
Behavior Research Methods
2008, 40 (I), 21-32
doi: 10.3758/BRM.40.1.2 I

RAP: A computer program for exploring
similarities in behavior sequences using

random projections

VICENC QUERA
Universidad de Barcelona, Barcelona, Spain

A computer program (RAP, for random projection) for exploring similarities between and within sequences
of behavior is presented. Given a time window of a sequence, the program calculates a signature, a real-valued
vector that is a random projection of the contents of the window (i.e., the codes occurring within it and their
relative location, or onset and offset times) into an arbitrary K-dimensional space. Then, given two different
time windows from the same sequence or from different sequences, their similarity is computed as an inverse
function of the Euclidean distance between their respective signatures. By defining moving (overlapped or not
overlapped) windows along each sequence and calculating similarities between every pair of windows from
the two sequences, a map of similarities or possible recurrent patterns is obtained; the RAP program represents
them as gray-level lattices, which are displayed as mouse-sensitive images in an HTML file. Computation of
similarities is based on the random projection method, as presented by Mannila and Sepplinen (2001), for the
analysis of sequences of events. The program reads sequence data files in Sequential Data Interchange Standard
(SDIS) format (Bakeman & Quera, 1992, 1995a).

A pattern in a behavior sequence exists when there tend
to be identical or similar repetitions of certain portions
of it, which makes it possible to predict future behaviors
from past ones, within some probability interval. Common
methods for detecting such patterns include the fitting of
Markov models in continuous and discrete time (e.g.,
Gardner 8 Hartmann, 1984), survival analysis in con-
tinuous tinie (e.g., Griffin & Gardner, 1989; Stoolmiller
& Snyder, p006), lag-sequential analysis (e.g., Bakeman,
1978; Bakeman & Quera, 1995a; Sackett, 1979), log-linear
model fitting to multidimensional contingency lag tables
(e.g., Bakeman, Adamson, & Strisik, 1995; Bakeman &
Quera, 1995b), and, more recently, analysis of sequence
organization based on proximity coefficients among be-
havioral codes (Taylor, 2006). What these methods have
in common is (1) the aim of summarizing relationships in
the sequences by means of quantitative global measures,
and (2) the use of asymptotic statistical techniques for ob-
tainingp values that indicate whether or not the sequences
contain patterns, and for pointing to statistically signifi-
cant temporal relationships among behavioral codes.

Alternative methods for the analysis of sequences have
been developed that provide information about simi-
larities within or between sequences, and many of them
allow for visual exploration of possible patterns as well.
These methods can be viewed as complementary to those
described above, since it is usually highly advisable to
explore the sequences of behavior for possible patterns

before carrying out an analysis based on inferential statis-
tics. Methods that search for similarities and repetitions in
sequences abound in biological sequence analysis, which
consists mainly of aligning nucleotide sequences by
means of dynamic programming algorithms (e.g., Durbin,
Eddy, Krogh, & Mitchison, 1998); these algorithms have
also been applied when researchers have been searching
for similarities between sequences of sociological events
(Abbott & Barman, 1997), aligning action protocols col-
lected in human—computer interaction settings (Fu, 2001),
and calculating observer agreement for event sequences
(Quera, Bakeman, & Gnisci, 2007). Specific algorithms
have been proposed for searching for repeated patterns
in the analysis of interactive behavior (T-patterns, Theme
software; Magnusson, 2000), in genomic analysis (maxi-
mal repeats, REPuter software; Kurtz et al., 2001), and in
the data mining of sequences of alarms in telecommuni-
cation networks (e.g., Mannila & Toivonen, 1996; Moen,
2000).

The use of dynamic-programming algorithms and
repetition-searching algorithms in both cases requires ex-
tensive calculation; the former have the advantage ofprovid-
ing optimal alignments between sequences (i.e., alignments
that minimize disagreements between them), whereas some
of the latter (specifically, Theme and REPuter) yield visual
displays indicating where patterns occur in the sequences
being compared. Mannila and Seppfinen (2001) proposed
a method for exploring repetition of similar situations

V. Quera, vquera®ub.edu

21	 Copyright 2008 Psychonomic Society, Inc.

22	 QUERA

(i.e., similar temporal organization of codes) in sequences
of alarms in telecommunication networks. It is based on
representing each code by a random vector in a space of
an arbitrary number of dimensions and then defining time
windows in the sequences and representing them by vecto-
rial functions of the codes occurring within them and their
relative locations; finally, Euclidean distances between the
points representing the windows are computed. A similar
method is used for calculating the distance between genes
(e.g., Kang, 2005). When a certain number of codes are
represented by random points in a space of arbitrary dimen-
sions, it is said that codes are randomly projected into that
space; if the number of dimensions of the space is lower
than the number of codes, a dimensionality reduction is
carried out. A dimensionality reduction is a powerful tech-
nique used in the analysis of multidimensional data that
aims to represent a great number of variables by a subset
of variables while capturing as much of the variation in the
original data as possible. Applications of random projection
include image and text processing (Achlioptas, 2003; Bing-
ham & Mannila, 2001; Sahlgren, 2005), machine learning
(Blum, 2006), and data mining in general. Although the
most common purpose of random projection is reducing
dimensionality while preserving essential properties of
the data, "another, perhaps less intuitive scenario, is when
projection to a lower-dimensional space actually highlights
essential properties" (Vempala, 2004, p. 4). In this case, the
purpose of using random projection to compute similarities
between time windows in sequences is to highlight the parts
of the sequences that tend to repeat and, thus, to highlight
where patterns can probably be found.

