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In 1963, Eleanor Gibson defined perceptual learning as
follows: “Any relatively permanent and consistent change
in the perception of a stimulus array following practice or 
experience with this array will be considered perceptual 
learning” (p. 29). Nowadays, the definition of perceptual
learning is broader and is generally referred to as improve-
ment on a perceptual or sensory task by practice or experi-
ence, which includes cases accompanied by no perceptual
changes (Fahle, Edelman, & Poggio, 1995; Watanabe,
NNáñez, & Sasaki, 2001).

Perceptual learning occurs in all the sensory systems, 
such as the visual (see, e.g., Ahissar & Hochstein, 1993,
1997; Ball & Sekuler, 1987; Beard, Levi, & Reich, 1995; 
Crist, Li, & Gilbert, 2001; Dosher & Lu, 1998, 1999; Fahle 
et al., 1995; Fine & Jacobs, 2002; Fiorentini & Berardi, 
1980; Fiser & Aslin, 2002; Furmanski, Schluppeck, & 
Engel, 2004; Herzog & Fahle, 1998, 1999; Karni & Sagi,
1993; Koyama, Harner, & Watanabe, 2004; Poggio, Fahle, 
& Edelman, 1992; Ramachandran & Braddick, 1973; 
Schoups, Vogels, & Orban, 1995; Schoups, Vogels, Qian, & 
Orban, 2001; Schwartz, Maquet, & Frith, 2002; Watanabe 
et al., 2001), the auditory (Amitay, Irwin, & Moore, 2006;
Bao, Chan, & Merzenich, 2001; Demany, 1985; Polley,
Steinberg, & Merzenich, 2006), the olfactory (Bende & 
NNordin, 1997), the gustatory (Owen & Machamer, 1979), 
and the tactile (Dinse, Ragert, Pleger, Schwenkreis, & Teg-
enthoff, 2003; Sathian & Zangaladze, 1997).

Perceptual learning is characterized by three distinctive 
aspects. First, perceptual learning is often very specific for 
lower level attributes of the stimulus. It is well known that
visual perceptual learning is highly specific to stimulus fea-
tures, such as retinal location (Ahissar & Hochstein, 1997; 
Crist, Kapadia, Westheimer, & Gilbert, 1997; Fahle & Edel-
man, 1993; Fiorentini & Berardi, 1980; Karni & Sagi, 1991;

, ; ggMcKee & Westheimer, 1978; Poggio et , ;al., 1992; Saarinen 

 & Levi, 1995; Sagi & Tanne, 1994; Shiu & Pashler, 1992),
 spatial frequency (Fiorentini & Berardi, 1980; Sowden,

Rose, & Davies, 2002), and orientation (Fiorentini & Be-
rardi, 1980; Poggio et al., 1992; Schoups et u al., 1995; Shiu
& Pashler, 1992). Psychophysical studies of visual percep-
tual learning have shown that there are cases in which per-

d formance on detection or discrimination tasks is improved
only with respect to features of trained visual stimuli, such 
as orientation, motion direction, and location. Perceptual

r learning also tends to be specific to the trained eye. For
example, monocular training of a vernier discrimination 
task improved task performance to a significantly larger 
degree for the trained eye than for the untrained eye (Fahle
et al., 1995). Second, it takes time for perceptual learning to

f be formed. In many cases, it takes a few days (thousands of
 trials per day) to see the slightest increase in performance.

Third, perceptual learning is persistent. Once perceptual 
learning is formed, it lasts for months or years (Karni &
Sagi, 1993; Watanabe et al., 2002).

