
Many tasks used in experimental psychology involve
participants making relatively simple decisions, for which
the experimenter measures the response times (RTs) and
the accuracy of the responses. In many cases, the diffi-
culty of the task is also manipulated within subjects. The
resultant interaction among speed, accuracy, and diffi-
culty is complicated and presents significant challenges
for standard analysis techniques, even in the simplest case
of two response alternatives. Results from an experiment
conducted by Ratcliff and Rouder (1998) demonstrated
the range of effects that can occur, even within data from
a single participant. They also demonstrate the well-
 established trade-off between decision speed and accu-
racy, showing how participants can improve accuracy by
increasing the time taken to make a decision. The complex
interdependence of accuracy and RT draws into question
the common practice of analyzing accuracy and RT sepa-
rately—for example, by using separate ANOVAs.

For more than 30 years, mathematical psychologists have
been developing cognitive models to account for the wide
range of choice RT phenomena. These models use a small
number of decision-process variables to account for both
the accuracy of responses and the complete distribution of
associated RTs. Many models exist (e.g., Brown & Heath-
cote, 2005, 2008; Busemeyer & Townsend, 1992; Ratcliff,
1978; Ratcliff & Rouder, 1998; Ratcliff & Tuerlinckx,
2002; Smith & Ratcliff, 2004; Van Zandt, Colonius, &
Proctor, 2000; Vickers, 1970), all differing in their assump-
tions about the exact nature of the underlying processes.
However, most share the same basic framework. They as-
sume that, when making a decision, the participant repeat-

edly samples information from the environment and that
this information is used as evidence for one of the potential
responses. As soon as the evidence in favor of one potential
response reaches a threshold, the decision process is termi-
nated and that response is made. The time taken to make
the response equals the time to accumulate the required
amount of evidence, plus some time taken for nondecision
processes, such as perception and the execution of a motor
response. These cognitive models all provide estimates of
three key parameters: the rate at which evidence for a partic-
ular response accumulates (drift rate), how much evidence
is required before a response is made (response threshold),
and the amount of time taken for nondecision aspects of the
task (nondecision time). Estimations for these quantities
take into account the interaction between speed and accu-
racy in the decision being made. This unified account can
be much more informative about the decision process than
independent analyses of accuracy and RT can.

The community using cognitive process models of
choice RT has been growing steadily. The models have been
used to describe the underlying neurology of simple deci-
sions (e.g., Carpenter, 2004; Forstmann et al., 2008; Gold
& Shadlen, 2001; Hanes & Carpenter, 1999; Mazurek,
Roitman, Ditterich, & Shadlen, 2003; Ratcliff, Cherian, &
Segraves, 2003; Reddi, 2001; Roitman & Shadlen, 2002;
Schall, 2001; Smith & Ratcliff, 2004). They have also been
used to gain insight into the cognitive processes that under-
lie a wide range of simple choice tasks, including elements
of reading (Ratcliff, Gomez, & McKoon, 2004), recogni-
tion memory (Ratcliff, 1978), and visual discrimination
(Ratcliff, 2002; Smith & Ratcliff, 2009), as well as more

 1095 © 2009 The Psychonomic Society, Inc.

Getting more from accuracy and
response time data: Methods for fitting

the linear ballistic accumulator

CHRIS DONKIN, LEE AVERELL, SCOTT BROWN, AND ANDREW HEATHCOTE
University of Newcastle, Callaghan, New South Wales, Australia

Cognitive models of the decision process provide greater insight into response time and accuracy than do stan-
dard ANOVA techniques. However, such models can be mathematically and computationally difficult to apply.
We provide instructions and computer code for three methods for estimating the parameters of the linear ballistic
accumulator (LBA), a new and computationally tractable model of decisions between two or more choices. These
methods—a Microsoft Excel worksheet, scripts for the statistical program R, and code for implementation of the
LBA into the Bayesian sampling software WinBUGS—vary in their flexibility and user accessibility. We also
provide scripts in R that produce a graphical summary of the data and model predictions. In a simulation study,
we explored the effect of sample size on parameter recovery for each method. The materials discussed in this
article may be downloaded as a supplement from http://brm.psychonomic-journals.org/content/supplemental.

Behavior Research Methods
2009, 41 (4), 1095-1110
doi:10.3758/BRM.41.4.1095

C. Donkin, chris.donkin@newcastle.edu.au

1096 DONKIN, AVERELL, BROWN, AND HEATHCOTE

In recent years, the options available for estimating
parameters for the Ratcliff diffusion model have been
increasing and have become more user-friendly. Vande-
kerckhove and Tuerlinckx (2007, 2008) developed the
Diffusion Model Analysis Toolbox, a MATLAB program
that uses methods developed by Ratcliff and Tuerlinckx
(2002) to apply the Ratcliff diffusion model. Vandekerck-
hove, Tuerlinckx, and Lee (2009) have implemented the
diffusion model into the sampling program for Bayesian
inference, WinBUGS. Voss and Voss (2007, 2008) offered
FastDM, stand-alone C code that also implements the Rat-
cliff diffusion model. Wagenmakers et al. (2007) offered
three methods for obtaining EZ diffusion estimates: a
spreadsheet in Excel, a Web applet, and some scripts in
the statistical language R.

The present article is motivated by the observation that
most previous software offerings for applying choice RT
models to data have focused on Ratcliff’s diffusion model.
Here we provide a similar range of options for estimating
the parameters of an alternative model, the LBA. We first
review the details of the LBA and then describe estimation
software developed for it in Microsoft Excel, R, and Win-
BUGS. We then describe additional software developed in
R to produce a visual summary of data and model predic-
tions. Rather than providing a comprehensive parameter es-
timation environment for a particular paradigm, our aim is
to illustrate the three approaches in a way that allows users
to flexibly extend the analysis to a range of paradigms.

Overview of the LBA Model
Consider a participant who has been presented with a

string of letters and asked to decide whether the stimulus
is a word or a nonword; Figure 1 shows how this decision
is represented in the LBA. Each possible response (“word,”
“nonword”) is assigned to an independent evidence accu-
mulator. Evidence accumulation starts at a value randomly
sampled (separately for each accumulator) from the inter-
val [0, A], where A is the maximum value of the uniform
start-point distribution at the beginning of each trial. The
participant gathers information from the stimulus, which
is then used to increment the evidence in either accumu-

complex decisions, such as purchasing a car (Busemeyer
& Townsend, 1992). Ratcliff, Thapar, and McKoon (2001,
2003) used a decision model to identify which factors asso-
ciated with aging were responsible for the observed slow-
ing of older participants in simple discrimination tasks.
In this application, independent analyses of accuracy and
RT would not have identified these factors, because of a
trade-off between speed and accuracy. Wagenmakers, van
der Maas, and Grasman (2007) also suggested that vari-
ables (such as the rate of accumulation of information, or
drift rate) estimated by these models be used to describe
data in preference to accuracy and RT. Their approach is
akin to considering intelligence in terms of an intelligence
quotient rather than in terms of performance in individual
tasks. Wagenmakers et al. (2007) gave a good explanation
of how the analysis of data using decision models can, in
a manner similar to that of psychometrics, reveal patterns
in data that otherwise would have escaped the notice of the
experimental psychologist.

Despite their ability to provide insight into the processes
underlying decisions, the application of decision models
has been limited mostly to those already within the field
of cognitive modeling. This is because it has been notori-
ously difficult to apply the models to data, requiring com-
plicated computer programming and mathematics to im-
plement (Smith, 2000; Van Zandt, 2000). The models have
grown more complex as the range of phenomena they can
account for has grown (e.g., compare the original Ratcliff
diffusion model [Ratcliff, 1978] to more recent versions
in Ratcliff & Rouder, 1998, and Ratcliff & Tuerlinckx,
2002). Fortunately, there have also been attempts to re-
duce the complexity of choice RT models. Wagenmakers
et al.’s (2007) EZ diffusion provides simple formulas for
directly estimating the three key decision parameters on
the basis of three easily estimated statistics. However, the
model underlying the EZ diffusion approach is not com-
prehensive. For example, it fails to account for the latency
of error responses. Such criticisms do not apply to the
“complete” decision-making models, such as Ratcliff ’s.
However, the price of this explanatory power is the great
increase in mathematical and computational complexity.

Brown and Heathcote (2008) proposed the linear bal-
listic accumulator (LBA) model as the simplest complete
model of choice RT. The LBA is simple, in the sense that
Brown and Heathcote (2008) were able to derive ana-
lytically the model’s probability density function (PDF),
which makes efficient estimation tractable using a range
of techniques. Despite its relative simplicity, the LBA
can account for the same breadth of empirical two-choice
RT phenomena as the Ratcliff diffusion model does. In
contrast to the diffusion model, the LBA can be applied
also to choices from among more than two alternatives.
Even though the model is in its infancy, it has begun to
be applied to experimental data sets (see, e.g., Donkin,
Brown, & Heathcote, in press; Forstmann et al., 2008;
Ho, Brown, & Serences, 2009). Forstmann et al. showed
that an experimental manipulation of speed and accuracy
emphasis produced changes in behavior and brain activ-
ity that agreed closely with appropriate parameters from
the LBA.