In this article, a program is presented that computes simi-
larities among sections defmed in two sequences of behav-
ior, according to the method outlined by Mannila and Sep-
pänen (2001), and displays them as cells in a rectangular
lattice, using gray levels to indicate degrees of similarity;
this kind of graph is similar to the one used in dot matrix
methods to explore similarities between amino acid se-
quences in genome analysis (e.g., States & Boguski, 1991).
The program reads sequences of behavior from a data file
and displays similarity lattices for pairs of sequences speci-
fied by the user. The program is written in Borland C+ +
and Delphi Pascal and runs on Windows systems.

BEHAVIOR SEQUENCES

The random projection (RAP) program accepts SDIS
data files, a format for representing sequences of behavior
that defines five types of data: event, state, timed event,
interval, and multievent sequences (Bakeman, 2000;
Bakeman, Deckner, & Quera, 2005; Bakeman & Quera,
1992, 1995a; Quera & Bakeman, 2000). Following is an
overview of the first three data types.

Let C be a coding scheme, C = {c 1 , c2, , cm}, where
ci is a code representing a discrete behavioral state and
M is the number of different mutually exclusive and ex-
haustive (ME&E) codes. For example, in a study on joint
attention during adult-infant interaction, the infant's ver-
bal behavior could be represented by this coding scheme
(based on Mas, 2003): C = {0 (the infant utters an ono-

matopoeia), W (the infant utters a word), P (the infant ut-
ters a phrase), N (the infant does not respond)). Suppose
that behavior was coded using this scheme and that only
the order in which the codes occurred was considered rel-
evant, but not their durations and onset times. During an
observation session, an event sequence would have been
obtained, S: s 1 s2 . . . s,,, where si are codes belonging
to C and n is the length of the sequence—for example,
S:WWPNWNON.

However, if code durations or onset and offset times were
considered important, the following timed sequence would
have been obtained: S: s2,t2-u2 . . . s„,t„-u„, where
dashes separate onset and offset times for each code (re-
spectively, ti and ui), expressed in appropriate time units,
and code si's duration is given by di = ui -ti. If the codes are
ME&E, that is a state sequence in which the onset time for
a code equals the offset time for the code that immediately
precedes it (and therefore, ti .4. 1 > ti); total duration for se-
quence S equals d = un - t1—for example, S: W,0-2 W,2-3
P,3-6 N,6-15 W,15-17 N,17-28 0,28-29 N,29-41, where
time units are seconds. Note that in a state sequence, only
onset times for the codes are in fact necessary, and the offset
time for the last code must be explicitly stated.

If not all codes in C are mutually exclusive (i.e., some
of them may occur simultaneously) or if they are not ex-
haustive (i.e., some time units have no codes assigned),
they can be represented as a timed event sequence. In the
example above, if infant gestural codes are included and
code N is removed, the coding scheme could be C = {0,
W, P, S (simple, or spontaneous, gesture), R (relational
gesture), J (joint gesture—e.g., pointing)). In fact, two
separate coding schemes could be defmed for verbal and
gestural behavior: Cv = {0, W, P} and CG = {S, R, J}.
Codes in each scheme are mutually exclusive, but ges-
tures and verbal utterances are not, since they can occur
simultaneously; also, since the infant may remain silent or
not gesture during certain time periods, the codes are not
exhaustive. An example of a timed event sequence based
on these coding schemes is S: W,0-2 J,0-6 P,3-6 S,10-12
W,15-17 J,16-17 P,25-30. In the example, several codes
may overlap in time. Therefore, in these cases, either
4+ ui or ti .fi > u1. In the example, W,0-2 and J,0-6
overlap for 2 time units, whereas J,0-6 and P,3-6 overlap
for 3 time units. There are also three different time gaps
during which no code occurs, from 6 through 10, from 12
through 15, and from 17 through 25.

SIMILARITY BETWEEN TIME WINDOWS

In order to compute the similarity between two sections,
or time windows, belonging to different sequences S i and
S2, the program first represents each section by a point
in a K-dimensional space; then it computes the distance
between the two points and transforms it into a similarity
measure by means of an appropriate function. The steps
will be detailed in the following paragraphs.

Mapping the Codes
For each code ci in the coding scheme, a mapping vector

p k(c i) with K dimensions is defmed, and its components are

EXPLORING SIMILARITIES IN SEQUENCES 	 23

Table 1
Two Alternative Sets of Mapping Vectors in 10 Dimensions for Six Infant Verbal and Gestural Behavioral Codes

Code	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10

A. 10-Dimensional Coordinates, Gaussian Distribution
O 1.0972	 0.9482 -1.6819 -0.6289 -0.2642 -0.2462 -0.1101 -2.2061 -0.8089 	 0.3262
W	 -0.2128	 0.4906 -0.6881	 -2.3814 -0.2231 -1.2982	 0.6998 -0.0371	 0.8672 -0.9148
P 1.0315 -0.0886	 0.8352	 1.2860	 0.9168 -0.5167 -1.9647 -0.2173	 1.6315	 -1.1443
S	 -2.0327	 0.8232	 1.5112 -0.9692 -1.1082 -0.6330 -1.9665 -1.0093 -0.8230 	 1.2079
R	 0.2854	 0.9361 -0.3157 -0.4925 -0.3920 -1.0767 -0.5467 	 0.3619	 0.5237 -1.7015

