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Learning to classify integral-dimension stimuli
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The authors tested 288 participants in the classic category-learning tasks introduced by Shepard,
Hovland, and Jenkins (1961). However, separable-dimension stimuli were used in previous tests,
whereas integral-dimension stimuli were used in the present study. In contrast to previous results,
which showed a superiority for Problem Type II over Problem Types III, IV, and V, the reverse pat-
tern was observed in the present research. This result confirms a fundamental prediction made by
modern exemplar-based models of classification learning. The results are interpreted in terms of the
extent to which selective-attention learning mechanisms operate when separable-dimension versus

integral-dimension stimuli are used.

In a classic investigation into the nature of category
learning, Shepard, Hovland, and Jenkins (1961) tested
people’s ability to learn six types of classification prob-
lems. This landmark study was pivotal in developing con-
straints for models of category learning, and it remains
highly influential. Numerous modern theorists continue
to use the Shepard et al. tasks as benchmarks for models
of classification (Anderson, 1991; Estes, 1994; Gluck &
Bower, 1988; Kruschke, 1992; Nosofsky, 1984).

A central contribution of Shepard et al.’s (1961) study
was the demonstration that models based solely on ele-
mentary principles of stimulus generalization were inad-
equate to explain the nature of category learning. Rather,
some abstract process of selective attention to dimen-
sions appeared to be critically involved. Furthermore, this
study, together with others reported by Shepard and
Chang (1963) and Shepard (1964), was instrumental in
sparking the distinction between “integral” and “separa-
ble” dimensions that is fundamental in modern thinking
about perception and cognition.

The structures of Shepard et al.’s (1961) problems are
shown in Figure 1. In all cases, there were eight stimuli
varying along three binary-valued dimensions. For pur-
poses of illustration, in the example in Figure 1, the di-
mensions are color, shape, and size. In all the problems,
four stimuli were assigned to Category A and the remain-
ing four were assigned to Category B. Although there are
70 distinct ways of assigning four of eight stimuli to two
categories, only six types of problems arise for stimuli
varying along three binary-valued dimensions. All prob-
lems within a type have the same abstract structure, with
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only the assignment of physical dimensions to the logi-
cal dimensions varying.

In Problem Type I, only a single dimension is relevant.
The example in Figure 1 is to classify all squares into
Category A and all triangles into Category B. In Problem
Type 11, exactly two dimensions are relevant. The exam-
ple in Figure 1 is to classify black squares and white tri-
angles into Category A and white squares and black tri-
angles into Category B. In this example, the dimensions
of color and shape are relevant, whereas size is irrelvant.
In Problem Type VI, all three dimensions are equally rel-
evant. Stating a rule for Type VI basically involves enu-
merating the stimuli in each of the categories. Finally, in
terms of structural complexity, Types III, IV, and V are
intermediate between Types II and VI. All three dimen-
sions are relevant, but to differing extents. One way of
thinking about these problems is as single-dimension-
plus-exception structures. For instance, in the Type V ex-
ample, squares belong to Category A and triangles to
Category B, except that the small white triangle is switched
with the small white square.

Shepard et al. (1961) found that upon initial exposure to
each problem, people learned Type I most rapidly; fol-
lowed by Type II; followed by Types III, IV, and V, which
were approximately equal in difficulty; and finally by
Type VI. This ordering of difficulty was also observed by
Nosofsky, Gluck, Palmeri, McKinley, and Glauthier (1994),
who conducted a replication and extension of the original
study. Shepard et al.’s result was important, because a vast
class of models based on elementary principles of stimu-
lus generalization failed to predict this ordering. Most crit-
ically, these models predicted that Type II should be
learned more slowly than Types III, IV, and V.

Shepard et al. (1961) suggested that a process of selec-
tive attention was involved when people learned to solve
the problems. To solve Type II, people need attend to
only two of the three dimensions; the third dimension is
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dim 3: size

dim 2: color
dim 1: shape

Figure 1. (Top) The six types of categorization problems tested by
Shepard, Hovland, and Jenkins (1961). The eight stimuli are denoted by
the corners of the cubes. Assignments to categories are denoted by the
ovals or rectangles that enclose the stimulus numbers. (Bottom) Exam-
ple in which the stimuli vary along the dimensions of shape, color, and

size.

irrelevant. But to solve Types III, IV, and V, one needs to
spread attention across all three dimensions.