Figure 1. Graphical representation of a single decision made by
the LBA model. Parameter values: value of uniform start-point
distribution (A), upper response boundary (b), samples per con-
dition (N), mean of between-trial variability in response time (v),
and between-trial variability in drift rate (s).

FITTING THE LINEAR BALLISTIC ACCUMULATOR 1097

choice task. The design from which the simulated data are
derived is typical of designs to which the LBA has been ap-
plied: three conditions that vary in decision difficulty (easy,
medium, and hard). This set can be thought of as data from
a single participant in an experiment with three within-
subjects conditions. The first few lines of the simulated
data are shown in Figure 2, with each line representing one
choice trial. The first column codes the easy, medium, and
difficult decision conditions, labeled 1–3, respectively. The
second column codes the accuracy of the response made,
using 0 for incorrect and 1 for correct. The third column
contains the response latency of the decision (in millisec-
onds). We provide an R script that simulates data in the
same format as our example data set (makedata.r). For this
example, we sampled data from an LBA model with the
following parameters: sec 0.25, A 300, Ter 200, b
400, vE .9, vM .75, and vH .6.

The vE, vM, and vH parameters refer to the drift rates
for correct responses. We use the traditional parameter-
ization, which fixes drift rates for the error responses to
be equal to 1 minus the drift rate for correct responses
(although, see Donkin, Brown, & Heathcote, in press, for
a different approach). Hence, the drift rates for incorrect
responses in our example data set were .1, .25, and .4 for
easy, medium, and hard conditions, respectively. To keep
the example simple, we assumed that drift rate for correct
(and error) responses was the same, regardless of which
stimulus was presented on that particular trial. This em-
bodies an additional assumption that drift rates are the
same for both stimuli corresponding to each response
(i.e., words and nonwords). In more general cases, there
could be four drift rates: a correct and error drift rate for
each of the two responses (e.g., old and new responses in a
recognition memory task; Ratcliff, 1978). We also assume
that only drift rate changes between the three difficulty
conditions, with all other parameters constant. This as-
sumption is standard in paradigms in which the stimulus
factors that are used to manipulate difficulty are mixed
randomly within blocks of trials. We address the more
complicated cases below.

Example 1: Using Microsoft Excel
We used the file lba.xls to fit the LBA using Micro-

soft Excel. The Excel LBA worksheet records the data in
Sheet 2 and uses the parameter values in Sheet 1 to cal-
culate the likelihood of the data, given the present set of
parameter estimates. This likelihood value is our objec-
tive function. Excel’s built-in Solver function is used to
find parameters, which maximizes this likelihood value.

lator. Brown and Heathcote (2008) made the simplifying
assumption that evidence accumulation occurs linearly, at
what is termed the drift rate. Drift rate is an indication of
the quality of the stimulus: The larger the drift rate, the
faster evidence accumulates. For example, because higher
frequency natural-language words are easier to classify as
words, a string of letters that forms a frequently used word,
such as HOUSE, would likely have a higher drift rate than
would the word SIEGE, since SIEGE is used less often. The
drift rates for each accumulator vary from trial to trial ac-
cording to a normal distribution with mean drift rates vW
(for words) and vNW (for nonwords). For simplicity, we as-
sume between-trial variability in drift rate, s, to be a com-
mon standard deviation for these distributions. As soon as
evidence in one accumulator reaches a threshold, b, the
response associated with that accumulator is made. Chang-
ing the threshold parameter changes the amount of evi-
dence required to make a response. For example, a lower b
produces less cautious responses, and an increased b pro-
duces more cautious responses. The relative values of b for
different accumulators can model response bias: an a priori
preference for one response over another. Response latency
is given as the time taken for the first accumulator to reach
threshold plus the time taken for nondecision aspects of the
task, such as the motor response and stimulus encoding.
Because nondecision time is assumed to have negligible
variability, it is estimated by a single parameter, Ter.

One way of estimating LBA parameters from data in-
volves the search for a set of parameters (e.g., b, A, vW,
vNW, s, and Ter) that produce predictions for accuracy and
RT that closely resemble the data. The resemblance be-
tween data and model is quantified by an objective func-
tion. A variety of objective functions are commonly used
with RT data, including maximum-likelihood estimation
(Ratcliff & Tuerlinckx, 2002), chi-squared estimation
(Ratcliff & Smith, 2004), and quantile maximum products
estimation (QMPE; Heathcote & Brown, 2004; Heathcote,
Brown, & Mewhort, 2002). The search for a set of param-
eters that optimize the objective function begins with the
choice of parameters at some initial values, called a start
point. This is followed by a computer-driven search that
changes parameters until a set is identified that provides
a better value for the objective function than other nearby
sets do. Bayesian estimation takes an alternative approach
that provides a distribution of estimated parameter sets
rather than a single set. Variability in the distribution quan-
tifies uncertainty about estimation, and a measure of the
distribution’s central tendency, such as the mean, provides
a point estimate. Our aim here is not to detail or compare
these methods. Instead, we take advantage of the ready
availability of efficient and general-purpose search algo-
rithms (Solver in Excel and optim in R) and Markov chain
Monte Carlo (MCMC) methods for generating Bayesian
estimates (WinBUGS) to provide accessible options for
estimating LBA parameters, given a set of data.

Methods for Estimating
LBA Parameters From Data

We use a single set of simulated accuracy and RT data to
illustrate the methods of applying the LBA model to a two-

Figure 2. The first five lines of data from our simulated data
set. The first column shows the experimental condition (1–3), the
second shows the accuracy (0 incorrect; 1 correct), and the
third shows response time (RT, in milliseconds)

1098 DONKIN, AVERELL, BROWN, AND HEATHCOTE

which red bars represent error responses and blue bars
show correct responses. The predictions made by the LBA
are shown by solid lines; again, in the actual spreadsheet,
colors are used to identify correct and error responses.
The predictions shown in the plots are based on parameter
values given in column B of Sheet 1. Changing the pa-
rameter values by hand causes direct changes to the solid
lines in the histograms. The LBA provides a good fit to
the data whenever the solid lines match closely the bars of
the histograms that underlie them, indicating that the RT
distributions predicted by the LBA closely resemble those
of the data. As soon as a good fit to the data is achieved,
the user can record the parameter values reported in cells
B1–B7 of Sheet 1. We do not suggest that these histograms
are of publication quality; however, they do provide the
user with a method for quickly checking the quality of the
fit. We discuss how to use the parameter estimates to cre-
ate further graphical summaries in the Using R to Create a
Graphical Summary Given Parameter Values section.

Sometimes, rather than finding the optimal solution
(i.e., the global maximum), Excel’s Solver function be-
comes stuck in a local maximum, in which case, the es-
timated LBA parameters do not provide an accurate ac-
count of the data. This occurs when the solver finds a set
of parameters—say, Solution A—that are better than other
nearby sets of parameters but are still worse than the (quite
different) parameters that provide the best fit to the data.
Although this problem can be difficult to avoid in general,
there are some measures that help address it. One method
is to start the search again from a different starting point.
Solution A is likely to be a global maximum if the Solver
function repeatedly finds Solution A from a sufficiently
wide range of starting points.

The choice of initial estimates for any method of fit-
ting a model to data can be very important: Automatic
optimization routines (like Solver) can fail badly if the
initial estimates are poor. Choosing good initial estimates
is something of an art that often requires experience and
experimentation. This process is made relatively easy,
thanks to the interactive nature of the Excel spreadsheet
we have provided. The effects of changing parameters can
be instantly observed by looking at the plots in Sheet 1.
The initial estimates need not produce a set of solid lines
that closely resemble the data; all that is necessary is that

The quality of the fit to data is shown in the histograms
presented in Sheet 1.

The likelihood can be thought of as a measure of the
quality of the fit of the model to the data, with larger values
indicating better fit. The parameters that provide the best
fit to the data are those that maximize the likelihood, or,
equivalently, the log likelihood. Rather than raw likelihood,
we use log likelihood as the objective function, because
taking logarithms avoids numerical problems associated
with multiplying together many very small numbers.

In order to analyze our simulated data, we pasted the
three columns of data directly from exampledata.txt into
row 2, columns A–C, (hereafter referred to as Cells A2–
C2) and onward in Sheet 2. Initial parameter guesses were
entered into Cells B1–B7 of Sheet 1. The natural logarithm
of the likelihood of the present set of parameters given the
data is shown in Cell B9 of Sheet 1. The Solver function,
which can be found in the Tools drop-down menu, is then
applied.1 Solver can then be used to maximize the log like-
lihood by going to Tools > Solver. A new application box
appears, in which the user simply clicks the Solve option.
Users can freely experiment with the numerous options
in the Solver function. However, no such changes are re-
quired to fit the LBA to our example data. Although we
do not discuss these options in detail here, we note that,
by default, the Subject to the Constraints section is set up
appropriately, so that Condition 1 is the easiest condition
(and therefore should have the highest drift rate), that Con-
dition 2 is the next hardest condition, and so on. A number
of other sensible constraints can also be imposed, such as
requiring Ter 0 and b A.

