
Copyright 2002 Psychonomic Society, Inc. 300

Cognitive, Affective, & Behavioral Neuroscience
2002, 2 (4), 300-317

With the advent of neuroimaging, it has become clear
that the anterior cingulate cortex (ACC) is a brain region
that is critically involved in cognitive control (Bush, Luu,
& Posner, 2000; Carter, Botvinick, & Cohen, 1999; Paus,
Koski, Caramanos, & Westbury, 1998; Posner & DiGiro-
lamo, 1998). The exact role of the ACC in cognitionis still
unknown, but an emerging view is that ACC activation

(specifically, within the caudal portion) is directly related
to the degree of response conflict present in a given cog-
nitive task (Botvinick,Braver, Barch,Carter,& Cohen,2001;
Carter et al., 1998). Response conflict arises because of
either physical or task-induced constraints on response
generation. It is not possible for certain responses to occur
simultaneously. For instance, it is not possible to say the
word “green” while at the same time saying the word “red.”
Conflict can be thought of as the simultaneous coactiva-
tion of incompatible responses, such as trying to name the
ink color of the word “red” written in green ink in the clas-
sic Stroop task. It is difficult to perform such a task because
certain conditions generate a tendency to produce an in-
appropriate response (owing to learned associations or in-
nate biases) in addition to the situationally appropriate one.
Cognitive control processes must be used to help mediate
performance by overcoming these sources of conflict. A
growing neuroimagingliterature has demonstrated that the
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A growing body of evidence from functional neuroimaging and computational modeling studies in-
dicates that the anterior cingulate cortex (ACC) detects the presence of response conflict and conveys
this information to other brain regions, enabling subsequent adjustments in cognitive control. The pres-
ent study examined previous empirical findings of increased ACC for low-frequency stimuli across
three distinct speeded response tasks (two-alternative forced choice, go/no-go, and oddball). Simula-
tions conducted in a neural network model incorporating sequential priming mechanisms (developed
in Cho et al., 2002) confirmed that a computational measure of response conflict was higher on low-fre-
quency trials across all three tasks. In addition, the model captured detailed aspects of behavioral reac-
tion time and accuracy data, predicted the dynamics of ACC activity related to trial sequence effects,
and provided evidence for the functional role of conflict information in performance monitoring and
optimization. The results indicate that the conflict-monitoring hypothesis, augmented by mechanisms
for encoding stimulus history, can explain key phenomena associated with performance in sequential
speeded response tasks.
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ACC is reliably activated across a wide range of tasks that
involve response conflict, such as the Stroop (Carter et al.,
2000), the Eriksen (Botvinick,Nystrom, Fissel, Carter, &
Cohen, 1999; Casey et al., 2000), and the go/no-go (Casey
et al., 1997) tasks.

In ourpreviouswork, we haveproposeda specificmech-
anistic hypothesis as to why the ACC is activated under
such response conflict situations (Botvinick et al., 2001;
Carter et al., 1998). Specifically, we have hypothesized
that the function of the ACC is to provide an on-line index
of the degree of response conflict. By doing so, the ACC
can convey this information to other systems (such as the
prefrontal cortex) that are more directly involved in the
implementation of control strategies (i.e., active mainte-
nance of goal-relevant information, attentional selection,
response priming). In a series of computer simulationstud-
ies, we have demonstrated that this model can account for
a variety of empirical phenomena related to ACC activity
and behavioral performance in response conflict tasks
(Botvinick et al., 2001). Furthermore, a number of recent
neuroimaging studies have directly confirmed predictions
of the model with regard to activity in the ACC and other
regions, such as the dorsolateral PFC (Barch et al., 2001;
Barch, Braver, Sabb, & Noll, 2000;Botvinicket al., 1999;
Carter et al., 2000;Casey et al., 2000; MacDonald,Cohen,
Stenger, & Carter, 2000).

In the present study, we extended the ACC model to ac-
count for a more detailed set of behavioral and imaging
data. In particular, we examined three different task para-
digms: go/no-go, oddball, and two-alternative forced choice
(2AFC). On the surface, these three different paradigms
appear to be qualitativelydistinct in terms of the cognitive
demands and processes involved and their relationship to
ACC activity. However, we suggest that the tasks tap a
common factor, stimulus frequency, that modulates the
degree of conflict present on any given trial. Furthermore,
this frequency effect on conflict operates in terms of both
global stimulus frequency and local sequential history. In
order to test this idea, however, existing implementations
of the conflict model had to be augmented so as to be re-
sponsive to the effects of stimulus frequency on process-
ing. Here, we did so by incorporating the mechanisms for
encoding stimulus history developed in Cho et al. (2002).
We then tested whether the conflict model, when aug-
mented with mechanisms responsive to stimulus fre-
quency, could capture both the commonalitiesand the dif-
ferences between the go/no-go, oddball, and 2AFC tasks
in terms of both ACC activityand behavioralperformance.
Moreover, we investigated whether the model could pro-
vide evidence for adjustments in cognitive control strate-
gies that directly result from response conflict. Below, we
will discuss the theoreticalmotivationsand empirical data
that form the background for the present work.

Conflict and ACC Activity in
Speeded Response Tasks

A primary assumptionmotivating the present study was
that conflict arises whenever infrequent responses are re-

quired, especially when these occur in the context of mak-
ing stereotyped or habitual responses. Habitual responses
(such as word naming in the Stroop task) have a strong
stimulus–response mapping, whereas frequent responses
(such as a left buttonpress in a 2AFC with asymmetric
probabilities) are primed because of recent frequent en-
gagement. Both situations generate a prepotent response.
When the low-frequency response is to be executed, it must
competewith and eventuallyovercomeactivationof the pre-
potent response.The competitionbetween the two response
pathways is expected to result in processing conflict,
which should be reflected in increased ACC activity, even
during the performance of otherwise simple cognitivetasks.

In recent neuroimaging work, we directly confirmed
this prediction, by demonstrating that manipulations of
frequency lead to reliable modulations of ACC activity
(Braver, Barch, Gray, Molfese, & Snyder, 2001). Specifi-
cally, we observed greater ACC activity for low- versus
high-frequency stimuli, but equivalent activity when two
different stimuli were of equal frequency. These frequency
effects on ACC activity were found in each of three dif-
ferent tasks. The first, 2AFC, required subjects to select
one of two responses on the basis of the category of the
present stimulus, which varied in frequency across differ-
ent conditions (low, equal, and high). The other two tasks
were the go/no-go and the oddball. In both of these tasks,
subjects responded to one stimulus category but withheld
responding to the other category. Thus, one distinctionbe-
tween the three tasks was whether two responses (2AFC)
or only one response (go/no-go and oddball)was required
for performance. The relative frequency of each stimulus
category was the task dimension (and the only one in our
study) that differentiated the go/no-go and the oddball
tasks. In the go/no-go, the go stimulus was of high fre-
quency, whereas the no-go stimulus was of low frequency.
In the oddball, the go stimulus (referred to as the target)
was of high frequency, and the no-go stimulus (nontarget)
was of low frequency. For completeness, we also exam-
ined a final go/no-go/oddball hybrid condition, in which
the two stimulus conditions were of equal frequency.

A key finding in Braver et al.’s (2001) study was that the
frequency effects on ACC activity (greater activity for
low- versus high-frequencystimuli)were equivalentacross
all tasks. This result suggests that the tasks do not differ in
terms of the role of frequency in eliciting response con-
flict (as indexed by ACC activity). However, the fact that
the go/no-go and oddball tasks involve the generation or
inhibition of a single response, rather than selection be-
tween two alternative responses, appears to create prob-
lems for the conflict theory of ACC function.Specifically,
conflict theory suggests that the ACC detects conflict be-
tween different response tendencies. It is not clear what
the source of conflict could be when there is only a single
response option. Moreover, the apparent qualitative dis-
tinctions between the tasks seem to be reinforced by their
different behavioral performance profiles. Go/no-go tasks
are typically associated with high rates of false alarms on
no-go trials, whereas targets are only infrequently missed
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in oddball tasks. Figure 1 shows an example of such be-
havioral performance distinctions across the three tasks
(when matched on response frequency). In many cogni-
tive tasks, the degree of response conflict is thought to di-
rectly track with behavioral performance (e.g., reaction
time in incongruentvs. neutral Stroop trials). It is not clear
how to reconcile the obvious behavioral differences be-
tween go/no-go and oddball tasks with the notion that they
elicit equivalent levels of response conflict under equiva-
lent frequency conditions.