0.8646	 0.6140 -0.7695	 1.4214	 0.2499 -0.4185 -0.3891	 0.9090 -0.4800 -1.0040

B. 10-Dimensional Coordinates, Three-Valued Sparse Distribution
O 0.0000 -1.7321	 0.0000 -1.7321	 0.0000	 0.0000	 1.7321	 -1.7321	 0.0000	 0.0000
W	 0.0000 -1.7321	 0.0000	 1.7321	 1.7321	 0.0000	 0.0000 -1.7321	 0.0000	 0.0000
P 0.0000	 0.0000	 0.0000	 0.0000	 0.0000	 0.0000	 1.7321	 0.0000 -1.7321	 0.0000
S	 -1.7321	 0.0000 -1.7321	 0.0000 -1.7321	 0.0000	 0.0000 -1.7321	 0.0000	 0.0000
R	 0.0000 -1.7321	 0.0000	 1.7321	 -1.7321	 0.0000	 0.0000 -1.7321	 0.0000 -1.7321
J	 0.0000 -1.7321	 0.0000	 0.0000	 -1.7321	 1.7321	 -1.7321	 -1.7321	 -1.7321	 -1.7321

assigned random real values that are sampled from some
distribution, as the Gaussian or unit normal distribution,
with a mean of zero and a standard deviation of one. Vector
components are coordinates in a K-dimensional space, and
thus we say that codes are projected into that space, where
each code is represented by one point. IfK < M, the projec-
tion reduces the dimensionality of the data. Table lA shows
six mapping vectors in K = 10 dimensions for each of the
codes in the infant verbal and gestural coding scheme; co-
ordinate values were sampled from the normal unit distribu-
tion. For each code, the vector components define one point
in a 10-D space. Other distributions are possible besides the
normal unit one; Achlioptas (2003) proposed two sparse
distributions: a distribution with only two possible values
for the ranlom variable, x = +1 or -1, withp = 1/2; and
a distribution with only three values, x = + .43, 0, or -43,
with p = 11/6,2/3, and 1/6, respectively. The sparse distri-
butions have the advantage of being computationally sim-
pler than the normal one and still provide sensible results.
Table 1B shows six mapping vectors in K = 10 dimensions,
sampled from the three-valued sparse distribution for each
code in the infant verbal and gestural coding scheme. As
Bingham and Mannila (2001) indicate, vectors pt(c) are
not linearly independent, and thus the projections are not
orthogonal; however, obtaining orthogonal vectors is com-
putationally expensive, and "in a high-dimensional space,
there exists a much larger number of almost orthogonal
than orthogonal directions. Thus, vectors having random
directions might be sufficiently close to orthogonal" (ac-
cording to Hetch-Nielsen, 1994; the quote is from Bingham
& Mantilla, 2001, p. 246).

Defining Time Windows
Two sequence locations are specified in sequences S 1

and S2, marking the onset of the two sections, and window
width w is defmed. Both the locations and the width are
expressed in either events or time units, depending on the
SDIS data type. For example, given the following timed
event sequences,

S I : W,0-2 R,1-6 P,3-6 S,10-12 W,15-17 S,16-17
P,25-30

and

S2: W,5-8 R,8-9 P,9-13 S,15-18 W,20-23 J,22-23
R,24-25 P,31-33,

we can define an arbitrary window for the first sequence
starting at 8 and another window for the second one start-
ing at 12, and set w = 25 time units. Window contents
are thus V I : 8[S,10-12 W,15-17 S,16-17 P,25-30]33 and
V2: 12[S,15-18 W,20-23 J,22-23 R,24-25 P,31-33]37,
where square brackets enclose the window contents, and
the onset and offset times of the windows are indicated
outside the brackets; offset times are exclusive.

Computing Wmdow Signatures
A signature is computed for each time window by mul-

tiplying the components of the mapping vectors that cor-
respond to each code occurrence within the window by a
function of the relative locations of the codes; for window
V; (i = 1,2), the kth coordinate is given by

yak =± pk (si) • f (t r uy),
ja.1

where the sum is over the R. code occurrences within the
window V; (i = 1, 2), su is the jth code occurring in it,
and to and are its onset and offset times. The signature
is thus a K-dimensional, real-valued vector that identi-
fies the contents of the window quantitatively; in other
words, the signature is a point in a K-dimensional space
representing the contents of the window. The choice of K
is arbitrary; when it is increased, high similarities stand
out and low ones tend to fade away. No guideline exists
as to which is the best value of K (see below); a minimum
of K = 5 or K = 10 would seem to be advisable (Man-
nila & Seppinen, 2001). In matrix form, the signature
for window Vi is defmed as y, = M, • where y is the
K X 1 signature vector, M1 is a K X R matrix contain-
ing the components of the mapping vectors (rows) cor-
responding to each code occurrence within window V i
(columns), and fi is an R X 1 vector whose components
are projection functions.

24	 QUERA

-2.033 -0.213 -2.033 +1.031 -

Y12 +0.823 +0.491 +0.823 -0.089

YI3 +1.511 -0.688 +1.511 +0.835

Y14 -0.969 -2.381 -0.969 +1.286 f (10, 12) -

YIS -1.108 -0.223 -1.108 +0.917 f (15,17)
.:•-•	 fl =371	 M I

Y16 -0.633 -1.298 -0.633 -0.517 f(16, 17)

Y17 -1.966 +0.700 -1.966 -1.965 f (25, 30)_

Y18 -1.009 -0.037 -1.009 -0.217

YI9 -0.823 +0.867 -0.823 +1.631

_YI,10 +1.208 -0.915 +1.208 -1.144-

Thus, from the mapping vectors shown in Table 1, the
signature for window V I is given in the matrix above. Col-
umns in matrix M I contain the mapping vectors for codes
S, W, S, and P in the order in which they occur within
window V I . A linear projection function (LPF) that takes
into account the onset time can be used:

T - t.
f (t.Y Y

,u..)=
K,' , (1)

where T is the window offset time. Choosing T as the
window offset time is arbitrary. Other points, such as the
window onset time, could be chosen instead. In any case,
what matters is that for each code occurrence, the function
returns a value representing the relative position of the
code's onset time within the window.

