
of the signal element and is determined by the activation
of the signal element (ExE ). Thus, changes in associative 
strength from element x to element y are proportional to a l
function, x,y, of the coactivation of elements x and y:

x y x
y ydE

dt

dI

dt, ,E I
(6)

where

E

I

if

otherwise

if

0 02 0

0

0 1

. ,

,

. ,

dE

dt

d

y

II

dt
y 0

0,

.

otherwise

The strength of a connection between ExE and EyE  (VxVV ,y) 
increases as a proportion of dEyEE /dt and decreases as a prot -
portion of dIyII /dt. The amount that VxVV ,y changes in response
to increments in EyEE and IyII  is scaled by rate parameters, E
and I. In testing the model, we set the rate parameter for 
the I unit higher than for the E element (in all simula-
tions presented here, E  0.02 and I 0.1). E 0
if the change in EyEE  is negative, and likewise I 0 if the 
change in IyII  is negative, so that learning is unaffected by
falls in activation. Associative changes are driven only by
increases in element activation.

One further aspect of the model is the assumption that
changes in  and V are gradual, reflecting internal proV -
cesses that are not immediately responsive to changes in
element activation. Therefore, instead of setting x to equal 
ExE , the rate of change of x is governed by the discrepancy
between x and ExE (Equation 7). Likewise, rather than the 
rate of change of VxVV ,y being governed by the rises in EyEE  and 
IyII , the rate of change of VxVV ,y accelerates and decelerates
according to rises in EyEE and IyII  (Equation 8):

d

dt
k Ex

x x
(7)
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sented in compound. In the present model, this is achieved 
by a competitive network of attention units. Increasing the
“competition” in the network (increasing the total amount 
of activation in all A units) affects learning via its impact
on the activation of E and I units. As the number of ele-
ments stimulated by S increases, so too does the normalS -
izing input A . Consequently, A is suppressed to a greater 
extent, allowing I to increase, which in turn suppressesI E.

tioning (Figure 3D), the associative strength that is lost
during the presentation of the CS is not regained, leading 
to extinction.

Competition for Attention Between Elements
The Harris (2006) model incorporated a limited-

capacity attention buffer as a means of providing nonlin-
ear changes in element activation when stimuli were pre-
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Figure 3. Activation profiles across time within a single trial for single units representing a conditioned stimulus (CS)
and an unconditioned stimulus (US) in the present model. (A) E, I, andII A responses of one CS element and one US ele-
ment on the first presentation of the CS and US. (B) A scenario identical to that in panel A, but with attention removed
from the simulation. (C) E, I, andII A responses of one CS element and one US element over a CS–US pairing after exten-
sive conditioning has occurred. (D) Those same E, I, and II A responses on a trial in which the US is omitted.
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at least 10 simulated runs; each run produces a slightly
different result by virtue of the probabilistic nature of the 
connectivity between E elements in the network. Details 
that have not been specified already are described below.

In all the simulations described here, each stimulus (in-
cluding the US and context) has 20 elements. The strength 
of sensory input to each element within a stimulus is var-
ied uniformly across a predefined range. The strongest
US input is set to 2, the strongest CS input to 1, and the 
strongest context input to 0.5. The weakest input in each
case equals the strongest input divided by the number of 
elements (20).

Each trial is broken into 150 moments. The onset of 
each CS or compound is at t 20, and its offset at t 50.
On reinforced trials, CS offset coincides with the onset
of the US, which ends at t  60. Context sensory inputs
remain on for the entire trial. Every computational opera-
tion is performed at every moment and provides the input
for computations at the next moment.

We will concentrate first and foremost on a range of 
complex discriminations that, like negative patterning,
have no linear solution based on a simple summation of 
the associative strength of each individual stimulus. This 
type of discrimination has historically provided the great-
est challenges to elemental learning theory, and certainly
there is still a prevailing view that this type of discrimi-
nation is unsolvable by elemental learning mechanisms
alone (see, e.g., Melchers, Shanks, & Lachnit, 2008, and 
replies).

Simple Conditioning and Extinction
Figure 5 shows the outcome of a single simulation with 

one CS that is continuously reinforced for the first half of 
the simulation (left panel) and then nonreinforced for the
second half (right panel). Both panels plot the activation 
of US elements over the duration of the CS. Learning is 
negatively accelerated: Initial increases in the activation
of the US during the CS are relatively large but dimin-
ish toward an asymptote. However, a careful inspection
of the earliest stage of conditioning reveals that the learn-
ing curve has, at this point, an upward inflexion (i.e., the 
increments in US activation from one trial to the next ini-
tially get larger, before showing the familiar decrease in
growth rate toward the asymptote). This sigmoid function 
is consistent with general evidence for the development 
of conditioned responding across the course of simple
conditioning (cf. Mackintosh, 1974), but it is unlike
linear-difference models of learning, in which the learn-
ing curve is negatively accelerated right from the outset 
of conditioning (e.g., Rescorla & Wagner, 1972). The ini-
tial upward inflexion of the curve here does not reflect 
an accelerated learning rate; indeed, increments in asso-
ciative strength are constant over these initial trials (i.e., 
learning is linear). Rather, the upward inflexion is a type 
of performance effect, being a direct consequence of the 
accelerating nonlinearity in the element activation func-
tion itself (see Figure 2). That is, as associative input from 
CS elements to US elements increases from zero, the re-
sponse of the US units increases supralinearly. This effect
is somewhat analogous to the response threshold notiond

All else being equal, for any element x, ExE will be smaller 
and IxII  greater when the element is activated as part of a 
compound of two stimuli than when activated as part of a 
single stimulus. However, the differences are not uniform. 
Elements with strong external input or weak external input 
will remain relatively unaffected by the addition of an 
extra stimulus, because activation of their attention units
will change very little (they will either remain active if 
they receive strong input or remain inactive if they receive
weak input). Elements with intermediate external input
are more affected because their attention units suffer a siz-
able loss of activity when part of a compound. It is these 
elements whose activations change the most when addi-
tional stimuli are presented in compound. These effects 
are illustrated in Figure 4.

Normalization Within and Between Stimuli
As was described above, activity in the network is 

normalized by summed input from E elements to each
I unit, and this normalizing influence between elements is
weighted as a function of their similarity. The weighting is 
expressed by the parameter zi in Equation 4.2. Input from
each Ei to its own Ii unit is unscaled (z(( i,i 1), whereas 
input from each element Ei to IjI  is scaled by zi, j 1. To
simplify this aspect of the model, we have not attempted to
implement a graded change in the values of zi across ele-
ments. Rather, we have set zjz ,i  1/20 (specifically 1 the 
number of elements in the stimulus) for all EjE elements 
that are activated by the same stimulus as Ei. Thus, each 
element is normalized by all other elements that represent
the same stimulus, and each element contributes 5% of its 
activity to the normalization of the other elements.

In most of the simulations that we have conducted here,
we assume that elements representing different stimuli 
do not contribute to each other’s normalization. Thus, we
have set zi 0 for all connections from the E elements 
of one stimulus to the I units of another stimulus. This 
assumes that those stimuli are very distinct, which is cer-
tainly an appropriate assumption for stimuli from different 
sensory modalities. However, this property of the model
does provide a mechanism whereby stimuli from the same 
modality may interact, given appropriate featural and spa-
tial proximity. That is, two stimuli from the same modality
may contribute to normalization of each other’s elements 
by allowing zi to be greater than zero (although less than 
1/20). In simulations conducted here, whenever the de-
sign involved different stimuli from the same modality, 
we have set zi, j  1/40. We acknowledge that this is a
relatively arbitrary value, and the systematic manipulation 
of this parameter could be important in testing the model’s
performance against empirical findings. As is discussed in
several places below, the ability of the model to account in 
a principled way for stimulus similarity has served it well
in enhancing its explanatory power.