The primary goal of the present paper was to test whether
the conflict theory of ACC function can simultaneously
capture the equivalence of go/no-go, oddball, and 2AFC
tasks in terms of conflict (i.e., ACC activity) while also
explaining why the tasks might be dissimilar in terms of
behavior. This questionis one that can be usefully addressed
with a computational modeling approach. Specifically,
computational modeling provides a means for explicitly
testing whether a hypothesized cognitive or neural mech-
anism can adequately capture the complexities and con-
straints of the relevant empirical phenomena. If the model
is successful at capturing the desired phenomena, this

adds support for its theoretical sufficiency. In contrast,
failures to adequately capture phenomena can be used as
evidence for rejection of the theory—at least in its current
form. In the present study, we simulated performance of
speeded tasks involving both selection between two re-
sponses (i.e., 2AFC) and generation versus suppressionof
a single response (i.e., go/no-go and oddball). We exam-
ined whether a single model could account for both the
characteristics of ACC activity and behavioral perfor-
mance in these tasks.

A second goal of the study was to provide an even
stronger test of the model by examining whether conflict
serves a functionally relevant role in performance. Ac-
cording to the conflict theory, when conflict is high, more
control is needed, and when conflict is low, less control is
needed. The system is postulated to function as a closed
loop, whereby the presence of conflict (as indexed by
ACC activity) serves to engage control systems, which
then act to reduce the conflict experienced in future situ-
ations. In previouscomputationalmodelingwork, Botvinick
et al. (2001) showed that this conflict-control loop, when
incorporated into existing computational models of cog-

Figure 1. Behavioral performance data. Reaction time (upper graphs) and error rates (lower graphs) from both two-
response (two-alternative forced choice; left panel) and one-response (go/no-go and oddball; right panel) speeded re-
sponse tasks. In general, low-frequency stimuli are associated with slower reaction times and more errors. However,
there is nearly perfect accuracy for the target stimulus in the one-response conditions, regardless of frequency. Note that
the target/R1 stimulus is low frequency when the nontarget/R2 stimulus is high frequency. Thus the dark bar above the
label “low” is taken from the same experiment as the light bar above the label “high,” and vice versa. Both data points
above the label “equal” are taken from the same experimental condition.
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nitive tasks (e.g., Stroop or Eriksen), enabled these mod-
els to successfully capture a number of empirical phe-
nomena associated with cognitive control processes.

Although conflict may serve a functional role in tasks
that more clearly rely on the involvementof cognitivecon-
trol, it is not as clear what functional significance conflict
may have in simple speeded response tasks, such as the
ones we are concerned with here. One possibility is that
subjects might use the ACC-mediated conflict signal as a
means for adjusting a speed–accuracy tradeoff function
(SATF) so that performance is optimized to the current task
conditions. Adjustments to SATFs have been commonly
postulated in the literature as a strategic method for opti-
mizing performance in speeded response tasks (Luce,
1986; Rabbitt & Vyas, 1970; Smith & Brewer, 1995) and
so might be a critical function of cognitive control. More-
over, there is empirical evidence to support the idea of per-
formance adjustments being made on line during such
tasks. Rabbitt (1966) demonstrated that subjects reliably
slow down after making an error, whereas Laming (1968)
found that subjectsbecome more accurate as well as slower
in these same situations.Thus, these findings suggest that
subjects opt to decrease speed and increase accuracy after
making errors. The conflict theory goes beyond this inter-
pretation to suggest that speed–accuracy adjustmentsmay
not be specific to the occurrence of an error per se but,
rather, to the experience of a high degree of response con-
flict. A key principle of the conflict model is that errors
are typically associated with high degrees of conflict. In
particular, Botvinick et al. (2001) demonstrated that the
conflict model could account for error-related perfor-
mance adjustments solely as a function of the conflict-
control loop mechanism, and Yeung,Botvinick,and Cohen
(2002) have proposed that conflict monitoring may actu-
ally provide a reliable mechanism for error detection.

In the present study, we extendedBotvinicket al.’s (2001)
simulations by testing whether there are performance ad-
justments made by subjects in response to high-conflict
trials, even when this occurs in the absence of an error.
Speeded response paradigms provided an excellent test-
bed for examining this issue, given that our prior data had
indicated that the ACC is activated by low-frequency
events even on trials on which no errors are made (Braver
et al., 2001). If the ACC activity on these trials is hypoth-
esized to represent the presence of conflict, this conflict
should lead to a subsequent adjustment in control (i.e., a
shift in the SATF) that would be manifest in behavioral
performance. We were specifically interested in deter-
mining whether the conflict model could be used to pro-
vide evidence for these performance adjustments.

The modeling approach we took was to build on previ-
ous computationalmodels developed to examine different
aspects of speeded response task performance. Usher and
McClelland (2001) implemented a general computational
model within the neural network framework to examine the
psychological and neural mechanisms underlying the dy-
namics of choice discrimination.This model was found to
be highly successful at capturing a wide range of reaction

time (RT) data associated with speeded response perfor-
mance.As was mentionedpreviously,Botvinicket al. (2001)
found that this model, when augmented with a conflict-
control loop,couldcaptureperformance adjustmentsrelated
to error commission. Most recently, we (Cho et al., 2002)
have extended the work of Usher and McClelland to in-
corporate effects related to sequences of stimuli. In par-
ticular, there is a large literature suggesting that a sub-
stantial component of variance in two-alternative choice
discrimination performance is related to the specific se-
quential history of trials (Kirby, 1980; Laming, 1968;
Remington,1969;Soetens,Boer,& Hueting,1985).We were
able to account for these data by incorporating priming
mechanisms into the basic Usher and McClelland model
that are sensitive to both repetitions and alternations in
stimulus sequences. The present model extends this pre-
vious work by adding the conflict-control loop (Botvinick
et al., 2001) into the Cho et al. model. In addition, we
modified the model to perform both two-response (i.e.,
2AFC) and one-response (i.e., go/no-go and oddball) dis-
crimination tasks. We hypothesized that the priming
mechanisms in the model would produce modulations in
conflict related to stimulus sequential history and that
these modulationswould account for the frequency effects
on ACC activity observed in the imaging data. Moreover,
we tested whether these sequence-related modulations in
conflict would lead to adjustments in behavioral perfor-
mance that could be captured by the presence of the
conflict-control loop in the model.

METHOD

The neuroimaging data used for the present study were originally
reported in Braver et al. (2001). The behavioral data were collected
in the course of extensive pilot testing for that project. We will briefly
summarize the experimental design and neuroimaging analysis pro-
cedures used to collect this data (see Braver et al., 2001, for further
details) and then will focus on the simulations

Experimental Method
Subjects. There were 65 subjects (47 females and 18 males;

mean age, 19.3 years; range, 17–25 years) in the behavioral study
and 14 subjects (5 males and 9 females; mean age, 22.9 years; range,
18–27 years) in the neuroimaging study. All the subjects in the neu-
roimaging study were right-handed and neurologically normal. The
subjects received either course credit or a monetary reimbursement
for their time. Informed consent was acquired according to the guide-
lines set by the Washington University Human Studies Committee.

Task Design and Procedure. The subjects performed two types
of speeded response tasks: one-response (go/no-go/oddball) and
two-response (2AFC). In all the tasks, the subjects were presented with
a series of uppercase characters in the center of a computer screen
(250-msec duration, 1,000-msec interstimulus interval). Further-
more, in all the tasks, the subjects were told that there were two cat-
egories of stimuli. In the one-response task conditions, the subjects
were asked to generate a buttonpress in response to target stimuli,
but not for nontarget stimuli. In the two-response conditions, the
subjects were to make an index finger buttonpress (R1) for one cat-
egory of stimuli and to make a middle finger buttonpress (R2) for
the other category of stimuli. Target/R1 stimuli consisted of upper
case letters (except for X) and the nontarget/R2 stimulus was the
single digit “5” or vice versa. This clearly led to an asymmetry in the
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size of target/R1 versus nontarget/ R2 categories (25 vs. 1 item).
However, the mapping of stimuli to target/R1 and nontarget/R2 cat-
egories was counterbalanced across subjects. In the neuroimaging
study, the same basic category structure was retained, except that
only letters were used as stimuli, with the two stimulus categories
being the letter “X” or the remaining letters. The subjects were asked
to respond as quickly and accurately as possible.

