
Many tasks used in experimental psychology involve 
participants making relatively simple decisions, for which 
the experimenter measures the response times (RTs) and 
the accuracy of the responses. In many cases, the diffi-
culty of the task is also manipulated within subjects. The 
resultant interaction among speed, accuracy, and diffi-
culty is complicated and presents significant challenges 
for standard analysis techniques, even in the simplest case 
of two response alternatives. Results from an experiment 
conducted by Ratcliff and Rouder (1998) demonstrated 
the range of effects that can occur, even within data from 
a single participant. They also demonstrate the well-
 established trade-off between decision speed and accu-
racy, showing how participants can improve accuracy by 
increasing the time taken to make a decision. The complex 
interdependence of accuracy and RT draws into question 
the common practice of analyzing accuracy and RT sepa-
rately—for example, by using separate ANOVAs.

For more than 30 years, mathematical psychologists have 
been developing cognitive models to account for the wide 
range of choice RT phenomena. These models use a small 
number of decision-process variables to account for both 
the accuracy of responses and the complete distribution of 
associated RTs. Many models exist (e.g., Brown & Heath-
cote, 2005, 2008; Busemeyer & Townsend, 1992; Ratcliff, 
1978; Ratcliff & Rouder, 1998; Ratcliff & Tuerlinckx, 
2002; Smith & Ratcliff, 2004; Van Zandt, Colonius, & 
Proctor, 2000; Vickers, 1970), all differing in their assump-
tions about the exact nature of the underlying processes. 
However, most share the same basic framework. They as-
sume that, when making a decision, the participant repeat-

edly samples information from the environment and that 
this information is used as evidence for one of the potential 
responses. As soon as the evidence in favor of one potential 
response reaches a threshold, the decision process is termi-
nated and that response is made. The time taken to make 
the response equals the time to accumulate the required 
amount of evidence, plus some time taken for nondecision 
processes, such as perception and the execution of a motor 
response. These cognitive models all provide estimates of 
three key parameters: the rate at which evidence for a partic-
ular response accumulates (drift rate), how much evidence 
is required before a response is made (response threshold), 
and the amount of time taken for nondecision aspects of the 
task (nondecision time). Estimations for these quantities 
take into account the interaction between speed and accu-
racy in the decision being made. This unified account can 
be much more informative about the decision process than 
independent analyses of accuracy and RT can.

The community using cognitive process models of 
choice RT has been growing steadily. The models have been 
used to describe the underlying neurology of simple deci-
sions (e.g., Carpenter, 2004; Forstmann et al., 2008; Gold 
& Shadlen, 2001; Hanes & Carpenter, 1999; Mazurek, 
Roitman, Ditterich, & Shadlen, 2003; Ratcliff, Cherian, & 
Segraves, 2003; Reddi, 2001; Roitman & Shadlen, 2002; 
Schall, 2001; Smith & Ratcliff, 2004). They have also been 
used to gain insight into the cognitive processes that under-
lie a wide range of simple choice tasks, including elements 
of reading (Ratcliff, Gomez, & McKoon, 2004), recogni-
tion memory (Ratcliff, 1978), and visual discrimination 
(Ratcliff, 2002; Smith & Ratcliff, 2009), as well as more 
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In recent years, the options available for estimating 
parameters for the Ratcliff diffusion model have been 
increasing and have become more user-friendly. Vande-
kerckhove and Tuerlinckx (2007, 2008) developed the 
Diffusion Model Analysis Toolbox, a MATLAB program 
that uses methods developed by Ratcliff and Tuerlinckx 
(2002) to apply the Ratcliff diffusion model. Vandekerck-
hove, Tuerlinckx, and Lee (2009) have implemented the 
diffusion model into the sampling program for Bayesian 
inference, WinBUGS. Voss and Voss (2007, 2008) offered 
FastDM, stand-alone C code that also implements the Rat-
cliff diffusion model. Wagenmakers et al. (2007) offered 
three methods for obtaining EZ diffusion estimates: a 
spreadsheet in Excel, a Web applet, and some scripts in 
the statistical language R.

The present article is motivated by the observation that 
most previous software offerings for applying choice RT 
models to data have focused on Ratcliff’s diffusion model. 
Here we provide a similar range of options for estimating 
the parameters of an alternative model, the LBA. We first 
review the details of the LBA and then describe estimation 
software developed for it in Microsoft Excel, R, and Win-
BUGS. We then describe additional software developed in 
R to produce a visual summary of data and model predic-
tions. Rather than providing a comprehensive parameter es-
timation environment for a particular paradigm, our aim is 
to illustrate the three approaches in a way that allows users 
to flexibly extend the analysis to a range of paradigms.

Overview of the LBA Model
Consider a participant who has been presented with a 

string of letters and asked to decide whether the stimulus 
is a word or a nonword; Figure 1 shows how this decision 
is represented in the LBA. Each possible response (“word,” 
“nonword”) is assigned to an independent evidence accu-
mulator. Evidence accumulation starts at a value randomly 
sampled (separately for each accumulator) from the inter-
val [0, A], where A is the maximum value of the uniform 
start-point distribution at the beginning of each trial. The 
participant gathers information from the stimulus, which 
is then used to increment the evidence in either accumu-

complex decisions, such as purchasing a car (Busemeyer 
& Townsend, 1992). Ratcliff, Thapar, and McKoon (2001, 
2003) used a decision model to identify which factors asso-
ciated with aging were responsible for the observed slow-
ing of older participants in simple discrimination tasks. 
In this application, independent analyses of accuracy and 
RT would not have identified these factors, because of a 
trade-off between speed and accuracy. Wagenmakers, van 
der Maas, and Grasman (2007) also suggested that vari-
ables (such as the rate of accumulation of information, or 
drift rate) estimated by these models be used to describe 
data in preference to accuracy and RT. Their approach is 
akin to considering intelligence in terms of an intelligence 
quotient rather than in terms of performance in individual 
tasks. Wagenmakers et al. (2007) gave a good explanation 
of how the analysis of data using decision models can, in 
a manner similar to that of psychometrics, reveal patterns 
in data that otherwise would have escaped the notice of the 
experimental psychologist.

Despite their ability to provide insight into the processes 
underlying decisions, the application of decision models 
has been limited mostly to those already within the field 
of cognitive modeling. This is because it has been notori-
ously difficult to apply the models to data, requiring com-
plicated computer programming and mathematics to im-
plement (Smith, 2000; Van Zandt, 2000). The models have 
grown more complex as the range of phenomena they can 
account for has grown (e.g., compare the original Ratcliff 
diffusion model [Ratcliff, 1978] to more recent versions 
in Ratcliff & Rouder, 1998, and Ratcliff & Tuerlinckx, 
2002). Fortunately, there have also been attempts to re-
duce the complexity of choice RT models. Wagenmakers 
et al.’s (2007) EZ diffusion provides simple formulas for 
directly estimating the three key decision parameters on 
the basis of three easily estimated statistics. However, the 
model underlying the EZ diffusion approach is not com-
prehensive. For example, it fails to account for the latency 
of error responses. Such criticisms do not apply to the 
“complete” decision-making models, such as Ratcliff ’s. 
However, the price of this explanatory power is the great 
increase in mathematical and computational complexity.

Brown and Heathcote (2008) proposed the linear bal-
listic accumulator (LBA) model as the simplest complete 
model of choice RT. The LBA is simple, in the sense that 
Brown and Heathcote (2008) were able to derive ana-
lytically the model’s probability density function (PDF), 
which makes efficient estimation tractable using a range 
of techniques. Despite its relative simplicity, the LBA 
can account for the same breadth of empirical two-choice 
RT phenomena as the Ratcliff diffusion model does. In 
contrast to the diffusion model, the LBA can be applied 
also to choices from among more than two alternatives. 
Even though the model is in its infancy, it has begun to 
be applied to experimental data sets (see, e.g., Donkin, 
Brown, & Heathcote, in press; Forstmann et al., 2008; 
Ho, Brown, & Serences, 2009). Forstmann et al. showed 
that an experimental manipulation of speed and accuracy 
emphasis produced changes in behavior and brain activ-
ity that agreed closely with appropriate parameters from 
the LBA.