This interpretation about the influence of selective
attention was corroborated in theoretical analyses of
Shepard et al.’s (1961) tasks conducted by Nosofsky
(1984) and Kruschke (1992). These investigators dem-
onstrated that, without allowing for selective attention
processes, modern exemplar models of category learn-
ing, which formalize in quantitative fashion the princi-
ples of stimulus generalization assumed by Shepard
et al., predict that Type II should be learned more slowly
than Types III, IV, and V. However, with principles of se-
lective attention incorporated, these same models pre-
dict perfectly the ordering of difficulty of the six prob-
lem types.

The stimuli used in Shepard et al.’s (1961) original tasks
and in Nosofsky et al.’s (1994) replication varied along
highly “separable” dimensions. Separable dimensions
remain psychologically distinct when in combination; an
example is forms varying in shape and color. A vast
amount of converging evidence suggests that people are
highly efficient at selectively attending to separable di-
mensions. By contrast, “integral” dimensions combine
into relatively unanalyzable unitary wholes; an example
is colors varying in hue, brightness, and saturation. Al-
though people can selectively attend to integral dimen-
sions to some degree, the process is far less efficient than
what occurs for separable-dimension stimuli.

Shepard and Chang (1963) reasoned that, if people
learned to classify integral-dimension stimuli, models

based solely on principles of stimulus generalization
might indeed capture the results, because the selective-
attention process that operates for separable-dimension
stimuli would be largely precluded. Shepard and Chang
confirmed this prediction by demonstrating that models
of stimulus generalization without the incorporation of
selective attention provided reasonably good fits to data
from six new category-learning problems in which par-
ticipants classified integral-dimension color stimuli.

A shortcoming of the seminal investigations of Shep-
ard et al. (1961) and Shepard and Chang (1963), how-
ever, is that in addition to varying whether the dimensions
were separable or integral, different category structures
were tested in the two studies. Indeed, the stimuli used by
Shepard et al. varied along three binary-valued dimensions,
whereas in Shepard and Chang’s studies the stimuli var-
ied along two continuous dimensions. Furthermore, the
critical qualitative contrasts in problem difficulty that
were present in Shepard et al.’s (1961) studies (Type II
vs. Types I1I-V) did not arise for the structures tested by
Shepard and Chang.

Thus, after all these years, there is still a missing part of
the picture. It is critically important to replicate the Shep-
ard et al. (1961) tasks, except using integral-dimension
stimuli instead of separable-dimension ones. The purpose
of the present research was to conduct such an experi-
ment. The prediction stemming from current exemplar
models is that when integral-dimension stimuli are used,
Problem Type II should be learned more slowly than
Problem Types III, IV, and V.
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EXPERIMENT

We tested participants on the Shepard et al. (1961) prob-
lems, except that, instead of using separable-dimension
stimuli, we used integral-dimension colors. Pilot work
was conducted to find a set of computer-generated col-
ors that approximated the Munsell configuration illus-
trated in Figure 2A. In this configuration, the colors vary
in hue (purple-blue 7.5 vs. purple 7.5), brightness (value 3
vs. value 6), and saturation (chroma 4 vs. chroma 10).
Similarity-scaling work was performed to verify the di-
mensional structure of the stimuli.

In the classification experiment, each participant solved
one of the category-learning problems illustrated in Fig-
ure 1. The assignment of the dimensions of hue, brightness,
and saturation to the abstract structure of each problem was
balanced over participants. We then measured the average
rate at which each of the problems was learned.

Method
Participants. The participants in the classification experiment
were 288 undergraduates from Indiana University who received credit
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for a course requirement. Forty-eight participants were randomly as-
signed to each of the six problems. An additional 34 undergraduates
from the same population were tested in a similarity-scaling study.

Stimuli. The stimuli were colors presented on computer screens.
Pilot work was conducted to create a set of colors that approximate-
ly matched the Munsell configuration illustrated in Figure 2A.
Similarity-scaling work (described in the Results section) was then
performed to verify that the colors had the requisite psychological
structure. The colors were generated on CompuAdd 14-in. monitors
by adjusting the red, green, and blue (RGB) color channels on Com-
puAdd 486 machines. The RGB values for the colors were: 1
[84.68,96], 2 [100,64,80], 3 [136,108,140], 4 [160,108,132], 5
[104,0,132], 6 [128,0,88], 7 [164,0,208], and 8 [204,0,180]. Each
color occupied a 9 X 7 cm rectangle surrounded by a gray back-
ground. Participants entered responses by pressing appropriate keys
on the computer keyboard.