Equation 1 yields values that are greater than 0 and less
than or equal to 1 (0 would indicate that the code occurs
very near the window termination, whereas 1 would indi-
cate that it occurs when the window starts). For example,
for the occurrence W,15-17, the projection function yields
(33 - 15)/25 = .72. The (transposed) signature y i for win-
dow V I equals

[-3.075 +1.642 +2.190 -2.854 -1.640

-2.113 -3.271 -1.711 -0.170 +0.908].

Likewise, in order to obtain the signature for window V2,
a matrix M2 with R = 5 columns, one per code occurrence
(S, W, J, R, P), and a vector f2 with five projection func-
tions are necessary. The signature y2 is then

[-1.019 +1.892 +0.436 -1.567 -0.961

-2.375 -2.244 -0.232 +0.241 -1.321].

Alternatively, a projection function taking code dura-
tions into account, and not only their onset times, could
be used by applying LPF to every time unit when the code
occurs-that is,

f (t e tty)= 1(T - I w.
nmt,

Other possible projection functions are the exponential,
f(touy) = exp[(T - ty)/w - 1] (Mannila & Sept:linen,

2001), which weighs codes higher as their onset times
approach the end of the window; the sequential order-
projection function (SPF),f(ty,:ty) = r, which simply as-
signs each code occurrence its sequential position r within
the window and ignores its onset time; and the occurrence
function, f(touy) = 1, which weighs all codes occurring
within the window equally and, thus, for which only the
fact that a code occurs, but neither its sequential order nor
its exact onset and offset times, is considered important.

Computing Window Similarity
Given the signatures for the two windows, the Euclid-

ean distance between them is computed:

D (VI , V2)= 4	 2/(Yik Y2k) •

2	 5	 10
	

20
Space Dimension (K)

Figure 1. Mean distances among three windows (V1,V2, andV31
see the text), for space dimensions K = 2, 5, 10, and 20. For each
K, mapping vectors were assigned random Gaussian coordinates
1,000 times independently, and distances were computed between
the resulting window signatures. The top, middle, and bottom
lines correspond to mean D(V2 , V3), D(V2, V3), and D(Vt, V2), re-
spectively; vertical segments indicate standard deviations.

EXPLORING SIMILARITIES IN SEQUENCES 	 25

Figure 2. Similarity lattices for two timed event sequences of infant verbal and ges-
tural behavior, obtained using a Gaussian random projection with If = 10 dimensions.
Window width was set to 15, and starting times to 5 for both sequences. (A) Linear
projection function, with shift equal to 15. (B) Sequential order projection function,
with shift equal to 15. (C) Linear projection function, with shift equal to 1 and, thus,
overlapping successive windows. Codes and their onset times are shown for each se-
quence. Similarities between several different pairs of time windows are indicated.

26 QUERA

The distance between two windows with identical contents
equals zero, whereas any differences regarding the code
occurrences, their relative locations within the windows,
or both (depending on the kind of projection function
used) will increase the distance. Using LPF, the distance
between the two previous windows is D(VI ,V2) = 4.235.
Distances can be converted into similarity measures
by means of an inverse function, such as G(V i ,V2) =
exp[-D(V i ,V2)]. The negative exponential function is
particularly useful because it highlights small distances
by transforming them into large similarities, whereas big
distances are transformed into negligible similarities;
moreover, the resulting similarities are bounded between
0 and 1. Two windows with identical contents have G = 1,
whereas any differences make G decrease toward 0. The
similarity between the two previous windows is, thus,
G(VI ,V2) = exp(-4.235) = .014.

Since the mapping vector coordinates are random val-
ues, resampling them will result in different window sig-
natures. Therefore, the actual distances between windows
are likely to vary if the mapping vectors are resampled.
Figure 1 shows mean distances among three windows—
V3: 55[J,50-52 R,53 P,60-70 S,69]80, and previous V i

and V2—for different space dimensions (K = 2, 5, 10, and
20); for each K, mapping vectors were assigned random
Gaussian coordinates 1,000 times independently, LPF was
used, and distances were computed between the result-
ing window signatures. Mean distances increase when the
dimensionality increases and consistently indicate that,
on average, D(V i , V3) is greater than both D(V2, V3) and
D(Vi , V2). However, the three distributions of distances
largely overlap when K is low, as Figure 1 indicates. Per-
centages of cases in which D(V i , V3) > D(V2, V3) >
D(Vi, V2) are 61.1%, 70.2%, 80.7%, and 87.4% for K =
2, 5, 10, and 20, respectively, whereas percentages of
cases in which D(Vi , V3) > D(Vi, V2) > D(V2, V3) are
31.4%, 28.7%, 19.3%, and 12.6%, respectively. There-
fore, increasing the space dimensionality tends to remove
overlapping and maintain the order of distances.

SIMILARITY LATTICES

In order to search for a defined pattern (a short-sequence
Si with a total duration di) in a target sequence (a longer
sequence S2 with a total duration d2, where di << d2),
a time window of width w = d i is moved along the tar-
get sequence; each time the moving window is applied
to S2, a similarity is calculated between that window and
Si . If similarities were represented graphically against the
onset time of the successive windows, peaks in the graph
would indicate high similarity regions where the pattern
sequence tends to appear. Successive moving windows
can overlap or not; two overlapped windows in the target
sequence will probably have almost identical similarities
with respect to the pattern. In order to avoid such redun-
dancy, it may be judged preferable to use nonoverlapping
windows or windows that overlap in a small portion of
their widths. It must, therefore, be specified how many
time units (s) the successive windows must be shifted for-
ward along the target sequence: (1) If s < w, successive

windows will be overlapped; (2) ifs = w, they will be con-
catenated and not overlapped; (3) if s > w, they will not
be concatenated, and some regions in the target sequences
will be skipped.