Other Details of the Simulations
To reveal the model’s behavior under a variety of situ-

ations, we have run simulations using the operations de-
fined in Equations 1–8. Except where specified, the results
of the simulations that we present here are the average of 
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Figure 4. Left panels: E, I, andII A responses of an element across the course of a stimulus presentation, as a function of 
the number of elements simultaneously activated. All elements have been given equal input from S. Right panels: The RR E, I,II
and A responses of three conditioned stimulus (CS) elements (receiving the weakest, median, and strongest S, respectively)
across the course of a stimulus presentation, as part of a single CS presentation and a compound CS presentation.
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single CS trials. The increased number of sensory inputs 
on compound trials results in increased gain control. Be-
cause of the sigmoid shape of their activation function, 
attention units with strong input (Ahigh) remain relatively 
unaffected by the increased gain control, whereas units 
with weaker input (Amid) are suppressed. For example, re-
ferring to the gray curves in the right-hand plot in Figure 2
( p 5, as for the attention units in the present model),
a unit with an input value of 1 will suffer a relatively 
small decline in its activation if the normalization value
(N(( ) increases from 0.4 (the approximate value for a single 
20-element stimulus) to 0.8 (the approximate value for 
two such stimuli), whereas units with inputs between .5
and 1 will suffer much greater loss of activity. This differ-
ential loss of activity across attention units translates into
a differential decline in activation of the corresponding 
E elements, because their inhibitory I units are less effec-
tively suppressed by attention. Moreover, the rise in Imid
activity leads to the gradual development, across trials, of 
inhibitory associations from the Ehigh elements, which re-
main active in the compound, to the Emid elements. Thus, 
the two processes combine to effectively suppress activity 
in these Emid elements on compound trials. It is this dif-ff
ference in activation of Emid elements between single CS 
and compound presentations that provides a solution to
negative patterning, because the difference is correlated 
with the occurrence of reinforcement (see also Harris, in
press, for a discussion of these processes).

The Biconditional Discrimination
The role played by attention in solving negative pat-

terning is less effective in solving a biconditional dis-
crimination, because all the trials involve presentations
of compounds and, thus, normalization within the atten-
tion network is more closely equated for reinforced and 
nonreinforced trials. Indeed, the previous version of the
present model could not solve biconditional discrimina-

espoused by Spence (1956), according to which associa-
tive strength must surpass a threshold before its effect can
be expressed in behavior. The decelerated component of 
the curve reflects the progressive acquisition of inhibition
in each trial during the period in which the CS activates
the EUS elements. Here, the EUS elements activate their 
IUS units, leading to inhibitory associative change within
the trial. The asymptote of learning is reached when the
inhibitory associative changes driven by IUS units match
the excitatory changes supported by the EUS elements (i.e., 
the term inside the brackets in Equation 6 equals zero).

Like conditioning, extinction is negatively acceler-
ated: US activation declines quickly when extinction 
commences, but this decline slows as US activation ap-
proaches a floor (see the right panel in Figure 5). Note, 
however, that this floor is above zero. In the figure, ex-
tinction all but stops when activation of US elements falls 
below 0.05, rather than showing the uniform exponential 
decay function common to learning models that equate 
learning with a linear difference term (e.g., Rescorla & 
Wagner, 1972). This dramatic slowing of extinction oc-
curs in the present model when the associative activation 
of US elements is sufficiently low that the EUS elements 
are barely able to activate their I units enough to generate 
further inhibitory learning. This threshold effect for acti-
vation of I units is a product of the nonlinear activation 
function shown in Figure 2.

Negative Patterning
The model we present here was developed to solve com-

plex conditional discriminations. Therefore, it should come
as no surprise that, like its predecessor (Harris, 2006), the
model can solve negative patterning and the biconditional
discrimination, as is confirmed by the simulations shown 
in Figure 6. To explain how the model solves negative pat-
terning, we must consider how normalization of activity
in the attention network changes between compound and 
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Figure 5. Left: Activation of unconditioned stimulus (US) elements during 
the period of conditioned stimulus (CS) input across each trial of a simulation 
of simple conditioning of a single CS. Right: Activation of the same USRR elements 
during the same CS across each trial of an extinction phase when the CS was
no longer followed by the US.
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2003, 2008), we extend this review to include studies of 
response summation when two or more CSs are combined 
as a compound.

Negative-Patterning and
Biconditional Discriminations

Although all the models described here are equipped to 
solve negative-patterning and biconditional discrimina-
tions, most of these models tend to solve the biconditional
discrimination more quickly (McLaren & Mackintosh,
2002; Pearce, 1987, 1994; Rescorla, 1972; Wagner &
Brandon, 2001; Whitlow & Wagner, 1972). In light of this, 
we recently compared the rate at which rats and humans
learn negative-patterning and biconditional discrimina-
tions. Rats were trained in a magazine approach paradigm
(Harris et al., 2008), and human subjects were trained in
a causal judgment task (Harris & Livesey, 2008). In each
case, the negative-patterning discrimination was mastered 
more quickly than the biconditional discrimination.

For the presently proposed extension of the Harris 
(2006) model, the prediction about the relative difficulty
of biconditional and negative-patterning discriminations 
is less clear than for its predecessor. Certainly, the simula-
tions shown in Figure 6 seem to solve the negative pat-
terning and biconditional discriminations at similar rates. 
However, there are differences in the way the model solves 
the two discriminations, and two relevant factors can be 
identified. First, the solution to negative patterning ben-
efits from competition for attention, because some ele-
ments (those with intermediate activation strength) will 
be less active in the compound than in single stimuli. Sec-
ond, both discriminations benefit from the formation of 
inhibitory interstimulus connections, because these lead 
to elements becoming active only in the compound and 
not in the single CSs, or only in one compound but not

tions except by assuming incidental differences in the 
salience of each stimulus that would create differences 
between compounds in the competition for access to at-
tention (Harris, 2006). The present model, however, can
solve biconditional discriminations (see Figure 6) without 
appealing to preexisting differences in stimulus salience, 
but by relying on incidental differences in connectivity 
between elements. Its means for doing so depends on the 
acquisition of inhibitory associations between elements.
As described above for negative patterning, across trials, 
stronger E elements will develop inhibitory associations
against weaker E elements because the inhibitory units of 
the latter elements will not be effectively suppressed by 
attention. However, incidental differences in connectivity
between E elements mean that a given element will be 
more strongly inhibited in one compound than in another 
compound. Any such element will acquire excitatory as-
sociative strength with US elements if it is more active
in the reinforced compound than in the nonreinforced 
compound but will acquire inhibitory strength if more ac-
tive in the nonreinforced compound than in the reinforced 
compound. In other words, specific elements will emerge 
as virtual configural units for different compounds as a 
consequence of incidental differences in connectivity be-
tween elements, making the compounds themselves more 
distinct due to these variations in the pattern of their ele-
ments’ activation.

EMPIRICARR L EVIDENCE

In this section, we review findings from key experi-
mental investigations into the way that animals solve
negative-patterning discriminations. In line with the on-
going debates about the merits of elemental and config-
ural representations (e.g., Pearce, 1987, 1994; Wagner,
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Figure 6. Activation of unconditioned stimulus (US) elements during presen-
tation of single or compound conditioned stimuli across 150 simulated blocks
of a negative-patterning discrimination (left; one block comprises one A , one 
B , and two AB  trials) and a biconditional discrimination (right; one block 
comprises one trial of each compound). Each plot is the average of 20 simula-
tions generated using the model proposed here. In each case, the model even-
tually learns to perform correctly, in that its US elements are activated more 
strongly on trials that are followed by the US ( ) than on trials without the
US ( ).
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more than to b, producing poorer discrimination between 
A  and Ab  than between b  and Ab .