The plots in Sheet 1, an example of which is shown
in Figure 3, summarize the quality of fit. To create these
plots, the user must first place the RTs from their data
into Column A of Sheet 3. This can be done by copying
and pasting the contents of Column C of Sheet 2. There
are three plots shown in Sheet 1, one for each condition.
The plots show the correct and error RT histograms for
the data and the LBA grouped into bins ranging from 300
to 1,500 msec, in 200-msec increments. The three histo-
grams in the Excel sheet show data and predictions from
the easy, medium, and hard conditions from top to bot-
tom, respectively. The data are shown by the bars of the
histogram: The actual spreadsheet uses color figures, in

Figure 3. Screen shot of the Excel LBA worksheet. The plot contains the data from one condition as a histogram, with bars show-
ing correct and error responses. Solid lines show predictions of the LBA for correct and error responses, respectively. Predictions are
based on parameter values given in row B.

FITTING THE LINEAR BALLISTIC ACCUMULATOR 1099

fall outside of the range between 180 msec and 10 sec. The
R read.table function reads the contents of exampledata
.txt file, maintaining the column structure and giving the
variables difficulty, correct, and rt. In order to
change which data file is read, the user can change the
name of the first argument of the read.table call. How-
ever, it is necessary either to ensure that the data follow
the same structure as that of the exampledata.txt file or to
change other aspects of the R script appropriately.

The next section of script transforms the imported data
into the format required for the QMPE fitting technique.
Because QMPE is based on quantiles (i.e., order statistics,
such as the median), it provides estimates more robust
than does maximum-likelihood estimation in small sam-
ples (Brown & Heathcote, 2003; Heathcote et al., 2002).
In the example, the estimates are based on five quantiles
(.1, .3, .5, .7, and .9) for both correct and error RTs in each
difficulty condition, storing them in the array q. The num-
ber of observations in each quantile bin is also calculated
and stored in pb. Response accuracy and sample sizes for
correct and error responses in each difficulty condition
are also calculated and are stored in p and n, respectively.
Finally, these variables are bundled together in a list and
are stored in the variable data.

After the data are formatted correctly, the parameter
search is called by the fitter function, which requires two
arguments: The first is the dat argument, which, in our
example, is the data list. The maxit argument speci-
fies the maximum number of iterations used in search-
ing for best-fitting parameters. Like the Excel workbook
described earlier, R finds best-fitting parameters by, at
each step, systematically changing parameters and keep-
ing changes that provide a better value for the objective
function. The maxit argument specifies how many steps
are taken to find a set of parameters that best fits the data.
The parameters that arise out of the fitter function are
placed into the pars variable. The last few lines of the
script transform the parameter values returned by the fitter
function to those that are familiar to the reader from our
explanation of the LBA. Figure 4 shows the R output after
fitting the LBA to the example data set.

Unlike the Excel worksheet, the majority of the code
that does the fitting in R is hidden in the pq-lba.r and
math-lba.r scripts. The parameter values used to initial-
ize the search for best-fitting parameters are produced
automatically as part of the fitter function defined in the
pq-lba.r script. These heuristics are clearly labeled in the
 pq-lba.r file. These estimates work in many situations but,
in a few cases, are inadequate for the fitting algorithm to
find good parameter estimates. Such cases reinforce the
need to use the graphical summary methods to check the
quality of a fit. These methods are described in the Using

Solver be given parameters that produce a solid line that
has approximately the shape and location of the observed
RT distributions. As a rough guide, because they approx-
imate average parameter values from fits to a range of
paradigms, the parameters used to generate our simulated
data provide a good starting point for a parameter search
for new data sets.

Given the wide range of possible data sets, it is impos-
sible to create an Excel workbook that works “out of the
box” for every case. For example, simply changing the
number of observations in each condition requires the user
to change certain aspects of our worksheets. However,
given the flexibility and intuitive nature of data manipu-
lation in Excel, the changes required to adapt the LBA
workbook to new data sets should usually be relatively
simple. For example, if the number of observations in
each condition changes, the user has to update the entry
in C12 of Sheet 1 and make sure columns G–O are the
same length as the data that have been entered.

Example 2: Using R
In order to estimate LBA parameters from our example

data using R, the user begins by extracting the files in Rfit.zip
into a directory. The R language software is free and avail-
able for Windows, Mac OS X, and Linux; it can be down-
loaded from the R homepage (www.r-project.org). After the
executable install file is run, on-screen instructions describe
the installation process. Extracting the contents of the Rfit
.zip file into a folder (e.g., Desktop\Rfit) provides four
files: lba-math.r, pq-lba.r, fit-example.r, and exampledata
.txt. The .r files all contain R scripts that are used to esti-
mate parameters for the LBA model from the example data
contained in the .txt file. To begin the estimation process,
the user should open the R software and change the working
directory to the folder where the .zip file was extracted (i.e.,
Desktop\Rfit)—for example, by using the File > Change
dir option. Typing source(“fit-example.r”) fits
the LBA to the data found in the exampledata.txt file. The
R prompt disappears while the software searches for a set of
parameters that best fit the data. After the search is finished,
the estimated parameters are printed on screen.

Using the source function in R is equivalent to enter-
ing each line contained in the fit-example.r script directly
into the R window. Any text editor can be used to read
fit-example.r file. The first command sources the pq-lba.r
script, which, in turn, sources the lba-math.r script. These
two scripts set up the functions that encode the basic
mathematics of the LBA model. Some variables are then
defined: qps gives the set of quantiles of the RT distribu-
tion to be used by the QMPE method of fitting the LBA,
and trim gives the minimum and maximum values used
to censor the RT data. We set trim to remove RTs that

Figure 4. Screen shot of the use of R to fit the LBA to our example data set.

1100 DONKIN, AVERELL, BROWN, AND HEATHCOTE

els, of which a small proportion move coherently in one
direction and that must be identified by the participant,
while the others are moving randomly. The difficulty of
the task is also manipulated to be easy, medium, or hard.
Using this paradigm, Ho et al. (2009) fit the LBA to an
experiment. The code necessary for simulating and fit-
ting the multiple-choice data is contained in Rmultifit.zip.
After the files are extracted, data can be simulated and fit
using source(“fit-multi.r”). The parameters are
estimated by maximum-likelihood estimation, printed on
screen, and histograms containing data and model predic-
tions are produced. Here, we used maximum-likelihood
estimation to illustrate how the R code described in the last
section can be adapted for a different objective function.

The fit-LBA.r script is self-contained, in that there is
no need to source the lba-math.r or pq-lba.r files, mak-
ing the code required for maximum-likelihood estimation
relatively simple compared with that required for QMPE.
The data are simulated, and starting values are generated
for the parameters we want to estimate using heuristics
similar to those used in our other R code. We then define
our objective function, obj. Since we are using maximum-
likelihood estimation, our obj calculates the likelihood of
each RT value given a set of parameters pars. Finally,
we include code for producing histograms of observed
and predicted RT distributions for each response in each
difficulty condition.

For both simulating and fitting the data, we assumed
that all parameters were fixed across stimuli, suggesting
that participants show no bias for one particular direction
of pixel flow. The simulated data used a large drift rate,
corresponding to the correct response; the size of this drift
rate varied for easy, medium, and difficult conditions. We
reasoned that incorrect responses were more likely in the
two directions perpendicular to the correct response and
less likely in the direction opposite the correct response.
To instantiate this, we used only two free parameters for
the three error response alternatives: one value to set the
fraction of the correct-response drift rate assigned to the
perpendicular responses (we used .5) and one value to set
the fraction assigned to the opposite response (.25 in our
simulated data). We simulated the data, therefore, using
5 drift-rate parameters: 3 for the correct responses in each
condition, 1 indicating the proportion of the correct drift
rate for perpendicular incorrect responses, and 1 indicat-
ing the proportion of the correct drift rate required for
opposite- direction incorrect responses. To fully demon-
strate the method for estimating parameters from a mul-
tiple accumulator LBA model, when fitting the data, we
made no assumptions about relationships across drift
rates. We estimated 12 drift rate parameters: 1 for each of
the four responses in the three difficulty conditions. Fig-
ure 5 shows parameter values returned by our maximum-
likelihood fitter function. The parameters reported are
close to the parameters used to simulate the data (A 300,
b 400, Ter 300, ve .9, vm .75, vh .6, pperp .5,
popp .25). The histograms in Figure 5 also demonstrate
that the predictions from the LBA match closely the ob-
served data. The biggest misfit is to RT distributions for
opposite error responses. These responses are the most

R to Create a Graphical Summary Given Parameter Values
section. In order to use these scripts with other data sets
in which only changes in drift rate are extended across
conditions, only the fit-example.r file must be edited: The
ndrifts parameter must be set to the number of condi-
tions in the data.