However, the exploration of sequences does not need to
be directional; that is, given two sequences of comparable
durations, we may be interested in exploring which sec-
tions in the first sequence are similar to sections in the sec-
ond one, and vice versa. Even more, the two sequences can
be the same sequence, and we may want to explore which
sections in it tend to repeat. More generally, given two se-
quences S i and S2 with total durations d i and d2, window
width w, and shift s, both much smaller than di and d2, and
a starting time tp for sequence p (p = 1, 2), a total of np

successive windows can be explored for sequence p whose
onset times are tp, tp + s, tp + 2s, . tp + (np - 1)s within
the sequence; therefore, in total, n i n2 similarities can be
calculated. For example, given the following timed event
sequences (where offset times are omitted when they equal
the corresponding onset time plus one),

S i : P,5-18 S,5 S,13-20 P,30-54 S,34-37 S,42-46
S,58-61 W,59-61

Figure 3. Similarity lattices for two timed event sequences of in-
fant verbal and gestural behavior, obtained using a Gaussian ran-
dom projection with K =-- 10 dimensions, and the linear projection
function for a series of window widths, 1 through 15. Window
shift was set to 1 for all cases; thus, successive windows overlap.

EXPLORING SIMILARITIES IN SEQUENCES 	 27

S2: 0,5 J,5 0,12 J,16-18 0,17-25 P,36-47 S,36
S,44-50 P,58-83 S,63-66 S,70-74 W,87-89
S,91-94 P,91-105 S,102-105 0,111 R,111-123
0,120-126 J,125-131,

we set w = s = 15 and starting times ti = t2 = 5; there-
fore, the number of windows are n = 4 and n2 = 9, with
onset times of 5, 20, 35, and 50 for sequence S i and 5, 20,
35,..., 125 for sequence S2. In total, 4 9 = 36 similari-
ties are computed. Similarities can be represented in a 3-D
graph in which window onset times for sequences S i and
S2 correspond to the x- and y-axes, respectively, and win-
dow similarities correspond to the z-axis; alternatively, an
n i X n2 lattice with cells representing similarity values as
gray levels can be used.

Figure 2A shows the lattice obtained by the RAP pro-
gram corresponding to the comparison between previous
sequences S I and S2, using LPF and Gaussian mapping vec-
tors with K= 10. Each cell represents a similarity between
two windows; the darker the cell, the higher the similar-
ity; white cells indicate either a very low similarity or a

pair of windows with no behavioral codes in common (e.g.,
the cell in the top left corner). In the figure, only the onset
times of the codes are shown, since their offset times are
disregarded in Equation 1; information about similarity and
window contents is shown for three cells, with high, me-
dium, and low similarities; a group of three diagonal cells
with medium similarities can be seen, which correspond to
three consecutive windows in both sequences containing
identical codes in similar relative locations: windows 5[P,5
S,5 S,13]20 and 35[P,36 S,36 S,44]50; windows 20[P,30
S,34]35 and 50[P,58 S,63]65; and windows 35[S,42]60 and
65[S,70]80, from sequences S i and S2, respectively. Fig-
ure 2B shows the similarity lattice for the same sequences,
with w = s = 15 and starting times t i = t2 = 5, using SPF.
Similarities represented in Figure 2B tend to be more ex-
treme than those in Figure 2A, because SPF is less strict than
LPF; in Figure 2B, four cells indicate maximum similarity
between windows containing codes that occur in identical
orders within their corresponding windows.

Detection of similar patterns is highly dependent on the
window width chosen. If w is big, as compared with the

Figure 4. Similarity lattice, a zoomed section from Figure 2C. Rows and columns correspond to
time windows in the rust and second sequences, respectively. Window width was set to 15, and shift
was set to 1; thus, successive windows overlap. Contents for each window are shown, including its
onset and offset times, the codes occurring within the window, and their onset times.

28 QUERA

total sequence duration, few pairs of windows in the two
sequences are likely to contain identical or highly simi-
lar codes (with identical or highly similar relative onset
times) unless the two sequences as a whole are identical
or nearly identical; on the other hand, if w is small, the
windows will probably contain few codes, and therefore,
long patterns cannot be detected.

Overlapped Windows
As was stated above, successive overlapping windows

are likely to contain very similar information. Figure 2C
shows one lattice for previous sequences S 1 and S2, ob-
tained using LPF, with w = 15 and s = 1. Since successive
windows overlap and are shifted one time unit, the number

of windows for each sequence equals the total duration
of the sequence (i.e., n 1 = di = 56, and n2 = d2 = 126);
therefore, both lattices are 56 X 126. Comparing Figures
2A and 2C, it is obvious that overlapping windows yield
a much more precise representation of similarity. As the
window shift increases, that fine-grained picture progres-
sively disappears, as Figure 3 indicates; in that figure, lat-
tices corresponding to w = 15, and s = 1 through 15 are
displayed using LPF; lattice size decreases from 56 X 126
(top) to 4 X 9 (bottom).

By increasing shift, regular samples of the lattice cor-
responding to s = 1 are obtained. When s = 2, the 1st,
2nd, 3rd, and 4th windows of a sequence correspond to its
1st, 3rd, 5th, and 7th windows for s = 1; when s = 3, the

Figure 5. Signatures of two series of time windows, originally 10-D, projected
onto a 2-D space. The time windows correspond to those compared in Figure 4.
(A) Signatures for time windows in the first sequence, from window 51P,5 S,5
5,13120 through window 32[5,34 5,42[47. (B) Signatures for time windows
in the second sequence, from window 34[P,36 S,36 5,44149 through window
60[5,63 5,70175. Distances between similar trajectories correspond to darker
cells in Figure 4.