Complex Negative-Patterning Designs
Other empirical evidence that helps to distinguish the 

various models considered here has come from experi-
ments that assess the impact of adding a third stimulus to
a negative-patterning discrimination (reviewed in Pearce, 
1994). Pearce and Redhead (1993) reported an experiment
that compared the performance of two groups of pigeons, 
one trained on a standard negative-patterning discrimina-
tion (A  B vs. AB ) and the second trained on a dis-
crimination that included a third (redundant) stimulus that 
was present on every trial (i.e., AX BX  vs. ABX ). 
They found that the inclusion of the redundant stimulus 
retarded mastery of the discrimination, in that the first
group of pigeons learned the A B versus AB  dis-
crimination more quickly than the second group learned 
AX BX versus ABX . This difference is specifically 
predicted by Pearce’s (1987, 1994) configural model, be-
cause it assumes greater generalization from AX and BX 
to ABX than from A and B to AB. However, the difference 
in difficulty between the two forms of negative patterning 
is anticipated by the McLaren–Mackintosh (2002) model 
only when it is assumed that the amount of learning per 
trial is large and is particularly problematic for the added 
(and replaced) configural element models (Rescorla, 
1972; Wagner, 2003; Wagner & Brandon, 2001; Whitlow 
& Wagner, 1972), which predict that the addition of the 
redundant stimulus should facilitate learning of the dis-
crimination, a prediction derived from their assumption
that conditioning will proceed more quickly to AX and 
BX than to A and B. As is shown by the left plot in Fig-
ure 8, the elemental model proposed here also tends to 
perform better on negative-patterning discrimination with 
a redundant stimulus than on standard negative patterning,

in another. However, the opportunity for inhibitory in-
terstimulus connections is greater for the biconditional 
discrimination because each trial type involves the com-
pound of two stimuli. The relative contributions of these
two factors will vary according to how much competition
there is for attention (i.e., how much the A units normal-
ize each other) and the amount of connectivity between 
the elements. Thus, negative patterning will be easier than
the biconditional discrimination when the normalizing ef-ff
fect of attention contributes significantly to the nonlinear 
behavior of the elements, relative to the effect of inter-
stimulus inhibitory links. Conversely, when attention has
a relatively minor impact on the E and E I responses of theI
elements (because competition is either too weak or too 
strong), biconditional discriminations should be easier 
than negative patterning.

In assessing different accounts of how animals solve
negative-patterning discriminations, Redhead and Pearce
(1995b) trained animals (pigeons and rats) on a negative-
patterning discrimination in which one of the two stimuli
(A) was more salient than the other (b). These authors 
pointed out that elemental models that invoke an added 
configural cue to solve these discriminations (Rescorla, 
1972; Whitlow & Wagner, 1972) predict that responding
should emerge much sooner to the salient A stimulus than 
to the weaker b stimulus and, as such, the animals should 
show better discrimination of A  versus Ab than of b
versus Ab . In contrast, the configural model proposed 
by Pearce (Pearce, 1987, 1994) predicts that the b versus
Ab  discrimination should emerge sooner than the A
versus Ab  discrimination, because the greater salience
of A than of b would lead to greater generalization between
A and Ab than between b and Ab. The experimental results
reported by Redhead and Pearce (1995b) were consistent 
with the latter prediction and contradicted the predic-
tion of the elemental models with added configural cues. 
The ability of more recent elemental models (McLaren
& Mackintosh, 2002; Wagner & Brandon, 2001) to ac-
count for this finding will depend on the manner in which 
they represent stimulus salience. In the present model, the 
physical salience of a stimulus determines the strength 
of sensory input to E and A units. Therefore, we incor-
porate differences in salience between two stimuli by ar-
ranging that the sensory input is lower in one than in the
other. Figure 7 shows the result of simulations in which 
sensory input from the weaker b stimulus was 90% of that 
for the stronger A stimulus. It is clear that the model an-
ticipates superior discrimination between b and Ab
trials than between A and Ab trials, just as Redhead 
and Pearce (1995b) found. The reason it performs in this 
way is relatively straightforward. The weaker b elements
will fare much worse than the stronger A elements in the
competition for attention on Ab  trials, and thus many 
b elements will be activated strongly on b  trials, but not
on Ab  trials, whereas many A elements will be strongly
activated on both A and Ab  trials. As a result, the loss
of associative strength on each Ab  trial will be largely 
confined to A elements, with b elements suffering much
less associative loss. This will drive down responding to A 
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Figure 7. Simulation, generated using the present model, of a
negative-patterning discrimination in which one stimulus, A, is 
more salient than the other stimulus, b. The model anticipates 
better discrimination between b and Ab  trials than between
A and Ab  trials, which is consistent with the results of an ex-
periment by Redhead and Pearce (1995b).
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tive to their size when presented separately. This physi-
cal change in the stimuli, as well as a likely sensory in-
teraction between them, could change the nature of the 
prediction of elemental models. In contrast, Myers et al.
described an unpublished eyeblink-conditioning experi-
ment conducted by Bahçekapili in which rabbits trained 
on a negative-patterning schedule with a redundant cue 
mastered this discrimination more quickly than did rab-
bits given a standard two-stimulus negative-patterning
discrimination. This result is the direct opposite of that
found by Pearce and Redhead. An important difference
between this experiment and the earlier one by Pearce and 
Redhead is that the experiment by Bahçekapili used three 
stimuli from different modalities (one visual, one audi-
tory, and one tactile; cited in Myers et al., 2001).

As is shown in Figure 8, such considerations of the ef-ff
fect of stimulus interactions do allow the present model 
to account for both the result reported by Pearce and Red-
head (1993) and that obtained by Bahçekapili (cited in
Myers et al., 2001). In the latter case, since one would 
expect little or no direct sensory interactions between 
such physically different stimuli, these stimuli should be
treated by the present model as exerting no direct effect
on one another’s normalization. Without normalization 
between stimuli, the model performs better on negative-
patterning discrimination with a redundant stimulus than
on standard negative patterning. That is, if A, B, and X do 
not contribute to each other’s normalization, other than via 
attention, the model solves the AX  BX  versus ABX
discrimination faster than it solves the A B  versus
AB discrimination (see the left panel in Figure 8). This
is the result obtained by Bahçekapili (cited in Myers et al.,
2001) with three stimuli from different modalities. In the 
case of Pearce and Redhead, the physically overlapping
visual stimuli were simulated by adding normalization 
between the stimuli, as outlined above. For each element i
of one CS and element j in another, the input from Ej i to IjI

and thus, the model would appear to be contradicted by
Pearce and Redhead’s findings.