If other parameters are allowed to vary across condi-
tions, more substantive changes are required. For exam-
ple, Donkin, Heathcote, Brown, and Andrews (in press)
propose that, in a lexical decision task, both drift rate and
nondecision time vary with word frequency. Say we have
three frequency conditions and want to estimate three val-
ues of drift rate, v, and three values of nondecision time,
Ter. In such a situation, the fitter function in pq-lba.r can be
updated so that starting points are generated for v1, v2, v3,
Ter1, Ter2, and Ter3. The obj function should then be up-
dated to take into account these changes. Specifically,
the par vector passed to the obj function is two elements
longer—it used to contain s, A, Ter, b, v1, v2, and v3, and
now has s, A, Ter1, Ter2, Ter3, b, v1, v2, and v3. The getpreds
function expects to receive from obj, for each parameter
of the LBA, a vector of length equal to the number of
conditions (nc; 3, in this case). This means that, where
previously we would have replicated Ter nc times (the line:
Ter = rep(par[3],nc)), we now use three free
parameters (Ter = par[3:5]), in the same way that
we previously used three drift rate estimates (previously,
v = par[5:7]; now, v = par[7:9]).

Analyzing data with more than one factor requires
further changes to pq-lba.r. For example, we may have
a difficulty manipulation, which varies across trials, and
a speed–accuracy emphasis manipulation, which varies
across blocks of trials. In this case, it is customary to fit
an LBA, where v varies across difficulty conditions and
where b and A vary across emphasis conditions. We begin
in the same way by first generating start points for each of
the parameters to be estimated within the fitter function.
However, in the obj function, rather than producing a vec-
tor of length nc for each parameter, we must now produce
a matrix with nc rows and two columns, one for speed
emphasis parameters and one for accuracy emphasis pa-
rameters. This also means that, where the getpreds func-
tion had taken one element of the parameter vector (by
using a loop over 1–nc), it now must take one element of
the matrix of parameter values (using two loops, one over
1–nc and another over 1–2). Obviously, as the design of
the data and the LBA model to be fit becomes more com-
plex, so too does the R code needed. For users with limited
programming skills, we provide code for WinBUGS that
can be more easily adapted to more complicated models.

Multiple-choice data. One advantage of the LBA is its
ability to model multiple-choice data (see Brown & Heath-
cote, 2008, for a demonstration). To illustrate, we provide
code that can be used to simulate a set of data from an
LBA with four accumulators, corresponding to a choice
between four response alternatives. To recover the param-
eters, the code then fits the four-accumulator LBA model
to the simulated data. The data are simulated to mimic an
experiment in which a participant is presented with one
of four random-dot kinematograms (RDKs), a set of pix-

FITTING THE LINEAR BALLISTIC ACCUMULATOR 1101

estimates that perform well in predicting new data sets and
account for model flexibility (Wagenmakers, Lee, Lode-
wyckx, & Iverson, 2008; see Raftery, 1995, and Wasser-
man, 2000, for general introductions). Bayesian analysis
starts by assuming a prior distribution (i.e., distribution
before new data are taken into account) of parameter es-
timates. It then combines the prior with the observed data
to produce a posterior distribution of parameter estimates

incorrect and are made least often. Therefore, RT distri-
butions for these responses are made up of relatively few
observations; hence, estimation of parameters for these
responses is more erroneous.

Example 3: Using WinBUGS
Bayesian analysis in psychological research is rapidly

gaining popularity for a range of reasons, such as providing

Figure 5. Screen shot of the R code and resultant output used to fit data simulated from a four-accumulator LBA model. Data are
represented by the bars of the histogram.

1102 DONKIN, AVERELL, BROWN, AND HEATHCOTE

data (RT and accuracy), we follow the common practice
(Vandekerckhove et al., 2009; Voss, Rothermund, & Voss,
2004; Voss & Voss, 2007, 2008): Let RT be the observed
response latency for a particular response, and let t be the
data given to WinBUGS. If the response is correct, then
code t RT; otherwise, code t RT. This enables both
accuracy and RT information to be specified in a single
variable. The data section also defines other variables
used in the model section. For example, the number of
data points, N, is defined as 3,000. The condition for each
response is defined by the entries in the cond variable, a
value of 1 for the first 1,000 RTs (i.e., Condition 1), 2 for
the next 1,000 RTs (i.e., Condition 2), and so on.

The following steps can be used to compile the model
and obtain posterior samples:

1. Open exampledata.odc from within WinBUGS (re-
call that this must be run from the BlackBox directory).
After the file is opened, highlight the word “model” at the
top of document and select Model > Specification; this
opens the Specification Tool dialog box. From within this
dialog box, select “check model,” and, if all parameters
are given priors, a message “model is syntactically cor-
rect” appears in the bottom left of the screen.

2. Either a single MCMC chain (default) or multiple
chains may be run. In our example, we use three chains by
typing “3” in the “num of chains” box. Having multiple
chains helps the user check whether the MCMC chain
converges to the posterior distribution.

3. Highlight the word “list” at the start of the data sec-
tion and choose “load data” from the Specification Tool
dialog box. A message “data loaded” appears in the bottom
left of the screen. If an error occurs, it is most often due
to misspecification of variables used in the model section
(i.e., N, nc, and cond variables in our example code).

4. Select “compile” from the Specification dialog box;
if everything is correct, the bottom left of the screen
should display the message “model compiled.”

5. Select “gen inits” to have WinBUGS generate initial-
izing values for each of the three chains. After the initial-
izing values have been generated, the bottom left of the
screen displays the message “model initialized,” indicat-
ing WinBUGS is ready to run.

Before beginning MCMC sampling, the user must
indicate which posterior parameter estimates are to be
saved for later analysis. This is done via the Inference >
Samples menu, which brings up the Sample Monitor Tool
dialog box. Steps 6 and 7 set up monitoring and run the
sampling.

6. Type the variable name into the “node” section. For
example, to monitor the A parameter, enter “a” into the
node section (this parameter was defined as “a” in the
model section). You must choose at what iteration to begin
and end the monitoring. The value in beg, which repre-
sents the number of iterations of the MCMC chain that
are discarded before monitoring, is commonly referred to
as the burn-in period. In our examples, we used a burn-in
period of 10,000 iterations. Since the MCMC chain be-
gins with inits values that may not represent valid samples
from the posterior, a burn-in period is required before the
MCMC chain converges to the posterior distribution.

(i.e., estimates updated by the new data). The process of
Bayesian estimation has been made relatively easy by
the availability of flexible programs, such as WinBUGS
(Lunn, Thomas, Best, & Spiegelhalter, 2000), which use
general-purpose MCMC methods to obtain samples from
the posterior distribution (see Calin & Chib, 1995). We
demonstrate how WinBUGS can be used to fit the LBA
to data, including instructions for compiling and running
WinBUGS, as well as reviewing and saving the results.

WinBUGS makes MCMC methods available to re-
searchers with relatively little programming and mathe-
matical knowledge through a graphical user interface. The
Appendix to this article provides instructions for install-
ing WinBUGS and the WinBUGS Development Interface
(WBDev) and BlackBox Component Builder.2 The latter
two programs are used to give WinBUGS access to the LBA
PDF. The BugsLBA.zip file contains a compound docu-
ment (lba.odc) that defines the LBA PDF. As described in
the Appendix, a one-time installation procedure is required
to enable WinBUGS to sample from the LBA posterior.
After this procedure is complete, WinBUGS should always
be launched from the BlackBox installation folder.

The BugsLBA.zip file also contains fitlbaexample.odc,
which, in separate sections, defines the WinBUGS model
and data specific to the present example. The model sec-
tion specifies uniform prior distributions (dunif) for
each LBA parameter (A, b, v, s, and Ter). The parameters
of the uniform priors were chosen to be relatively uninfor-
mative. That is, the range of the uniform priors is chosen
to span a broad range of plausible parameter values. When
given a reasonable amount of data over a sufficiently broad
range, the prior is not overly influential on the posterior
estimates. For the A parameter, for example, the uniform
prior distribution ranges from .1 to 1.0.3

Specification of overly broad priors can cause Win-
BUGS to fail, so some experimentation can be required
to obtain a computationally stable, but sufficiently unin-
formative, prior. Relatively uninformative priors produce
WinBUGS estimates that do not differ greatly from the
estimates obtained from the two methods presented pre-
viously. A section containing initializing values (called
inits) for the MCMC sampling can also be added to
 fitlbaexample.odc, but this is necessary only when the
inits automatically generated by WinBUGS fail. Such
failures are most common when priors are broad. Speci-
fying appropriate inits can help to protect against failures
of WinBUGS when broad priors are used.