EXPLORING SIMILARITIES IN SEQUENCES 	 29

1st, 2nd, 3rd, and 4th windows correspond to the 1st, 4th,
7th, and 10th windows fors = 1, and soon. Consequently,
given two shifts, s and s, where s' is a multiple of s, the lat-
tice obtained for s' is a regular sample of the one obtained
for s. For example, in Figure 3, the lattices for s = 4 are
regular samples of those for s = 2, and the lattices for s =
10 are regular samples of those for s = 5.

Zooming In on the Lattice
As Figure 2C shows, when successive windows overlap

and shift is small, smooth similarity gradients between
neighbor cells are obtained when LPF is used. In particu-
lar, rectangular regions in the lattice with high similari-
ties values along their diagonals are found. For example,
a zoomed section of Figure 2C is displayed in Figure 4:
from window 5[P,5 S,5 S,13]20 through window 32[S,34
S,42]47 (rows, sequence S i), and from window 34[P,36
S,36 S,44]49 through window 60[S,63 S,70]75 (columns,
sequence S2). The upper left 8 X 8 square with grayed
cells indicates similarities between windows containing
event S,13 from sequence S i and event S,44 from se-
quence S2. Black cells appear along the diagonal because
the relative locations of code S within the respective row
and column windows are identical: event S,13 is located
8 time units before the offset of window 6[S,13]21 (row),
and likewise, event S,44 is located 8 time units before the
offset of window 37[S,44]52 (column). Moreover, they
are both located 7 time units before the offsets of windows
7[S,13]22 (row) and 38[S,44]53 (column), respectively,
and so on. Gray off-diagonal cells indicate that the cor-
responding row and column windows contain the same
events, bu their locations within their windows are not
identical; fbr instance, event S,13 is located 10 time units
before thel offset of window 7[S,13]23 (row), whereas
event S,44 is located 13 time units before the offset of
window 41 [S,44]56 (column). The lower right diagonal
cell in that 8 X 8 square is gray but not black, because
window 44[S,44 P,58]59 (column) contains both events
S,44 and P,58, whereas window 13[S,13]28 (row) contains
only event S,13.

Figure 5 provides more insight as to how the similari-
ties represented in Figure 4 are obtained from the win-
dow signatures. Signatures for the windows in sequence
S I , from 5[P,5 S,5 S,13]20 through 32[S,34 S,42]47, are
represented as points in a 2-D space in Figure 5A; for
simplicity, the 10-D signatures have been projected into
the third and fourth dimensions of the space. Some points
are identified by the onset time of the corresponding win-
dows (5, 6, 13, 16, and so on), and groups of points on a
single line are identified by the codes that are shared by
all of them (e.g., S,13 for all points between those marked
6 and 13). Likewise, signatures for the windows in se-
quence S2, from 34[P,36 S,36 S,44]49 through 60[S,63
S,70]75, are represented in Figure 5B. The similarities
previously shown in Figure 4 had been transformed from
the distances from every point in Figure 5A to every other
point in Figure 5B (albeit taking all K = 10 dimensions
into account); note that, as certain sections in the trajec-
tories in Figures 5A and 5B are almost identical (e.g.,
points marked 6 to 13 in Figure 5A and points marked 37
to 43 in Figure 5B), the distances between them are small
or even null, thus yielding high similarities (e.g., black
cells along the diagonal of the upper left 8 X 8 square;
Figure 4).

Exploring Event Sequences
Event sequences can be viewed as a particular case of

timed event sequences in which one time unit corresponds
to one behavior occurrence and every time unit contains
one and only one code. As a result, an event sequence like
WWPNWNON can be alternatively represented as the
following timed event sequence where times are actually
sequential orders, W,1 W,2 P,3 N,4 W,5 N,6 0,7 N,8 (offset
times are omitted). For such sequences, every time unit
within a window will contain one code, which is unlikely
for regular timed event sequences.

As an example, consider the following event sequences
shown in Figure 6, which represent verbal interaction
in a couple. Each verbal utterance of wife and husband
is assigned one code, and only the order in which the

Event;
% Sequence 1
HApp WEmp WEmo
WEmo HEmo WEmo
HEmo WEmo WEmo
WEmo HEmp HNeg
WEmo WCom HEmo
HEmp HEmo WEmo
% Sequence 2
WEmo HEmo HEmp
HCom HNeg WEmp
HApp WEmp HEmp
WApp HCom WCom
% Sequence 3
HCom WEmo HEmo
HEmp WEmp WEmo
WApp HApp WEmo
HApp WEmp HEmo
WEmo /

HEmp WEmp WNeg WNeg HApp WEmo HEmo WEmp HEmp
HEmo WEmp HEmo WEmo HApp WEmp WEmo HApp HApp
HApp HCom WNeg WNeg WCom HEmo WEmo HEmp WEmp
HOth HCom WOth WEmo WApp HApp WEmp WEmo HApp
WEmp HEmp WEmp HEmp WEmp HCom WCom HCom WNeg
WEmp ;

WEmo WApp HApp WEmp HEmo WEmo HEmo WEmp HNeg
HEmp WEmp HEmp WEmp HEmp WEmo HEmo WEmo HEmo
WCom HEmp WEmp HEmo HNeg HApp HEmp WEmp HEmo
HCom HNeg WEmo HEmo WEmo HEmp WEmp ;

HEmp WEmp HApp WEmo HEmp WEmp HEmo WEmo HEmo
HEmp HEmp WEmp WEmp HEmp WEmp HApp HApp WApp
HEmo WEmp HApp WApp HEmo HEmp WEmo HEmp WEmp
HCom HEmp WEmp WEmo HEmo WEmo HEmp WEmp HEmp

WCom HCom
WApp HEmo
HEmp WEmo
WEmp HEmp
HCom WEmp

WEmp HCom
WEmo HApp
HApp WApp

WApp WApp
HApp WEmp
HEmp WOth
WEmp HEmp

WCom HCom
WEmp HEmp
HEmo WEmo
WCom HEmo
HEmp WEmp

WCom HNeg
WApp HApp
WApp HEmp

HApp WEmp
HEmp HApp
HApp WEmp
WEmo HEmo

Figure 6. Event sequences obtained for verbal interaction in a couple.