Procedure. Assignment of the dimensions of hue, brightness, and
saturation to the logical structure of each problem was balanced over
participants. The procedure for the learning of each problem was sim-
ilar to the one used by Shepard et al. (1961). In the first and second
block of 8 trials, each color appeared once in random order. In each
subsequent block of 16 trials, each color appeared twice in random
order. On each trial, a color was presented, the participant classified
it, and feedback was provided. Learning continued until a participant
reached a criterion of 4 consecutive subblocks of 8 trials with no er-
rors or for a maximum of 400 trials (25 blocks of 16 trials).
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Figure 2. (A) Munsell configuration that served as a model for the computer-generated colors. (B) Scaling solution for

the colors used in the experiment.
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In the scaling study, there were four blocks of similarity judgments.
On each block, all 28 unique pairs of the eight colors were presented, 1
pair per trial, in a random order. These four blocks were preceded by 20
practice trials. The color rectangles were presented simultaneously in the
middle of the screen, separated by 3 cm. Participants made similarity rat-
ings by using a 10-point scale (1 = very dissimilar, 10 = very similar).

Results

Similarity scaling. A multidimensional scaling (MDS)
solution for the colors was derived by fitting the stan-
dard Euclidean model to the averaged similarity ratings.
The three-dimensional solution yielded a stress of .003 and
accounted for 99.99% of the variance in the data. The so-
lution is shown in Figure 2B. The derived dimensions cor-
respond reasonably well to the desired configuration, al-
though some issues arise that require discussion. As
anticipated, colors 1, 2, 3, and 4 are relatively unsatu-
rated, whereas colors 5, 6, 7, and 8 are saturated; colors
1,2, 5, and 6 are dark, whereas colors 3, 4, 7, and 8 are
light; and color group 1, 3, 5, and 7 is separated from color
group 2, 4, 6, and 8 in hue. However, the hues of the col-
ors that are low in saturation are less discriminable than
are the hues of the colors that are high in saturation. This
same property holds for the original Munsell colors that
served as models for our computer-generated ones. A
basic property of the Munsell system is that as saturation
decreases, all hues converge to a constant gray. We ad-
dress concerns about the possible influence of this change
in discriminability in our analyses of the classification-
learning data.

Classification learning. The average probabilities of
errors for each problem in each block of 16 trials are
shown in Figure 3A. The means on late blocks reflect
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zero values for participants who had already reached cri-
terion. Qur assumption is that the participants who had
reached criterion, and who thereby had already achieved
between 32 and 40 consecutive correct responses, would
have continued to respond without error if they main-
tained the same level of motivation.

The learning data confirm our critical prediction: al-
though Problem Type II was learned more quickly than
Problem Types III-V in previous studies in which
separable-dimension stimuli were used (Nosofsky et al.,
1994; Shepard et al., 1961), the reverse is observed for
the present integral-dimension stimuli. The overall or-
dering of difficulty for the six problems in terms of av-
erage error probabilities is I, IV, III, V, II, and VI. Using
the average error probability for each individual prob-
lem as the unit of analysis, pairwise ¢ tests indicate that
IV and III were learned with significantly fewer errors
than was II, although the difference between V and I was
not statistically significant.

More detailed analyses revealed that, regardless of
which dimension was irrelevant (hue, saturation, or bright-
ness), performance on Problem Type II was always worse
than that on Problem Type IV. This result militates against
concerns that poor performance on II relative to IV arose
solely from the discriminability differences that existed on
the hue dimension. Even when hue was irrelevant, perfor-
mance on I was worse than performance on I'V.