Although the results of the experiment by Pearce and 
Redhead (1993) appear to discount the elemental models 
(including those with added configural elements), those 
findings may be a specific consequence of the choice of 
stimuli that were presented to the pigeons in the negative-
patterning discriminations. All three stimuli in those
experiments were visual (red, green, and white colored 
patches) and were presented together on a small screen 
(approximately 4.5 5.5 cm). As was argued by Myers, 
Vogel, Shin, and Wagner (2001), such similar and spa-
tially close stimuli may well interact in ways that could 
influence their representation in an elemental network.
The nature of these interactions can be specified in the 
elemental model we propose here in terms of the direct ef-ff
fect of each stimulus on gain control operating on the other 
stimuli. In the simulations shown on the left in Figure 8, 
none of the stimuli had any direct effect on the gain con-
trol mechanisms of any other stimulus (there was only an
indirect effect via attention). However, if we allow stimuli 
to contribute to each other’s normalization (i.e., if zi is
greater than zero for every Ei in calculating the input to Ix
in Equation 4.2), the model does become slower in solving
negative patterning when a redundant stimulus is included 
(see the plot on the right in Figure 8). This is important 
because, in the present model, different stimuli would be
expected to contribute directly to each other’s normaliza-
tion if they were spatially and featurally similar. It is rea-
sonable to suppose, as was argued by Myers et al., that 
the stimuli used by Pearce and Redhead were sufficiently 
similar to produce such normalization effects. Indeed, a
normalization-like effect between Stimulus A and Stimu-
lus B was physically introduced by Pearce and Redhead by
virtue of the manner in which they presented the stimuli
together in compound. That is, both A and B were shrunk 
by 50% whenever they were presented in compound, rela-

Figure 8. Simulations of a standard negative-patterning discrimination (A
B vs. AB ; black lines) and discrimination with an added redundant stimu-
lus (AX  BX  vs. ABX ; gray lines), generated from the elemental model
proposed here. The two plots show the performance of the model when the 
simulation assumes that no stimulus contributes to the normalization of any 
other stimulus (left) and when it assumes that each stimulus contributes to the 
normalization of every other stimulus (right).
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human subjects). As was discussed above with respect to
the effect of a redundant stimulus on negative patterning, 
Myers et al. pointed out that the contrasting results from 
their experiment and that of Redhead and Pearce (1995a)
could be due to the fact that the rabbits in Myers et al.’s 
experiment were trained with stimuli from three differ-
ent modalities (one visual, one auditory, and one tactile), 
whereas Redhead and Pearce’s (1995a) pigeons were
trained with three visual stimuli.

The elemental model proposed here can account for all 
of the findings above if, once again, we assume that stim-
uli from different modalities do not contribute directly to 
one another’s normalization (gain control) but that stimuli 
from the same modality will contribute to each other’s 
normalization, especially when presented in close spatial 
proximity. When trained with the A B  C AB AC
BC  versus ABC schedule, the model predicts stronger 
initial responding on AB , AC , and BC trials than on 
A , B , and C  trials if the E elements of each stimulus 
do not provide input to the I units of any other stimulus
(see the simulation in the left panel in Figure 9). Thus,
the model predicts the finding reported by Myers et al. 
(2001) when stimuli do not directly influence each other’s 
normalization, as would be expected for the stimuli used 
by Myers et al. However, if the E units of one stimulus
do provide input to the I units of other stimuli that are
presented at the same time, the initial difference between
the single CSs and two-stimulus compounds is reduced 
(see the simulation in the right panel in Figure 9). This oc-
curs because the opportunity for summation of associative 
strength between CSs is reduced when those stimuli con-
tribute to each other’s normalization. Thus, the model can
account for the results reported by Redhead and Pearce 
(1995a) if it assumes that each stimulus contributes to 
normalization of any other stimulus that is presented at
the same time, as may well have occurred between the
visual stimuli presented in close proximity by Redhead 
and Pearce (1995a). Indeed, Redhead and Pearce (1995a) 
physically introduced such a normalization effect between 
the stimuli, because the size of each stimulus was reduced 
as a fraction of the number of stimuli presented on a trial.
That is, each stimulus was shrunk by 50% when presented 
as part of a two-stimulus compound and was shrunk to 
33% when presented in the triple compound.

The model also successfully accounts for the results
of the A  B  C ABC  versus AB  AC  BC
discriminations (Pearce et al., 2008). Simulations (not 
shown) demonstrate that it correctly produces weaker 
CS-generated activation of US elements on the double-
CS compound trials than on single-CS or triple-CS trials.
Moreover, the difference in simulated responding between
the single- and triple-CS trials depends on whether there
is normalization between stimuli. Without normalization 
between stimuli, the model predicts greater responding 
to ABC than to A, B, or C individually, in line with the
prediction of other elemental models. However, when
stimuli do contribute to one another’s normalization, the 
predicted difference is reversed. Thus, the model explains 
the result obtained by Pearce et al. (2008) if it assumes that
the visual stimuli they used were sufficiently similar that 

was given a weight zi, j  1/40. Doing so yields the results
shown in the right panel in Figure 8. Thus, the present
model can account for both the finding reported by Pearce 
and Redhead, and the opposite result by Bahçekapili, by
assuming that sensory normalization affected the repre-
sentation of the visual stimuli used by Pearce and Redhead 
but that there was no normalization between the stimuli
from different modalities used by Bahçekapili. The reason 
why stimulus normalization reverses the predicted order 
of these discriminations will become clear in the discus-
sion of stimulus summation later in this article.

Two other negative-patterning discriminations ex-
plored by Pearce and colleagues involve presentation of 
all possible combinations of three stimuli and either re-
inforcing all trials except those on which all three CSs
are presented together (i.e., A B C AB  AC
BC vs. ABC ), or reinforcing all trials except those 
with two-stimulus compounds (i.e., A  B C  ABC
vs. AB AC BC ). Elemental models that use added 
configural elements to solve these discriminations (Res-
corla, 1972; Wagner, 2003; Wagner & Brandon, 2001;
Whitlow & Wagner, 1972) predict that responding to the
reinforced compounds should be greater than responding
to the single CSs, due to strong summation of associative
strength when CSs are presented in compound. That is, in
the first schedule, these models predict that responding
will be higher on AB , AC , and BC trials than on A ,
B , and C  trials, and in the second schedule, they pre-
dict greater responding on ABC  trials than on A , B ,
and C trials. On the other hand, Pearce’s (1987, 1994)
configural model predicts more responding on A , B ,
and C  trials than on AB , AC , and BC trials in the 
first schedule but predicts that the second schedule will
be unsolvable, because generalization to the two-stimulus
compounds will be too strong.

Experiments in which pigeons were trained with the 
discriminations described above failed to confirm either 
of the predictions of the elemental models, nor did they
fully confirm the predictions of Pearce’s configural model 
(Pearce, Esber, George, & Haselgrove, 2008; Redhead &
Pearce, 1995a). That is, in the first design, pigeons re-
sponded more on A , B , and C  trials than on AB ,
AC , and BC  trials (Redhead & Pearce, 1995a), con-
sistent with the prediction made by Pearce (1994), but not
that made by elemental models using configural cues to
solve these discriminations. However, in the second de-
sign, the pigeons did successfully solve the discrimina-
tion (Pearce et al., 2008), in contrast to the prediction of 
Pearce’s model,1 and they responded more on A , B , 
and C  trials than on ABC trials, which is not consis-
tent with the prediction of the elemental models with an
added configural cue. It must also be noted that an experi-
ment by Myers et al. (2001), in which rabbits were trained 
with the first type of negative-patterning design, did pro-
duce results consistent with the prediction of the elemen-
tal models, but not Pearce’s configural model, in that the
rabbits responded more on AB , AC , and BC  trials 
than on A , B , and C  trials (a similar result has been 
reported recently by Lachnit, Schultheis, Konig, Ungor,
& Melchers, 2008, in a causal-learning experiment with 
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stimuli. This is, of course, speculation, but it highlights a
limitation to the testability of the model we propose here,
since its predictions depend on details of the normaliza-
tion process that cannot typically be specified a priori.
However, these issues speak to the value of experiments
that use stimuli from different modalities, since only in
this case can we be relatively sure that direct perceptual 
interactions are minimal or absent.