30 QUERA

Figure 7. Similarity lattices comparing three event sequences of a couple's verbal interaction, ob-
tained using a Gaussian random projection with If = 10 dimensions and the linear projection function.
Window width was set to 2, and shift was set to 1; thus, successive windows overlap. See the text for an
explanation.

codes occur is of interest. The codes are the following:
WCom (wife complains), WEmo (wife emotes), WEmp
(wife empathizes), WApp (wife approves), WNeg (wife
negates), WOth (other wife utterances), HCom (husband
complains), HEmo (husband emotes), HEmp (husband
empathizes), HApp (husband approves), HNeg (hus-
band negates), and HOth (other husband utterances). The
couple was observed in three different occasions, and
the sequences, shown in SDIS format in Figure 6, were
obtained.

Similarity lattices for those sequences are displayed in
Figure 7. Window width and shift are w = 2, s = 1; map-
ping vectors are Gaussian with K = 10, and LPF is used.
Three lattices are shown: one for each comparison among

the three sequences. For event sequences, using w = 2
has the effect of highlighting repetitions of pairs of codes
that occur successively; for example, the pair WEmp
HEmp occurs at Locations 31 and 32 in Sequence 1 and
repeats at Locations 19 and 20, 21 and 22, and 23 and 24
in Sequence 2. These repetitions are indicated by three
black cells in a horizontal line (A) in Figure 7. Strings of
codes that are identical in both sequences are indicated by
a group of diagonal cells; for example, the string HApp
WEmp HEmp WCom occurs starting at Location 60 in Se-
quence 1 and at Location 33 in Sequence 2, and therefore,
three overlapped pairs are identical in both sequences,
HApp WEmp, WEmp HEmp, and HEmp WCom, as indi-
cated by three diagonal black cells (B) in Figure 7.

EXPLORING SIMILARITIES IN SEQUENCES	 31

RUNNING THE RAP PROGRAM

The RAP program can be downloaded from www
.ub.es/comporta/vquera. Its user interface is a dialog win-
dow for selecting the data files and the parameters that run
the process (Figure 8). Either a raw sequence SDIS data
file (extension SDS) or a compiled data file (extension
MDS) can be selected; if a raw data file is selected, RAP
first invokes the SDIS compiler in order to compile it and
create the corresponding MDS file. The SDIS compiler
is a module originally in the GSEQ software (Bakeman
& Quera, 1995a; wwwub.es/comporta/sg.htm) and is in-
cluded in the RAP program as well. After selecting the data
file and setting the parameters (window width and shift,

Figure 8. User interface of the RAP program.

space dimension, projection function, and so on), clicking
on the Run button starts the computation. The user can op-
tionally define groups of codes as equivalent (i.e., recode
them as a single code) and can request that some codes be
omitted from the computation of similarity; this may be
helpful for focusing and enhancing the exploration. A help
file with details about parameters and options is included
with the program. Results are saved in HTML files; RAP
launches the system's default Internet browser to display
them. Similarity lattices are saved as BMP images, which
are inserted in the HTML text, one image per pair of se-
quences being compared. Image maps for the BMP files
are saved in the HTML code, making the images mouse
sensitive. If requested, the program can apply a filter to the
resulting images in order to highlight groups of contiguous
lattice cells having high similarity values.

AUTHOR NOTE

This research project was supported by Grant 2005SGR00098 from
the Directorate General for Research of the Government of Catalonia,
Spain. Correspondence concerning this article should be addressed to
V. Quera, Departamento de Metodologia de las Ciencias del Compor-
tamiento, Universidad de Barcelona, Campus Mundet, Paseo Valle de
Hebron, 171, E-08035 Barcelona, Spain (e-mail: vquera@ub.edu).

REFERENCES

Asaorr, A., & BARMAN, E (1997). Sequence comparison via alignment
and Gibbs sampling: A formal analysis of the emergence of the mod-
ern sociological article. Sociological Methodology, 27, 47-87.

ACHLIOPTAS, D. (2003). Database-friendly random projections. Journal
of Computer & System Sciences, 66, 671-687.

BAKEMAN, R. (1978). Untangling streams of behavior. Sequential analy-
sis of observation data In G. P. Sackett (Ed.), Observing behavior:
Data collection and analysis methods (Vol. 2, pp. 63-78). Baltimore:
University Park Press.

BAKEMAN, R. (2000). Behavioral observation and coding. In H. T. Reis
& C. M. Judd (Eds.), Handbook of research methods in social and
personality psychology (pp. 138-159). Cambridge: Cambridge Uni-
versity Press.

BAKEMAN, R., ADAMSON, L. B., & STRISIK, P. (1995). Lags and logs:
Statistical approaches to interaction (SPSS version). In J. M. Gottman
(Ed.), The analysis of change (pp. 279-308). Mahwah, NJ: Erlbaum.

