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Metaphor comprehension:
A computational theory
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University oj Colorado, Boulder, Colorado

Metaphor comprehension involves an interaction between the meaning of the topic and the vehicle
terms of the metaphor, Meaning is represented by vectors in a high-dimensional semantic space. Pred­
ication modifies the topic vector by merging it with selected features of the vehicle vector. The result­
ing metaphor vector can be evaluated by comparing it with known landmarks in the semantic space.
Thus, metaphorical predication is treated in the present model in exactly the same way as literal pred­
ication. Some experimental results concerning metaphor comprehension are simulated within this
framework, such as the nonreversibility of metaphors, priming of metaphors with literal statements,
and priming of literal statements with metaphors.

The rich body of experimental results that has ap­
peared in the psychological literature in recent years (for
reviews, see Cacciari & Glucksberg, 1994; Gibbs, 1994a)
has changed our understanding of how nonliteral state­
ments, such as metaphors, are comprehended. Prior to
that work, the dominant view was that the comprehension
of nonliteral statements involves two steps: First, it must
be recognized that the statement makes no sense if inter­
preted literally; then, its intended, nonliteral meaning is
computed by some kind of inference. Now we know that,
instead, metaphors can be understood directly, like literal
statements. A computational model ofliteral comprehen­
sion should, therefore, be able to "understand" metaphor­
ical statements in the same way that it "understands" lit­
eral sentences,

In this paper, 1 shall sketch a computational model of
metaphor comprehension that treats metaphors in the
same way as literal statements. I introduce this model
with an example that Glucksberg (1998) used to present
his view that metaphorical predication is basically the
same as literal predication. According to Glucksberg, the
metaphor my lawyer is a shark is a regular class-inclusion
assertion, except that "the metaphor vehicle (shark) is
used to refer to the superordinate category of predatory
creatures in general, not to the smaller, concrete category
ofmarine creatures that is also named shark" (Glucksberg,
1998, p. 41). Thus, the metaphorical shark-properties (vi­
cious,predatory, aggressive, and tenacious) are attributed
to lawyer, but the literal shark-properties (fast swimmer,
has fins, has sharp teeth, has leathery skin, has gills) are
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not. The goal of the present paper is to show how such a
process can be realized computationally.

Glucksberg's (1998) discussion fairly summarizes the
empirical evidence on metaphor comprehension but is
incomplete in one important way: How do we know what
is a superordinate-category level and what is a basic-level
property? After all, the basic-level shark is a member of
several superordinate categories, and Glucksberg's intu­
itive choice of the right one (predatory creatures, rather
than, e.g.,jish) is unsatisfactory from a computational
standpoint. A model of comprehension must select the
right features automatically, without having to be told what
is relevant and what is not.

METAPHORICAL PREDICATION

If metaphors are understood by people in much the
same way as literal sentences, metaphorical predication
becomes a special case ofpredication in general. l In this
paper, a general computational theory of predication,
which has recently been proposed by W Kintsch (in
press), will be applied to simulate metaphor comprehen­
sion. This theory has two basic components: a model of
human knowledge structure, provided by latent semantic
analysis (LSA), and a model of text comprehension, the
construction-integration (CI) model. LSA is a method for
automatically constructing a high-dimensional semantic
space from the analysis ofa large amount of written text.
An introduction and further references are given by Lan­
dauer, Foltz, and Laham (1998). The CI model is a psy­
chological model of text comprehension that has been ap­
plied in a wide variety of situations (W Kintsch, 1988,
1998). The theory presented below is an extension and
elaboration ofW Kintsch (1998, chap. 5) and introduces
a new way of modeling predication within the context of
the CI-LSA framework (W Kintsch, in press).

LSA (Landauer & Dumais, 1997) is a contextual theory
ofmeaning, in that it represents the meaning ofa word by
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its relationships to other words in a semantic space. To con­
struct this semantic space, it analyzes word co-occurrences
in a large number ofwritten documents. Specifically, the
semantic space used in all the examples below is based
on a corpus of some 37,000 documents containing over
92,000 different word types-a total ofabout 11 million
word tokens. From this statistical input, LSA generates
a high-dimensional semantic space by means of a math­
ematical technique called singular value decomposition,
followed by dimension reduction. Thus, although the input
to LSA consists of occurrence patterns over contexts,
LSA does not represent meaning in terms ofco-occurrence
frequencies, but as vectors in a semantic space of 300­
400 dimensions. The technique is related to factor analy­
sis, but the dimensions ofthe space have no interpretation.
The meaning of a word or sentence is represented by a
vector of300 numbers. This 300-dimensional space suf­
fices to reconstruct not the accidental detail, but the es­
sential features of the original co-occurrence matrix, and
allows us to represent the meaning of arbitrary combina­
tions of words and to compare them.