There have been two distinctive lines of research into
perceptual learning. One line has been followed by ani-
mal learning researchers (e.g., Blair & Hall, 2003; Blair,

 Wilkinson, & Hall, 2004; Dwyer & Mackintosh, 2002;
Mackintosh, Kaye, & Bennett, 1991; McLaren, Kaye, &
Mackintosh, 1989; McLaren & Mackintosh, 2000; Mitch-
ell, Nash, & Hall, 2008; Symonds, Hall, & Bailey, 2002);
the other line has been followed by sensory psychophysi-
cists. Animal learning researchers have indicated that 

 to fully understand the behavioral rules of learning, it is
necessary to clarify the role of perceptual learning as a
component of learning. Along this line, perceptual learn-
ing has been studied in relation to associative learning as
a factor that influences behavior. Psychophysicists, how-
ever, have measured performance improvement mainly to 

g y g p y gunderstand changes in the underlying physiological and 
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ficulty of a visual-search task increases with the increased 
similarity of targets to nontargets (Duncan & Humphreys,
1989). In addition, the presentation of less familiar percep-
tual information induces a stronger bottom-up attention
effect (Yantis, 1993; Yantis & Hillstrom, 1994).

Since both types of attention normally work together 
(Egeth & Yantis, 1997), their influences are often difficult
to separate. However, state-of-the-art experimental ma-
nipulations do make it possible (Connor, Egeth, & Yantis,
2004; Egeth & Yantis, 1997; Ogawa & Komatsu, 2004;
Yantis, 1993; Yantis & Hillstrom, 1994). Therefore, the 
effects of the two types of attention on perceptual learning
should be discussed separately.

Perceptual learning with top-down attention. It 
has been shown that top-down attention plays a significant 
role in perceptual learning. Ahissar and Hochstein (1993) 
found that perceptual learning occurred for a feature that 
was relevant to a task but did not occur for a feature that
was merely exposed. Electrophysiological and behavioral
studies of hyperacuity (the ability to discriminate highly
fine-grained visual signals) have indicated that perceptual 
learning is influenced by specific task demands (Gilbert,
Ito, Kapadia, & Westheimer, 2000; Ito, Westheimer, & Gil-
bert, 1998). Polley et al. (2006) conducted experiments in 
which rats were exposed to auditory stimuli that varied in 
both intensity and frequency. The rats that were trained to 
discriminate frequencies showed improved performance
for those frequencies and an expanded representation in 
the primary auditory cortex, whereas no learning was ob-
served for the frequencies that were not trained. In the vi-
sual cortex of monkeys, Schoups et al. (2001) found that, 
whereas orientation properties of neurons surrounding
discriminated orientations were changed as a result of an
orientation-discrimination task, no such change was found 
at or surrounding an orientation that was merely exposed.

The studies above compared task-relevant and task-
irrelevant conditions and showed no learning or physiolog-
ical changes in task-irrelevant conditions. It appears that 
these and other studies (e.g., Ahissar & Hochstein, 2004) 
support the hypothesis that top-down attention to a sensory
feature is necessary for that feature to be learned.

Perceptual learning with bottom-up attention ver-rr
sus mere exposure. Studies by animal learning psychol-
ogists and by sensory psychophysicists/physiologists have
shown that simple exposure to stimulus features leads to
perceptual learning of the features. However, those re-
searchers’ respective conclusions regarding the mecha-
nism have been literally opposite one another in terms of 
the absence and/or presence of “attention.” Whereas ani-
mal learning psychologists have suggested that the results
are sometimes due to “attention” to the features, sensory
psychophysicists/physiologists have regarded the results 
as evidence for learning without “attention.”

In classical animal learning (i.e., associative learning)
studies, Gibson and Walk (1956) demonstrated that rats
learned to discriminate between a circle and a triangle 
more rapidly if they had lived in cages in which circles
and triangles were displayed on the walls. Even though 
exposure to the stimuli promoted improvement in the dis-
crimination of two distinctive stimuli, Gibson and Walk 

functional mechanisms of sensory information processing 
and have emphasized the link between their findings and 
physiological sensory plasticity.

These lines appear to be very different, but the differ-
ences could be merely superficial. For example, recently,
in both lines of research, the role of attention in learn-
ing has been a central issue. This may be a manifestation 
of these lines’ approaching common ground despite their 
employment of very different methods.