Perhaps the findings that are most difficult to recon-
cile with the account we offer here were those reported 
recently by Redhead (2007), who tested the effect of 
using within-modality and between-modality stimuli
in the complex negative-patterning design in a human
contingency-learning experiment. He found the same pat-
tern of results in a group in which A, B, and C were all
visual, spatially overlapping stimuli (Experiment 1) and a
group in which A, B, and C were visual, auditory, and tac-
tile stimuli (Experiment 2). Both groups exhibited slightly
better discrimination for the single stimuli than for the 
pair compounds, which is at odds with the present exposi-
tion. It is too early to say whether this finding constitutes
general evidence against the application of our model to 
complex patterning discriminations or whether it identi-
fies a specific limitation of the model with regard to the
manner in which human subjects consciously seek a solu-
tion to these discriminations. Nonetheless, it should be
noted that in the same study (Experiment 3), Redhead did 
find an effect of stimulus modality on summation. After 

normalization occurred between them. Once again, we 
point out that, in the experiment conducted by Pearce et al. 
(2008), a normalization-like interaction was physically 
introduced into the stimulus presentations, in that part of 
each stimulus was displaced when it was presented with a
second or third stimulus.

The present model explains many of the relevant results 
by appealing to a greater degree of stimulus normaliza-
tion when the stimuli are spatially close or share simi-
lar features. This explanation will therefore be troubled 
by any data that are in line with those in Redhead and 
Pearce (1995a) but are obtained using stimuli that do not 
contribute to each other’s normalization. In this regard, 
two experiments by Pearce and George (2002) would ap-
pear to be at odds with our exposition. These experiments
produced results similar to those in Redhead and Pearce 
(1995a), using a discrimination in which A, B, and C were 
spatially distinct visual cues (shapes of differing color or 
pattern). If there were no normalizing interaction between 
these shapes, our model would not predict the results re-
ported by Pearce and George. However, the details of the 
predictions from our model are somewhat unclear in this 
case. That is, although the stimuli did not overlap spatially, 
their proximity may still have effected some normalization 
within the pigeons’ visual systems. Indeed, these stimuli 
may have affected one another’s detectability at a more 
peripheral level if, by looking at one stimulus, the pigeons’ 
gaze was directed away from other concurrently presented 

A+/B+/C+

AB+/AC+/BC+

ABC–

A
ct

iv
at

io
n

 o
f U

S 
El

em
en

ts

Simulated Block Simulated Block

0 50 100 150 50 100 150

Figure 9. Simulated results, generated by the elemental model proposed here, 
of a complex negative-patterning discrimination in which each of the three 
individual stimuli are reinforced (A , B , C ) and each of the three pairwise 
compounds are reinforced (AB , AC , BC ), but the triple compound is not 
(ABC ). The plot on the left shows the simulated performance when each ele-
ment contributes only to normalization of other elements in the same stimulus,
and not to normalization of elements of other stimuli (as would be expected 
for very different stimuli, such as those from different sensory modalities). The 
plot on the right shows the simulated performance when elements contribute
to the normalization of elements from other stimuli as well as their own (the
cross-stimulus influences on gain control were set to half the strength of the
within-stimulus inputs to gain control). Such cross-stimulus gain control ef-ff
fects would be expected between stimuli that are similar and presented in close
spatial proximity. US, unconditioned stimulus.
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of CSs from the same modality do not produce more 
responding than do the individual CSs themselves, this
could explain the many failures to observe summation in 
autoshaping with pigeons (Aydin & Pearce, 1995, 1997; 
Rescorla & Coldwell, 1995), because the CSs used in 
those experiments were from the same (visual) modality. 
In light of this, Wagner (2003) has specified operations in
the replaced elements model that capture this relation (see 
also Myers et al., 2001). According to that model, some
individual CS elements are replaced by configural units 
when stimuli are combined in compound, and the num-
ber of elements that undergo replacement increases as a 
function of the similarity between the stimuli. Because
associative strength is lost whenever individual CS ele-
ments are replaced, an increase in the number of replaced 
elements means a decline in generalization of associative 
strength from the individual CSs to the compound.

A functionally similar operation affects summation
between CSs in the elemental model proposed here, but
the mechanism is normalization between elements, rather 
than replacement. Elements with overlapping receptive
fields contribute to each others’ normalization by provid-
ing weighted input to their inhibitory I units. Stimuli from 
the same modality will reduce activation of each other’s 
E elements, thereby reducing the strength with which they 
associatively activate the US elements. In contrast, very 
distinct stimuli, such as those from different modalities,
do not contribute to each other’s normalization, and thus 
there is no loss of the activation when they are presented 
together versus individually (other than via a loss of at-
tention). Simulations of the model have confirmed this 
impression. Figure 10 plots the strength with which US el-
ements are activated during presentation of a compound 

training with reinforced single stimuli (A /B /C ), the 
between-modality condition produced significant sum-
mation for test pair compounds (AB/BC/AC), whereas 
the within-modality group did not. As will be discussed,
this finding is consistent with the predictions of the pres-
ent model.

Summation
Many of the difficulties faced by elemental models when

simulating findings from complex negative-patterning ex-
periments arise because the models tend to predict strong 
summation of associative strength between different CSs. 
Indeed, summation between CSs is another point of di-
vergence between elemental models and Pearce’s (1987, 
1994) configural model. The similarity rule used by 
Pearce to determine the amount of generalization between 
compounds and their component CSs tends to predict that,
when two CSs are combined, the associative strength of 
the compound will equal the average associative strength
of the individual CSs, because, in the simplest working of 
the model, only 50% of the associative strength of each in-
dividual CS will generalize to their compound. In contrast, 
a simple elemental approach such as that of the Rescorla–
Wagner (1972) model predicts complete generalization of 
associative strength between CSs and their compound, so 
that the associative strength of the compound will equal
the sum of the associative strengths of the two CSs. In
this section, we consider evidence from experiments that 
directly measure summation and discuss how well differ-
ent elemental and configural models can account for the
variety of findings.

The empirical evidence for summation is equivocal.
There are numerous demonstrations that animals respond 
to the compound of two CSs more than to each individual
CS (e.g., Kehoe, 1982, 1986; Rescorla, 1997), consistent
with the assumption that the associative strength of the
compound equals the sum of the strengths of the two CSs. 
However, there are also numerous reported failures to ob-
serve summation in Pavlovian conditioning paradigms. 
Most of these failures have occurred in autoshaping ex-
periments with pigeons (e.g., Aydin & Pearce, 1995, 1997;
Rescorla & Coldwell, 1995). Nonetheless, both successes 
and failures to observe summation have been reported 
in other paradigms, such as the conditioned nictitating 
membrane response in rabbits (Kehoe, Horne, Horne, & 
Macrae, 1994) and the conditioned magazine approach 
with rats (Pearce, George, & Aydin, 2002; Rescorla, 1997; 
Thein, Westbrook, & Harris, 2008). Such mixed evidence 
is troubling for any model that assumes that most of the
associative strength of each individual CS generalizes to
the compound.