To find out whether an LSA vector correctly represents
our semantic intuitions, we must compare it with other
vectors. For instance, to determine whether the vector for
a word means what it is supposed to mean, we can com­
pare it with other words (landmarks) that we know to be
related to it, as well as with landmarks that we know are
unrelated. We select these landmarks by our human in­
tuition about the meaning of words and sentences; the
question is whether LSA has the same kind of intuitions.
Thus, we can compare the vector for the word shark with
landmarks such asfins, dolphin, diver, and fish, as well
as with some unrelated words. A quantitative measure of
how close one vector is to another in the LSA space is
given by the cosine between two vectors-a measure that
can be interpreted in much the same way as a correlation
coefficient. The cosines between shark andfins, dolphin,
diver, andfish are .74, .74, .70, and .69, respectively. For
comparison, the cosine between shark and lawyer is - .01.2

LSA successfully captures one aspect of meaning­
the semantic distances among words. Ofcourse, LSA, like
any scientific theory, is not the real thing-not meaning,
but a model ofmeaning. Furthermore, it is an incomplete
model. It models only those aspects of meaning that are
coded verbally; human meaning is derived from percep­
tion and action as well as words. However, language has
evolved to talk about perception and action, and one
should not underestimate the power ofthe word to encode
the human world. In addition, LSA has other limitations.
For instance, it fails to explain the nature of the relation
between shark and its neighbors-that is, how we under­
stand that a shark has fins, looks like a dolphin, is a dan­
ger to divers, and is afish. Neither does LSA distinguish
a shark is afish and the fish is a shark. Thus, LSA is not
a complete model of meaning, but the fact that it allows
us to compute automatically a quantitative measure of the
relatedness between these terms is useful nevertheless.
LSA can be an essential component of a psychological

theory of meaning, in that it provides a model of know1­
edge structure and a model of knowledge acquisition on
the basis oftracking data about usage in the environment.
But it needs to be combined with psychological process
models of comprehension and thinking to achieve a full
account ofpsychological semantics. In the present paper,
LSA is paired with the CI model oftext comprehension.
This does not provide answers to all questions (e.g., it
does not address the first ofthe limitations ofLSA noted
above-distinguishing between different types of rela­
tions), but it does solve some problems (e.g., the second
of the limitations discussed above-the asymmetry of
arguments and predicates).

Vectors are the elements of an LSA semantics. The
standard composition rule in LSA is the centroid rule,
which says that the vector representing a set of words is
the centroid of the individual word vectors. This rule is
order insensitive. Nevertheless, in a large number ofap­
plications of LSA, the centroid rule has proven to yield
very useful results.3 But the centroid rule is inadequate
in many cases; one of the cases in which the centroid rule
fails is metaphorical predication. To use Glucksberg's
(1998) example, ifwe compute the centroid of lawyer and
shark, we land in a semantic no-man's land-somewhere
in between lawyer and shark. Furthermore, composition
by the centroid rule could not distinguish between my
lawyer is a shark and my shark is a lawyer.

W Kintsch (in press) has argued that if we predicate
something of a concept, not all the features of the pred­
icate are combined with the meaning of the concept, but
only those appropriate for that concept. Thus, different
features ofrun playa role in the horse runs and the color
runs. The argument (horse or color) selects those features
of the predicate that are appropriate for that argument,
thus generating a contextualized word sense-the sense
of run combined with horse or the sense of run com­
bined with color. That is all there is to metaphoric pred­
ication too: The argument selects those features of the
(metaphoric) predicate that are appropriate for it and in­
hibits the features that do not apply or apply less aptly.

Consider the example from Glucksberg (1998), my
lawyer is a shark. In his illustrative example, Glucksberg
lists nine features ofshark, the first four ofwhich are ap­
propriate for the metaphor and enter into its meaning,
whereas the last five are irrelevant and are suppressed:
vicious, predatory, aggressive, tenacious, fast swimmer,
fish, sharp teeth, leathery skin, and gills. In fact, accord­
ing to LSA, the last five, to-be-suppressed features are
much more strongly related to shark (their average cosine
with shark is .28) than are the metaphor-relevant features
(their average cosine is .06), but when they are combined
with lawyer, the typical shark features will be suppressed
because they are unrelated to lawyer (their average co­
sine with lawyer is .01), and the atypical shark features
will be emphasized because they are at least somewhat re­
lated to lawyer (their average cosine with lawyer is .08).
The model proposed here provides a computational algo­
rithm that achieves this result. However, instead of de-



scribing the model in the context ofGlucksberg's example,
where the predicate features to be considered were selected
intuitively to make a point, the model will be described in
its general case, which does not require an intuitive se­
lection of features and is fully automatic.