Figure 1. Graphical representation of a single decision made by 
the LBA model. Parameter values: value of uniform start-point 
distribution (A), upper response boundary (b), samples per con-
dition (N ), mean of between-trial variability in response time (v), 
and between-trial variability in drift rate (s).
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choice task. The design from which the simulated data are 
derived is typical of designs to which the LBA has been ap-
plied: three conditions that vary in decision difficulty (easy, 
medium, and hard). This set can be thought of as data from 
a single participant in an experiment with three within-
subjects conditions. The first few lines of the simulated 
data are shown in Figure 2, with each line representing one 
choice trial. The first column codes the easy, medium, and 
difficult decision conditions, labeled 1–3, respectively. The 
second column codes the accuracy of the response made, 
using 0 for incorrect and 1 for correct. The third column 
contains the response latency of the decision (in millisec-
onds). We provide an R script that simulates data in the 
same format as our example data set (makedata.r). For this 
example, we sampled data from an LBA model with the 
following parameters: sec  0.25, A  300, Ter  200, b  
400, vE  .9, vM  .75, and vH  .6.

The vE, vM, and vH parameters refer to the drift rates 
for correct responses. We use the traditional parameter-
ization, which fixes drift rates for the error responses to 
be equal to 1 minus the drift rate for correct responses 
(although, see Donkin, Brown, & Heathcote, in press, for 
a different approach). Hence, the drift rates for incorrect 
responses in our example data set were .1, .25, and .4 for 
easy, medium, and hard conditions, respectively. To keep 
the example simple, we assumed that drift rate for correct 
(and error) responses was the same, regardless of which 
stimulus was presented on that particular trial. This em-
bodies an additional assumption that drift rates are the 
same for both stimuli corresponding to each response 
(i.e., words and nonwords). In more general cases, there 
could be four drift rates: a correct and error drift rate for 
each of the two responses (e.g., old and new responses in a 
recognition memory task; Ratcliff, 1978). We also assume 
that only drift rate changes between the three difficulty 
conditions, with all other parameters constant. This as-
sumption is standard in paradigms in which the stimulus 
factors that are used to manipulate difficulty are mixed 
randomly within blocks of trials. We address the more 
complicated cases below.

Example 1: Using Microsoft Excel
We used the file lba.xls to fit the LBA using Micro-

soft Excel. The Excel LBA worksheet records the data in 
Sheet 2 and uses the parameter values in Sheet 1 to cal-
culate the likelihood of the data, given the present set of 
parameter estimates. This likelihood value is our objec-
tive function. Excel’s built-in Solver function is used to 
find parameters, which maximizes this likelihood value. 

lator. Brown and Heathcote (2008) made the simplifying 
assumption that evidence accumulation occurs linearly, at 
what is termed the drift rate. Drift rate is an indication of 
the quality of the stimulus: The larger the drift rate, the 
faster evidence accumulates. For example, because higher 
frequency natural-language words are easier to classify as 
words, a string of letters that forms a frequently used word, 
such as HOUSE, would likely have a higher drift rate than 
would the word SIEGE, since SIEGE is used less often. The 
drift rates for each accumulator vary from trial to trial ac-
cording to a normal distribution with mean drift rates vW 
(for words) and vNW (for nonwords). For simplicity, we as-
sume between-trial variability in drift rate, s, to be a com-
mon standard deviation for these distributions. As soon as 
evidence in one accumulator reaches a threshold, b, the 
response associated with that accumulator is made. Chang-
ing the threshold parameter changes the amount of evi-
dence required to make a response. For example, a lower b 
produces less cautious responses, and an increased b pro-
duces more cautious responses. The relative values of b for 
different accumulators can model response bias: an a priori 
preference for one response over another. Response latency 
is given as the time taken for the first accumulator to reach 
threshold plus the time taken for nondecision aspects of the 
task, such as the motor response and stimulus encoding. 
Because nondecision time is assumed to have negligible 
variability, it is estimated by a single parameter, Ter.

One way of estimating LBA parameters from data in-
volves the search for a set of parameters (e.g., b, A, vW, 
vNW, s, and Ter) that produce predictions for accuracy and 
RT that closely resemble the data. The resemblance be-
tween data and model is quantified by an objective func-
tion. A variety of objective functions are commonly used 
with RT data, including maximum-likelihood estimation 
(Ratcliff & Tuerlinckx, 2002), chi-squared estimation 
(Ratcliff & Smith, 2004), and quantile maximum products 
estimation (QMPE; Heathcote & Brown, 2004; Heathcote, 
Brown, & Mewhort, 2002). The search for a set of param-
eters that optimize the objective function begins with the 
choice of parameters at some initial values, called a start 
point. This is followed by a computer-driven search that 
changes parameters until a set is identified that provides 
a better value for the objective function than other nearby 
sets do. Bayesian estimation takes an alternative approach 
that provides a distribution of estimated parameter sets 
rather than a single set. Variability in the distribution quan-
tifies uncertainty about estimation, and a measure of the 
distribution’s central tendency, such as the mean, provides 
a point estimate. Our aim here is not to detail or compare 
these methods. Instead, we take advantage of the ready 
availability of efficient and general-purpose search algo-
rithms (Solver in Excel and optim in R) and Markov chain 
Monte Carlo (MCMC) methods for generating Bayesian 
estimates (WinBUGS) to provide accessible options for 
estimating LBA parameters, given a set of data.

Methods for Estimating  
LBA Parameters From Data

We use a single set of simulated accuracy and RT data to 
illustrate the methods of applying the LBA model to a two-

Figure 2. The first five lines of data from our simulated data 
set. The first column shows the experimental condition (1–3), the 
second shows the accuracy (0  incorrect; 1  correct), and the 
third shows response time (RT, in milliseconds)
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which red bars represent error responses and blue bars 
show correct responses. The predictions made by the LBA 
are shown by solid lines; again, in the actual spreadsheet, 
colors are used to identify correct and error responses. 
The predictions shown in the plots are based on parameter 
values given in column B of Sheet 1. Changing the pa-
rameter values by hand causes direct changes to the solid 
lines in the histograms. The LBA provides a good fit to 
the data whenever the solid lines match closely the bars of 
the histograms that underlie them, indicating that the RT 
distributions predicted by the LBA closely resemble those 
of the data. As soon as a good fit to the data is achieved, 
the user can record the parameter values reported in cells 
B1–B7 of Sheet 1. We do not suggest that these histograms 
are of publication quality; however, they do provide the 
user with a method for quickly checking the quality of the 
fit. We discuss how to use the parameter estimates to cre-
ate further graphical summaries in the Using R to Create a 
Graphical Summary Given Parameter Values section.

Sometimes, rather than finding the optimal solution 
(i.e., the global maximum), Excel’s Solver function be-
comes stuck in a local maximum, in which case, the es-
timated LBA parameters do not provide an accurate ac-
count of the data. This occurs when the solver finds a set 
of parameters—say, Solution A—that are better than other 
nearby sets of parameters but are still worse than the (quite 
different) parameters that provide the best fit to the data. 
Although this problem can be difficult to avoid in general, 
there are some measures that help address it. One method 
is to start the search again from a different starting point. 
Solution A is likely to be a global maximum if the Solver 
function repeatedly finds Solution A from a sufficiently 
wide range of starting points.