BAKEMAN, R., DECICNER, D. F., QUERA, V. (2005). Analysis of behav-
ioral streams. In D. M. Teti (Ed.), Handbook of research methods in
developmental science (pp. 394-420). Oxford: Blackwell.

BAKEMAN, R., & QUERA, V. (1992). SDIS: A sequential data interchange
standard. Behavior Research Methods, Instruments, & Computers,
24, 554-559.

BAKEMAN, R., & QUERA, V. (1995a). Analyzing interaction: Sequential
analysis with SDIS and GSEQ. Cambridge: Cambridge University
Press.

BAKEMAN, R., & QUERA, V. (1995b). Log-linear approaches to lag-
sequential analysis when consecutive codes may and cannot repeat.
Psychological Bulletin, 118, 272-284.

BINGHAM, E., & MANNILA, H. (2001). Random projection in dimension-
ality reduction: Applications to image and text data. In E Provost &
R. Srikant (Eds.), Proceedings of the Seventh ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining KDD
2001 (pp. 245-250). New York: ACM Press.

BLUM, A. (2006). Random projection, margins, kernels, and fea-
ture selection. In C. Saunders, M. Grobelnilc, J. Stefan, S. Gunn, &
J. Shawe-Taylor (Eds.), Subspace, latent structure and feature selec-
tion: Statistical and Optimization Perspectives Workshop, SI SFS 2005
(pp. 52-68). Berlin: Springer.

DURBIN, R., EDDY, S., KROGH, A., & MrrousoN, G. (1998). Biological
sequence analysis: Probabilistic models ofproteins and nucleic acids.
Cambridge: Cambridge University Press.

32	 QUERA

Fu, W.-T. (2001). ACT-PRO action protocol analyzer: A tool for analyz-
ing discrete action protocols. Behavior Research Methods, Instru-
ments, & Computers, 33, 149-158.

GARDNER, W., & HARTMANN, D. P. (1984). On Markov dependence in
the analysis of social interaction. Behavioral Assessment, 6, 229-236.

GRIFFIN, W. A., & GARDNER, W. (1989). Analysis of behavioral dura-
tions in observational studies of social interaction. Psychological Bul-
letin, 106, 497-502.

KANG, J. (2005). Data models for exploratory analysis of heterogeneous
microarray data (Tech. Rep. TR-2005-30). Raleigh: North Carolina
State University.

KURTZ, S., CHOUDHURI, J. V., OHLEBUSCH, E., SCHLEIERMACHER, C.,

STOYE, J., & GIEGEIUCH, R. (2001). REPuter. The manifold applica-
tions of repeat analysis on a genomic scale. Nucleic Acids Research,
29, 4633-4642.

MAGNUSSON, M. S. (2000). Discovering hidden time patterns in behav-
ior: T-patterns and their detection. Behavior Research Methods, In-
struments, & Computers, 32, 93-110.

MANNILA, H., & SEPPANEN, J. (2001). Recognizing similar situations
from event sequences. In Proceedings of the First SIAM Conference
on Data Mining, Chicago. Available at www.cs.helsinIcili/-mannila/
postscripts/mannilaseppanensiam.pdf.

MANNILA, H., & TOIVONEN, H. (1996). Discovering generalized epi-
sodes using minimal occurrences. In E. Simoudis, J. Han, & U. M.
Fayyad (Eds.), Proceedings of the Second International Conference
on Knowledge Discovery and Data Mining (pp. 146-151). Portland,
OR: AAAI Press.

MAs, M. T. (2003). L'atenci6 conjunta dels 10 als 28 mesos d'edat de
1 'infant [Joint attention in 10- to 28-month-old children]. Unpub-
lished doctoral thesis. Facultat de Psicologia, Universitat Autenoma
de Barcelona.

MOEN, P. (2000). Attribute, event sequence, and event type similarity

notions for data mining (Rep. A-2000-1). Helsinki: University of Hel-
sinki, Department of Computer Science.

QUERA, V., & BAKEMAN, R. (2000). Quantification strategies in behav-
ioral observation research. In T. Thompson, D. Felce, & F. Symons
(Eds.), Behavioral observation: Technology and applications in devel-
opmental disabilities (pp. 297-315). Baltimore: Brookes.

QUERA, V., BAKEMAN, R., & GNISCI, A. (2007). Observer agreement for
event sequences: Methods and software for sequence alignment and
reliability estimates. Behavior Research Methods, 39, 39-49.

SACKETr, G. P. (1979). The lag sequential analysis of contingency and cy-
clicity in behavioral interaction research. In J. D. Osofsky (Ed.), Hand-
book of infant development (1st ed., pp. 623-649). New York: Wiley.

SAHLGREN, M. (2005). An introduction to random indexing. In
H. Witschel (Ed.), Methods and Applications of Semantic Indexing
Workshop at the 7th International Conference on Terminology and
Knowledge Engineering, August 16, 2005, Copenhagen. Available at
www.sics.se/--mange/papers/Rl_intro.pdf.

STATES, D. J., & BoDusru, M. S. (1991). Similarity and homology.
In M. Gribskov & J. Devereux (Eds.), Sequence analysis primer
(pp. 89-157). New York: Stockton.

STOOLMILLER, M., & SNYDER, J. (2006). Modeling heterogeneity in so-
cial interaction processes using multilevel survival analysis. Psycho-
logical Methods, 11, 164-177.

TAYLOR, P. J. (2006). Proximity coefficients as a measure of interrela-
tionships in sequences of behavior. Behavior Research Methods, 38,
42-50.

VEMPALA, S. (2004). The random projection method. Providence, RI:
American Mathematical Society.

(Manuscript received February 13, 2007;
accepted for publication March 13, 2007.)