The predication algorithm selects those neighbors of
a predicate (P) that are related to the argument (A) ofthe
predication that are used to modify the P vector in order
to make it context sensitive. It uses a spreading activa­
tion process in the manner ofthe CI model to select from
among the terms in the LSA space that are related to P
those that are also related to A and then uses these terms
to augment the vector representing the meaning of the
metaphor. The general conceptual scheme will be de­
scribed first, and then a computational approximation
will be presented. The general scheme has the advantage
that it makes clear just how the CI model is combined here
with LSA. The approximation does not employ the CI
model directly but simplifies the computations signifi­
cantly and yields equivalent results.

The predication algorithm first selects terms from the
LSA space that are related to P and then selects from this
set those terms that are also related to A. The first step is
achieved by computing the semantic neighborhood of P.
The complete semantic neighborhood ofa P in the seman­
tic space is a 300-dimensional hypersphere around P, in
which all 92,000 items in the semantic space are arranged
according to their relationship with P. Items that have a
high cosine with P will be near P, and items farther away
will be less and less related to P. In fact, most items will
be at the periphery of the hypersphere centered on P, be­
cause they are essentially unrelated to P. One can order all
the items in the space according to their cosine with P,
generating a list of m words ordered in terms of their co­
sine with p'4

The second step involves constructing a spreading ac­
tivation network in the manner of the CI model. The net­
work consists of A, P, and the m closest neighbors of P.
Each term is connected to both P and A, with a link strength
corresponding to the cosine between the two nodes. In
addition, each term is connected by an inhibitory link to
every other term in the network. The strength of the in­
hibitory links are chosen in such a way that the total sum
of all the positive and negative links in the network is
equal. Ifactivation is spread in such a self-inhibitory net­
work with the activation values of P and A clamped at I,
most nodes will become deactivated, and only those
nodes related to both P and A will attain a positive acti­
vation value.

Finally, the k nodes with the highest activation values
will be used to compute the vector representing the mean­
ing of the metaphor. Specifically, the predication vector
will be the centroid of A, P, and the k most highly acti­
vated terms of the network.

In actual computations, an approximation that greatly
simplifies computations is employed for the second step
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described above. The sequence of steps in the computa­
tion of a predication vectors is, therefore, as follows.

I. Compute the semantic neighborhood ofP ofsize m,
as described above. For metaphors, m has to be fairly large
(500 < m < 1,500) because the predicate and argument
in a metaphor often are quite unrelated.5 This step ensures
that all terms that enter into the predication are in fact re­
lated to P.

2. The next step picks those terms from the neighbor­
hood of P that are also related to A. The cosines between
the m neighbors of P and A are computed, and the k terms
with the highest cosine are selected. This step obviates the
need for setting up a huge self-inhibitory network and
yields much the same results, because there are usually
only a few items related to both P and A and these would
be selected in either case.

3. It is not necessarily the case that terms related to
both P and A exist. Thus, in order to avoid introducing
noise by selecting the strongest terms even when their ab­
solute strength is low, the terms selected must have a co­
sine with P and A above some minimum threshold. Only
terms that have a cosine with P greater than two standard
deviations above the mean for all words in the space used
here [.02 + 2*(.06) = .14] will be included among the to­
be-considered items. Similarly, all terms related to A with
a below-threshold cosine (< .14) will be eliminated.

4. The vector representing the meaning ofthe metaphor
can then be computed as the centroid of A and the terms
selected above (P and the k terms from the neighborhood
of P, subject to the restriction that their cosine with A is
above threshold).

The centroid of A and B is the same as the centroid of
Band A. Predication, in contrast, is basically asymmetric:
ifB is predicated of A, terms from the neighborhood ofB
that are compatible with A are used to modify the pred­
ication vector; but ifA is predicated ofB, terms from the
neighborhood of A are used in Step 1 of the procedure.

The predication algorithm yields a vector that needs to
be interpreted by comparing it with suitable landmarks.
In Figure I, the vector for my lawyer is a shark is com­
pared with six relevant llWdmarks. The vector was com­
puted with k = 5 and m== 500. For these parameter values,
the neighbors of P that were selected by the predication
algorithm have an average cosine with P of .30 (range,
.27-.35) and an average cosine with A of .20 (range,
.16 -.26). Thus, they are moderately strongly related to
both P and A. The first three landmarks were chosen to
be related to lawyer (the bars in Figure I show the mag­
nitude of the cosine between each landmark and the sin­
gle word lawyer); the second set of three landmarks was
chosen to be related to shark (the first two items were
chosen to be related to the here inappropriatefish-sense
ofshark, and the third to be appropriate for the metaphor).
Other landmarks similarly related to lawyer and shark
could have been used. According to Figure 1, predicating
shark about lawyer does not change the sentence mean-
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Figure 1. Vectors for lawyer and my lawyer is a shark compared
with six landmarks.
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pression, and no surprises (indeed, the centroid of lawyer
and young is not much different than the predication vec­
tor). When we say my lawyer is young, we say little more
than that person is young; none of the associated prop­
erties ofyoung emerges as an important factor in deter­
mining the sentence meaning.