The choice of initial estimates for any method of fit-
ting a model to data can be very important: Automatic 
optimization routines (like Solver) can fail badly if the 
initial estimates are poor. Choosing good initial estimates 
is something of an art that often requires experience and 
experimentation. This process is made relatively easy, 
thanks to the interactive nature of the Excel spreadsheet 
we have provided. The effects of changing parameters can 
be instantly observed by looking at the plots in Sheet 1. 
The initial estimates need not produce a set of solid lines 
that closely resemble the data; all that is necessary is that 

The quality of the fit to data is shown in the histograms 
presented in Sheet 1.

The likelihood can be thought of as a measure of the 
quality of the fit of the model to the data, with larger values 
indicating better fit. The parameters that provide the best 
fit to the data are those that maximize the likelihood, or, 
equivalently, the log likelihood. Rather than raw likelihood, 
we use log likelihood as the objective function, because 
taking logarithms avoids numerical problems associated 
with multiplying together many very small numbers.

In order to analyze our simulated data, we pasted the 
three columns of data directly from exampledata.txt into 
row 2, columns A–C, (hereafter referred to as Cells A2–
C2) and onward in Sheet 2. Initial parameter guesses were 
entered into Cells B1–B7 of Sheet 1. The natural logarithm 
of the likelihood of the present set of parameters given the 
data is shown in Cell B9 of Sheet 1. The Solver function, 
which can be found in the Tools drop-down menu, is then 
applied.1 Solver can then be used to maximize the log like-
lihood by going to Tools > Solver. A new application box 
appears, in which the user simply clicks the Solve option. 
Users can freely experiment with the numerous options 
in the Solver function. However, no such changes are re-
quired to fit the LBA to our example data. Although we 
do not discuss these options in detail here, we note that, 
by default, the Subject to the Constraints section is set up 
appropriately, so that Condition 1 is the easiest condition 
(and therefore should have the highest drift rate), that Con-
dition 2 is the next hardest condition, and so on. A number 
of other sensible constraints can also be imposed, such as 
requiring Ter  0 and b  A.

The plots in Sheet 1, an example of which is shown 
in Figure 3, summarize the quality of fit. To create these 
plots, the user must first place the RTs from their data 
into Column A of Sheet 3. This can be done by copying 
and pasting the contents of Column C of Sheet 2. There 
are three plots shown in Sheet 1, one for each condition. 
The plots show the correct and error RT histograms for 
the data and the LBA grouped into bins ranging from 300 
to 1,500 msec, in 200-msec increments. The three histo-
grams in the Excel sheet show data and predictions from 
the easy, medium, and hard conditions from top to bot-
tom, respectively. The data are shown by the bars of the 
histogram: The actual spreadsheet uses color figures, in 

Figure 3. Screen shot of the Excel LBA worksheet. The plot contains the data from one condition as a histogram, with bars show-
ing correct and error responses. Solid lines show predictions of the LBA for correct and error responses, respectively. Predictions are 
based on parameter values given in row B.
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fall outside of the range between 180 msec and 10 sec. The 
R read.table function reads the contents of exampledata 
.txt file, maintaining the column structure and giving the 
variables difficulty, correct, and rt. In order to 
change which data file is read, the user can change the 
name of the first argument of the read.table call. How-
ever, it is necessary either to ensure that the data follow 
the same structure as that of the exampledata.txt file or to 
change other aspects of the R script appropriately.

The next section of script transforms the imported data 
into the format required for the QMPE fitting technique. 
Because QMPE is based on quantiles (i.e., order statistics, 
such as the median), it provides estimates more robust 
than does maximum-likelihood estimation in small sam-
ples (Brown & Heathcote, 2003; Heathcote et al., 2002). 
In the example, the estimates are based on five quantiles 
(.1, .3, .5, .7, and .9) for both correct and error RTs in each 
difficulty condition, storing them in the array q. The num-
ber of observations in each quantile bin is also calculated 
and stored in pb. Response accuracy and sample sizes for 
correct and error responses in each difficulty condition 
are also calculated and are stored in p and n, respectively. 
Finally, these variables are bundled together in a list and 
are stored in the variable data.

After the data are formatted correctly, the parameter 
search is called by the fitter function, which requires two 
arguments: The first is the dat argument, which, in our 
example, is the data list. The maxit argument speci-
fies the maximum number of iterations used in search-
ing for best-fitting parameters. Like the Excel workbook 
described earlier, R finds best-fitting parameters by, at 
each step, systematically changing parameters and keep-
ing changes that provide a better value for the objective 
function. The maxit argument specifies how many steps 
are taken to find a set of parameters that best fits the data. 
The parameters that arise out of the fitter function are 
placed into the pars variable. The last few lines of the 
script transform the parameter values returned by the fitter 
function to those that are familiar to the reader from our 
explanation of the LBA. Figure 4 shows the R output after 
fitting the LBA to the example data set.

Unlike the Excel worksheet, the majority of the code 
that does the fitting in R is hidden in the pq-lba.r and 
math-lba.r scripts. The parameter values used to initial-
ize the search for best-fitting parameters are produced 
automatically as part of the fitter function defined in the 
pq-lba.r script. These heuristics are clearly labeled in the 
 pq-lba.r file. These estimates work in many situations but, 
in a few cases, are inadequate for the fitting algorithm to 
find good parameter estimates. Such cases reinforce the 
need to use the graphical summary methods to check the 
quality of a fit. These methods are described in the Using 

Solver be given parameters that produce a solid line that 
has approximately the shape and location of the observed 
RT distributions. As a rough guide, because they approx-
imate average parameter values from fits to a range of 
paradigms, the parameters used to generate our simulated 
data provide a good starting point for a parameter search 
for new data sets. 

Given the wide range of possible data sets, it is impos-
sible to create an Excel workbook that works “out of the 
box” for every case. For example, simply changing the 
number of observations in each condition requires the user 
to change certain aspects of our worksheets. However, 
given the flexibility and intuitive nature of data manipu-
lation in Excel, the changes required to adapt the LBA 
workbook to new data sets should usually be relatively 
simple. For example, if the number of observations in 
each condition changes, the user has to update the entry 
in C12 of Sheet 1 and make sure columns G–O are the 
same length as the data that have been entered.

Example 2: Using R
In order to estimate LBA parameters from our example 

data using R, the user begins by extracting the files in Rfit.zip 
into a directory. The R language software is free and avail-
able for Windows, Mac OS X, and Linux; it can be down-
loaded from the R homepage (www.r-project.org). After the 
executable install file is run, on-screen instructions describe 
the installation process. Extracting the contents of the Rfit 
.zip file into a folder (e.g., Desktop\Rfit) provides four 
files: lba-math.r, pq-lba.r, fit-example.r, and  exampledata 
.txt. The .r files all contain R scripts that are used to esti-
mate parameters for the LBA model from the example data 
contained in the .txt file. To begin the estimation process, 
the user should open the R software and change the working 
directory to the folder where the .zip file was extracted (i.e., 
Desktop\Rfit)—for example, by using the File > Change 
dir option. Typing source(“fit-example.r”) fits 
the LBA to the data found in the exampledata.txt file. The 
R prompt disappears while the software searches for a set of 
parameters that best fit the data. After the search is finished, 
the estimated parameters are printed on screen.