Each version of the task (one-response, two-response) had three
frequency conditions: low-frequency target/R1 (target = 17%), equal-
frequency (target = 50%), and low-frequency nontarget/R2 (target =
83%). This made a total of six conditions: (1) one-response low-
frequency target (i.e., oddball), (2) one-response low-frequency non-
target (i.e., go/no-go), (3) one-response equal frequency, (4) two-
response equal frequency, (5) two-response low-frequency R1, and
(6) two-response low-frequency R2. Note that Conditions 5 and 6
were essentially identical because of the symmetry of the two-response
task and counterbalancing of stimulus categories. Each subject per-
formed two runs of the six conditions, with the order of runs and the
specific sequence of stimuli counterbalanced across subjects. Each
run consisted of 150 trials. RT and accuracy data were tabulated by
computer.

Neuroimaging analysis. A 10-mm spherical region of interest
(ROI) within the ACC was generated on the basis of a recent meta-
analysis of manual response conflict tasks (Barch et al., 2001). Rapid
event-related analysis methods were used to determine ACC activ-
ity in response to different stimulus types. ACC activation was ex-
pressed in terms of the difference between the low- and the high-
frequency responses; for equal-frequency conditions, one stimulus
was arbitrarily chosen as the baseline. The peak amplitude of this dif-
ference was used as the comparison measure with simulation data.

Simulation Method
Model architecture . As was mentioned above, the basic archi-

tecture was developed in Usher and McClelland (2001) and was ex-

tended by Botvinick et al. (2001) and Cho et al. (2002). In the absence
of noise, the basic architecture is essentially equivalent to McClelland’s
cascade model (McClelland, 1979). Our primary modification was to
implement an additional response layer to capture the distinction be-
tween one- and two-response task conditions, as described below. The
network consisted of a stimulus layer, a response decision layer, a re-
sponse execution layer, and a strategic priming unit (see Figure 2). Con-
flict was measured at the response decision layer and influenced pro-
cessing (via a feedback loop through the strategic priming unit) at both
the decision and the execution layers of the model. There were two in-
puts connected in a one-to-one fashion with two decision units in the
decision layer. The decision layer units competed with one another via
lateral inhibition. Each decision layer unit was, in turn, connected to a re-
sponse execution unit in a one-to-one fashion. The execution units also
competed with each other via lateral inhibition. When the activity level
of one of the execution units reached some threshold value, the net-
work was judged to have made an overt response.

The primary difference between the one-response version of the
model and the two-response version was that in the one-response
model, only one of the decision layer units corresponding to the non-
target (no-go) response representation was connected to a response
execution unit. The unconnected decision unit could become active
and suppress activity in the other decision unit, but activation of the
unconnected decision unit did not lead to the execution of an overt
response. In this case, the response execution layer still contained
two units, but because one of the units did not receive any input from
the decision layer, it was given a small baseline activity level. The
baseline activity of this unit was high enough to provide some com-
petition with the target execution unit but was low enough that the
unit never exceeded its activation threshold. All of the processing
units in the decision and execution layers received input from a
strategic priming unit. This priming unit was able to influence the
global state of the network by altering the baseline activity of the de-
cision and execution units (see the Priming Mechanisms section).

Figure 2. Schematic diagram of model architecture. The network consisted of three feed-
forward layers with lateral inhibitory connections at the response decision and response ex-
ecution layers. Conflict was measured at the decision layer, and modulated activity in the de-
cision and execution layers via a strategic priming unit. Repetition priming and alternation
priming (not shown) were also applied to the decision and execution layers.



ACC AND SPEEDED RESPONSE 305

Processing . Activation dynamics in the simulation were based on
those in Usher and McClelland (2001) and Cho et al. (2002). Spe-
cific details of the equations governing processing and model para-
meter selection are described in the Appendix. Units in the model
compute their output activation on the basis of integration of infor-
mation from several sources: excitatory external input (either stim-
ulus input or that from a previous layer), lateral inhibition (from
competing units within the same layer), and priming input (both
strategic priming and sequential priming).

Each trial consisted of a preparatory phase and a stimulus-
processing phase. During the preparatory phase, unit activities were
allowed to settle without any external inputs. The preparatory cycle
period was intended to establish a baseline level of activity in each
processing unit before the presentation of the stimulus and approx-
imated the response–stimulus interval (RSI) typically varied in
speeded response experiments (Soetens et al., 1985). Differentially
higher baseline activity in one response channel (because of se-
quential priming or noise) represented a bias to produce that response.
Overall, higher or lower baseline activity in each unit (because of strate-
gic priming) represented a global “readiness to respond” in the net-
work. Priming input was present throughout the preparatory-cycle
period and during the first portion of the stimulus-processing phase.

During the stimulus-processing phase, the activity of the input
units was clamped at a specific pattern corresponding to the present
stimulus. Presentation of a particular stimulus always involved some
amount of activity in the unit corresponding to the other stimulus
(see the Appendix for details). This was intended to encode a degree
of stimulus ambiguity and also introduced activity into the incorrect
response channel, which provided a means for the network to pro-
duce errors when combined with the effects of priming and noise.
The input units were transiently activated and then returned to base-
line for the duration of the trial, during which activity in the rest of
the network was allowed to settle. The model was judged to have made
a response when activation of one of the response execution units
reached a threshold value. RT was encoded as the number of cycles
necessary to make a response after initial presentation of the stimu-
lus. Note that in the one-response version of the model, no overt re-
sponses were made for nontarget stimuli, so RT was not a meaning-
ful quantity in this case.

Conflict. Conflict was computed as in previous simulations (Bot-
vinick et al., 2001) and corresponded to a simplified form of the
well-known Hopfield energy measure (Hopfield, 1982). In particu-
lar, the conflict value for a given trial reflected the simultaneous
coactivation of both response decision layer units. Conflict was low
when the activity of one decision unit was close to zero, regardless of
the activation of the other decision unit (a very small number times
a large number is still small). In contrast, conflict was highest when
both decision units were very active.

Priming mechanisms. In addition to the standard inputs to each
unit, additional sources of input were provided as priming-related
activity (see the Appendix for technical details). One type of prim-
ing activity was directly modulated by the local sequential history of
trials and has been described in Cho et al. (2002). This priming came
in two forms: (1) repetition priming (facilitation of a given stimulus
after that stimulus had previously been observed) and (2) alterna-
tion priming (facilitation of the stimulus opposite to that last ob-
served, following a previous alternation). The particular type of rep-
etition and alternation priming mechanisms used was the combination
that provided the best fit to empirical data taken from multiple data
sets (Cho et al., 2002).

The second type of priming was due to input from the strategic
priming unit. The strategic priming input governed the global prepa-
ration of the network for input by changing the baseline activity of
units in the manner described by Botvinick et al. (2001). This change
was nonspecific (as contrasted to the repetition and alternation prim-
ing mechanisms) in that it affected all units equivalently. With lower
strategic priming, each unit had a lower level of baseline activity,

which meant that it took a longer period for a response to be made
(i.e., slower RT). In addition, a low level of baseline activity also
meant that the incorrect response execution unit was less likely to
cross its threshold value, decreasing the probability that the network
made an error (i.e., higher accuracy). Thus, low strategic priming is
associated with more “controlled” behavior. On the other hand, high
strategic priming led to more “automatic” behavior (i.e., faster re-
sponding and higher error rates, especially for stimuli that were un-
expected on the basis of sequential history). The role of the conflict
detector was to increase control by decreasing strategic priming in
response to conflict. The magnitude of the control adjustment (change
in strategic priming) on any given trial was not based simply on con-
flict from the previous trial. Rather, it was influenced by the conflict
from a number of preceding trials, so that each trial backward in
the sequence had a successively smaller effect on the present control
adjustment.