When is a sentence a metaphor, when is it a literal state­
ment, and when is it just plain meaningless? Further re­
search within the framework proposed here might yield
some novel answers, but at present only a few hints can
be offered here. Figures I and 2 illustrate one important
difference between metaphors and literal statements. In
the latter, argument and predicate are usually related, in
that many features of the predicate apply to the argu­
ment; the predicate selects and emphasizes one or more
of these potential features of the argument. In metaphors,
only a few features need to be related. In the case of my
lawyer is a shark, topic and vehicle are not related at all
by LSA (their cosine is - .01). But for some metaphors,
topic and metaphor can be related. For instance, of the 12
metaphors used in one experimental study (Blasko &
Connine, 1993), topic and vehicle were unrelated by LSA
in only two cases, whereas for the other 10, the cosine be­
tween topic and vehicle was appreciable, ranging from .07
to .19. These were metaphors such as rumors wereplagues,
cos(rumors, plagues) = .15, or the rocket was a bullet,
cos(rocket, bullet) = .16. These metaphors seem different
in an important way from metaphors in which topic and ve­
hicle are unrelated and seem more like literal statements.
Rumors wereplagues primarily attributes to rumor the fea­
ture plagues, plus some features associated with plagues
(like spreading), much like a literal statement. Ofcourse,

Figure 2. Vectors for lawyer and my lawyer is young compared
with six landmarks.
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ing with respect to the lawyer landmarks, but introduces
a little "fishiness" and, primarily, moves the sentence
meaning toward viciousness.

For lower values ofm, the predication procedure fails.
For m = 100, the meaning of lawyer is not modified at all,
because none of the 100 closest neighbors ofshark has a
cosine with lawyer that is greater than .14, the threshold
value. For larger values of m (e.g., m = 1,000 or 1,250),
essentially the same results are obtained as those in Fig­
ure 1. For m = 1,500, the algorithm begins to pick up too
many fish properties and the cosines with the landmarks
shark andfish increase. At this point, the predication al­
gorithm begins to converge with the centroid rule. The
centroid of lawyer and shark behaves very different with
respect to the landmarks in Figure I and clearly fails to
represent the meaning of the metaphor: It is closer to the
shark andfish landmarks (the cosines are .83 and .58, re­
spectively) than either to viciousness or to the lawyer
landmarks.6

In accordance with the claims of Glucksberg (1998),
W. Kintsch (1998), and others, there is no difference in
this theory between literal and metaphorical predication.
For example, consider the literal statement my lawyer is
young. The vector representing that sentence can be cal­
culated with the same predication algorithm. For m = 50
and k = 5, the results shown in Figure 2 are obtained
(they hardly change at all with changes in parameter val­
ues). Figure 2 uses the same landmarks for lawyer, plus
three new ones appropriate to the predicate. The results are
interesting and contrast sharply with those in Figure 1.
What we get is pretty much a straight combination of
lawyer and young-there are no emergent features, no sup-



Table 1
The Cosines Between Surgeon, Butcher,

My Surgeon Is a Butcher, and My Butcher Is
a Surgeon and Two Landmarks, Scalpel and Axe

not all the features ofplagues are attributed to rumors by
the metaphor, but not all features of the predicate are at­
tributed to an argument in literal predication either. For
instance, the color runs is perfectly literal (it is listed as
an example for one of the senses ofrun in WordNet), but
only a judicious subset of run features are attributed to
color by this statement: We do not think that the color runs
like a machine, gallops like a horse, or moves through the
tree like a breeze! The question deserves to be explored
more systematically, but it may be the case that for "real"
metaphors, vehicle and topic are unrelated, whereas most
of the Blasko and Connine examples might be regarded
as intermediate forms between true metaphors and literal
statements.

In order to assess the generality of the predication
model, seven additional metaphors were analyzed. To
avoid selection effects, the first seven examples of nom­
inal metaphors cited in a well-known experimental paper
(Glucksberg, Gildea, & Bookin, 1982) were used for this
analysis. However, the examples in Glucksberg et al.
(1982) were all changed from plural forms (some sales­
men are bulldozers) to singular form (the salesman is a
bulldozer) because many ofthe words involved were low­
frequency words and a preliminary analysis showed that
LSA knew more about their singular forms than about
their plurals (e.g., bulldozers does not appear in the space
used, but bulldozer does). The seven metaphors were this
job is a jail, her marriage is an icebox, the salesman is a
bulldozer, her heart is a closet, thejlute is a bird, the road
is a snake, and my surgeon is a butcher. The analysis was
performed exactly in the same way as that described above
for the my lawyer is a shark example-that is, with m =

500, k = 5.7 Each vector computed with the predication
procedure was compared with two landmarks, one rele­
vant to the intended meaning of the metaphor and one ir­
relevant to the metaphor but strongly related to another
aspect of the predicate. Where possible, these terms were
selected from the dictionary definition of the predicate
term.