Using the source function in R is equivalent to enter-
ing each line contained in the fit-example.r script directly 
into the R window. Any text editor can be used to read 
fit-example.r file. The first command sources the pq-lba.r 
script, which, in turn, sources the lba-math.r script. These 
two scripts set up the functions that encode the basic 
mathematics of the LBA model. Some variables are then 
defined: qps gives the set of quantiles of the RT distribu-
tion to be used by the QMPE method of fitting the LBA, 
and trim gives the minimum and maximum values used 
to censor the RT data. We set trim to remove RTs that 

Figure 4. Screen shot of the use of R to fit the LBA to our example data set.
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els, of which a small proportion move coherently in one 
direction and that must be identified by the participant, 
while the others are moving randomly. The difficulty of 
the task is also manipulated to be easy, medium, or hard. 
Using this paradigm, Ho et al. (2009) fit the LBA to an 
experiment. The code necessary for simulating and fit-
ting the multiple-choice data is contained in Rmultifit.zip. 
After the files are extracted, data can be simulated and fit 
using source(“fit-multi.r”). The parameters are 
estimated by maximum-likelihood estimation, printed on 
screen, and histograms containing data and model predic-
tions are produced. Here, we used maximum-likelihood 
estimation to illustrate how the R code described in the last 
section can be adapted for a different objective function.

The fit-LBA.r script is self-contained, in that there is 
no need to source the lba-math.r or pq-lba.r files, mak-
ing the code required for maximum-likelihood estimation 
relatively simple compared with that required for QMPE. 
The data are simulated, and starting values are generated 
for the parameters we want to estimate using heuristics 
similar to those used in our other R code. We then define 
our objective function, obj. Since we are using maximum-
likelihood estimation, our obj calculates the likelihood of 
each RT value given a set of parameters pars. Finally, 
we include code for producing histograms of observed 
and predicted RT distributions for each response in each 
difficulty condition.

For both simulating and fitting the data, we assumed 
that all parameters were fixed across stimuli, suggesting 
that participants show no bias for one particular direction 
of pixel flow. The simulated data used a large drift rate, 
corresponding to the correct response; the size of this drift 
rate varied for easy, medium, and difficult conditions. We 
reasoned that incorrect responses were more likely in the 
two directions perpendicular to the correct response and 
less likely in the direction opposite the correct response. 
To instantiate this, we used only two free parameters for 
the three error response alternatives: one value to set the 
fraction of the correct-response drift rate assigned to the 
perpendicular responses (we used .5) and one value to set 
the fraction assigned to the opposite response (.25 in our 
simulated data). We simulated the data, therefore, using 
5 drift-rate parameters: 3 for the correct responses in each 
condition, 1 indicating the proportion of the correct drift 
rate for perpendicular incorrect responses, and 1 indicat-
ing the proportion of the correct drift rate required for 
opposite- direction incorrect responses. To fully demon-
strate the method for estimating parameters from a mul-
tiple accumulator LBA model, when fitting the data, we 
made no assumptions about relationships across drift 
rates. We estimated 12 drift rate parameters: 1 for each of 
the four responses in the three difficulty conditions. Fig-
ure 5 shows parameter values returned by our maximum-
likelihood fitter function. The parameters reported are 
close to the parameters used to simulate the data (A  300, 
b  400, Ter  300, ve  .9, vm  .75, vh  .6, pperp  .5, 
popp  .25). The histograms in Figure 5 also demonstrate 
that the predictions from the LBA match closely the ob-
served data. The biggest misfit is to RT distributions for 
opposite error responses. These responses are the most 

R to Create a Graphical Summary Given Parameter Values 
section. In order to use these scripts with other data sets 
in which only changes in drift rate are extended across 
conditions, only the fit-example.r file must be edited: The 
ndrifts parameter must be set to the number of condi-
tions in the data.

If other parameters are allowed to vary across condi-
tions, more substantive changes are required. For exam-
ple, Donkin, Heathcote, Brown, and Andrews (in press) 
propose that, in a lexical decision task, both drift rate and 
nondecision time vary with word frequency. Say we have 
three frequency conditions and want to estimate three val-
ues of drift rate, v, and three values of nondecision time, 
Ter. In such a situation, the fitter function in pq-lba.r can be 
updated so that starting points are generated for v1, v2, v3, 
Ter1, Ter2, and Ter3. The obj function should then be up-
dated to take into account these changes. Specifically, 
the par vector passed to the obj function is two elements 
longer—it used to contain s, A, Ter, b, v1, v2, and v3, and 
now has s, A, Ter1, Ter2, Ter3, b, v1, v2, and v3. The getpreds 
function expects to receive from obj, for each parameter 
of the LBA, a vector of length equal to the number of 
conditions (nc; 3, in this case). This means that, where 
previously we would have replicated Ter nc times (the line: 
Ter = rep(par[3],nc)), we now use three free 
parameters (Ter = par[3:5]), in the same way that 
we previously used three drift rate estimates (previously, 
v = par[5:7]; now, v = par[7:9]).

Analyzing data with more than one factor requires 
further changes to pq-lba.r. For example, we may have 
a difficulty manipulation, which varies across trials, and 
a speed–accuracy emphasis manipulation, which varies 
across blocks of trials. In this case, it is customary to fit 
an LBA, where v varies across difficulty conditions and 
where b and A vary across emphasis conditions. We begin 
in the same way by first generating start points for each of 
the parameters to be estimated within the fitter function. 
However, in the obj function, rather than producing a vec-
tor of length nc for each parameter, we must now produce 
a matrix with nc rows and two columns, one for speed 
emphasis parameters and one for accuracy emphasis pa-
rameters. This also means that, where the getpreds func-
tion had taken one element of the parameter vector (by 
using a loop over 1–nc), it now must take one element of 
the matrix of parameter values (using two loops, one over 
1–nc and another over 1–2). Obviously, as the design of 
the data and the LBA model to be fit becomes more com-
plex, so too does the R code needed. For users with limited 
programming skills, we provide code for WinBUGS that 
can be more easily adapted to more complicated models.

Multiple-choice data. One advantage of the LBA is its 
ability to model multiple-choice data (see Brown & Heath-
cote, 2008, for a demonstration). To illustrate, we provide 
code that can be used to simulate a set of data from an 
LBA with four accumulators, corresponding to a choice 
between four response alternatives. To recover the param-
eters, the code then fits the four-accumulator LBA model 
to the simulated data. The data are simulated to mimic an 
experiment in which a participant is presented with one 
of four random-dot kinematograms (RDKs), a set of pix-
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estimates that perform well in predicting new data sets and 
account for model flexibility (Wagenmakers, Lee, Lode-
wyckx, & Iverson, 2008; see Raftery, 1995, and Wasser-
man, 2000, for general introductions). Bayesian analysis 
starts by assuming a prior distribution (i.e., distribution 
before new data are taken into account) of parameter es-
timates. It then combines the prior with the observed data 
to produce a posterior distribution of parameter estimates 

incorrect and are made least often. Therefore, RT distri-
butions for these responses are made up of relatively few 
observations; hence, estimation of parameters for these 
responses is more erroneous.

Example 3: Using WinBUGS
Bayesian analysis in psychological research is rapidly 

gaining popularity for a range of reasons, such as providing 

Figure 5. Screen shot of the R code and resultant output used to fit data simulated from a four-accumulator LBA model. Data are 
represented by the bars of the histogram.
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data (RT and accuracy), we follow the common practice 
(Vandekerckhove et al., 2009; Voss, Rothermund, & Voss, 
2004; Voss & Voss, 2007, 2008): Let RT be the observed 
response latency for a particular response, and let t be the 
data given to WinBUGS. If the response is correct, then 
code t  RT; otherwise, code t  RT. This enables both 
accuracy and RT information to be specified in a single 
variable. The data section also defines other variables 
used in the model section. For example, the number of 
data points, N, is defined as 3,000. The condition for each 
response is defined by the entries in the cond variable, a 
value of 1 for the first 1,000 RTs (i.e., Condition 1), 2 for 
the next 1,000 RTs (i.e., Condition 2), and so on.