The sensory relationship between CSs is one factor 
identified as relevant to the amount of summation ob-
served when CSs are combined in a compound. Kehoe 
et al. (1994) observed summation of the conditioned nicti-
tating membrane response in rabbits that had been trained 
with two CSs from different modalities (one auditory and 
one visual), but not when both of the CSs were auditory.
A similar result has been reported by Aydin and Pearce
(1997) and Thein et al. (2008). If compounds composed 
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Figure 10. Summation as a function of the amount of normal-
ization between conditioned stimuli (CSs). The summation ratio
is the activation of unconditioned stimulus (US) elements across
each presentation of the compound divided by the average acti-
vation of US elements across individual presentations of each of 
the CSs. Normalization is set to vary between zero, when each 
CS contributes nothing to normalization of the other CS, and
0.05 (1 number of elements per stimulus), when normalization
between CSs is equal to normalization between elements of the 
same CS.
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Summation Across Compounds 
After Negative Patterning

The means by which different models solve negative
patterning affects their predictions about how associative
strength generalizes from the trained stimuli to novel com-
pounds formed from the same stimuli. Rescorla (1972) 
and Whitlow and Wagner (1972) investigated this issue by
training animals on a negative-patterning discrimination 
with two stimuli (A B vs. AB ) while concurrently
conditioning a third stimulus (C ). They then tested the
animals for responding to novel compounds formed be-
tween either of the negative-patterning stimuli and the 
third stimulus (i.e., AC or BC). Responding to these new
compounds was as high or higher than responding to any
of the individual CSs, a finding consistent with the added 
configural cue hypothesis, which anticipates summation 
of associative strength of each individual stimulus to the
new compounds without the inhibitory strength of the AB 
configural cue. The evidence is, however, also consistent
with the other models considered here. In simple form,
Pearce’s (1987, 1994) configural model predicts that re-
sponding to AC and BC should equal the average of the 
two constituent stimuli. But if one makes the reasonable
assumption that the physical context is part of each stimu-
lus configuration and, thus, supports generalization across 
trials, the model does predict greater responding to AC
and BC than to A, B, or C. The purely elemental models
described by McLaren and Mackintosh (2002) and Harris 
(2006) also predict greater responding to AC and BC than
to A, B, or C. Simulations of the model we propose here
show that it, too, makes the same prediction.

Harris, Gharaei, and Moore (2009) recently presented 
data from similar experiments that are less easily accom-
modated by the models considered here. Their experi-
ments followed a logic similar to those described above: 
They trained rats on negative patterning before testing
their responses to novel compounds composed of the
trained stimuli. One experiment followed the design of 
Rescorla (1972) and Whitlow and Wagner (1972) but 
conditioned a compound, CD, instead of the single CS, C 
(i.e., rats were trained with A  B vs. AB  and CD ;
A and D were auditory, B and C were visual). After ex-
tended training, the rats were tested for responding to
the novel compounds AC and BD. The rats responded 
to these compounds significantly more than to AB and 
significantly less than to CD; their responses to AC and 
BD were above, but not significantly different from, their 
responses to A and B (Harris et al., 2009). In a second 
experiment, rats were trained on two concurrent negative-
patterning discriminations (A B  vs. AB , and C
D  vs. CD ), before being tested with the novel com-
pounds AC and BD. On that test, the rate of responding
to the new compounds was midway between the rates of 
responding to the single CSs and the trained compounds. 
The final experiment trained rats on a negative-patterning
and a positive-patterning discrimination concurrently 
(A B vs. AB  and C D  vs. CD ), before once
again testing the rats with the novel compounds AC and 
BD. In this case, responding on trials with the new com-

as a ratio of the activation strength of those same US ele-
ments during presentations of the individual CSs. When 
there is no normalization between the two CSs (zi 0
in Equation 4.2), their compound activates US elements
twice as much as the individual CSs do. As normalization
between the CSs increases (as zi increases from 0 to 0.05,
at which point normalization between stimuli is equal to
that within a stimulus), the activation of US elements by
the compound decreases systematically.

Differences in normalization between stimuli as a func-
tion of their similarity can also explain conflicting data 
concerning summation in a triple-stimulus compound 
following conditioning of each single CS or conditioning
of the same stimuli as two-stimulus compounds. Pearce,
Aydin, and Redhead (1997) compared responding to a
triple compound, ABC, between two groups of pigeons in
an autoshaping experiment. One group had been trained 
with each of the CSs individually (A , B , and C ); the
other group had been trained with the same three stimuli as 
three pairwise compounds (AB , AC , and BC ). They
observed summation of responding in the second group 
of pigeons (i.e., responding to ABC  responding to AB/
AC/BC), but not in the first group (responding to ABC
responding to A/B/C). This finding is consistent with the 
prediction of Pearce’s (1987, 1994) configural model but
is problematic for elemental models that generally predict
summation in both groups and greater summation in the 
group conditioned with the single CSs. However, in an
eyelid-conditioning experiment with rabbits, Myers et al.
(2001) obtained a result that is consistent with the predic-
tion of elemental models, but not with Pearce’s (1987, 1994)
configural model. That is, they found much greater sum-
mation to ABC in rabbits trained with the single CSs than
in rabbits trained with the two-stimulus compounds. Myers
et al. argued that the difference between the two experi-
ments was that their stimuli were from different modalities
(one visual, one auditory, and one vibrotactile), whereas 
the stimuli used by Pearce et al. (1997) were all visual.
Wagner (2003) has shown that the replaced elements model 
can account for both sets of findings by assuming that the
stimuli used by Pearce et al. (1997) underwent substantial
replacement when compounded, whereas the stimuli used 
by Myers et al. underwent little replacement. In analogous
fashion, the model we present here explains both sets of 
findings by assuming normalization between the three vi-
sual CSs used by Pearce et al. (1997) but no cross-modality
normalization between the CSs used by Myers et al. The
other elemental model discussed here cannot accommo-
date both sets of data: The McLaren–Mackintosh (2002)
model predicts greater summation to ABC after training 
with A B  C than after training with AB AC BC
(as was found by Myers et al., 2001), and although increas-
ing overlap between stimuli reduces the amount of summa-
tion in each condition, the relative order of the two condi-
tions is preserved. It remains a possibility that the model 
could appeal to some other variable, not related to stimulus
similarity, that might also meaningfully distinguish the ex-
periments in Myers et al. from those in Pearce et al. (1997),
but no such difference is obvious to us.
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stimuli, with the same strain of rat, and conditioned in the
same paradigm using the same equipment.

The model we propose here does a better job than its 
predecessors in accounting for the data presented by Har-
ris et al. (2009). As is shown in the right-hand panels in 
Figure 11, when the model is trained on the discrimina-
tions to the point at which the simulated activation of US
elements matches the level of discrimination shown by the
rats’ behavioral responses, the model’s prediction for the
relative strength of responding to the novel compounds 
corresponds very closely to that observed empirically. In
these simulations, we allowed stimuli from the same mo-

pounds was marginally below, but not significantly dif-ff
ferent from, responding on the reinforced trials (A  B
and CD  trials). The test data from all three experiments 
are presented in Figure 11. As was discussed by Harris
et al. (2009), each of the earlier models discussed here 
can account for the data from each of these experiments 
individually, but only by adopting different parameters 
in each case. That is, none of the models previously con-
sidered was able to simultaneously explain the data from 
all three experiments if constrained to adopt the same set
of parameters across experiments—a reasonable require-
ment, given that each experiment used the same set of 

Figure 11. The three left-hand panels (A, C, and E) show test results from three 
experiments reported by Harris, Gharaei, and Moore (2009) assessing rats’ responses 
to novel compounds AC and BD (gray columns) after training with these stimuli on
different discriminations. In all the experiments, A and B were trained in a negative-
patterning schedule. This was accompanied by conditioning of the compound CD
(panelA), training on a negative-patterning schedule with C and D (panel C), or train-
ing on a positive-patterning schedule with C and D (panel E). Panel A includes test
performance to individual presentation of C and D, which had never been presented
separately during training. The right-hand panels (B, D, and F) show simulated results
for each of the same designs, generated using the model presented here.
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for recent reviews of latent inhibition, see Holmes & Har-
ris, in press; Lubow & Weiner, 2010).