The analysis yielded intuitively reasonable results in
six of the seven cases. The mean cosine between the
predication vectors and the relevant landmarks was .36,
whereas the mean cosine between the predication vector
and the irrelevant landmark was .22. The lawyer example
shown in Figure I falls well within the range of these ex­
amples. In all six successful cases, the cosine for the rel-

Surgeon
Butcher
My surgeon is a butcher
My butcher is a surgeon

Scalpel Axe

.29 .05

.01 .37

.10 .42

.25 .26
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evant landmark was greater than the cosine for the irrele­
vant landmark. This contrasted sharply with computations
using the centroid of the argument and predicate as the
vector representing the meaning of the metaphor: The
cosines between the centroids and the relevant and irrel­
evant landmarks were approximately equal-.32 and .30,
respectively. Thus, the predication algorithm selectively
emphasizes appropriate semantic features ofa metaphor,
whereas the centroid imports relevant as well as irrelevant
features of the predicate.

The predication procedure failed for the metaphor her
marriage is an icebox; the cosines between this metaphor
and the relevant landmark cold and the irrelevant land­
mark refrigerator were both .03. There may be two rea­
sons why predication failed in this case. First, LSA has
very little information about icebox (vector length = .12,
the lowest value in all examples), so that the neighbor­
hood of icebox was rather vague and noisy. In addition,
marriage is not related to cold and its synonyms in the
LSA space used here, resulting in a failure ofthe selection
mechanism. This lack of knowledge on the part of LSA
is not totally surprising: the general reading space used
here was constructed from a corpus consisting ofthe read­
ing materials ofan average high school student. It remains
to be seen how well real high school students understand
these metaphors. However, in future work, care must be
taken to use words about which LSA is reasonably well
informed; if the knowledge base is not there, the predi­
cation algorithm has nothing to work with.

The examples from Glucksberg et al. (1982) are, pre­
sumably, all examples of strong metaphors. What strong
metaphors seem to have in common is that the predicate
is a concrete term, rich in imagery and potential associ­
ations, and that the argument and predicate are relatively
unrelated. The richness of the predicate allows the argu­
ment to resonate with several different features at the same
time, resulting in a complex, iffuzzy, interpretation. The
unrelatedness between the argument and the predicate has
surprise value. A strong metaphor is something unusual,
a pleasant surprise. But it cannot be too much of a sur­
prise. The semantic feature that was emphasized by the
metaphor must already be inherent in the argument, even
ifat a low strength. In all the cases in which LSA yielded
satisfactory interpretations, the argument and the rele­
vant landmark were not completely unrelated. Thus, the
effect of the predication was to emphasize some dormant
but potential feature of the argument.

EXPERIMENTAL FINDINGS ON
METAPHOR COMPREHENSION

The model proposed here not only can compute intu­
itively reasonable interpretations ofmetaphors (and literal
statements), but also can account for some of the major
phenomena that have been studied in the experimental lit­
erature. Glucksberg (1998) serves as a good guide as to
what these phenomena are.
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sharI:

does not highlight typical theory properties, such as ex­
planation and hypothesis. Similarly, people are sheep suc­
cessfully transfers the sheep property follow to the sen­
tence vector, whereas sheep are people does not import
people properties, such as man.

Thus, the model agrees with our intuitions about re­
versed metaphors but offers no clear way to reject non­
sensical sentences. In all the examples above, there are
terms in the neighborhood ofthe predicate that are related
to the argument. In any case, it is obviously possible to
predicate nonsense even about highly related words .
Analyses that go beyond LSA and the CI model may be
needed at this point (as they are surely needed for other
problems, too-e.g., the determination ofwhat is a pred­
icate and what is an argument in a sentence, which is a
precondition for the predication algorithm but is outside
the present scope ofLSA).

2. Bringing to mind the literal meaning ofa metaphor
vehicle has a deleterious effect. To compute a metaphor
vector, we construct a network out ofthe neighbors ofthe
predicate P, which are linked to the argument A by their
cosine values and inhibit each other. Initially, all nodes
except A and P (the knowledge to be activated) have zero
activation value, but activation flows into these nodes
from A and P (the words ofthe sentence that need to be
interpreted). It requires several cycles of spreading acti­
vation in such a network before the activation values of
the nodes stabilize. In isolation, my lawyer is a shark takes
six iterations to settle. If sharks can swim precedes the
metaphor, the priming sentence will activate the neigh­
borhood in a certain pattern, emphasizing the literal mean­
ing of shark. That is, the neighbors of P will start with
some positive activation value, depending on how strongly
related they are to sharks can swim. Thus, the metaphor
must be comprehended in the context of the priming sen­
tence and the knowledge activation it produces.