The following steps can be used to compile the model 
and obtain posterior samples:

1. Open exampledata.odc from within WinBUGS (re-
call that this must be run from the BlackBox directory). 
After the file is opened, highlight the word “model” at the 
top of document and select Model > Specification; this 
opens the Specification Tool dialog box. From within this 
dialog box, select “check model,” and, if all parameters 
are given priors, a message “model is syntactically cor-
rect” appears in the bottom left of the screen.

2. Either a single MCMC chain (default) or multiple 
chains may be run. In our example, we use three chains by 
typing “3” in the “num of chains” box. Having multiple 
chains helps the user check whether the MCMC chain 
converges to the posterior distribution.

3. Highlight the word “list” at the start of the data sec-
tion and choose “load data” from the Specification Tool 
dialog box. A message “data loaded” appears in the bottom 
left of the screen. If an error occurs, it is most often due 
to misspecification of variables used in the model section 
(i.e., N, nc, and cond variables in our example code).

4. Select “compile” from the Specification dialog box; 
if everything is correct, the bottom left of the screen 
should display the message “model compiled.”

5. Select “gen inits” to have WinBUGS generate initial-
izing values for each of the three chains. After the initial-
izing values have been generated, the bottom left of the 
screen displays the message “model initialized,” indicat-
ing WinBUGS is ready to run.

Before beginning MCMC sampling, the user must 
indicate which posterior parameter estimates are to be 
saved for later analysis. This is done via the Inference > 
Samples menu, which brings up the Sample Monitor Tool 
dialog box. Steps 6 and 7 set up monitoring and run the 
sampling.

6. Type the variable name into the “node” section. For 
example, to monitor the A parameter, enter “a” into the 
node section (this parameter was defined as “a” in the 
model section). You must choose at what iteration to begin 
and end the monitoring. The value in beg, which repre-
sents the number of iterations of the MCMC chain that 
are discarded before monitoring, is commonly referred to 
as the burn-in period. In our examples, we used a burn-in 
period of 10,000 iterations. Since the MCMC chain be-
gins with inits values that may not represent valid samples 
from the posterior, a burn-in period is required before the 
MCMC chain converges to the posterior distribution.

(i.e., estimates updated by the new data). The process of 
Bayesian estimation has been made relatively easy by 
the availability of flexible programs, such as WinBUGS 
(Lunn, Thomas, Best, & Spiegelhalter, 2000), which use 
general-purpose MCMC methods to obtain samples from 
the posterior distribution (see Calin & Chib, 1995). We 
demonstrate how WinBUGS can be used to fit the LBA 
to data, including instructions for compiling and running 
WinBUGS, as well as reviewing and saving the results.

WinBUGS makes MCMC methods available to re-
searchers with relatively little programming and mathe-
matical knowledge through a graphical user interface. The 
Appendix to this article provides instructions for install-
ing WinBUGS and the WinBUGS Development Interface 
(WBDev) and BlackBox Component Builder.2 The latter 
two programs are used to give WinBUGS access to the LBA 
PDF. The BugsLBA.zip file contains a compound docu-
ment (lba.odc) that defines the LBA PDF. As described in 
the Appendix, a one-time installation procedure is required 
to enable WinBUGS to sample from the LBA posterior. 
After this procedure is complete, WinBUGS should always 
be launched from the BlackBox installation folder.

The BugsLBA.zip file also contains fitlbaexample.odc, 
which, in separate sections, defines the WinBUGS model 
and data specific to the present example. The model sec-
tion specifies uniform prior distributions (dunif) for 
each LBA parameter (A, b, v, s, and Ter). The parameters 
of the uniform priors were chosen to be relatively uninfor-
mative. That is, the range of the uniform priors is chosen 
to span a broad range of plausible parameter values. When 
given a reasonable amount of data over a sufficiently broad 
range, the prior is not overly influential on the posterior 
estimates. For the A parameter, for example, the uniform 
prior distribution ranges from .1 to 1.0.3

Specification of overly broad priors can cause Win-
BUGS to fail, so some experimentation can be required 
to obtain a computationally stable, but sufficiently unin-
formative, prior. Relatively uninformative priors produce 
WinBUGS estimates that do not differ greatly from the 
estimates obtained from the two methods presented pre-
viously. A section containing initializing values (called 
inits) for the MCMC sampling can also be added to 
 fitlbaexample.odc, but this is necessary only when the 
inits automatically generated by WinBUGS fail. Such 
failures are most common when priors are broad. Speci-
fying appropriate inits can help to protect against failures 
of WinBUGS when broad priors are used. 

As with the previous methods, we estimate three drift 
rates (v1, v2, v3). In WinBUGS, this is done by letting v be 
a vector containing three priors, one for each of the three 
conditions. In our example code, all of the v priors are 
identical and relatively uninformative; however, this need 
not be the case: Different priors for the drift rate for each 
condition could be imposed if desired. The final line of the 
model section connects the RT data, defined as the variable 
t in the next (data) section, with the previously defined pa-
rameters (and their priors) via the PDF for the LBA.

The next section of fitlbaexample.odc contains a modi-
fied specification of the data contained in  exampledata 
.txt. In order to allow WinBUGS to handle bivariate 
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statistical and diagnostic options are highlighted. Among 
the many available choices, we will focus on the “den-
sity,” “stats,” and “compare” options. Figure 6 displays the 
“stats” and “density” outputs: node statistics and kernel 
density, respectively, for the A parameter. Clicking on the 
“density” option displays a density plot of the parameter of 
interest. This is a plot of the posterior estimates returned by 
WinBUGS for each iteration that was monitored. As soon 
as the MCMC chain has converged (i.e., when the burn-in 
period is large enough), this density plot approximates the 
marginal posterior distribution of the parameter. The qual-
ity of the approximation increases as the number of itera-
tions or the length of the MCMC chain increases. Figure 6 
shows that, in our example, where 11,000 iterations were 
used to generate the posterior distribution, the majority of 
the density plot is close to the true value of .3.

The “stats” option provides commonly used statistics, 
such as mean and variance, as well as quantile information, 
for the chosen parameter. Generally, this summary pro-
vides the information used to derive parameter estimates 
for the LBA. Either the median or mean of the posterior 
distribution can be used as a parameter estimate. When the 
statistic is distributed symmetrically, as in Figure 6, there 
is little difference between these estimates. The mode of 
the posterior distribution equals the maximum-likelihood 
estimate of the parameter (e.g., as generated by our Excel 
worksheet). Although WinBUGS does not directly return 
the mode of the distribution, the “coda” option can be 
used to save monitored posterior samples to a text file, 
which can be analyzed in another statistical package to 
obtain the mode.

The WinBUGS “compare” option, found in the infer-
ence drop-down menu, can be used to obtain graphical 
representations of credible intervals. A credible interval 
estimates the range, within which, given the data and the 

The end value represents the length of the MCMC 
chains; in our example, we set end to 21,000, which, if the 
chains converge, results in 11,000 samples from the pos-
terior distribution. Larger values cause sampling to take 
longer to complete but provide more information about 
the posterior. The process is repeated for each parameter 
the user chooses to monitor. In our example, we monitored 
all seven parameters (A, b, s, Ter, vE, vM, and vH). 

7. Select Model > Update, and the Update Tool dialog 
box appears. Typically, you will enter the same number 
in the Updates section that you did in the End section of 
the Sample Monitor Tool dialog box. Here, you have the 
option of thinning the MCMC chain. Thinning discards 
iterations in order to reduce autocorrelation among the 
posterior samples.4 For example, if “thin” is set to 2 and 
not 1, every second iteration will be recorded, and it will 
take twice as long to obtain the number of iterations speci-
fied in the updates section. In our example, we set “thin” 
to 2 for every parameter. The “refresh” section indicates 
how often WinBUGS updates the screen, which indicates 
how many iterations of the chain have occurred. Setting a 
large value reduces processing time. Clicking the update 
button causes sampling to commence.