As with the previous methods, we estimate three drift
rates (v1, v2, v3). In WinBUGS, this is done by letting v be
a vector containing three priors, one for each of the three
conditions. In our example code, all of the v priors are
identical and relatively uninformative; however, this need
not be the case: Different priors for the drift rate for each
condition could be imposed if desired. The final line of the
model section connects the RT data, defined as the variable
t in the next (data) section, with the previously defined pa-
rameters (and their priors) via the PDF for the LBA.

The next section of fitlbaexample.odc contains a modi-
fied specification of the data contained in exampledata
.txt. In order to allow WinBUGS to handle bivariate

FITTING THE LINEAR BALLISTIC ACCUMULATOR 1103

statistical and diagnostic options are highlighted. Among
the many available choices, we will focus on the “den-
sity,” “stats,” and “compare” options. Figure 6 displays the
“stats” and “density” outputs: node statistics and kernel
density, respectively, for the A parameter. Clicking on the
“density” option displays a density plot of the parameter of
interest. This is a plot of the posterior estimates returned by
WinBUGS for each iteration that was monitored. As soon
as the MCMC chain has converged (i.e., when the burn-in
period is large enough), this density plot approximates the
marginal posterior distribution of the parameter. The qual-
ity of the approximation increases as the number of itera-
tions or the length of the MCMC chain increases. Figure 6
shows that, in our example, where 11,000 iterations were
used to generate the posterior distribution, the majority of
the density plot is close to the true value of .3.

The “stats” option provides commonly used statistics,
such as mean and variance, as well as quantile information,
for the chosen parameter. Generally, this summary pro-
vides the information used to derive parameter estimates
for the LBA. Either the median or mean of the posterior
distribution can be used as a parameter estimate. When the
statistic is distributed symmetrically, as in Figure 6, there
is little difference between these estimates. The mode of
the posterior distribution equals the maximum-likelihood
estimate of the parameter (e.g., as generated by our Excel
worksheet). Although WinBUGS does not directly return
the mode of the distribution, the “coda” option can be
used to save monitored posterior samples to a text file,
which can be analyzed in another statistical package to
obtain the mode.

The WinBUGS “compare” option, found in the infer-
ence drop-down menu, can be used to obtain graphical
representations of credible intervals. A credible interval
estimates the range, within which, given the data and the

The end value represents the length of the MCMC
chains; in our example, we set end to 21,000, which, if the
chains converge, results in 11,000 samples from the pos-
terior distribution. Larger values cause sampling to take
longer to complete but provide more information about
the posterior. The process is repeated for each parameter
the user chooses to monitor. In our example, we monitored
all seven parameters (A, b, s, Ter, vE, vM, and vH).

7. Select Model > Update, and the Update Tool dialog
box appears. Typically, you will enter the same number
in the Updates section that you did in the End section of
the Sample Monitor Tool dialog box. Here, you have the
option of thinning the MCMC chain. Thinning discards
iterations in order to reduce autocorrelation among the
posterior samples.4 For example, if “thin” is set to 2 and
not 1, every second iteration will be recorded, and it will
take twice as long to obtain the number of iterations speci-
fied in the updates section. In our example, we set “thin”
to 2 for every parameter. The “refresh” section indicates
how often WinBUGS updates the screen, which indicates
how many iterations of the chain have occurred. Setting a
large value reduces processing time. Clicking the update
button causes sampling to commence.

While WinBUGS is generating samples, the message
“model updating” appears at the bottom left of the screen.
This process can take a long time and is uninterruptible,
so it is prudent to double-check that all parameters are
being monitored and that prior specification is as desired.
After WinBUGS has run through the desired number of
iterations, a message “Update took x secs” appears in the
bottom left-hand corner of the screen and results become
available for analysis.

To look at the results for each parameter, return to the
Sample Monitor Tool. Select the parameter of interest from
the node drop-down menu. As soon as a node is selected,

Figure 6. Screen shot from WinBUGS. Shown are the model code, the Update Tool, the Sample Monitor Tool, and output from the
density and stats options for the A parameter.

1104 DONKIN, AVERELL, BROWN, AND HEATHCOTE

credible regions do not overlap, suggesting that the drift
rates differ from one another.

The Sample Monitor Tool “history” option can be used
to check whether the MCMC chain has converged to the
posterior distribution. An example of the output produced
by this option is shown in Figure 8. The vertical axis of
the plot indicates the parameter estimate for A for the
iteration of the MCMC given by the horizontal axis; col-
lapsing this plot onto the vertical axis gives the density
function shown in Figure 6. Each of the chains is rep-
resented by a different grayscale shading, and here, the
three MCMC chains for the A parameter in our example
overlap greatly. In other words, they all appear to be ran-
dom samples from the same distribution throughout the
entire chain. This suggests that all chains are samples
from the posterior distribution of the A parameter. If
any of the chains looked systematically different from
the others, perhaps showing greater variance or a dif-
ferent mean, it would suggest a lack of convergence of
the MCMC chains to the true posterior distribution. The
Sample Monitor Tool “auto cor” option can be used to
check whether further thinning is needed. It displays the
correlation between parameter estimates for iterations i
and i k, for k 1–50.

Changing model parameterization is very simple within
WinBUGS. The user must define a new prior for each of
the parameters he or she wants estimated and make a small
adjustment to the call to the LBA PDF. For example, to
estimate a different nondecision time, Ter, for each word
frequency condition while fitting lexical decision data,
simply augment the WinBUGS model specification to
have a vector for the parameter Ter with a prior distribution
for each of the three frequency conditions and include this
extra information in the call to the LBA PDF. Specifically,
to make our priors, where we would have previously used
Ter ~ dunif(0.1,1), instead we use a for loop to
set Ter[k] ~ dunif(0.1,1) for k 1–3, such as is
done for drift rates. Finally, where we would have previously
used t[i] ~ dlba(b,A,v[cond[i]],s,Ter),
we now use Ter[cond[i]]. To use the WinBUGS code
that we provide with multiple-choice data would require
a substantial change to the code for the LBA PDF, lba

prior distribution, the true value of a parameter lies. Se-
lecting the “compare” option causes a dialog box to appear
that requires at least one variable name to be entered. Type
the variable of interest into the top left dialog box, and
select “box-plot.” This produces a box-plot in which the
whiskers represent, by default, the 95% credible interval.
The whiskers correspond to the 2.5% (lower whisker) and
97.5% (upper whisker) columns in the node statistics out-
put, because credible intervals are based on the quantiles
of the posterior distribution. Figure 7 shows the credible
intervals for each of the three drift rates defined in the v
parameter; the horizontal line going from one side to the
other is the group median. The plot also shows that the

Figure 7. Box-plot representing the 95% credible regions of the
drift rate for each of the three conditions, easy (1), medium (2),
and hard (3). The line cutting through the center of the plot rep-
resents the median of all three conditions.

Figure 8. Output produced from the history option for the A parameter from our fits of the LBA to example data. Notice that the
three chains (indicated by different shades of gray) greatly overlap, indicating that all chains have converged upon the same posterior
distribution.

FITTING THE LINEAR BALLISTIC ACCUMULATOR 1105

Ensure, first of all, that the R software is installed (refer
to the guide in Example 2, if this has not been done).
After the installation completes, extract all of the files
in the graphs.zip file into the same folder. This folder
should now contain pq-lba.r, lba-math.r, makegraphs.r,
and exampledata.txt. Now open R, and make sure that
the folder to which the files were extracted is set as the
working directory in R (again, see Example 2). The user
must first enter the parameters into a vector called pars
in the following order: s, A, Ter, b, vE, vM, vH. The units
for A, Ter, and b should be in milliseconds. This means
that parameters from the WinBUGS version of the LBA,
which are returned in seconds, will have to be multi-
plied by 1,000. Parameter values should be entered as a
vector—for example, pars = c(0.25,300,200,
400,0.9,0.75,0.6). The user should then type
source(“makegraphs.r”), which does two things:
First, data from the exampledata.txt file are read in, and
then two functions, histplot and qpplot, are defined.

.odc, along the lines of the R code we provide for fitting
multiple- choice data, but that is beyond our scope here.

Using R to Create a Graphical Summary
Given Parameter Values

We also provide R code that can be used to create a
graphical summary of the data and model predictions. This
process is useful in determining the appropriateness of the
parameter estimates returned by our various methods. The
code we provide requires that the user first enter the pa-
rameters produced by one of the three methods described
above (or indeed, equivalent parameters produced by an-
other method). The user must then source the makegraphs.r
file within R, which defines two functions for producing
two plots: histograms similar to those described in Exam-
ple 1 and a quantile probability (QP) plot. The histplot and
 qpplot functions provide plots that are suitable for check-
ing parameters and can be adapted to produce figures suit-
able for publication (see, e.g., Maindonald, 2008).