The model we propose here does anticipate latent inhi-
bition as a consequence of preexposure. Its mechanisms
for doing so are somewhat similar to those expressed by
Wagner (1981) and McLaren and Mackintosh (2002), 
inasmuch as activations of CS elements are reduced by 
virtue of context–stimulus and within-stimulus associa-
tions. This means that it can also account for evidence for 
context specificity of latent inhibition (Channell & Hall,
1983; Lovibond, Preston, & Mackintosh, 1984; West-
brook, Jones, Bailey, & Harris, 2000). However, whereas
both of those previous accounts attribute the change in
stimulus associability to excitatory associations among 
stimulus elements (or from the context to the elements of 
the stimulus), in the present model, preexposure reduces
activation of many stimulus elements, due to the develop-
ment of inhibitory associations from the context and from 
other stimulus elements. These inhibitory associations
develop because, during preexposure, the strong elements
of the stimulus and of the context are active, whereas the
I units of the weaker and intermediate stimulus elements
become active (these being less effectively inhibited by at-
tention). This reduces the total associability of the preex-
posed stimulus, because some of its elements are rendered 
inactive and, thus, unable to participate in conditioning.
This effect is shown in the left panel in Figure 12, which
plots the simulated activation of US elements by CS ele-
ments on each conditioning trial of a preexposed CS and 
a nonpreexposed CS. The figure also plots the simulated 
conditioning of a preexposed and nonpreexposed CS
when a context shift is introduced between preexposure t
and conditioning phases. The context shift is achieved in 
these simulations by resetting to zero all associative con-
nections between the elements of the preexposed stimulus
and the context. This dramatically reduces the difference
between the preexposed and nonpreexposed CSs. This
effect of a context shift is, not surprisingly, sensitive to 
the salience of the context. In the simulations shown here, 
the maximum input strength, S, for the context was set
to 1. Other simulations using a value of 0.5 (the value
used for all other simulations presented in this article) re-
vealed only a very modest effect of context shift on latent 
inhibition.

The other empirical consequence of preexposure is to 
reduce generalization between stimuli. This is achieved in
the present model (see the right-hand panel in Figure 12)
because preexposure reduces the number of elements that
undergo conditioning, effectively narrowing the stimulus’s 
representation in the total population of elements and, 
thus, reducing the number of elements that can support 
generalization to another stimulus. Experimental investi-
gations of the effect have demonstrated that the schedule
of preexposures is important in determining the degree to 
which generalization is reduced by stimulus preexposures.
That is, if two stimuli, AX and BX (with shared X ele-
ments), are preexposed concurrently (i.e., presentations of 
AX are intermixed among presentations of BX) in advance
of conditioning AX, the generalization of conditioned re-

dality to contribute to one another’s normalization, to be 
consistent with the approach to our simulation of the de-
signs used by Pearce and colleagues described above (see
also the Summation section above).

The nature of the model’s predictions can be under-
stood as the product of two opposing factors: summation
of associative strength across CSs and mutual inhibition 
between those same CSs. To explain, we will focus on 
one of the experiments—that in which rats were trained 
concurrently on two negative-patterning discriminations 
(panels C and D in Figure 11). During the course of train-
ing, elements of each CS acquire excitatory associative 
strength with the US elements, but responding to the non-
reinforced compounds during training is suppressed due 
to competition between the CSs for attention and due to 
the acquisition of inhibition from the strongest elements 
of each CS to the intermediate and weak elements of the
other CS. For example, across repeated presentations,
many A elements lose activation strength in the compound 
AB due to inhibition from B elements, and thus the as-
sociative strength of those A elements is not expressed. 
However, when A is presented with C as a new compound,
those A elements that had been suppressed by B are no
longer suppressed. The stronger activation of those ele-
ments means that their associative strength is expressed in
the new compound and, thus, responding is higher to AC 
than to AB. Indeed, given these processes, the model tends 
to predict greater responding to the new compounds than 
was actually observed in the experiments by Harris et al. 
(2009). However, the model’s prediction for response rate 
is reduced if it assumes that stimuli from the same modal-
ity contribute to one another’s normalization, as we have 
assumed in the simulations presented in Figure 11. This
normalization between stimuli will establish some level of 
inhibition between the elements from the different stimuli
in the new compound, such as between C and A, even 
though those stimuli had never been presented together 
during training. This inhibition develops because, on CD
trials during training, D elements activate the I units of A
(as a consequence of normalization between D and A), and 
this paired activity between C elements and IA elements
leads to the development of inhibition between C and A.
This inhibition will have consequences similar to those of 
the inhibition between A and B; C will reduce expression 
of A’s associative strength, and A will reduce expression 
of C’s associative strength.

Effects of Stimulus Preexposure
Before completing our discussion of the model pro-

posed here, we wish to add a note regarding the effects of 
stimulus preexposure on subsequent conditioning. There 
are two very robust consequences if a stimulus is repeat-
edly presented prior to conditioning: (1) Conditioning of 
that stimulus is retarded, relative to a nonpreexposed CS
(the so-called latent inhibition effect); and (2) generaliza-
tion of responding to other nonconditioned stimuli is re-
duced (i.e., there is improved discrimination between the
preexposed CS and other stimuli) (see Hall, 1991, for an 
extensive review and theoretical analysis of both effects; 
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activation of US elements via A elements. In the present 
model, such second-order associations normally contrib-
ute little to generalization: Associative activation of A ele-
ments on BX trials will be modest, as compared with the
direct activation of X elements, and thus the contribution 
that A elements make to activation of US elements will 
be negligible.

Like many other accounts of latent inhibition, the means 
by which preexposure interferes with subsequent condi-
tioning in the present model is related to decrements in
processing of the CS. Indeed, the model resembles the
mechanism described by Wagner (1981) and McLaren and 
Mackintosh (2000) in that CS processing deficits are held 
to arise from associative connections from other elements 
to the CS elements. This particular approach gives no role 
for nonreinforcement during preexposure as an ingredient 
in latent inhibition. That is, these models are indifferent
to the specific events that follow each stimulus presenta-
tion during preexposure, whereas most other accounts of 
latent inhibition place great importance on the fact that the
stimulus is followed by no outcome during preexposure, 
suggesting, for example, that the animal learns to ignore 
the stimulus specifically because it signals nothing (e.g.,
Le Pelley, 2004; Lubow, Weiner, & Schnur, 1981; Mackin-
tosh, 1975). As it stands, the model we propose here does
not incorporate a mechanism by which the CS processing 
deficit is affected by the presence or absence of an event
following each stimulus preexposure. However, we believe 
that the model could be made to do so, depending on the
temporal dynamics of the rise and decay of activity in dif-ff
ferent units. Specifically, if activity in attention units were 

sponding from AX to BX is lower than if AX and BX had 
been preexposed in different blocks (if all presentations of 
AX preceded BX, or vice versa; Honey, Bateson, & Horn,
1994; Symonds & Hall, 1995). However, this difference
in the effect of alternating versus blocked preexposure is 
not replicated by the present model. The right panel in 
Figure 12 shows the results of simulations in which AX
was paired with a US after both AX and BX were given
blocked or alternating preexposures or no preexposure. In 
these simulations, AX and BX shared 50% of their ele-
ments in common. Both blocked and alternating preexpo-
sures have reduced generalization from AX to BX (from 
51% to 43%) but have done so equally.