Certain parameters of the model were adjusted to increase the fit
of the model to the behavioral data in preliminary simulations (see
the Appendix for details). However, it is important to note that these
parameters were fixed prior to the analyses described below and,
moreover, were set without regard to effects related to conflict.

Data Analysis
The model was presented with 65 unique sequences of stimuli for

each condition, exactly matching the sequences of stimuli presented
to each of the 65 subjects in the behavioral study. Each block of 150
trials was treated as a different condition, and each set of six blocks
was treated as a different subject for the purpose of statistical com-
parison against the empirical data. Three sets of analyses were con-
ducted that probed the model at successively finer grains of detail.
The first analysis examined how well the model captured behavioral
performance and neuroimaging data of ACC activity across tasks as
a function of global (i.e., blockwise) stimulus frequency. The second
analysis examined the role of local stimulus sequential history in
the model on both conflict and behavioral performance, comparing
both one-response and two-response tasks. The final analysis ex-
amined how well the model captured the trial-by-trial performance
of each subject, specifically in terms of the contribution of conflict-
driven control adjustments to behavioral performance.

Frequency analysis. To determine the effect of response frequency
on performance, mean RT and percentage of error were calculated
across subjects (both actual and simulated) for each frequency con-
dition (low-frequency target, equal frequency, and low-frequency
nontarget) for each task (one-response and two-response) and for
each stimulus (target and nontarget). Only RTs from correct re-
sponse trials were included in this analysis. Mean simulated conflict
for each stimulus was also calculated as a function of frequency and
task condition for comparison against imaging data from the ACC
(both correct and error trials were used here, in order to match the
analysis procedure used in Braver et al., 2001).

Sequential history analysis. Analyses of data were conducted
after categorizing each stimulus as a function of the previous five tri-
als, consistent with previous approaches in the empirical literature
(Kirby, 1980; Laming, 1968; Remington, 1969; Soetens et al., 1985)
and as we have done in our previous simulations (Cho et al., 2002).
The categorization scheme coded each stimulus as a repetition (R)
or an alternation (A) of the previous stimulus, producing 16 categories.
Thus, the sequence of stimuli XXYXX would be characterized as
RAAR (repetition, alternation, alternation, repetition). We previ-
ously demonstrated that the repetition and alternation priming mech-
anisms in the model provide a successful fit to the behavioral data
in two-response tasks (Cho et al., 2002). In the present study, we per-
formed an additional analysis to compare the fit of the new model
(which was slightly modified from the Cho et al. model as a result of
an additional layer) across the two-response and the one-response tasks.

We conducted the sequential history analysis only on data from
the equal response frequency conditions. This ensured that there were



306 JONES, CHO, NYSTROM, COHEN, AND BRAVER

equal numbers of trials, on average, contributing to each sequential
category. Because model parameters were not modified on an indi-
vidual subject basis, we eliminated individual-difference effects in
baseline response speed and error rate from the behavioral data by
normalizing data prior to averaging. RTs were expressed as z scores,
whereas error data were expressed as a difference from that subject’ s
mean accuracy rate (z scores were not used for accuracy data, be-
cause accuracy is strongly nonnormal in distribution). We then cal-
culated the mean RT and percentage of error for each category in
both the behavioral and the simulated data. Model and behavioral
data were compared across sequential categories through a 16-point
correlation coefficient.

Conflict-control analysis. To determine the influence of conflict
monitoring on control adjustment in the model and its relationship
to behavioral performance, we compared the model with the behav-
ioral data under two different simulation runs. The first was with the
intact model, whereas the second was with the strategic priming
mechanism (which modulates control as a function of conflict) le-
sioned. The value of strategic priming in the second run was fixed
at the mean value over the first run. In order to reduce variability
and provide a reliable measure of the predictive behavior of the
model, each of these two conditions was run without noise. This had
the effect of producing perfect accuracy in the model. Consequently,
the maximum activity of the incorrect response representation was
used as a measure of the predicted likelihood of an error. One prob-
lem with this approach is that subjects in experimental studies do
make overt errors, presumably because behavioral performance is

an intrinsically noisy process. Conflict theory suggests that the noise
present on error trials also produces increased conflict, even under
exactly equivalent task conditions (owing to extra activity in the in-
correct response channel; Botvinick et al., 2001). Consequently, re-
moving this noise would change an important source of conflict and
control adjustment. To compensate, we selectively sampled the con-
flict distribution of the model from a noisy run in order to determine
the average conflict associated with errors under normal conditions.
We then substituted this value into the model on trials in which the
corresponding behavioral subject produced an error.

The ability of the intact model to account for additional variation
in the trial-by-trial reaction time and error rates of individual sub-
jects beyond that accounted for by the lesioned model was calcu-
lated as a partial correlation. The behavioral data used as targets for the
simulation were taken from the equal-frequency 2AFC condition.

RESULTS

Frequency Effects
Simulating behavioraldata. There was a strong main

effect of frequency in the empirical data, in both the two-
response and the one-response tasks. Poorer performance,
in terms of slower RTs and greater errors (Figure 1), was
observed for low-frequency stimuli, as compared with ei-
ther high- or equal-frequency stimuli (all ps , .001). This

Figure 3. Performance of the model as a function of frequency (compare with Figure 1). The model captures the
general trend toward poor performance as stimulus frequency decreases and also accounts for the exception present
for target stimuli in the one-response conditions. Note that the target/R1 stimulus is low frequency when the nontar-
get/R2 stimulus is high frequency. Thus, the dark bar above the label “low” is taken from the same experiment as the
light bar above the label “high,” and vice versa. Both data points above the label “equal” are taken from the same ex-
perimental condition.
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finding indicates that it is more difficult to respond ap-
propriately to low-frequency events, which is consistent
with the hypothesis that low-frequency events provide a
source of conflict. The model was able to capture the pat-
tern of behavioral data quite well in both qualitative and
quantitativeterms (Figure 3), displayinga parallel trend of
performance decline for low-frequency events when com-
pared against either high-frequency [RT, F(1,63) = 3,771,
p , .001; accuracy, F(1,63) = 2,563, p , .001] or equal-
frequency [RT, F(1,63) = 413, p , .001; accuracy, F(1,63) =
1,430, p , .001] events.

However, an exception to this frequency-dependentpat-
tern of performance was observed in the empirical data
for errors in the one-response low-frequency target task
(i.e., the oddball task). In this condition, low-frequency
responses were nearly perfectly accurate and were not sig-
nificantly different from responses to high-frequency
[F(1,63) = 0.297, p = .588] or equal-frequency [F(1,63) =
0.133, p = .717] events. Although, prior to simulations,
this lack of a frequency effect appeared to be a potential
problem for the conflict model, it was actually captured
well [low vs. high, F(1,63) = 3.07, p = .085; low vs. equal,
F(1,63) = 1.72, p = .195]. The model’s behavior can be ex-
plained by the fact that activation of the incorrect (non-
target) decision layer unit does not lead to response exe-
cution. Thus, if the nontarget decision unit becomes
transiently activated, it is not too late for the target deci-
sion unit to recover and lead to the execution of the cor-
rect response. This is in contrast to the two-response task,
in which transient activation of the incorrect response
leads to the production of an irreversible overt action.

Simulating neuroimaging data. A primary finding
reported in Braver et al. (2001) was that there was signif-
icantly increased ACC activity for low-frequency stimuli,
relative to high-frequency stimuli (see Figure 4). More-

over, this pattern was observed in both the one and the
two-response tasks. In contrast, under equal-frequency
conditions, ACC activity did not differ across the two
stimulus types (Figure 4). In the simulations of task per-
formance, the conflict index from the model closely re-
sembled the frequency-related pattern of ACC activation
(see Figure 5). There was significantly greater conflict for
low- versus high-frequency events in all task conditions
(all ps , .001). Moreover, the conflict difference between
low- and high-frequency stimuli was significantlygreater
than the difference between stimulus types under equal-
frequency conditions [F(1,63) = 9,143, p , .001].