Figure 9. An example of the plot produced by the histplot function. Correct responses are shown in the top row;
error responses are shown on the bottom row. Difficulty of the decision goes from easy, to medium, to hard from
left to right.

1106 DONKIN, AVERELL, BROWN, AND HEATHCOTE

probability above .5) shows the correct responses, and the
left half (response probability below .5) gives information
about the error responses. The vertical positions of the five
points above each of these six accuracies refer to .1, .3, .5,
.7, .9 quantiles of the RT distribution for each of the correct
and error responses in the three difficulty conditions. The
quantile values are the proportion of responses under which
a given proportion of RTs in the distribution fall (e.g., the
.5 quantile is the median). As an example, consider the
bottom right point of the plot. The rightmost points of the
plot refer to those decisions with the highest accuracy—
in other words, the RTs from the correct responses in the
easiest condition. Conversely, the leftmost points are the
error responses in the easiest condition. The bottom point
on the QP plot refers to the .1 quantile of the RT distribu-
tion. The .1 quantile of the RT distribution gives the value
below which 10% of the RTs fall. Hence, the bottom right
point of the QP plot gives the value below which 10% of
the RTs for the correct responses in the easiest condition
occur. To make the plot shown in Figure 10, we used the call
qpplot(data,pars).

The effect of sample size on parameter estimates.
We have provided four methods for fitting the LBA to
data, one of those specifically for fitting multiple-choice
data. For the other three, we have fit the model to a set of
simulated data with 1,000 observations in each of three
conditions. In practice, there are often considerably fewer
observations per condition. To investigate how well pa-
rameters for a two-choice task are recovered by each of
our methods for a range of sample sizes, we conducted
a simulation study. We simulated 10 sets of data for each
of four sample sizes: N 50, 100, 400, and 1,000 obser-
vations per condition. The data were simulated using the
same parameter values used to generate our example data,
and are shown in Table 1.

Table 1 shows the average bias and standard deviation in
parameter estimates, expressed as a percentage of the re-
spective parameter value, for each of our three methods: the
Excel sheet, the R code, and WinBUGS.5 For each method,
we observe the expected pattern that the bias and standard
deviation of parameter estimates increase as sample size
decreases. The size and rate at which this happened varied
between our methods. When sample size was only 50 ob-
servations per condition, the Excel sheet failed to recover
parameters. Note, however, that when sample size increased
to 100 observations per condition, the parameters were re-
covered reasonably well even by the Excel sheet, perhaps
with the exception of s. Note also that, for the Excel sheet,
although there was a reasonable reduction in both bias and
standard deviation of parameter estimates when N increased
from 100 to 400, the increase from 400 to 1,000 made very
little difference. For R and WinBUGS, when N is only 50,
the drift rate in high-accuracy condition is overestimated.
This is reasonable because, with only 50 samples and high
expected accuracy, there are very few error responses in
this condition. Note that, for 100 samples per condition or
more, there is relatively little bias in parameter recovery for
any of the techniques, and the standard deviations for each
of the parameters are small and decrease at a rapid rate as
N grows.

The histplot function produces a plot that contains six
histograms, one for error responses and one for correct re-
sponses for each difficulty level. An example of this plot
is shown in Figure 9. The data are represented by the black
bars of the histogram, with the predictions of the model
shown by the solid line. The top row of the plot shows the
correct responses, and the bottom row shows histograms
for the error responses. From left to right, the order of dif-
ficulty of the conditions is easy to hard. The histplot func-
tion has five arguments. Two are required: data, which
must be formatted in the way that is produced by the read
.table function contained within the makegraphs.r script,
and pars, which must be entered exactly as in the form
given above. Three parameters are optional: minx and
maxx define the smallest and largest RT values shown in
the histogram, and bindiff defines the width (in milli-
seconds) of the bins of the histogram. It is essential that
bindiff divide evenly into the difference between
minx and maxx. To create the plots shown in Figure 9,
we used the call histplot(data,pars).

The qpplot function accepts four arguments. The two that
are required, dat and pars, are of the same form as for
the histplot function. The two optional arguments, tmin
and tmax, define the fastest and slowest RT data points
used to obtain parameter estimates. They are, by default,
set at 0 and , respectively, indicating that no data were
censored during estimation. Figure 10 shows an example
of the QP plot produced by the qpplot function. The QP
plot gives the majority of the important information shown
by the histograms but accomplishes this with one graph
by taking all six histograms and summarizing them with
five quantile values. The quantiles for each histogram are
placed onto the one plot. This results in the accuracies for
the correct and error responses for the three difficulty con-
ditions being indicated by the horizontal position of the six
dots across the QP plot. The right half of the plot (response

Figure 10. An example of the plot produced by the qpplot func-
tion. Proportion correct is shown on the x-axis, reaction time (RT,
in milliseconds) shown on the y-axis. Data is shown by the dotted line
with filled points, the LBA predictions are shown by the solid line.

FITTING THE LINEAR BALLISTIC ACCUMULATOR 1107

1974), the Bayesian information criterion (BIC), and the
deviance information criterion (DIC; Spiegelhalter, Best,
Carlin, & van der Linde, 2002). Each measure uses devi-
ance (2 times the log likelihood) as its measure of misfit
but applies a different complexity penalty. BIC provides
the largest penalty for having more parameters: k log n,
where k is the number of parameters in the model and
n is the number of data points. AIC applies the smallest
penalty, 2k; and DIC, which can be calculated only from
Bayesian outputs, applies a penalty that is often some-
where between AIC and BIC in its severity. The DIC mea-
sure is based on an estimate of a model’s effective number
of parameters, pD, which takes account of differences in
the functional form between models (see Spiegelhalter
et al., 2002, for details of the calculation of pD). For each
of these measures, the model that produces the smallest
value is the one that best accounts for the data, given both
goodness of fit and model complexity.

To demonstrate these model selection methods, we
fit our example data, for which we know that only drift
rate varied across conditions to generate the data, with
two versions of the LBA: one with only drift rate vary-
ing between conditions and another where b, A, Ter, and v
were allowed to vary across conditions. We report the
results of using WinBUGS to estimate parameters here;
however, when we used our R code, we found the same
pattern of estimates. The deviance for the more complex
model was 293.6, compared with 294 for the model
in which only drift rates were allowed to vary. In other
words, there was very little improvement in the quality
of the fit when parameters other than drift rate were al-
lowed to vary across conditions. After adding the various
complexity penalties, all three measures of model fit were
smaller for the LBA when only drift rate varied across
conditions (AIC, 277.99 vs. 277.59; BIC, 238 vs.

190; DIC, 287 vs. 281). This tells us that allowing
parameters other than drift rate to vary across conditions
gives an increase in quality of fit that is not large enough
to warrant the complexity of the extra parameters. Indeed,

Fixing parameters across conditions. When estimat-
ing model parameters, we made the assumption that only
drift rate should vary across conditions. This assumption
is the one usually made when the data come from an ex-
periment where the conditions correspond to stimuli pre-
sented within subjects and that vary unpredictably from
trial to trial. This is because parameters such as b, which
determines the amount of evidence required to make a re-
sponse, are thought to be under the strategic control of the
participant. Ratcliff (1978) argued that these participant-
determined parameters cannot be adjusted on a trial-by-trial
basis, depending on which stimulus is presented. If, how-
ever, we were to fit data with conditions that varied between
blocks of trials or between participants, it is reasonable to
expect that parameters such as b could vary across these
conditions. For example, if participants were instructed
to respond as accurately as possible in one block of trials,
given a break, and then told to respond with speed emphasis
for the next block of trials, we could expect that the partici-
pants had been given enough time to adjust their cautious-
ness in responding by adjusting their b parameter.