Instead of the whole set of neighbors of shark, the il­
lustrative properties noted by Glucksberg (1998) are used
in Figure 3, to keep the example simple. To integrate the
above network, the lawyer node is clamped at 1; lawyer
and shark can swim are assigned a starting value of 1,
whereas all other nodes have a starting values of0; where
links are shown in Figure 3, their strengths are equal to
the cosines between the respective nodes; in addition,
there are links among all nine context nodes that were as­
signed a negative link strength in such a way that the ab­
solute value of the total sum of the positive links equals
the total sum of the negative links. Settling in this net­
work requires eight cycles, as compared with six when
the metaphor is understood out of context. That is not an
impressive difference. But if one looks at the time course
of integration, the experimental finding of slower com­
prehension with the prime becomes more understandable.
In Figure 4, we see that if the metaphor is processed out
ofcontext, the lawyer-relevant attributes dominate the in­
tegration process from the very beginning. In contrast,
with the prime sharks can swim, the shark-specific attrib­
utes are stronger initially, and it takes several integration

Figure 3. Properties of shark (after Glucksberg, 1998) related
to the literal priming sentence sharks can swim and to lawyer.
Dashed lines indicate inhibitory connections; bold lines indicate
strong links.

1. Metaphors are in principle nonreversible. This is
actually a claim that needs explanation. It really means
two things.

a. Some metaphors when reversed change their mean­
ing. For example, my surgeon is a butcher and my butcher
is a surgeon are both good metaphors but mean quite dif­
ferent things. This is not a problem for the present model,
for in the one case properties ofbutcher are attributed to
surgeon, and in the other properties ofsurgeon are attrib­
uted to butcher, as is shown in Table 1.

b. Some metaphors become meaningless when re­
versed. For instance, one can say myjob is ajail, but not
*(my) jail is a job. As always, however, the linguistic
practice of starring sentences can be debatable; it is cer­
tainly possible to construct a scenario in which (my) jail
is a job might be meaningful. It is obvious, however, that
the original version of the metaphor is better than the re­
versed version. How can the model account for this?

Showing that something makes no sense is difficult. We
can show that the metaphor in its original form does make
sense: My job is ajail brings the sentence vector closer to
officer and lawyer, which seems right intuitively. Butjail
is myjob emphasizes hired and boss, which, at least on my
intuition, is not so bad either.

The theory is a laser beam highlights the laser beam
properties precision and light. The reversed metaphor
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Figure 4. The difference in the sum ofthe activation values for
appropriate and inappropriate properties ofmy lawyer is a shark
in isolation and preceded by the literal prime sharks can swim, as
a function of integration cycles.

steps before this pattern is reversed. The final outcome is
the same as that without the prime, however. This agrees
with the experimental findings ofGlucksberg, McGlone,
and Manfredini (1997) that people take more time to un­
derstand the primed metaphor but arrive at the intended
interpretation eventually.

3. Understanding a metaphor is like understanding
any polysemous utterance. Compare a rock fell off the
mountain and thefamily is a rock. The former is a literal
statement; the latter is a metaphor. In both cases, the
meaning of rock must be computed in context, with quite
different results. This is no different from computing one
meaning of bank in the context of money and another
meaning in the context ofriver. Rock (or any other word)
takes on a slightly different meaning in each new context
(W. Kintsch, 1998, chap. 3).

Computing a meaning always involves activating con­
text-appropriate features and inhibiting or deactivating
inappropriate features. Therefore, if some features have
been deactived and others strengthened in one context
and the context is changed, so that the deactivated fea­
tures now become relevant and the activated features are
irrelevant, it should take longer to form a stable meaning
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according to the CI model than when no change in mean­
ing is required. That is what was observed in an experi­
ment by Gernsbacher and Keysar (1995). These authors
have shown that literal statements are verified more slowly
when they follow a metaphor prime than when they fol­
Iowa literal prime. Their experimental design and their
results are sketched in Table 2.

The model predicts these results. The simulation is the
reverse of the previous example. Sharks are good swim­
mers is clamped and must be interpreted in either the lit­
eral or the metaphorical context. The results of the sim­
ulation are shown in Figure 5. In the context of the literal
prime, sharks are good swimmers requires 9 integration
cycles to settle, versus 11 in the context ofthe metaphor­
ical prime. However, Figure 5 shows that the metaphor­
ical prime initially activates context-irrelevant features,
so that their activation is actually higher than the activa­
tion ofrelevant features. It requires several cycles before
this interference is overcome. Eventually, ofcourse, sharks
are good swimmers is understood correctly, but as Gerns­
bacher and Keysar (1995) observed, it takes more time to
do so.