Sequential History
Simulating behavioral data. Our second analysis de-

composed the behavioral data in terms of the specific
five-trial stimulus sequence history. As was described
above, previous studies have demonstrated that perfor-
mance on two-response tasks can be significantlyaffected
by subtle differences in sequential history. This effect can
be observed in the present data as modulations of perfor-
mance as a function of stimulus history (expressed as devi-
ations from the mean, and for RT data additionallynormal-
ized into z-score units; see Figure 6). When the empirical
data across one- and two-response tasks are compared, we
see that the same general pattern holds. There are strong
correlations between the two tasks in terms of the se-
quence–performance relationship (RT, r = .933; accuracy,
r = .908). In Cho et al. (2002), we demonstrated that in
two-response tasks, these performance modulations can
be captured by the sequential priming mechanisms im-
plemented in the model. Here, we see that the present
model generalizes this property to the modified version
of Cho et al. used here and to one-response tasks. Specif-
ically, there is a high and roughly equivalent correlation

Figure 4. Neuroimaging results originally reported by Braver, Barch, Gray, Molfese, and Snyder (2001).
The ACC shows a strong response for low-frequency events (low 2 high), but there is little difference in
ACC activity between stimuli in the equal-frequency conditions.
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between model and empirical data for both the two-
response (accuracy, r = .890; RT, r = .933; ps , .001) and
the one-response (accuracy, r = .942; RT, r = .897; ps ,
.001) conditions.

The sequential history analysis makes clear the rela-
tionship between sequence type and performance. For ex-
ample, the category RRRR, which corresponds to a trial
on which the four previous stimuli match the stimulus on
the current trial, had the fastest RT and the fewest errors.
In fact, the four categories ending in RR had the four low-
est RTs and error rates in both the behavioral and the sim-
ulated data. In contrast, the category RRRA, which corre-
sponded to a trial on which the previous four stimuli were
congruent, but the stimulus on the present trial mapped
onto the alternate response (e.g., AAAAB), had the slow-
est RT and the most errors.

One question that arises from the model is whether the
sequence–performance function is mirrored in the pattern
of conflict across sequence categories. We examined this
question by calculating the 16-point correlation between
behavior in each sequence category and the corresponding
conflict value for that category. The high correlation ob-
served between conflict and empirical data behavioral
performance (accuracy, r = .934; RT, r = .891) indicates
that conflict not only tracks global frequency but also the
local sequential history of stimuli. Interestingly, this re-
sult suggests a novel prediction of the model: that it is the
local sequential history, rather than global frequency, that
should drive modulations in ACC activity in both one-
response and two-responses tasks.Thispredictionis testable
by examining whether the equal-frequency conditions of
the imaging data also showed modulations in ACC activ-
ity that appropriately tracked local sequence. It is impor-
tant to note that this is a strong test of the model, given
that no differences in ACC activity related to stimulus type
were observed in the equal-frequency condition when

these data were analyzed at the global level (i.e., collaps-
ing across stimulus histories).

Simulating neuroimagingdata. To test this model pre-
diction, we reanalyzed the imaging data by selectively av-
eraging the equal-frequency conditiondata (includingand
collapsing across both two-response and one-response
conditions to gain statistical power) according to the five-
trial stimulus history. This analysis was complicated by
our use of rapid event-related fMRIand the slow evolution
of the hemodynamic response. This hemodynamic re-
sponse lag creates overlap in the response from previous
trials when these are closely spaced in time. Typically, the
overlap can be disregarded when there is no systematic
order in the sequential history of events (owing to coun-
terbalancing). However, in the present case, sequential
history was precisely the variable we wished to examine.
Our approach for overcoming this limitationwas to create
difference timecourses from sequences that were matched
in sequentialhistory but differed in the final stimulus (e.g.,
RRRA–RRRR or AARA–AARR). We subtracted each of
the eight sequence types ending in a repetition from the
equivalent sequence ending in an alternation and deter-
mined the peak activation for each time course in each
subject.

This procedure enabled quantification of the amplitude
of ACC activity uniquely associated with alternation in
each of eight possible sequential contexts. The prediction
of the model was that alternationwould yield significantly
increased conflict primarily in contexts following a se-
quence of repetitions (i.e., RRRA–RRRR). This predic-
tion is made clear in Figure 7, which plots the conflict data
as eight paired differences in conflict between matched se-
quences. These difference scores demonstrate a coherent
pattern of fluctuations in which conflict tends to decrease
as the number of repetitions prior to an alternation de-
creases. However, it is also noteworthy that the pattern is

Figure 5: Simulated conflict as a function of frequency (compare with Figure 4). Conflict is significantly
higher for low-frequency stimuli (low – high), but there is no difference between stimuli in the equal-
frequency conditions.
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not perfectly linear, demonstrating the complexity of the
sequential history effects.

The results of the imagingdata reanalysis are also shown
in Figure 7, for comparison against the model. Although
not a perfect match, the empirical data from the ACC cor-
responds rather well with the conflict predictionsobtained
from the model (r = .856, p , .001), accounting for 73%
of the variance present in the sequential pattern of ACC
activation.1 It is noteworthy that the first two data points—
those corresponding to sequences RRA–RRR—yielded
the highest conflict in the model and the highest ACC ac-
tivity. Recall that the RRA sequences are associated with
poor behavioral and simulation performance (both slow
reaction times and high error rates). In the model, this can
be attributed to the high degree of priming present for the
repeated stimulus that must be overcome when an alter-
nation finally occurs. It is not surprising, then, that con-
flict is high for these trials. The fact that ACC activity
shows a similar pattern of activation in this more fine-
grained analysis demonstrates that the frequency-related
ACC results reported in Braver et al. (2001) can indeed be
attributed to local conflict dynamics and are not simply

due to a gross effect of stimulus frequency. This finding
is even more impressive when it is considered that Braver
et al.’s study was not designed for the reanalysis that we
performed on the data (and, consequently, had relatively
low statistical power).

Conflict-Control Effects
Trial-by-trial predictions. In our third set of analy-

ses, we attempted to obtain evidence that detectionof con-
flict leads to control adjustments that influencebehavioral
performance on a trial-by-trial basis. To examine the role
of control adjustments on the pattern of empirical perfor-
mance data, we determined the ability of the conflict-
control loop in the model to uniquely capture variance in
the behavioral data. The average trial-by-trial correlation
between the model and the subject data was .412 (99%
confidence interval; .389–.435) for RT and was .254 (99%
confidence interval; .225–.283) for errors (recall that the
maximum activity in the incorrect response channel was
used as a measure of the probability of error). Thus, on
average, the model accounts for 16.6% of the variance
present in the RT and 6.8% of the variance present in error

Figure 6: A more fine-grained comparison between simulation and behavioral performance. Each data point
represents the mean for 1 of 16 sequential categories. RRRA, for instance, represents a sequence of three repe-
titions followed by one alternation.
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rate on any given trial for any given subject. Although
these numbers indicate a somewhat low fit, it is important
to note that noise processes in humans (which are poorly
understood) may make a significant contribution to trial-
by-trial behavioral performance. Although it is possible to
present the simulation with the exact sequence of stimuli
presented to a behavioral subject, it is not possible to sim-
ulate the exact pattern of neural or cognitivenoise (which
may actually be structured—i.e., non-Gaussian) experi-
enced by that subject while performing the task. Thus, we
expect that even a very good model of the underlyingcog-
nitive mechanisms involved in speeded response tasks

will capture only a small fraction of the total variance
present in trial-by-trial performance.

The performance of the model with no conflict-
monitoring control loop was slightly less effective at pre-
dicting performance, thus indicatinga contributionof this
component of the model. We calculated the specific con-
tribution of the conflict-control loop by computing a par-
tial correlation between the model and the behavioraldata
after controlling for the effect of the lesioned model. This
partial correlation was computed separately for each sub-
ject and was positive for 64 out of 65 subjects in the RT
analysis (mean partial correlation = .141; 99% confidence

Figure 7. Predictions of the model with regard to conflict as a function of sequence and results of
a reanalysis of the neuroimaging data. Each bar represents the difference between conflict or ACC
activity for sequences matched on all but the final stimulus.