THEORETICAL ANALYSIS

In previous work, Nosofsky et al. (1994) demonstrated
that the ALCOVE model (Kruschke, 1992) provided an
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Figure 3. (A) Average probabilities of errors for each problem in each block of 16 trials. (B) Predicted probabilities of errors from

the ALCOVE model.
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excellent quantitative account of the averaged learning
data for the Shepard et al. (1961) tasks in a situation in-
volving separable-dimension stimuli. According to AL-
COVE, people learn categories by storing individual ex-
emplars in memory. Classification decisions are based
on how similar an item is to these stored exemplars.
Selective-attention processes, represented by a set of
attention-weight parameters, modify the structure of the
space in which the exemplars are embedded. ALCOVE
provides an explicit mechanism for how these attention
weights are learned. If the mechanism is active, then AL-
COVE basically learns to distribute attention over the di-
mensions so as to optimize performance (Nosofsky, 1984).
So, for example, it learns to attend selectively to the sin-
gle dimension that is relevant in Problem Type I and to
the two relevant dimensions in Problem Type II.

The version of ALCOVE fitted by Nosofsky et al.
(1994) had four free parameters: an overall sensitivity
parameter (x), a background-noise constant (5), an
association-weight learning rate (4,,), and an attention-
weight learning rate (4,) (see Kruschke, 1992, and
Nosofsky et al., 1994, for more detailed discussion). The
same model is now used to fit the current data. Because
of the integral nature of the stimulus dimensions, how-
ever, the expectation is that the best fitting value of the
attention-learning parameter will be near zero.

We fitted ALCOVE by searching for the free parame-
ters that minimized the sum of squared deviations be-
tween predicted and observed error probabilities. First,
we constructed 120 random stimulus sequences. The
characteristics of each sequence matched the constraints
in our experimental design. For any given set of parame-
ters, the model was used to generate predictions on the
basis of each random sequence. These 120 sets of pre-
dicted values were then averaged, and the averaged val-
ues constitute the predictions that were fitted to the ob-
served data. A hill-climbing parameter-search routine
was used to find the best fitting parameters. Finally, in
fitting ALCOVE, the MDS solution derived for the col-
ors (Figure 2B) was used for computing Euclidean dis-
tances among exemplars, and predictions of the model
were averaged over balanced assignments of the dimen-
sions of hue, brightness, and saturation to the logical
structure of each problem.

The predicted learning curves are shown in Figure 3B.
The four-parameter model provides a reasonably good
quantitative fit to the data, accounting for 94.2% of the
variance in the 150 error probabilities. The best fitting
parameters were x = .608, b = .018, A, = .338, and
Ag = 0. Of greatest importance, the best fitting attention-
weight learning rate turned out to be zero. ALCOVE
predicts perfectly the ordering of difficulty of the six
problems for these integral-dimension stimuli. Most
critically, it predicts that Problem Type Il is learned more
slowly than Problem Types IV, III, and V.

The model also characterizes the subtle differences
among Problem Types III-V. Although each of these
problems can be characterized as single-dimension-plus-

exception structures, the nature of the exception varies.
For instance, similarity relations among exemplars are
more favorable in the Type IV structure than in the
Type V structure. Type 1V is linearly separable, in the
sense that the categories can be partitioned by drawing a
single oblique plane through the cube. The exemplars in
each category form a similarity cluster on each side of
the plane. By contrast, in Type V the exception in each
category is isolated from the remaining three exemplars,
which leads to relatively inefficient learning.

DISCUSSION

The present research verified a fundamental prediction of modern
exemplar models incorporating selective-attention learning mecha-
nisms. We replicated the classic Shepard et al. (1961) category problem-
solving tasks, except that we used integral-dimension stimuli instead
of separable-dimension ones. While previous results involving
separable-dimension stimuli had revealed that Problem Type II was
solved more quickly than Problem Types III, IV, and V, the reverse was
observed for the present integral-dimension stimuli. Both sets of re-
sults are explained by selective-attention exemplar models by assum-
ing a high attentional learning rate in a situation involving separable-
dimension stimuli but a low attentional learning rate in the present
situation involving integral-dimension stimuli.

No single study can be considered definitive, and caution is needed
in making cross-experiment comparisons. Conceivably, other differ-
ences between the experiments could also account for the dramatically
different patterns of results. For example, the rate of learning on all
problems was slower in the present study than in the previous studies
that had used separable-dimension stimuli. Perhaps differences in
overall discriminability among members of the stimulus sets affected
selective-attention processes. Although further research is needed, the
present study nevertheless goes a long way toward completing the pic-
ture conceived long ago by Shepard et al. (1961) and Shepard and
Chang (1963) regarding the role of integral and separable dimensions
in classification learning.
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