THE PREDICATION ALGORITHM
AND THEORIES OF METAPHOR

The most salient result of the experimental psycholin­
guistic research on metaphor has been the finding that
metaphors are understood directly, much like literal
statements-a result widely accepted today. The model
proposed here embodies this premise. Indeed, the pred­
ication algorithm applies in the same way to literal and
to metaphorical predication. Several current theories of
metaphor comprehension share this premise. For in­
stance, this assumption is central to the theory ofGlucks­
berg and Keysar (1990) and Glucksberg (1998). But
Glucksberg's category inclusion theory of metaphors
goes further than that, in that it postulates the creation of
abstract categories for which the vehicle of the metaphor
serves as a token (shark as a token for the categorypreda­
tory creatures). This ll}ay or may not be a good descrip­
tion of the predication algorithm proposed here. Glucks­
berg's theory requires a mechanism by means of which
the topic of the metaphor is assigned to a newly created
category. The vehicle ofthe metaphor names this category
and also serves as the prototypical, defining member of
that category. The predication algorithm is consistent
with such a theory (ifone accepts a very broad definition
ofthe notion ofcategory), but it certainly does not require
it. Similarly, the present computational model is consis-

Table 2
Design and Results From Gemsbacher and Keysar (1995)

Prime Verification Statement Reaction Time

my lawyer is a shark
the hammerhead is a shark

sharks are good swimmers
sharks are good swimmers

slow
fast



264 KINTSCH

Figure 5. The difference in the sum ofthe activation values for
appropriate and inappropriate properties of sharks are good
swimmers when preceded by either the literal or the metaphori­
cal prime, as a function of integration cycles.

tent with other theories of metaphor, without being de­
pendent on them. For instance, Ortony's salience imbal­
ance theory (Ortony, 1979) defines metaphors in terms
of particular relationships between topic and vehicle: A
good metaphor is obtained when a property is associated
with both the topic and the vehicle but is more salient in
the vehicle or when a term has low associations with both.
There is nothing in the present model that restricts inter­
pretations to these cases, but further research with the
predication algorithm might show to what extent Ortony's
claims can be substantiated.

It might seem that the present model is a member of
the class of semantic feature models that treat metaphors
as a comparison, in the tradition of Aristotle and I. A.
Richards (for a discussion, see Gibbs, I994b). In this
view, the inadequacy of which has been pointed out by
Gibbs (1994b) and others, a feature associated with the
vehicle is transferred to the topic. For instance, the feature
fierce ofwolfis transferred to man by the metaphor man
is a wolf, resulting in a meaning much like the literal state­
ment man isfierce. A problem with this view is that often
there is no preexisting association between the trans­
ferred feature and the vehicle. Gibbs (1994b) discusses
the example that girl is a lollipop, which presumably
means something like that girl isfrivolous. Frivolous, how­
ever, is not a preexisting association of lollipop, so there
is nothing to transfer.

Gibb's (1994b) criticism is to the point, but the pre­
sent model is much more complex than the semantic fea­
ture theory he discusses. Indeed, it might be considered

JY__.._..-~..--_....-~..o
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CONCLUSIONS

The predication model of metaphor comprehension
described here has three components. First, LSA provides
a model of human knowledge that is objective and quan­
titative and can be used as the basis for a computational
theory. Second, the CI theory is a suitable cognitive ar-

to be a realization of the interactive theory of metaphor
comprehension favored by modern scholars. It is not at
all necessary that a feature emphasized by the metaphor
be directly associated with the vehicle term. Indeed, this
need not be the case: For that girl is a lollipop, there is no
preexisting LSA relationship between the vehicle lol­
lipop and frivolous (cos = .01), but nevertheless, the
meaning vector for the metaphor moves closer to frivo­
lous (cos = .16).8 Why? Because the meaning vector is
related to other terms that, in turn, are related to frivo­
lous-for example, to friendly (cos = AI), smiled (cos =
.80), or carnival (cos = .39). The model thus does not
pick out preexisting associations but, rather, merges two
semantic neighborhoods. This merging is extremely se­
lective and context sensitive, however, in that only the rel­
evant terms are merged and the numerous irrelevant ones
are suppressed. Somewhat related ideas are discussed by
Gibbs (1994b) in terms of semantic fields. Although
LSA neighborhoods do not look much like the semantic
fields linguists and philosophers have discussed (se­
mantic neighborhoods are unstructured and not always in­
tuitively interpretable), the analogy with semantic fields
helps to differentiate the present model from the discred­
ited semantic feature theory.

Thus, metaphors do not transfer a single feature, or
even a small set offeatures, but rearrange a whole seman­
tic field. This makes it difficult to evaluate some of the
proposed theories of metaphor, such as Ortony's (1979)
theory mentioned above, with the methods developed here.
If my lawyer is a shark meant my lawyer is vicious, the
task would be simple: We compute the cosine between vi­
cious and both topic and vehicle and see whether the rela­
tionship Ortony proposed holds.9 But the meaning of a
metaphor involves a restructuring of the semantic space,
which is more difficult to capture than simple feature
transfer.