While WinBUGS is generating samples, the message 
“model updating” appears at the bottom left of the screen. 
This process can take a long time and is uninterruptible, 
so it is prudent to double-check that all parameters are 
being monitored and that prior specification is as desired. 
After WinBUGS has run through the desired number of 
iterations, a message “Update took x secs” appears in the 
bottom left-hand corner of the screen and results become 
available for analysis.

To look at the results for each parameter, return to the 
Sample Monitor Tool. Select the parameter of interest from 
the node drop-down menu. As soon as a node is selected, 

Figure 6. Screen shot from WinBUGS. Shown are the model code, the Update Tool, the Sample Monitor Tool, and output from the 
density and stats options for the A parameter.
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credible regions do not overlap, suggesting that the drift 
rates differ from one another.

The Sample Monitor Tool “history” option can be used 
to check whether the MCMC chain has converged to the 
posterior distribution. An example of the output produced 
by this option is shown in Figure 8. The vertical axis of 
the plot indicates the parameter estimate for A for the 
iteration of the MCMC given by the horizontal axis; col-
lapsing this plot onto the vertical axis gives the density 
function shown in Figure 6. Each of the chains is rep-
resented by a different grayscale shading, and here, the 
three MCMC chains for the A parameter in our example 
overlap greatly. In other words, they all appear to be ran-
dom samples from the same distribution throughout the 
entire chain. This suggests that all chains are samples 
from the posterior distribution of the A parameter. If 
any of the chains looked systematically different from 
the others, perhaps showing greater variance or a dif-
ferent mean, it would suggest a lack of convergence of 
the MCMC chains to the true posterior distribution. The 
Sample Monitor Tool “auto cor” option can be used to 
check whether further thinning is needed. It displays the 
correlation between parameter estimates for iterations i 
and i  k, for k  1–50.

Changing model parameterization is very simple within 
WinBUGS. The user must define a new prior for each of 
the parameters he or she wants estimated and make a small 
adjustment to the call to the LBA PDF. For example, to 
estimate a different nondecision time, Ter, for each word 
frequency condition while fitting lexical decision data, 
simply augment the WinBUGS model specification to 
have a vector for the parameter Ter with a prior distribution 
for each of the three frequency conditions and include this 
extra information in the call to the LBA PDF. Specifically, 
to make our priors, where we would have previously used 
Ter ~ dunif(0.1,1), instead we use a for loop to 
set Ter[k] ~ dunif(0.1,1) for k  1–3, such as is 
done for drift rates. Finally, where we would have previously 
used t[i] ~ dlba(b,A,v[cond[i]],s,Ter), 
we now use Ter[cond[i]]. To use the WinBUGS code 
that we provide with multiple-choice data would require 
a substantial change to the code for the LBA PDF,  lba 

prior distribution, the true value of a parameter lies. Se-
lecting the “compare” option causes a dialog box to appear 
that requires at least one variable name to be entered. Type 
the variable of interest into the top left dialog box, and 
select “box-plot.” This produces a box-plot in which the 
whiskers represent, by default, the 95% credible interval. 
The whiskers correspond to the 2.5% (lower whisker) and 
97.5% (upper whisker) columns in the node statistics out-
put, because credible intervals are based on the quantiles 
of the posterior distribution. Figure 7 shows the credible 
intervals for each of the three drift rates defined in the v 
parameter; the horizontal line going from one side to the 
other is the group median. The plot also shows that the 

Figure 7. Box-plot representing the 95% credible regions of the 
drift rate for each of the three conditions, easy (1), medium (2), 
and hard (3). The line cutting through the center of the plot rep-
resents the median of all three conditions.

Figure 8. Output produced from the history option for the A parameter from our fits of the LBA to example data. Notice that the 
three chains (indicated by different shades of gray) greatly overlap, indicating that all chains have converged upon the same posterior 
distribution.
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Ensure, first of all, that the R software is installed (refer 
to the guide in Example 2, if this has not been done). 
After the installation completes, extract all of the files 
in the graphs.zip file into the same folder. This folder 
should now contain pq-lba.r, lba-math.r, makegraphs.r, 
and exampledata.txt. Now open R, and make sure that 
the folder to which the files were extracted is set as the 
working directory in R (again, see Example 2). The user 
must first enter the parameters into a vector called pars 
in the following order: s, A, Ter, b, vE, vM, vH. The units 
for A, Ter, and b should be in milliseconds. This means 
that parameters from the WinBUGS version of the LBA, 
which are returned in seconds, will have to be multi-
plied by 1,000. Parameter values should be entered as a 
vector—for example, pars = c(0.25,300,200, 
400,0.9,0.75,0.6). The user should then type 
source(“makegraphs.r”), which does two things: 
First, data from the exampledata.txt file are read in, and 
then two functions, histplot and qpplot, are defined.

.odc, along the lines of the R code we provide for fitting 
multiple- choice data, but that is beyond our scope here. 

Using R to Create a Graphical Summary  
Given Parameter Values

We also provide R code that can be used to create a 
graphical summary of the data and model predictions. This 
process is useful in determining the appropriateness of the 
parameter estimates returned by our various methods. The 
code we provide requires that the user first enter the pa-
rameters produced by one of the three methods described 
above (or indeed, equivalent parameters produced by an-
other method). The user must then source the makegraphs.r 
file within R, which defines two functions for producing 
two plots: histograms similar to those described in Exam-
ple 1 and a quantile probability (QP) plot. The histplot and 
 qpplot functions provide plots that are suitable for check-
ing parameters and can be adapted to produce figures suit-
able for publication (see, e.g., Maindonald, 2008).

Figure 9. An example of the plot produced by the histplot function. Correct responses are shown in the top row; 
error responses are shown on the bottom row. Difficulty of the decision goes from easy, to medium, to hard from 
left to right.
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probability above .5) shows the correct responses, and the 
left half (response probability below .5) gives information 
about the error responses. The vertical positions of the five 
points above each of these six accuracies refer to .1, .3, .5, 
.7, .9 quantiles of the RT distribution for each of the correct 
and error responses in the three difficulty conditions. The 
quantile values are the proportion of responses under which 
a given proportion of RTs in the distribution fall (e.g., the 
.5 quantile is the median). As an example, consider the 
bottom right point of the plot. The rightmost points of the 
plot refer to those decisions with the highest accuracy—
in other words, the RTs from the correct responses in the 
easiest condition. Conversely, the leftmost points are the 
error responses in the easiest condition. The bottom point 
on the QP plot refers to the .1 quantile of the RT distribu-
tion. The .1 quantile of the RT distribution gives the value 
below which 10% of the RTs fall. Hence, the bottom right 
point of the QP plot gives the value below which 10% of 
the RTs for the correct responses in the easiest condition 
occur. To make the plot shown in Figure 10, we used the call 
qpplot(data,pars).

The effect of sample size on parameter estimates. 
We have provided four methods for fitting the LBA to 
data, one of those specifically for fitting multiple-choice 
data. For the other three, we have fit the model to a set of 
simulated data with 1,000 observations in each of three 
conditions. In practice, there are often considerably fewer 
observations per condition. To investigate how well pa-
rameters for a two-choice task are recovered by each of 
our methods for a range of sample sizes, we conducted 
a simulation study. We simulated 10 sets of data for each 
of four sample sizes: N  50, 100, 400, and 1,000 obser-
vations per condition. The data were simulated using the 
same parameter values used to generate our example data, 
and are shown in Table 1.