Here we take a practical approach, suggesting that re-
searchers from either discipline may find it beneficial to
their own research to know more about the other line of 
research. For example, although sensory psychophysicists 
who have conducted perceptual learning research usually 
have focused only on clarifying changes in sensitivity or 
in a sensory system, they may gain a broader perspective
by considering how perceptual learning is related to learn-
ing and behavior in general. Similarly, animal learning re-
searchers may find examples where perceptual learning in 
conditions with apparently subtle differences in sensory fac-
tors lead to large differences in physiological and functional 
mechanisms. For example, there are different subcategories
of attention (see Fan, McCandliss, Sommer, Raz, & Posner,
2002; Treue & Martínez Trujillo, 1999), and their respec-
tive effects on perceptual learning may be very different.

The Role of Attention in Perceptual Learning
The role of attention in perceptual learning is not en-

tirely understood. There is still some controversy over 
whether attention to a feature to be learned is necessary 
for perceptual learning to occur. A considerable number 
of studies have tackled the question of exposure-based 
learning: Can mere exposure to a stimulus feature—
without the performing of a task on the feature—induce 
perceptual learning? But this issue might not be resolved 
without one’s taking into consideration that there are two 
types of attention: top-down and bottom-up.

Both the functional and physiological mechanisms of 
top-down and bottom-up attention and the effects of the
mechanisms on other processing or outcomes are differ-
ent. Top-down attention activates cognitive strategies, vol-
untarily biasing attention toward important features that 
are related to the subject’s task. It has long been reported 
that top-down attention strongly affects sensory systems 
(James, 1890/1950). For example, activities in the primary
visual cortex, the first cortex to which visual signals from
the retina are projected, can be strongly influenced by
top-down attention (Brefczynski & DeYoe, 1999; Gandhi, 
Heeger, & Boynton, 1999; Motter, 1993; Somers, Dale, 
Seiffert, & Tootell, 1999; Watanabe, Harner, et al., 1998; 
Watanabe, Sasaki, et al., 1998). Top-down attention usu-
ally enhances the signals and perception of task-relevant
stimuli (Moran & Desimone, 1985) and inhibits the sig-
nals and perception of task-irrelevant stimuli (Friedman-
Hill, Robertson, Desimone, & Ungerleider, 2003).

On the other hand, the direction of bottom-up attention is 
involuntarily shifted by the presentation of a salient feature 
(Desimone & Duncan, 1995; Treisman & Gelade, 1980). 
Such involuntary attention usually evokes a “pop-out” of 
the feature to which it is directed. For example, the dif-ff
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In summary, different conclusions by researchers from 
different disciplines have been drawn from findings that
indicate that exposure to stimulus features leads to per-
ceptual learning. This discrepancy may have come from
the fact that, in neither line of study, have top-down and/
or bottom-up attention processes been taken into account.
In the exposure-based experiments, a role for top-down
attention is ruled out simply due to the definition of top-
down attention, but it is not clear whether bottom-up at-
tention or no attention was involved.

Perceptual learning as a result of mere exposure. 
Watanabe et al. (2001) reported that perceptual learning
occurred on a feature that was not only task-irrelevant but
also subthreshold (detection performance at a chance level). 
There were two test stages, one preceding and the other fol-
lowing the exposure stage (Figure 1A). At the exposure
stage, the subjects were repeatedly presented with a dynamic 
random-dot (DRD) display. The DRD display consisted of 
5% coherently moving dots (signal) and 95% randomly 
moving dots (noise) in the background. The DRD display 
was presented in the periphery of the visual field, and the
subjects were instructed to perform a letter-identification
task in the center of the display (Figure 1B). Therefore, the 
5% coherent motion was task irrelevant. When the subjects 
were tested with the 5% coherent-motion display before 
and after the exposure phase, performance was around the 
chance level, and, therefore, the 5% coherent motion was 
still subthreshold after the exposure. However, when the 
subjects were tested with a suprathreshold 10% coherent-

suggested that the distinctive and contrasting features 
between two stimuli needed to be noticed, and that the 
learning process was one of learning to abstract and attend 
to these features and to ignore other, irrelevant features 
(see also Gibson, 1969; Gibson & Levin, 1975). In other 
animal learning research, McLaren et al. (1989) found 
that simple exposure to stimuli that shared common ele-
ments (e.g., AX and BX) led to a decrease in attention to 
those shared elements and that simple stimulus exposure 
improved discriminability between the two stimuli. They 
suggested that attention to the common features decreased,
leading to relative enhancement of that to the unique fea-
tures (see also McLaren & Mackintosh, 2000). In these 
studies, since exposed features were not relevant to a task, 
the type of attention that might have been involved should 
be classified as bottom-up attention.