Because we knew exactly which parameters generated
the data in our simulated example, deciding which param-
eters should vary across conditions was straightforward.
In practice, we would not necessarily know which param-
eters are expected to vary across conditions. Researchers
should, therefore, fit a number of versions of the LBA in
which we change the parameters that are allowed to vary
across conditions and then select the model that provides
the best account of our data. This approach is not straight-
forward, however, because adding parameters always gives
a fit that is at least as good as the less complex model, even
if the extra parameters overfit (i.e., only accommodate
noise in) the data. What is required, therefore, is a measure
that improves only if the extra parameters provide a genu-
ine improvement. This is usually accomplished by penal-
izing a model for having extra parameters. Many such
measures exist, but we focus on three easily computed
options: the Akaike information criterion (AIC; Akaike,

Table 1
Bias and Standard Deviation (SD) of Parameter Estimates, As Percentages of the True Parameter Values,

From Three Methods of Fitting the LBA for Four Different Values of N, Averaged Over 10 Data Sets

Between-
Trial Drift-
RateVari-

Samples
per

Condition

Start-Point
Distribution

Upper
Response

Average
Time (t) per
Simulation

Correct Responses Nondecision
Easy (vE) Medium (vM) Hard (vH) (A) Boundary (b) Time (Ter) ability (s)

Method (N) Bias SD Bias SD Bias SD Bias SD Bias SD Bias SD Bias SD (sec)

Excel 50 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
R 11.0 27.0 2.7 12.0 3.3 6.7 6.7 33.0 4.3 12.0 4.0 36.0 4 20 48
WinBUGS 7.8 7.8 9.3 9.3 3.3 5.0 4.3 16.0 4.8 4.5 1.3 10.0 16 24 124
Excel 100 5.6 5.6 6.7 2.7 1.7 3.3 5.0 11.0 2.8 4.0 6.0 11.0 28 8 2
R 4.4 8.8 5.3 4.0 0.0 5.0 7.3 10.0 1.5 7.0 12.0 15.0 12 20 48
WinBUGS 2.2 4.4 2.7 4.0 0.0 5.0 1.0 10.0 1.5 6.3 2.7 6.7 4 8 231
Excel 400 2.2 2.2 4.0 2.7 1.7 1.7 2.3 6.0 0.5 2.5 0.7 2.0 20 4 9
R 0.0 6.7 1.0 5.3 1.7 3.3 2.0 10.0 0.25 2.4 1.3 14.0 4 8 48
WinBUGS 0.0 3.3 1.0 2.7 0.0 1.7 0.0 4.3 3.0 9.5 1.3 5.7 0 8 934
Excel 1,000 4.4 1.1 4.0 1.0 1.7 1.7 0.7 3.0 1.3 1.5 2.0 3.0 20 4 21
R 2.2 2.2 2.7 2.7 0.0 1.7 3.0 5.0 0.25 1.8 5.0 7.0 8 8 48
WinBUGS 1.1 2.2 0.0 1.0 0.0 1.7 2.0 4.0 2.8 8.3 1.3 3.0 0 4 2,308

Note—Parameter values: vE .9; vM .75; vH .6; A 300; b 400 msec; Ter 200 msec; s 0.25. The final column contains the average
time, t, taken per simulation (in seconds). Times were estimated using a single core of a Pentium quad-core Q6600 2.4-GHz processor.

1108 DONKIN, AVERELL, BROWN, AND HEATHCOTE

REFERENCES

Akaike, H. (1974). A new look at the statistical model identification.
IEEE Transactions on Automatic Control, 19, 716-723.

Brown, S. D., & Heathcote, A. (2003). QMLE: Fast, robust, and effi-
cient estimation of distribution functions based on quantiles. Behavior
Research Methods, Instruments, & Computers, 35, 485-492.

Brown, S. D., & Heathcote, A. (2005). A ballistic model of choice
response time. Psychological Review, 112, 117-128.

Brown, S. D., & Heathcote, A. J. (2008). The simplest complete
model of choice reaction time: Linear ballistic accumulation. Cogni-
tive Psychology, 57, 153-178.

Busemeyer, J. R., & Townsend, J. T. (1992). Fundamental deriva-
tions from decision field theory. Mathematical Social Sciences, 23,
255-282.

Calin, B. P., & Chib, S. (1995) Bayesian model choice via Markov
chain Monte Carlo methods. Journal of the Royal Statistical Soci-
ety B, 57, 473-484.

Carpenter, R. H. S. (2004). Contrast, probability, and saccadic latency:
Evidence for independence of detection and decision. Current Biol-
ogy, 14, 1576-1580.

Donkin, C., Brown, S. D., & Heathcote, A. (in press). The overcon-
straint of response time models: Rethinking the scaling problem. Psy-
chonomic Bulletin & Review.

Donkin, C., Heathcote, A., Brown, S. D., & Andrews, S. (in press).
Non-decision time effects in the lexical decision task. In N. A. Taat-
gen & H. van Rijn (Eds.), Proceedings of the 31st Annual Confer-
ence of the Cognitive Science Society. Austin, TX: Cognitive Science
Society.

Forstmann, B. U., Dutilh, G., Brown, S. D., Neumann, J., von Cra-
mon, D. Y., Ridderinkhof, K. R., & Wagenmakers, E.-J. (2008).
Striatum and pre-SMA facilitate decision-making under time pres-
sure. Proceedings of the National Academy of Sciences, 105, 17538-
17542.

Gold, J., & Shadlen, M. N. (2001). Neural computations that under-
lie decisions about sensory stimuli. Trends in Cognitive Sciences, 5,
10-16.

Hanes, D. P., & Carpenter, R. H. S. (1999). Countermanding saccades
in humans. Vision Research, 39, 2777-2791.

Heathcote, A., & Brown, S. D. (2004). Reply to Speckman and
Rouder: A theoretical basis for QML. Psychonomic Bulletin & Re-
view, 11, 577-578.

Heathcote, A., Brown, S. D., & Mewhort, D. J. K. (2002). Quantile
maximum likelihood estimation of response time distributions. Psy-
chonomic Bulletin & Review, 9, 394-401.

Ho, T. C., Brown, S. D., & Serences, J. T. (2009). Domain general
mechanisms of perceptual decision making in human cortex. Journal
of Neuroscience, 29, 8675-8687.

Lunn, D. J., Thomas, A., Best, N., & Spiegelhalter, D. (2000).
 WinBUGS—A Bayesian modelling framework: Concepts, structure,
and extensibility. Statistics & Computing, 10, 325-337.

Maindonald, J. (2008). Using R for data analysis and graphics: Intro-
duction, examples, and commentary. Web-based article downloaded
on 8/12/08 at http://cran.r-project.org/doc/contrib/usingR.pdf.

Mazurek, M. E., Roitman, J. D., Ditterich, J., & Shadlen, M. N.
(2003). A role for neural integrators in perceptual decision making.
Cerebral Cortex, 13, 1257-1269.

Raftery, A. (1995). Bayesian model selection in social research. In P. V.
Marsden (Ed.), Sociological methodology (pp. 111-196). Cambridge:
Blackwell.

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Re-
view, 85, 59-108.

Ratcliff, R. (2002). A diffusion model account of reaction time and
accuracy in a brightness discrimination task: Fitting real data and fail-
ing to fit fake but plausible data. Psychonomic Bulletin & Review, 9,
278-291.

Ratcliff, R., Cherian, A., & Segraves, M. (2003). A comparison of
macaque behavior and superior colliculus neuronal activity to predic-
tions from models of two-choice decisions. Journal of Neurophysiol-
ogy, 90, 1392-1407.

Ratcliff, R. Gomez, P., & McKoon, G. (2004). A diffusion model
account of the lexical decision task. Psychological Review, 111,
159-182.

when we looked at the parameter values estimated in the
LBA where b, A, and Ter were also allowed to vary, we ob-
served almost no change across difficulty conditions. The
same principles can be used to try any number of other
parameter constraints, such as allowing fewer parameters
to change across conditions.

DISCUSSION

We have provided four methods for fitting the LBA to
data—one of those specifically for fitting multiple-choice
data. Our aim was to provide the potential user of the LBA
with three separate methods for implementing estimation.
We (and others, e.g., Wagenmakers et al., 2007) argue that
mathematical models of choice, such as the LBA, can pro-
vide an important tool for data analysis that can provide
much more information about decision processes than the
typical ANOVA method applied to RT and accuracy can. We
have provided three methods of estimation to data to ensure
that the LBA is accessible to users with a range of levels of
programming and mathematical abilities. The Excel spread-
sheet can be straightforwardly applied to new data that are
fairly similar to those from our example data (i.e., a one
within-subjects factor). Given R’s flexibility and computa-
tional power, our R code can be extended to fit accuracy and
RT data from almost any experimental setup. However, this
requires some programming knowledge and changes, not
only to the fit-example.r script, but also to the pq-lba.r code.
We included the WinBUGS implementation of the LBA be-
cause, as Vandekerckhove et al. (2009) argued, it offers a
highly flexible model-fitting framework that is accessible
to someone with relatively little computing background. In
the simple way we describe above, one can choose which
parameters vary across conditions, regardless of the number
of conditions or variables. We direct the reader interested in
possible hierarchical extensions of the LBA, or diffusion
model, to Vandekerckhove et al.’s discussion.

Our intent for this article was to provide multiple ways
to apply the LBA to data, but not to compare these meth-
ods. As shown in Table 1, all methods recovered param-
eters quite accurately when applied to data with 100 or
more observations per condition. The WinBUGS method
provided parameter estimates that were generally the clos-
est match to those used to produce the data. However, the
WinBUGS method took, by far, the longest (around 4 h,
with the R and Excel methods taking around 1 min). The
QMPE method used in the R code is more resilient to
smaller sample sizes and outlying data points than are the
maximum-likelihood method used in the Excel code and
the multiple-choice R code (Heathcote et al., 2002). The
Bayesian framework hierarchical methods, which provide
parameter estimates at the population level rather than in-
dividual participant level, offer an effective way of dealing
with small samples per participant when data from a large
number of participants are available.