Table 1 shows the average bias and standard deviation in 
parameter estimates, expressed as a percentage of the re-
spective parameter value, for each of our three methods: the 
Excel sheet, the R code, and WinBUGS.5 For each method, 
we observe the expected pattern that the bias and standard 
deviation of parameter estimates increase as sample size 
decreases. The size and rate at which this happened varied 
between our methods. When sample size was only 50 ob-
servations per condition, the Excel sheet failed to recover 
parameters. Note, however, that when sample size increased 
to 100 observations per condition, the parameters were re-
covered reasonably well even by the Excel sheet, perhaps 
with the exception of s. Note also that, for the Excel sheet, 
although there was a reasonable reduction in both bias and 
standard deviation of parameter estimates when N increased 
from 100 to 400, the increase from 400 to 1,000 made very 
little difference. For R and WinBUGS, when N is only 50, 
the drift rate in high-accuracy condition is overestimated. 
This is reasonable because, with only 50 samples and high 
expected accuracy, there are very few error responses in 
this condition. Note that, for 100 samples per condition or 
more, there is relatively little bias in parameter recovery for 
any of the techniques, and the standard deviations for each 
of the parameters are small and decrease at a rapid rate as 
N grows.

The histplot function produces a plot that contains six 
histograms, one for error responses and one for correct re-
sponses for each difficulty level. An example of this plot 
is shown in Figure 9. The data are represented by the black 
bars of the histogram, with the predictions of the model 
shown by the solid line. The top row of the plot shows the 
correct responses, and the bottom row shows histograms 
for the error responses. From left to right, the order of dif-
ficulty of the conditions is easy to hard. The histplot func-
tion has five arguments. Two are required: data, which 
must be formatted in the way that is produced by the read 
.table function contained within the makegraphs.r script, 
and pars, which must be entered exactly as in the form 
given above. Three parameters are optional: minx and 
maxx define the smallest and largest RT values shown in 
the histogram, and bindiff defines the width (in milli-
seconds) of the bins of the histogram. It is essential that 
bindiff divide evenly into the difference between 
minx and maxx. To create the plots shown in Figure 9, 
we used the call histplot(data,pars).

The qpplot function accepts four arguments. The two that 
are required, dat and pars, are of the same form as for 
the histplot function. The two optional arguments, tmin 
and tmax, define the fastest and slowest RT data points 
used to obtain parameter estimates. They are, by default, 
set at 0 and , respectively, indicating that no data were 
censored during estimation. Figure 10 shows an example 
of the QP plot produced by the qpplot function. The QP 
plot gives the majority of the important information shown 
by the histograms but accomplishes this with one graph 
by taking all six histograms and summarizing them with 
five quantile values. The quantiles for each histogram are 
placed onto the one plot. This results in the accuracies for 
the correct and error responses for the three difficulty con-
ditions being indicated by the horizontal position of the six 
dots across the QP plot. The right half of the plot (response 

Figure 10. An example of the plot produced by the qpplot func-
tion. Proportion correct is shown on the x-axis, reaction time (RT, 
in milliseconds) shown on the y-axis. Data is shown by the dotted line 
with filled points, the LBA predictions are shown by the solid line. 
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1974), the Bayesian information criterion (BIC), and the 
deviance information criterion (DIC; Spiegelhalter, Best, 
Carlin, & van der Linde, 2002). Each measure uses devi-
ance ( 2 times the log likelihood) as its measure of misfit 
but applies a different complexity penalty. BIC provides 
the largest penalty for having more parameters: k log n, 
where k is the number of parameters in the model and 
n is the number of data points. AIC applies the smallest 
penalty, 2k; and DIC, which can be calculated only from 
Bayesian outputs, applies a penalty that is often some-
where between AIC and BIC in its severity. The DIC mea-
sure is based on an estimate of a model’s effective number 
of parameters, pD, which takes account of differences in 
the functional form between models (see Spiegelhalter 
et al., 2002, for details of the calculation of pD). For each 
of these measures, the model that produces the smallest 
value is the one that best accounts for the data, given both 
goodness of fit and model complexity.

To demonstrate these model selection methods, we 
fit our example data, for which we know that only drift 
rate varied across conditions to generate the data, with 
two versions of the LBA: one with only drift rate vary-
ing between conditions and another where b, A, Ter, and v 
were allowed to vary across conditions. We report the 
results of using WinBUGS to estimate parameters here; 
however, when we used our R code, we found the same 
pattern of estimates. The deviance for the more complex 
model was 293.6, compared with 294 for the model 
in which only drift rates were allowed to vary. In other 
words, there was very little improvement in the quality 
of the fit when parameters other than drift rate were al-
lowed to vary across conditions. After adding the various 
complexity penalties, all three measures of model fit were 
smaller for the LBA when only drift rate varied across 
conditions (AIC, 277.99 vs. 277.59; BIC, 238 vs. 

190; DIC, 287 vs. 281). This tells us that allowing 
parameters other than drift rate to vary across conditions 
gives an increase in quality of fit that is not large enough 
to warrant the complexity of the extra parameters. Indeed, 

Fixing parameters across conditions. When estimat-
ing model parameters, we made the assumption that only 
drift rate should vary across conditions. This assumption 
is the one usually made when the data come from an ex-
periment where the conditions correspond to stimuli pre-
sented within subjects and that vary unpredictably from 
trial to trial. This is because parameters such as b, which 
determines the amount of evidence required to make a re-
sponse, are thought to be under the strategic control of the 
participant. Ratcliff (1978) argued that these participant-
determined parameters cannot be adjusted on a trial-by-trial 
basis, depending on which stimulus is presented. If, how-
ever, we were to fit data with conditions that varied between 
blocks of trials or between participants, it is reasonable to 
expect that parameters such as b could vary across these 
conditions. For example, if participants were instructed 
to respond as accurately as possible in one block of trials, 
given a break, and then told to respond with speed emphasis 
for the next block of trials, we could expect that the partici-
pants had been given enough time to adjust their cautious-
ness in responding by adjusting their b parameter.

Because we knew exactly which parameters generated 
the data in our simulated example, deciding which param-
eters should vary across conditions was straightforward. 
In practice, we would not necessarily know which param-
eters are expected to vary across conditions. Researchers 
should, therefore, fit a number of versions of the LBA in 
which we change the parameters that are allowed to vary 
across conditions and then select the model that provides 
the best account of our data. This approach is not straight-
forward, however, because adding parameters always gives 
a fit that is at least as good as the less complex model, even 
if the extra parameters overfit (i.e., only accommodate 
noise in) the data. What is required, therefore, is a measure 
that improves only if the extra parameters provide a genu-
ine improvement. This is usually accomplished by penal-
izing a model for having extra parameters. Many such 
measures exist, but we focus on three easily computed 
options: the Akaike information criterion (AIC; Akaike, 

Table 1 
Bias and Standard Deviation (SD) of Parameter Estimates, As Percentages of the True Parameter Values,  

From Three Methods of Fitting the LBA for Four Different Values of N, Averaged Over 10 Data Sets 

Between-
Trial Drift-
RateVari-

Samples 
per 

Condition 

Start-Point
Distribution

Upper
Response

Average 
Time (t) per 
Simulation

Correct Responses Nondecision
Easy (vE) Medium (vM) Hard (vH) (A) Boundary (b) Time (Ter) ability (s)

Method  (N )  Bias  SD  Bias  SD  Bias  SD  Bias  SD  Bias  SD  Bias  SD  Bias  SD  (sec)