Figure 8. Control adjustments as a function of conflict. Changes in both reaction time and error rate performance are plot-
ted in relation to three types of critical events: fast responses (low conflict), slow responses (high conflict), and errors (high
conflict + error). Effects are shown for the behavioral data (left panel), the model with intact conflict-control loop (middle
panel), and the model with lesioned conflict-control loop (right panel).
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interval, .122–.160) and for 61 out of 65 subjects in the
error analysis (mean partial correlation = .066; 99% con-
fidence interval, .046–.087). Thus, although the conflict-
control effect was rather small—accounting for 2.5% of
the total variation in the subjects’ RT scores and 1.5% of
variance in error rates—it was highly reliable.

An important question arises as to what aspects of the
behavioral data are captured more successfully by the con-
trol loopmodel.To gain insight into this issue,we attempted
to operationally identify trials thought to be high versus
low conflict and then to examine whether there were per-
formance adjustments made in response to these events.
On the basis of the previous literature on speeded response
tasks (Laming, 1968;Rabbitt, 1966) and our own previous
simulation studies (Botvinick et al., 2001; Yeung et al.,
2002), we assumed that trials on which an error was made
would have high conflict. However, we were also inter-
ested in exploring high-conflict trials in which no error
was made. We postulated that trials on which RT was
slower than the mean for that sequence type would have
high conflict, whereas trials with fast RTs (again, relative
to the sequence type mean) would have low conflict. Our
hypothesis, implemented in the model, was that conflict,
whether occurring in the presence of an error or not,
would lead to a correspondingadjustment in control. This
control adjustment would be manifest as a shift in the
SATF: increased RT, but decreased error rates, following
high-conflict events and conversely, decreased RT, but in-
creased error rates, following low-conflict events.

We addressed this issue by examining performance in
the model under intact and lesioned conditions and com-
paring this with the empirical data (Figure 8). We first
binned trials according to sequence type and confirmed
that, in the model, slow RT and error trials did have higher
conflict than did fast RT trials. We then computedan index
of control adjustment, by taking the difference in perfor-
mance (both error rate and RT) between the trial immedi-
ately preceding and the trial immediately following the
critical event for each of three categories (errors, slow RT,
and fast RT). In the intact model, control adjustmentswere
apparent in all three conditions. Following an error trial,
there was a clear increase in RT and a slight decrease in
error rate. Following a slow RT trial, there was a clear de-
crease in error rate and a slight slowing in RT. Conversely,
following a fast RT trial, there was a clear increase in error
rate, along with a slight decrease in RT. These effects were
directly mediated by the presence of the conflict-control
loop, since the lesioned model did not show such perfor-
mance adjustments. Most importantly, the behavioral data
showed a pattern of adjustment strikingly similar to that
found in the intact model. There were significant adjust-
ments in RT following errors [t(60) = 6.50, p , .001], in
error rate following slow RT trials [t(64) = 25.76, p ,
.001], and in both RT and error rate following fast RT tri-
als [RT, t(64) = 22.6, p , .01; error rate, t(64) = 4.81, p ,
.001]. The fact that the intact, but not the lesioned, model
captured this pattern of behavioral performance suggests

that these effects are directly related to the conflict-control
loop.

DISCUSSION

The primary motivation for this study was to provide
increased support for our conflict theory of ACC function
and, more generally, for the role that conflict plays in cog-
nitive control. We were particularly interested in examin-
ing our theory within the context of simple speeded re-
sponse tasks, which includes 2AFC, go/no-go and oddball
as task variants.Our previousneuroimagingdata suggested
that the ACC was activated in an equivalent way across
these three tasks by the occurrence of low-frequency
stimuli (Braver et al., 2001). This finding was consistent
with the idea that low-frequency events would be associ-
ated with increased conflict and that the ACC serves as a
“generic” detector for the presence of such conflict. How-
ever, the equivalence of ACC activity across the three
tasks also seemed somewhat puzzling from the standpoint
of behavioral performance. In two-response tasks, sub-
jects demonstrate a frequency-dependent decrease in ac-
curacy, whereas no such modulation in accuracy is found
in one-response tasks (at least for target responding). The
discrepancy between the ACC activity, on the one hand,
and the behavioral performance data, on the other, pre-
sented a challenge for the conflict theory. The key ques-
tion we explored was whether a computationalmodel im-
plementing the conflict-monitoring hypothesis could
simulate both the pattern of behavioral data and the pat-
tern of conflict (as indexed by ACC activity in the imag-
ing data) across one- and two-response tasks. To address
these issues, we incorporated the mechanisms developed
in Cho et al. (2002) into the conflict model described by
Botvinick et al. (2001) and used these to simulate the ef-
fects of frequency on the target go/no-go, oddball, and
2AFC tasks.

The simulation results presented here suggest that our
choice discrimination model is, in fact, able to capture
data regarding both ACC activity (as an index of conflict)
and behavioral performance in these tasks. The apparent
discrepancy between the behavioral and the imaging data
is resolved in the model by casting both tasks in terms of
competing responses and subsequentconflict.More specif-
ically, we have shown that the apparent inhibitioninvolved
in one-response tasks is also present in two-response tasks.
In one-response tasks, a “no-go” representation must com-
pete against and suppress the target response, just as the
target response must compete against and suppress the al-
ternative response pathway in two-response tasks. The dif-
ference in behavioral profiles across the two tasks is cap-
tured in the model by the simple fact that premature
activation of the incorrect nontarget decision layer unit
does not result in an overt behavior under a one-response
task situation.The network can then recover from an error
and still produce the correct response (something which is
not possible in the two-response model, because by this
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point the model has already generated an incorrect overt
response). Thus, the model indicates that the two-response
and one-response tasks are different at some level (as com-
mon sense suggests they have to be) but that this difference
occurs downstream from where conflict is detected.

Sequential Effects on Conflict
In addition to capturing the relevant empirical data, the

model also provides an explicit account of why ACC ac-
tivity is increased to low-frequency stimuli. Specifically, in
the model, repeated presentationsof high-frequencystim-
uli create an expectancy for continued future repetitions,
which results in residual activity in the expected stimulus–
response pathway. The occurrence of the low-frequency
stimulus must overcome the preactivated frequent re-
sponse and, thus, produces conflict, reflected as increased
ACC activity. Interestingly, however, the model suggests
that these conflict effects can be accounted for by local se-
quential structure, rather than by global frequency. We ob-
served that conflict fluctuated significantly even under
conditions in which stimulus frequencies were globally
equivalent(see Figure 7).Moreover, in the model, sequence-
related fluctuations in conflict are mirrored in terms of
behavioral performance. The ability of the model to cap-
ture the subtletiesof sequentialperformance effects in the
empirical data provides support for the behavioral com-
ponent of the model. More important, this finding drove
us to test the model’s ability to predict a novel aspect of
ACC activity that we had not previously considered prior
to simulation work. In particular, the simulations sug-
gested that ACC activity should fluctuate with sequential
history just as behavioral performance did. We tested this
prediction in a reanalysis of the imaging data, comparing
ACC activity in the eight time course pairs matched for se-
quential history against the correspondingpattern of con-
flict derived from the model. This analysis yielded a cor-
relation that was impressive (r = .856), especiallygiven the
post hoc nature of the analysis and its low statisticalpower.
Critically, prior to simulations, this type of specific and
quantitative prediction regarding the effect of sequential
history on ACC activity would not have been possible.
This is due to the complex nonlinear dynamics of the sys-
tem. Thus,we were able to use the model notmerely to repli-
cate known phenomena, but also as a tool for generating
testable new predictions about brain activity and behavior.

Given the close correspondence between the level of
conflict in the model and the particular pattern of sequen-
tial history, one might wonder exactly what the conflict
index that we hypothesize is computed in ACC is signal-
ing during speeded response tasks. It is important to note
that the forces that modulate the level of conflict in the
ACC are the same ones that also modulate the level of se-
quential priming and, thus, behavioral performance. This
explains the close correspondence between the conflict
index for each sequential history category and behavioral
performance in that category. Moreover, the conflict index
is not the primary causal force that modulates behavioral
performance. Instead, conflict merely reflects these fluc-

tuations that are present elsewhere in the system in terms
of changes in sequential priming mechanisms. Neverthe-
less, the local transformation of sequential history infor-
mation (which is implicitly coded in the repetition and al-
ternationpriming mechanisms) into a conflict index within
the ACC is very useful from a functionalperspective.That
is, by being actively represented within a neural region such
as the ACC, conflict information can be used to directly
modulate or bias the activity of other neural systems. In
particular, we hypothesize that this conflict information is
fed into systems responsible for adjustingcontrol processes
during task performance so as to optimize behavior.