AUTHOR NOTE

Address correspondence to C. Donkin, School of Psychology, Uni-
versity of Newcastle, Callaghan, NSW 2308, Australia (e-mail: chris
.donkin@newcastle.edu.au).

FITTING THE LINEAR BALLISTIC ACCUMULATOR 1109

Vickers, D. (1970). Evidence for an accumulator model of psychophysi-
cal discrimination. Ergonomics, 13, 37-58.

Voss, A., Rothermund, K., & Voss, J. (2004). Interpreting the param-
eters of the diffusion model: An empirical validation. Memory & Cog-
nition, 32, 1206-1220.

Voss, A., & Voss, J. (2007). Fast-dm: A free program for efficient diffu-
sion model analysis. Behavior Research Methods, 39, 767-775.

Voss, A., & Voss, J. (2008). A fast numerical algorithm for the estimation
of diffusion model parameters. Journal of Mathematical Psychology,
52, 1-9.

Wagenmakers, E.-J., Lee, M. D., Lodewyckx, T., & Iverson, G.
(2008). Bayesian versus frequentist inference. In H. Hoijtink, I. Klug-
kist, & P. A. Boelen (Eds.), Bayesian evaluation of informative hy-
potheses (pp. 181-207). New York: Springer.

Wagenmakers, E.-J., van der Maas, H. L. J., & Grasman, R. P. P. P.
(2007). An EZ-diffusion model for response time and accuracy. Psy-
chonomic Bulletin & Review, 14, 3-22.

Wasserman, L. (2000). Bayesian model selection and model averaging.
Journal of Mathematical Psychology, 44, 92-107.

NOTES

1. If the Solver option does not appear in the Tools menu, go to Tools >
Add-Ins and check the box labeled “Solver Add-in.”

2. WinBUGS requires Microsoft Windows, and, although a platform-
independent version, OpenBUGS, does exist, the lack of equivalent
multi platform versions of the BlackBox and WBDev software means
that our implementation of the LBA into a Bayesian framework is re-
stricted to the Windows operating system.

3. In our example, the priors for the A, b, and Ter parameters are de-
fined in units of seconds. This means that RTs given to WinBUGS must
also be in units of seconds. This can be done simply by dividing the RTs
in the exampledata.txt file, which are in milliseconds, by 1,000.

4. MCMC chains typically are strongly autocorrelated. Autocorrela-
tion is not a problem for parameter estimation, except that the informa-
tion contributed to the estimate by each sample is reduced. However, it
can be problematic in cases where the variability of samples is important
(e.g., for calculation of confidence intervals on estimates).

5. We use the mean of the posterior distribution to determine bias in
parameter estimates in WinBUGS. Note that we also could have used an
alternate measure of central tendency, such as the median.

SUPPLEMENTAL MATERIALS

The methods for estimating LBA parameters discussed in this article—
an Excel worksheet, R scripts, and WinBUGS code—may be downloaded
from http://brm.psychonomic-journals.org/content/supplemental.

Ratcliff, R., & Rouder, J. N. (1998). Modeling response times for
two-choice decisions. Psychological Science, 9, 347-356.

Ratcliff, R., & Smith, P. L. (2004). A comparison of sequential sam-
pling models for two-choice reaction time. Psychological Review,
111, 333-367.

Ratcliff, R., Thapar, A., & McKoon, G. (2001). The effects of aging
on reaction time in a signal detection task. Psychology & Aging, 16,
323-341.

Ratcliff, R., Thapar, A., & McKoon, G. (2003). A diffusion model
analysis of the effects of aging on brightness discrimination. Percep-
tion & Psychophysics, 65, 523-535.

Ratcliff, R., & Tuerlinckx, F. (2002). Estimating the parameters of
the diffusion model: Approaches to dealing with contaminant reaction
times and parameter variability. Psychonomic Bulletin & Review, 9,
438-481.

Reddi, B. A. J. (2001). Decision making: The two stages of neuronal
judgement. Current Biology, 11, 603-606.

Roitman, J. D., & Shadlen, M. N. (2002). Response of neurons in the
lateral intraparietal area during a combined visual discrimination reac-
tion time task. Journal of Neuroscience, 22, 9475-9489.

Schall, J. (2001). Neural basis of deciding, choosing and acting. Nature
Reviews Neuroscience, 2, 33-42. doi:10.1038/35049054

Smith, P. L. (2000). Stochastic dynamic models of response time and
accuracy: A foundational primer. Journal of Mathematical Psychol-
ogy, 44, 408-463.

Smith, P. L., & Ratcliff, R. (2004). Psychology and neurobiology of
simple decisions. Trends in Neurosciences, 27, 161-168.

Smith, P. L., & Ratcliff, R. (2009). An integrated theory of attention
and decision making in visual signal detection. Psychological Review,
116, 283-317.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & van der Linde, A.
(2002). Bayesian measure of model complexity and fit. Journal of the
Royal Statistical Society B, 64, 583-639.

Vandekerckhove, J., & Tuerlinckx, F. (2007). Fitting the Ratcliff dif-
fusion model to experimental data. Psychonomic Bulletin & Review,
14, 1011-1026.

Vandekerckhove, J., & Tuerlinckx, F. (2008). Diffusion model anal-
ysis with MATLAB: A DMAT primer. Behavior Research Methods,
40, 61-72.

Vandekerckhove, J., Tuerlinckx, F., & Lee, M. D. (2009). Hierar-
chical diffusion models for two-choice response times. Manuscript
submitted for publication.

Van Zandt, T. (2000). How to fit a response time distribution. Psy-
chonomic Bulletin & Review, 7, 424-465.

Van Zandt, T., Colonius, H., & Proctor, R. W. (2000). A comparison
of two response time models applied to perceptual matching. Psy-
chonomic Bulletin & Review, 7, 208-256.

APPENDIX
Setting Up WinBUGS

WinBUGS can be obtained from www.mrc-bsu.cam.ac.uk/bugs/. To install WinBUGS, download the in-
stall file (WinBUGS14.exe). After the download completes, run the executable, and it will, by default, install
 WinBUGS to the program files folder. Note that the install directory may be different for operating systems other
than Windows XP; the reader needs only to take note of their WinBUGS install directory and adjust any future
folder references we make. Next, you are required to complete a short registration form that allows a registra-
tion key to be sent to the e-mail address you provide. The e-mail contains the registration key and instructions
on how to register WinBUGS.

Although WinBUGS has a large number of prespecified distributions for which it can conduct a Bayesian
analysis, it does not have the appropriate PDF for the LBA. We have, therefore, provided this in the BugsLBA.zip
folder. Making the LBA PDF accessible to WinBUGS necessitates the use of two additional pieces of software:
the BlackBox Component Builder and the WBDev. Instructions for their installation are as follows:

1. Extract the lba.odc and Distributions.odc files from the BugsLBA.zip folder.
2. Download the WBDev from www.winbugs-development.org.uk/. From the home page, navigate to the

WBDev page and download the software. The contents of the .zip file should be unpacked into the WinBUGS
directory. Open the .txt (wbdev_01_09_04.txt at the time of writing) file that you just extracted, and follow the
instructions contained in the file to install the WBDev software.

1110 DONKIN, AVERELL, BROWN, AND HEATHCOTE

APPENDIX (Continued)

3. Download the BlackBox Component Builder from www.oberon.ch/blackbox.html. In the present article, we
refer to Version 1.5. After the download completes, run the SetupBlackBox15.exe file, which installs the Black-
Box Component Builder 1.5. This adds a folder to C:\Program Files called BlackBox Component Builder 1.5.

After all of the necessary programs have been downloaded, the next step is to compile the LBA PDF into
WinBUGS via BlackBox. After completing the steps below, you will be able to use WinBUGS to fit the LBA
to data.

1. Open the WinBUGS directory, copy the entire contents of the WinBUGS folder, and paste them into the
newly created BlackBox directory (C:\Program Files\BlackBox Component Builder 1.5\ by default in Windows
XP); choose “Yes” to all the “Replace existing file?” requests.

2. Copy lba.odc to the C:\Program Files\BlackBox Component Builder 1.5\WBDev\Mod directory.
3. Open the BlackBox Component Builder program; this should now closely resemble the usual WinBUGS

environment. Use File > Open to open lba.odc. Press Ctrl K to compile lba.odc. An “ok” message should
appear in the bottom left corner.

4. Put Distributions.odc into the C:\Program Files\BlackBox Component Builder 1.5\WBDev\Rsrc\ directory.
Close down any BlackBox or WinBUGS windows that are still running. The next time BlackBox is run, the LBA
PDF should be ready to use.

For more information on the procedure outlined above, as well as on the use of diffusion models in WinBUGS,
see Vandekerckhove et al. (2009).

(Manuscript received January 4, 2009;
revision accepted for publication May 25, 2009.)