In studies in mice by sensory psychophysicists/
physiologists, Frenkel et al. (2006) found that repeated 
simple exposure to the orientation of a grating pattern re-
sulted in a persistent enhancement of responses specific to
the stimulus. Dinse et al. (2006) showed that passive tac-
tile stimulation of two points on a human finger improved 
discrimination between the points. Since the learned fea-
tures in these studies were not related to a task, the authors
suggested that perceptual learning occurred passively, as a
result of mere exposure. These results do not favor the hy-
pothesis that top-down attention is necessary for percep-
tual learning; nor do they entirely rule out the possibility 
that bottom-up attention plays a role.
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Figure 1. (A) Experimental procedure. Two motion-sensitivity tasks were conducted before and after an exposure stage. (B) Exposure 
stage. A sequence consisted of eight black letters and two gray letters on a gray center circle with a diameter of 1º of visual angle. Dy-
namic random-dot displays with subthreshold 5% coherent motion were presented in the periphery. (C) On the second test, enhanced
discrimination was observed for a suprathreshold 10% coherent-motion pattern that was in the same or a similar direction ( 45) as 
that to which exposure had occurred. From “Perceptual Learning Without Perception,” by T. Watanabe, J. E. Náñez, and Y. Sasaki,
2001, Nature, 413, p. 844. Copyright 2001 by the Nature Publishing Group. Adapted with permission.
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Tsushima, Sasaki, and Watanabe (2006) examined how
weak signals are processed. They measured BOLD signals
with a procedure similar to that used in the exposure stage
in Watanabe et al. (2001; see Figure 1B). Note that the 
number of trials was not sufficiently large to induce sig-
nificant learning. When 5% subthreshold coherent motion
was presented in the periphery while the subjects were
conducting a letter-identification task in the center, the 
human homologues of the middle temporal area (MT+),
which is highly responsive to coherent motion (Rees, Fris-
ton, & Koch, 2000), were highly activated. At the same 
time, activation in the lateral prefrontal cortex (LPFC)
was no larger than with no coherent motion (Figure 2). On
the other hand, when the suprathreshold coherent motion
(10% or 20%) was presented, MT was less active than 
with the 5% subthreshold coherent motion, and the LPFC 
was significantly more active than with the 5% motion 
(Figure 2). Since one role of the LPFC may be to pro-
vide inhibitory control on task-irrelevant features (Knight, 
Staines, Swick, & Chao, 1999), Tsushima et al. (2006) 
concluded that when a suprathrehold task-irrelevant fea-
ture is presented, the LPFC “notices” this and provides
inhibitory control of the feature’s signals (Figure 3A).
On the other hand, when a task-irrelevant signal is sub-
threshold, the LPFC does not notice the presence of the 
feature and fails to provide effective inhibitory control
of the feature (Figure 3B). That is, the attentional system 
may provide a stronger inhibition for suprathreshold task-
irrelevant features than for subthreshold task-irrelevant
features. This finding parallels results of several behav-
ioral studies that have indicated that subthreshold or near-

motion display, sensitivity enhancement was obtained when 
the direction of motion was at or around that of the 5% 
coherent motion to which they were exposed.