Conflict and Cognitive Control Adjustments
A secondary goal of the present study was to directly test

this hypothesis regarding the relationshipbetween conflict
and control adjustments in processing strategy. Specifi-
cally, we tested whether the model’s success in accounting
for trial-by-trial variations in behavioral performance was
affected by the presence or absence of a control module
that regulates strategic priming on the basis of input from
a conflict detector. We clearly determined, in two separate
analyses, that the presence of the conflict-driven control
module did contribute to the success with which the
model accounted for behavioral performance. First, we
demonstrated that in the individual-subjectdata, there was
a small, but highly statistically reliable, increase in vari-
ance accounted for by the model with a control loop, as
compared with a model without this loop (improvements
found in 64/65 subjects for RT and 61/65 for errors). Sec-
ond, in the group-averaged behavioral data, we demon-
strated the presence of highly significant control adjust-
ment effects (see Figure 8) that could be captured only
when the conflict-control loop was present in the model.

Together, these results provide compelling evidence
that sequentialmodulations in conflict lead to adjustments
in control strategies that are reflected in behavioral per-
formance. In particular, the simulations suggest that con-
flict information can serve as a useful index for optimiz-
ing performance, by indicating when there is either too
much or too little strategic priming, given the present se-
quential structure of events. This ability to adjust perfor-
mance in an on-line manner in accordance with situational
contingenciesis a hallmark of cognitivecontrol.Our model
provides a tool for revealing the subtle presence of cogni-
tive control processes at work during even simple speeded
response tasks. Critically, the control adjustmentsobserved
in the present study go beyond previous work on perfor-
mance adjustments in speeded response tasks (Laming,
1968; Rabbitt, 1966), by demonstrating that these adjust-
ments can occur even when performance is error free but
conflict is high nonetheless. Furthermore, the finding of
conflict-related sequential relationships in the behavioral
data also makes clear that there is an underlying auto-
correlative component to performance in these tasks. It is
interesting that recent attention has been drawn to the
ubiquitous presence and significance of autocorrelation
within human performance data (D. L. Gilden, Thornton,
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& Mallon, 1995; F. Gilden, 2001). Out of this work, it has
been suggested that the particular patterns of behavioral
autocorrelation reflect the presence of internal represen-
tational structure and nonlinear dynamics within the cog-
nitive system. Our model provides just such an explicit
representational mechanism by linking sequential rela-
tionships in performance to a feedback loop between con-
flict detection and cognitive control adjustment.

The ability of the control loop model to predict extra
variance in the trial-by-trial performance of individual
subjects provides a novel method of evaluating individual
differences in control function. In particular, these esti-
mates can be conducted for subjects in different popula-
tions suspected of showing dysfunction in cognitive con-
trol (e.g., patients with schizophrenia, older adults, etc.).
Such dysfunction would be expected to show up in terms
of the goodnessof fit of the model with a control-loopver-
sus the lesioned model (determined through the partial
correlation procedure described above). Importantly, the
use of the model would provide a rigorous means for de-
tecting behavioral disturbances that might be quite subtle
in such tasks (given that the control loop accounts only for
about 2% of variability in overall performance). More im-
portant, the use of the model in this manner would pro-
vide a means for linking together theories of cognitive
dysfunctionin these populationsto biologicallybased the-
ories relating conflict monitoring and control adjustment
to specific neural and computational mechanisms.

Neural Mechanisms
Despite the computational specificity of our model, up

to this point we have said very little about the biological
structures underlying its components, with the exception
of the ACC. However, some of the assumptions we have
made with regard to functional components of the model
have important implications regarding neural substrates.
For example, we have argued that there exists a functional
component involved in response selection that actively
represents both go and no-go action representations. The
assumption that no-go actions are actively represented is
somewhat counterintuitive,because the same computation
could be performed through attenuation or inhibition of
activity in a go representation.However, there is some sup-
port for this assumption from neurophysiology. In partic-
ular, Hanes, Patterson, and Schall (1998) have recently
demonstrated that neurons within the supplementary
motor cortex of macaque monkeys exhibit activity only
during the successful suppression of a partially prepared
response. Thus, it may be that the response selection and
suppression functions implemented in our model are car-
ried out within higher order motor regions of the cortex.
Moreover, the conceptualization of processing in go/no-
go tasks being one of competitionbetween two active rep-
resentations, rather than suppression of a single represen-
tation, is consistent with the emerging general framework
of neural processing and representationalcompetition that
has been discussed in recent theoretical treatments (Desi-
mone & Duncan, 1995; Miller & Cohen, 2001).

We have also argued for the presence of a strategic
priming component that providesa nonspecificpreparatory
input to the response selection layers modulatedby the de-
gree of previous conflict experienced. We chose to model
speed–accuracy adjustments in this way to maintain con-
sistency with former models (Botvinick et al., 2001) and
with neurophysiologicaldata that indicate that RTs are re-
lated to the rate of accumulation of neural information,
rather than to variations in the thresholdof response (Hanes
& Schall, 1996). Nevertheless, a more thorough explo-
ration of the impact and neurobiological plausibility of
various strategic control mechanisms is a fruitful topic for
further research.

The strategic priming functions of the model are simi-
lar to the constructs of sustained attention and arousal.
Given the long-standing hypothesis that sustained atten-
tion and arousal are subserved by the right-lateralizedpre-
frontal and parietal cortex (Posner & Petersen, 1990), these
regions would serve as natural candidates for the locus of
the strategic priming signal. This hypothesis is also con-
sistent with our recent neuroimaging data suggesting that
the right-hemisphere dorsolateral prefrontal cortex and
the inferior parietal cortex are engaged, along with the
ACC, by low- frequency events during speeded response
tasks (Braver et al., 2001). It is also possible that neuro-
modulatory systems, such as the brainstem noradrenergic
nucleus (locus coeruleus), might be responsive to conflict
detection(Aston-Jones,Rajkowski,& Cohen,2000;Cohen,
Botvinick, & Carter, 2000) and, thus, be in a position to
regulate decisional and motor processes (Usher, Cohen,
Servan-Schreiber, & Rajkowski, 1999).

CONCLUSION

The present study was not intended to provide a com-
plete account of the myriad processes that contribute to
cognitivecontrol.However, it does make significantstrides
toward elucidating a specific type of control that shows
up in simple cognitive tasks. Furthermore, by separating
control itself from indexing the need for control through
conflict detection,we have provided an explicit model that
makes no reference to a homunculus. By using the model
to account for detailed aspects of behavioral and neu-
roimaging data, we have drawn a tight link between the
functional and dynamical properties of conflict detection
and the activation of a specific brain region, the ACC. Fi-
nally, the utility of the model reaches beyond the scope of
this study. The present work suggests new predictions re-
garding ACC function and activity, provides a potential
diagnostic tool for assessing control function in clinical
populations, and constrains the development of theories
regarding the neural substrates of control.
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NOTE

1. The high correlation between the simulated conflict measure and
ACC activity levels across sequential history conditionsprovided an op-
portunity to test how well alternative measures of conflict might capture
the same data. In particular, besides the Hopfield energy measure that we
used [i.e., E = ån X(n) ? Y(n)], other conflict measures are also possible,
such as (1) E = ån 1 2 | X(n) 2 Y(n) | /[X(n) 1 Y(n)] and (2) E = ån
[X(n) 1 Y(n)]2/{[X(n) 2 Y(n)]2 1 1}. We implemented these alternative
measures of conflict in the model and resimulated the sequential history
data. When comparing the new conflict values against the ACC activity
patterns, we observed correlations of r = .859 for the first tested measure
and r = .878 for the second tested measure. The equivalent success of
each measure in accounting for ACC data suggests that at least for the
present stage of model-building, the exact form of the conflict compu-
tation is not critical.
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APPENDIX

Below are the equations that govern activationdynamics, conflict,controladjustment,and sequentialpriming.
In all of the equations, t represents the index of the current trial, and n represents the index of the present cycle
within a trial. Table A1 gives a summary of model parameters and their values and highlightswhich parameters
were held constant from previous simulations, which were changed in order to maintain consistency with pre-
vious models, and which were manipulated in preliminary simulations in order to match the behavioral data.