Other elemental models can explain the differential ef-ff
fect of the two preexposure schedules on generalization by 
appealing to the acquisition of mutual inhibition between 
the distinctive elements of each CS during alternating, 
but not blocked, preexposure (McLaren & Mackintosh,
2000). As such, it is perhaps surprising that the present
model does not do likewise. Indeed, in the model, alternat-
ing exposure between AX and BX does establish mutual
inhibition between A and B elements, whereas blocked 
exposure establishes only unidirectional inhibition (from 
the distinctive elements of the second stimulus to those of 
the first stimulus). However, mutual inhibition is effective 
in reducing generalization from AX to BX only if the pre-
sentation of BX would otherwise activate the distinctive 
A elements, via associative connections from the com-
mon X elements, and if these A elements, in turn, activate 
the US elements. In other words, the mutual inhibition
between distinctive elements only reduces second-order 
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12. Left: Simulated conditioning of a preexposed (PreX) and nonpre-
exposed conditioned stimulus (CS). One set of simulations effected a context 
shift (“shift”) between preexposure and conditioning, whereas the other set
maintained the same context throughout. Right: Simulated generalization of RR
the conditioned response (CS-generated activation of unconditioned stimulus 
[US] elements) between a CS, AX, and a nonconditioned stimulus, BX, which
shared 50% of their elements in common (X). Activation of US elements is
plotted for simulations that included alternating preexposures to AX and BX, 
blocked preexposures to AX and BX, or no preexposures to either stimulus. 
The value above each BX column represents the US activation on BX trials as 
a percentage of that activation on AX trials.



ANN ATTENTIONTTENTION-MODUODULATED ASSOCIATIVESSOCIATIVE NNETWORKETWORK 2323

between the processing of stimuli is one reasonable means
by which associative representations of events may inter-
fere with one another. For example, if attention units could 
be driven by activity in E elements (rather than purely by
external S inputs, as we have specified here), this would 
allow attention to modulate associatively activated US rep-
resentations and enhance conditioned responding. More-
over, if elements representing different outcomes were to
be activated simultaneously by associative inputs from a
CS, their competition for attention would provide a basis
by which one could interfere with the other. For example, 
if preexposure established associations between the CS 
and the context (in light of the context elements regain-
ing activity after each offset of the stimulus), associative
activation of context elements by the CS might interfere
with the associative activation of US elements by that CS 
across the course of conditioning.

CONCLUDING RG EMARR RKS

The model we have presented here extends an elemen-
tal model of associative learning put forward recently by
Harris (2006). Like that earlier model, it uses an attention
mechanism to introduce nonlinearity into the behavior of 
elements and to provide a means by which elements can
affect each other’s activity. It extends that earlier model
in three important ways. First, the attention mechanism is 
specified in more precise terms, defined here as a network 
of units that regulates activity in the network of sensory el-
ements that represent each stimulus. Second, our descrip-
tion of the relationship between input to an element and 
the response of that element includes a gain control mech-
anism that normalizes activity in the local network. The 
normalization rules are taken from computational models
of perceptual systems that have been developed to explain
a large range of psychophysical and neurophysiological
findings. In the present model, normalization provides an 
opportunity for competitive interactions between elements
and introduces nonlinearity in the response of elements. A
similar normalization process operates within the network 
of attention units. This creates capacity-limitation-type ef-ff
fects within the attention system and endows the behavior 
of the attention units with their own nonlinearity that fur-
ther increases the nonlinear behavior of sensory elements. 
Finally, the operations of the model have been specified 
at much greater temporal resolution to function at a sub-
trial or “real-time” level. This is important in order to ade-
quately capture certain dynamic properties of the model—
in particular, the acquisition and expression of excitatory
and inhibitory connections between elements of the same
stimulus (or compound) and the normalizing interactions 
that evolve within the network of sensory elements and 
attention units. We show how this model is equipped to ex-
plain a large range of experimental findings, particularly 
findings regarding solutions to nonlinear problems such 
as negative patterning and the biconditional discrimina-
tion. Indeed, this new model is superior to its predecessor 
in accounting for some recent findings concerning sum-
mation of associative strength between stimuli trained in
negative-patterning discriminations.

to decay much more rapidly than activity in E elements at 
the offset of a stimulus, this could cause a transient rise 
(or rebound) of activity in I units of the stimulus, due to
the sudden removal of their suppression by attention, com-
bined with continued input from residual activity in E ele-
ments. This rise in I unit activity would lead to the develop-
ment of inhibitory associations from contextual and other 
elements to the E elements of the stimulus. That is, this 
process would increase the amount that CS elements are 
suppressed during subsequent conditioning, thereby en-
hancing evidence for latent inhibition. Moreover, if during 
preexposure the stimulus were followed by another event,
rather than by nothing, the elements of that second event 
would overshadow contextual and other CS elements in the 
formation of inhibitory associations with the CS elements. 
In other words, the second event would become an inhibitor 
of the preexposed stimulus, as a consequence of their back-
ward pairing, and so protect the stimulus from becoming 
inhibited by the context and by itself.

Although such changes can explain much of the evi-
dence concerning latent inhibition, there are aspects of 
latent inhibition that are not explicable by such means. A
clear example is the observation that latent inhibition can 
be lost (i.e., responding to the preexposed CS spontane-
ously recovers) across the course of a delay between the 
end of conditioning and the beginning of test (Aguado, 
Symonds, & Hall, 1994; Westbrook et al., 2000). Clearly, 
in such cases, latent inhibition must, at least in part, con-
stitute a performance deficit, whereby something learned 
across the course of preexposure interferes with condi-
tioned responding or with CS-primed retrieval of the US 
representation (e.g., Bouton, 1993). Indeed, in reviewing 
the literature, Hall (1991) concluded that latent inhibi-
tion is likely to be due to both a learning deficit, arising
from changes in stimulus processing, and a performance 
effect due to interference with retrieval of the CS–US as-
sociation. Models such as the present one can be pushed 
to predict some form of performance deficit, in addition
to a learning deficit, if there remains some residual deficit
in CS processing after conditioning that continues to de-
press element activation. However, such effects are likely 
to be small, given that those elements suffering residual
suppression after conditioning will also have been sup-
pressed during conditioning and, thus, will have acquired 
little associative strength. Therefore, the continued sup-
pression of those elements at test will make relatively 
little difference to the potential of the CS to activate the
US elements.

The possibility that learning during preexposure in-
terferes with retrieval of the CS–US association poses
a considerable challenge for neural network models of 
learning, since typically, there is no mechanism whereby 
associatively activated events interfere with one another’s 
representation in the network. Although the present for-
mulation of the model does not achieve this, and it is not 
our intention to develop the model in this way here, it is
instructive to consider how the present model implies a
framework by which such interactions may occur between
associatively activated representations. Specifically, the 
normalization process used here to capture competition
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in Figure 2). When p is high, the function becomes more 
steplike, such that the A units with intermediate input are
substantially affected by the total number of A inputs. Spe-
cifically, the intermediate units are much more strongly
activated when the stimulus is presented on its own than 
when presented as part of a compound. Thus, a shift from 
low to high values of p will influence the linearity of the 
attention network and, thereby, determine how sensitive 
the stimulus elements (Es) are to the presence or absence 
of other stimuli.

The second variable that affects the behavior of the at-
tention network is the parameter w in Equation 5.2. This 
weighting dictates the degree to which the A units suppress 
each other; in effect, it controls the capacity of attention.
When w is low, adding an extra stimulus (i.e., a compound 
presentation) has little effect on the activation of each
A unit of a stimulus, consistent with an attention network 
with large capacity. Increasing w effectively shrinks the 
capacity of attention. Under such circumstances, adding 
an extra stimulus can have a profound effect, particularly 
on the activation of the intermediate A units of a stimulus. 
Once again, given that the activation of A units influences 
normalization of the E elements, changes in w will af-ff
fect how dramatically the activation of certain elements 
changes between single-stimulus and compound presenta-
tions. Therefore, if the present model were to incorporate
a mechanism by which experience produces longer term
changes in either p or w, such changes could easily lead to
an increase or decrease in the linearity of generalization
between single and compound stimuli, even for stimuli
that have not previously been presented. We discuss these
possibilities simply to highlight the fact that a model of 
this type, despite its purely elemental structure, has poten-
tial for the sort of flexibility in representational processes 
that are perhaps evident in human causal learning and may 
even be present in other animals.
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