These results indicate that the exposure to subthreshold 
5% coherent motion actually enhanced sensitivity to the
direction of the coherent motion (Figure 1C), although
the sensitivity enhancement was not revealed with the 5% 
coherent motion that stayed subthreshold. That is, the co-
herent motion was task irrelevant and might as well have
been subthreshold during the exposure phase, since it was 
subthreshold even after the exposure phase. Thus, neither 
top-down nor bottom-up attention was found to be nec-
essary for perceptual learning. A number of subsequent 
studies (Hansen & Dragoi, 2007; Ludwig & Skrandies, 
2002; Nishina, Seitz, Kawato, & Watanabe, 2007; Seitz,
Náñez, Holloway, & Watanabe, 2005, 2006; Seitz & Wa-
tanabe, 2003; Watanabe et al., 2002) have supported the 
Watanabe et al. (2001) results.

The Role of Inhibition by Attention
in Perceptual Learning

If attention is not necessary for a feature to be learned, 
what is the role of attention in perceptual learning? As 
was mentioned above, some studies have indicated that 
perceptual learning does not occur for features that were
merely exposed when the subjects conducted prior tasks 
on other features (Ahissar & Hochstein, 1993; Polley 
et al., 2006; Shiu & Pashler, 1992). In contrast, Watanabe 
et al. (2001) showed that perceptual learning does occur 
with task-irrelevant and subthreshold features. Our recent
data may resolve this controversy.
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role in perceptual learning and its mechanisms and on the 
sensory mechanisms that underlie it. Animal learning psy-
chologists have broader viewpoints from which to exam-
ine the significance of perceptual learning and attention
for learning and behavior. It is extremely important and 
useful for students from the disciplines of sensory psy-
chophysics and physiology to study the achievements of 
animal learning psychologists, because this may provide 
them a broader perspective of perceptual learning.

The message for animal learning psychologists from
visual psychophysicists is that the work with animals can 
be expanded to include different attentional processes ex-
posed by our work, since it is not clear whether the results

threshold task-irrelevant features had a stronger effect on
task performance than did suprathreshold features (Mete-
yard, Zokaei, Bahrami, & Vigliocco, 2008; Tsushima
et al., 2006).

Note that Tsushima et al. (2006) was not meant to clarify 
the effects of subthreshold signals on learning. However, if 
stronger internal signals lead to stronger plasticity, it may
well be that learning for near-threshold task-irrelevant sig-
nals is stronger than learning for suprathreshold signals. 
To test whether this is the case, Tsushima, Seitz, and Wa-
tanabe (2008) measured the strength of perceptual learn-
ing of task-irrelevant coherent motion as a function of the 
coherent-motion ratio (i.e., the signal/noise ratio of coher-
ently moving dots to randomly moving dots). They used a
within-subjects design in which each subject was exposed 
to different directions of coherent motion, each at a differ-
ent (higher or lower) but consistent coherence level. They
found that the strongest perceptual learning was obtained 
for coherent-motion ratios that were close to the coherent-
motion threshold (5%), and no perceptual learning was 
observed for 50% coherent motion (Figure 4). In addition,
Paffen, Verstraten, and Vidnyánszky (2008) recently found 
that perceptual learning of a task-relevant feature resulted 
in inhibition of suprathreshold task-irrelevant signals ex-
posed when the task-relevant feature was learned. These
results suggest that perceptual learning for suprathresh-
old task-irrelevant features (see also Ahissar & Hochstein,
1993; Polley et al., 2006; Shiu & Pashler, 1992) occurred 
not because the irrelevant feature was noticed and inhibited 
by the attentional system, but because attention to a feature
was necessary for the feature to be learned (Figure 5). In 
short, the absence or presence of exposure-based learning 
on a feature depends on the strength of the feature.

Conclusions
Sensory psychophysicists and physiologists have ma-

nipulated stimulus features in order to focus on attention’s 
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of the exposure are due to bottom-up attention or to passive
stimulus input. In addition, for understanding perceptual
learning, inhibition of task-irrelevant features is a key fac-
tor (Friedman-Hill et al., 2003) and one to which we wish 
animal learning psychologists would pay more “attention.”

We hope that this issue of Learning & Behavior willr
promote better understanding of perceptual learning and 
learning in general by both animal learning psychologists 
and sensory psychophysicists and physiologists.
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