Excel 50 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
R 11.0 27.0 2.7 12.0 3.3 6.7 6.7 33.0 4.3 12.0 4.0 36.0 4 20 48
WinBUGS 7.8 7.8 9.3 9.3 3.3 5.0 4.3 16.0 4.8 4.5 1.3 10.0 16 24 124
Excel 100 5.6 5.6 6.7 2.7 1.7 3.3 5.0 11.0 2.8 4.0 6.0 11.0 28  8 2
R 4.4 8.8 5.3 4.0 0.0 5.0 7.3 10.0 1.5 7.0 12.0 15.0 12 20 48
WinBUGS 2.2 4.4 2.7 4.0 0.0 5.0 1.0 10.0 1.5 6.3 2.7 6.7 4  8 231
Excel 400 2.2 2.2 4.0 2.7 1.7 1.7 2.3 6.0 0.5 2.5 0.7 2.0 20  4 9
R 0.0 6.7 1.0 5.3 1.7 3.3 2.0 10.0 0.25 2.4 1.3 14.0 4  8 48
WinBUGS 0.0 3.3 1.0 2.7 0.0 1.7 0.0 4.3 3.0 9.5 1.3 5.7 0  8 934
Excel 1,000 4.4 1.1 4.0 1.0 1.7 1.7 0.7 3.0 1.3 1.5 2.0 3.0 20  4 21
R 2.2 2.2 2.7 2.7 0.0 1.7 3.0 5.0 0.25 1.8 5.0 7.0 8  8 48
WinBUGS 1.1 2.2 0.0 1.0 0.0 1.7 2.0 4.0 2.8 8.3 1.3 3.0 0  4 2,308

Note—Parameter values: vE  .9; vM  .75; vH  .6; A  300; b  400 msec; Ter  200 msec; s  0.25. The final column contains the average 
time, t, taken per simulation (in seconds). Times were estimated using a single core of a Pentium quad-core Q6600 2.4-GHz processor.
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when we looked at the parameter values estimated in the 
LBA where b, A, and Ter were also allowed to vary, we ob-
served almost no change across difficulty conditions. The 
same principles can be used to try any number of other 
parameter constraints, such as allowing fewer parameters 
to change across conditions.

DISCUSSION

We have provided four methods for fitting the LBA to 
data—one of those specifically for fitting multiple-choice 
data. Our aim was to provide the potential user of the LBA 
with three separate methods for implementing estimation. 
We (and others, e.g., Wagenmakers et al., 2007) argue that 
mathematical models of choice, such as the LBA, can pro-
vide an important tool for data analysis that can provide 
much more information about decision processes than the 
typical ANOVA method applied to RT and accuracy can. We 
have provided three methods of estimation to data to ensure 
that the LBA is accessible to users with a range of levels of 
programming and mathematical abilities. The Excel spread-
sheet can be straightforwardly applied to new data that are 
fairly similar to those from our example data (i.e., a one 
within-subjects factor). Given R’s flexibility and computa-
tional power, our R code can be extended to fit accuracy and 
RT data from almost any experimental setup. However, this 
requires some programming knowledge and changes, not 
only to the fit-example.r script, but also to the pq-lba.r code. 
We included the WinBUGS implementation of the LBA be-
cause, as Vandekerckhove et al. (2009) argued, it offers a 
highly flexible model-fitting framework that is accessible 
to someone with relatively little computing background. In 
the simple way we describe above, one can choose which 
parameters vary across conditions, regardless of the number 
of conditions or variables. We direct the reader interested in 
possible hierarchical extensions of the LBA, or diffusion 
model, to Vandekerckhove et al.’s discussion.

Our intent for this article was to provide multiple ways 
to apply the LBA to data, but not to compare these meth-
ods. As shown in Table 1, all methods recovered param-
eters quite accurately when applied to data with 100 or 
more observations per condition. The WinBUGS method 
provided parameter estimates that were generally the clos-
est match to those used to produce the data. However, the 
WinBUGS method took, by far, the longest (around 4 h, 
with the R and Excel methods taking around 1 min). The 
QMPE method used in the R code is more resilient to 
smaller sample sizes and outlying data points than are the 
maximum-likelihood method used in the Excel code and 
the multiple-choice R code (Heathcote et al., 2002). The 
Bayesian framework hierarchical methods, which provide 
parameter estimates at the population level rather than in-
dividual participant level, offer an effective way of dealing 
with small samples per participant when data from a large 
number of participants are available.
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2. WinBUGS requires Microsoft Windows, and, although a platform-
independent version, OpenBUGS, does exist, the lack of equivalent 
multi platform versions of the BlackBox and WBDev software means 
that our implementation of the LBA into a Bayesian framework is re-
stricted to the Windows operating system.

3. In our example, the priors for the A, b, and Ter parameters are de-
fined in units of seconds. This means that RTs given to WinBUGS must 
also be in units of seconds. This can be done simply by dividing the RTs 
in the exampledata.txt file, which are in milliseconds, by 1,000.

4. MCMC chains typically are strongly autocorrelated. Autocorrela-
tion is not a problem for parameter estimation, except that the informa-
tion contributed to the estimate by each sample is reduced. However, it 
can be problematic in cases where the variability of samples is important 
(e.g., for calculation of confidence intervals on estimates).
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parameter estimates in WinBUGS. Note that we also could have used an 
alternate measure of central tendency, such as the median.
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APPENDIX 
Setting Up WinBUGS

WinBUGS can be obtained from www.mrc-bsu.cam.ac.uk/bugs/. To install WinBUGS, download the in-
stall file (WinBUGS14.exe). After the download completes, run the executable, and it will, by default, install 
 WinBUGS to the program files folder. Note that the install directory may be different for operating systems other 
than Windows XP; the reader needs only to take note of their WinBUGS install directory and adjust any future 
folder references we make. Next, you are required to complete a short registration form that allows a registra-
tion key to be sent to the e-mail address you provide. The e-mail contains the registration key and instructions 
on how to register WinBUGS.

Although WinBUGS has a large number of prespecified distributions for which it can conduct a Bayesian 
analysis, it does not have the appropriate PDF for the LBA. We have, therefore, provided this in the BugsLBA.zip 
folder. Making the LBA PDF accessible to WinBUGS necessitates the use of two additional pieces of software: 
the BlackBox Component Builder and the WBDev. Instructions for their installation are as follows:

1. Extract the lba.odc and Distributions.odc files from the BugsLBA.zip folder.
2. Download the WBDev from www.winbugs-development.org.uk/. From the home page, navigate to the 

WBDev page and download the software. The contents of the .zip file should be unpacked into the WinBUGS 
directory. Open the .txt (wbdev_01_09_04.txt at the time of writing) file that you just extracted, and follow the 
instructions contained in the file to install the WBDev software.
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APPENDIX (Continued)

3. Download the BlackBox Component Builder from www.oberon.ch/blackbox.html. In the present article, we 
refer to Version 1.5. After the download completes, run the SetupBlackBox15.exe file, which installs the Black-
Box Component Builder 1.5. This adds a folder to C:\Program Files called BlackBox Component Builder 1.5.

After all of the necessary programs have been downloaded, the next step is to compile the LBA PDF into 
WinBUGS via BlackBox. After completing the steps below, you will be able to use WinBUGS to fit the LBA 
to data.

1. Open the WinBUGS directory, copy the entire contents of the WinBUGS folder, and paste them into the 
newly created BlackBox directory (C:\Program Files\BlackBox Component Builder 1.5\ by default in Windows 
XP); choose “Yes” to all the “Replace existing file?” requests. 

2. Copy lba.odc to the C:\Program Files\BlackBox Component Builder 1.5\WBDev\Mod directory.
3. Open the BlackBox Component Builder program; this should now closely resemble the usual WinBUGS 

environment. Use File > Open to open lba.odc. Press Ctrl  K to compile lba.odc. An “ok” message should 
appear in the bottom left corner.

4. Put Distributions.odc into the C:\Program Files\BlackBox Component Builder 1.5\WBDev\Rsrc\ directory. 
Close down any BlackBox or WinBUGS windows that are still running. The next time BlackBox is run, the LBA 
PDF should be ready to use.

For more information on the procedure outlined above, as well as on the use of diffusion models in WinBUGS, 
see Vandekerckhove et al. (2009).
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