No claim is made that the mechanism of the present
model is the only one involved in metaphor comprehen­
sion. There are metaphors, especially literary metaphors,
that demand more controlled analysis-for example, in
terms ofanalogical reasoning. Indirect comprehension of
metaphors must certainly be possible: People can, and
sometimes do, speculate about the meaning ofa metaphor.
It is also possible that judgments of the aptness of meta­
phors might involve processes other than those involved
in comprehension. There are no reasons why the present
model would be incompatible with additional processes
that might also playa role in metaphor comprehension.
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chitecture for modeling the dynamics ofcomprehension.
It allows us to adapt the general, context-independent
knowledge space ofLSA to a particular context, in effect
selecting from a large number of potential features of the
vehicle precisely those that apply to the topic. Third, it of­
fers a specific model of metaphor comprehension, by as­
suming that metaphoric predication works just like literal
predication. None ofthese three components is new. LSA
has been used to model human knowledge before (Lan­
dauer & Dumais, 1997); the CI architecture has provided
the framework for a number ofsuccessful models ofcom­
prehension processes (w. Kintsch, 1998); and the claim
that literal and metaphoric predication are alike has been
supported by a number of researchers (e.g., Glucksberg,
1998; W. Kintsch, 1998, chap. 3; for more detail, see the
review articles cited earlier). What is new here is how
these three components have been conjoined into a com­
putational theory ofmetaphor comprehension that yields
intuitively reasonable interpretations of metaphors and
that accounts qualitatively for some of the major exper­
imental results that have been obtained in this field.

As important as these results on metaphor compre­
hension are, it should not be overlooked that what has
been proposed here is a general computational theory of
predication in the LSA/CI framework. The early work on
the CI model is entirely based on hand coding of propo­
sitions, and the model had no objective way of modeling
knowledge activation. LSA by itself does not distinguish
between the roles ofvehicle and topic nor ofpredicate and
argument. In the present model, however, A is a Band B
is an A are no longer (necessarily) the same. To explore
the full implications of this model for predication is be­
yond the scope ofthis paper (but see W. Kintsch, in press).
Nevertheless, by showing how metaphor comprehension
can be modeled, a further step has been taken toward the
goal of an LSA-based computational model of language
processing. The ability ofLSA to represent human knowl­
edge on a large scale provides exciting possibilities that
need to be explored.
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NOTES

I. The discussion in this paper is restricted to attributional metaphors
of the form "A is p''' where A is the topic ofthe metaphor (the argument
of the underlying proposition) and P is the vehicle of the metaphor (the
predicate of the proposition). The theory presented is a general one,
however, and the extension to-other forms of simple predication is
straightforward.

2. All computations are based on the general reading space with 300
dimensions and can be performed at the LSA Web site (http://lsa.col­
orado.edu). In general, only the relative values ofcosines are readily in­
terpretable, but not their absolute values.

3. LSA has proven to be a powerful tool for modeling such psycho­
logical phenomena as the simulation of the rapid acquisition ofvocab­
ulary (Landauer & Dumais, 1997), categorization (Laham, 1997), the
analysis of textual coherence (Foltz, Kintsch, & Landauer, 1998), and
practical applications requiring the representation of meaning, such as
essay grading (Landauer, Laham, Rehder, & Schreiner, 1997), helping
students to write summaries (E. Kintsch, Steinhart, and the LSA Re­
search Group, in press), selecting instructional materials suitable for a
student's background knowledge (Wolfe et aI., 1998), and selecting per­
sonnel with the knowledge required for specific jobs (Laham, Bennett,
& Landauer, in press).

4. The Nearest-Neighbor/term program available at the LSA Web site
does exactly that.
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5. For literal sentences, much smaller values ofm are sufficient-for
example, m = 20 (w. Kintsch, in press).

6. The centroid of lawyer and shark reflects shark properties more
strongly than lawyer properties because the length of the shark vector
is greater than the length ofthe lawyer vector (.87 vs..57, respectively).
That is, LSA knows more about shark than about lawyer, and this
greater knowledge biases the average in favor ofshark.

7. The general reading space includes some very rare words, as well
as a few misspellings and word fragments. Only words that could be
found in the American Heritage Dictionary were included in the analy­
sis.

8. Calculations are based on a semantic neighborhood of lollipop of
size 50, which yielded 23 terms related to girl.

9. In fact, vicious is more closely related by the cosine measure to
lawyer than to shark, but that may be an idiosyncrasy of the general
reading space used here for the LSA analysis, which is trained more on
biology texts than on horror stories.
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revision accepted for publication August 9, 1999.)