Activation Dynamics
Activity of the competing units in the decision layer and response execution layer were governed by leaky in-

tegrator and lateral inhibitorydynamics, which have been well studied in the theoretical literature (reviewed in
Usher & McClelland, 2001). Unit activationwas updated on a cycle-by-cyclebasis according to the following
equation:

where Xt(n) refers to the activity of the unit at cycle n, Yt (n) refers to the activity of the other competing unit in
the layer, and f (x) is a linear activation function. t is a time constant, k is a standard leak parameter, b is the
strength of lateral inhibition, It (n) is excitatory input from the preceding layer, and zt(n) is a noise parameter
with zero-mean and standard deviation s. St and Bt are priming terms that changed from trial to trial according
to conflict and sequencedynamics and will be described further below. The thresholdvalue for the responseex-
ecution layer was u.

For units in the input layer, Xt(n) and Yt(n) were clamped at fixed values (0–1 range) representing the pres-
ence or absence of an external stimulus. During the preparatory period (20 cycles), these values were set at 0.
During the stimulus presentationperiod (30 cycles), the input unit representingthe presented stimulus received
a value of r; the other input received a value of 12r. These values were taken from Botvinick et al. (2001) and
reflect a level of stimulus ambiguity associatedwith perceptual processing (furthermore, they provide a means
of introducingvariabilityowing to noise). Following stimulus presentation,activity was allowed to settle for an
additional 70 cycles.

Our use of an additional processing layer was a significant alteration of the basic Usher et al. (2001) model,
and we found it necessary to change some of the model parameters in order to maintain the basic behavior of
the model (see Table A1). Specifically, we found it necessary to use a larger value of the time constant t for the
response execution layer. This increased the rate at which information was integrated at the response execution
layer and corrected for sluggish behavior during the preparatory phase. We also decreased the strength of lat-
eral inhibition,b. Because inhibition acts at both the response decision and the response execution layers, their
combined effect caused activity in the execution layer to become suppressedmore quickly than in the one-layer

X n X n
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t t

t t t t t t
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Table A1
Model Parameters

Parameter Description Value Status

Basic Parameters
t time constant (decision layer) 0.1 F
t time constant (execution layer) 0.2 C
b inhibition 0.6 C
k leak parameter 0.25 F
r stimulus ambiguity 0.85 F
s standard of noise 0.23 M
u response threshold 2.3 M
b baseline “no-go” unit input 0.2 A

Sequential Priming Parameters
g time constant 0.5 F
MR maximum repetition priming 0.06 M
MA maximum alternation priming 0.02 M
c number of priming cycles 35 A

Strategic Priming Parameters
l time constant 0.75 F
a slope 20.05 F
m constant intercept 0.5 F

Note—The status column indicates whether the parameter was fixed at a value
taken from previous models (F), altered in order to mainhtain consistency with
previous models (C), assigned a value in an appropriate range (A), or adjusted
during preliminary simulations to match behavioral data (M).
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APPENDIX (Continued)

model. By reducing this parameter,we were able to obtain activation trajectoriesat the execution layer that more
closely resembled those of the one-layer model.

In the one-responseversionof the model, the inactive responseunit was given a small constantbaseline input
(b = .2) so that it could compete with the active response unit. This parameter was not adjusted to match spe-
cific data but was chosen so that competition was strong enough to produce errors in the active response unit
without the competing unit’s ever crossing threshold.

Sequential Priming
Priming based on stimulus history was governed by the Bx

t parameter. The implementation that we used was
termed IR1–SA2 by Cho et al. (2002). IR1 refers to “IndividualRepetition One,” a scheme in which each indi-
vidual stimulus has its own repetition detector. The “one” refers to the fact that only a single presentation of
Stimulus X is required in order to increase priming for X, as opposed to a scheme in which an actual repetition
XX would have to occur before priming increased for X (this latter scheme was referred to as IR2). SA2 refers
to “Shared Alternation Two,” in which there exists a single alternationdetector, which applies priming to either
Stimulus X or Y, dependingon which stimulus would be an alternationof the most recent stimulus. In order for
the amount of alternation priming to increase, an actual alternation (XY or YX) had to be present in the recent
history (hence, the “two”). For both repetition and alternation priming, the lack of a detected repetition or al-
ternation caused the amount of priming to decay toward zero. These priming mechanisms are represented by
the following equations:

and

where Rx
t refers to the repetition priming for Response X on trial t, At refers to the amount of alternation prim-

ing on trial t. Note the superscript for repetition priming because there were separate repetition priming mech-
anisms for each stimulus. g = 0.5 is a time constant of integration.MR and MA are the maximum values of rep-
etition and alternation priming respectively. d x

t and et are binary step functions that served as the specific
repetition and alternationdetectors.d x

t took a value of 1 if the response on trial t was X and 0 if the response on
trial t was not X. et took a value of 1 if the response on trial t was an alternationof the response on trial t21 and
0 if the response on trial t was not an alternation. The values of MR and MA were adjusted during preliminary
simulations in order to fit the empirical data (see below). Repetitionand alternationpriming were simply added
to produce the Bx

t parameter in the activation equation.That is, when X was the same stimulus as that presented
on the previous trial, Bx

t was equal to Rx
t ; when X was an alternation of the previous stimulus, Bx

t was equal to
Rx

t 1 At.
Because of the linear activation function used in the model, allowing priming to endure for a full 120 cycles

caused activity in the decision and execution layers to increase well beyond threshold levels. This created arti-
ficially high levels of conflict near the end of individual trials. To correct for this, we introduced an additional
parameter,c = 35, the numberof priming cycles. Thus, primingbegan at the start of the trial (duringthe prepara-
tory phase) and lasted a total of 35 cycles. The value of this particular parameter is an artifact of our specific
implementation (i.e., the choice of a linear activation function), and we feel that it has little relevance to actual
psychologicalor biological phenomena.

Conflict
Conflict on trial t was measured by the following equation:

where n is the cycle index and X(n) and Y(n) are the activityof the two decision layer units on cycle n. Thus con-
flict represents the joint product of activity in the two response decision layer units summed over all 120 cycles.

Strategic Priming
Conflict affected strategic priming as an exponentiallyweighed average according to the following equation

taken from Botvinick et al. (2001):

where St refers to the strategic priming activity on trial t and Et refers to the conflict (energy) on trial t. The ex-
ponentiallyweighted averaginghad the effect that conflict at time t has the largest effect on strategic priming at
time t 1 1, but it also continuedto influencepriming for a number of subsequenttrials. The l is a time constant
controlling the rate at which the influence of conflict on previous trials decays. The a and m are the scaling pa-
rameter and the constant intercept, respectively. If E(t21) were zero, the value of St would tend toward m; for
higher values of E(t21), St tends toward [a E(t21) 1 m]. Since a , 0, this implies that higher conflict on trial t21
is associated with lower values of strategic priming on trial t.
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APPENDIX (Continued)

Preliminary Simulations
We performed three preliminary simulationsprior to those discussed in the results. In the first simulation,we

looked at baseline error rates in the equal probabilityconditions and adjusted the response threshold u and the
standard deviation of noise s until the model could capture this baseline error rate. Next, we were interested in
the RT and error performanceof the model as a function of stimulus frequency (Figure 1). To improve this fit,
we adjusted the strength of repetition priming, MR. Alternation priming had little effect on performance as a
function of frequency but did influence the results of the sequential history analysis. In order to select an ap-
propriate value of MA, we used a grid search optimizationprocedure to maximize the fit of the model to the RT
data as a function of frequency. Thus, four parameters in all were adjusted to fit the behavioral data, and these
adjustments were made without regard for the ability of the model to predict activity in the ACC through the
conflict measure.

(Manuscript received October 2, 2001;
revision accepted for publication October 8, 2002.)
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